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An increasing number of learning goals refer to the acquisition of cognitive skills that
can be described as ‘resource-based,’ as they require the availability, coordination,
and integration of multiple underlying resources such as skills and knowledge facets.
However, research on the support of cognitive skills rarely takes this resource-based
nature explicitly into account. This is mirrored in prior research on mathematical
argumentation and proof skills: Although repeatedly highlighted as resource-based,
for example relying on mathematical topic knowledge, methodological knowledge,
mathematical strategic knowledge, and problem-solving skills, little evidence exists on
how to support mathematical argumentation and proof skills based on its resources.
To address this gap, a quasi-experimental intervention study with undergraduate
mathematics students examined the effectiveness of different approaches to support
both mathematical argumentation and proof skills and four of its resources. Based
on the part-/whole-task debate from instructional design, two approaches were
implemented during students’ work on proof construction tasks: (i) a sequential
approach focusing and supporting each resource of mathematical argumentation and
proof skills sequentially after each other and (ii) a concurrent approach focusing and
supporting multiple resources concurrently. Empirical analyses show pronounced effects
of both approaches regarding the resources underlying mathematical argumentation
and proof skills. However, the effects of both approaches are mostly comparable, and
only mathematical strategic knowledge benefits significantly more from the concurrent
approach. Regarding mathematical argumentation and proof skills, short-term effects of
both approaches are at best mixed and show differing effects based on prior attainment,
possibly indicating an expertise reversal effect of the relatively short intervention. Data
suggests that students with low prior attainment benefited most from the intervention,
specifically from the concurrent approach. A supplementary qualitative analysis
showcases how supporting multiple resources concurrently alongside mathematical
argumentation and proof skills can lead to a synergistic integration of these during proof
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construction and can be beneficial yet demanding for students. Although results require
further empirical underpinning, both approaches appear promising to support the
resources underlying mathematical argumentation and proof skills and likely also show
positive long-term effects on mathematical argumentation and proof skills, especially for
initially weaker students.

Keywords: instructional design, mathematics, mathematics education, whole-task learning, mathematical proof,
higher education, resource-based cognitive skills, argumentation

INTRODUCTION

Today, educators in formal and informal learning settings
deal with increasingly complex skills as learning goals, such
as argumentation or complex problem solving (e.g., National
Research Council, 2012; Osborne, 2013; Greiff et al., 2014), which
require the availability, coordination, and integration of multiple
underlying cognitive resources.

Research from educational psychology focusing on the
support of complex skills has long been examining part- and
whole-task approaches for learning (e.g., Naylor and Briggs, 1963;
Anderson, 1968; Lim et al., 2009). Here, part-task approaches
focus on the acquisition of individual part tasks or steps
within a larger task to later integrate these into the whole
task, whereas whole-task approaches focus on the immediate
acquisition of the larger, entire task. Cumulative evidence
from corresponding research of the last decades generally
points to a higher effectiveness of whole-task approaches to
support complex skills (e.g., van Merriënboer and Kester, 2007;
Melo and Miranda, 2016).

Respective research has focused on different parts of larger,
complex tasks, which can be decomposed into a number
of discrete subtasks, and how those can be learned and
transferred to the overall task. It did not focus on different
(dispositional) resources possibly required for a specific skill.
Still, research from (educational) psychology and mathematics
education (e.g., Koeppen et al., 2008; Schoenfeld, 2010; Blömeke
et al., 2015) has increasingly stressed the fact that many skills
currently focused as educational goals, such as mathematical
argumentation and proof skills, rely heavily on several underlying
resources that need to be coordinated and integrated to solve
problems or successfully meet situations requiring the skill.
Researchers increasingly acknowledge that these skills should
be conceptualized as resource-based cognitive skills. However,
these underlying resources are rarely considered in the design
of learning environments. Although the idea of supporting
a resource-based cognitive skill by “simply” supporting its
resources and their application is compelling, an instructional
dilemma arises: To foster the overarching skill, is it favorable
to focus on each resource and the support of its acquisition
sequentially? Or should the focus rather be on all resources and
their joint application, concurrently? Both approaches appear
to have advantages: The first approach benefits from a higher
decomposition and instructional clarity as all resources are
addressed individually, yet also requires the later transfer from
the individual resources to the overall skill. In contrast, the

second approach may overwhelm students with the resource-
based cognitive skill and its underlying resources all at once, yet
allows an integrated learning of the resources in authentic settings
that support the integration of the resources and already trains
their concurrent application within mathematical argumentation
and proof tasks.

The dilemma mirrors the part-/whole-task debate (see
Figure 1), as (i) supporting each resource underlying a resource-
based cognitive skill sequentially is analog to the part-task
approach, whereas (ii) supporting the resources concurrently
is analog to the whole-task approach. However, the resources
underlying a resource-based cognitive skill go beyond individual
steps or subtasks, may have to be purposefully applied within
multiple steps, and require more than a sequential enchainment
as compared to the individual part tasks. Thus, the transfer
of the central tenet from the part-/whole-task debate, that
whole-task learning is generally more effective for complex
skills, appears questionable and has yet to be investigated
thoroughly. In particular, it is generally unclear how effective
both approaches for supporting the resources are regarding a
complex cognitive skill such as mathematical argumentation
and proof skills and whether any learning gains on the
resources can be instantly transferred or used for mathematical
argumentation and proof.

Over the last decades, increasing evidence suggests that
mathematical argumentation and proof skills should be

FIGURE 1 | Structural equivalence between the part-/whole-task debate
(upper part) and the sequential and concurrent approach to support a
resource-based cognitive skill and its resources (lower part).
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considered as a resource-based cognitive skill. For example,
mathematical topic knowledge, methodological knowledge, or
problem-solving skills have been proposed by prior research as
underlying resources (e.g., Schoenfeld, 1985; Heinze and Reiss,
2003; Ufer et al., 2008; Chinnappan et al., 2012), for example
needed in common proof construction tasks (see Figure 2).

The present contribution addresses the question how
mathematical argumentation and proof skills, as a prototype
of a resource-based cognitive skill, as well as its underlying
resources can be effectively supported. We therefore contrast
two (resource-based) instructional approaches to support the
development of mathematical argumentation and proof skills:
a sequential approach, focusing and supporting each resource
individually one after the other, and a concurrent approach,
focusing and supporting multiple resources concurrently. We
compare students’ learning outcomes in both approaches,
regarding both the resources and overall argumentation and
proof skills, to give first insights into the effects of both
approaches and their feasibility in the context of mathematical
argumentation and proof skills and more generally.

THEORETICAL BACKGROUND

Instructional Approaches for Complex
Skills
The idea that instructional strategies to support the learning
of less complex skills may differ from those to support more
complex skills has been raised repeatedly by educators and prior
research (e.g., Branch and Merrill, 2011). Yet, the idea entails

serious intricacies, starting with the notion of skill complexity,
which is ill-defined.

Naylor and Briggs (1963) gave a seminal account of task
difficulty, differentiating two independent dimensions: task
complexity, accounting for the individual complexity of the
subtasks, and task organization, describing the demands posed
by the interrelationship between the various subtasks and their
integration into the whole task. Their experimental study (Naylor
and Briggs, 1963) suggests that tasks with a high subtask
complexity but low task organization benefit from part-task
training. That is, individual subtasks are trained and afterward
connected using different sequencing strategies. In contrast, tasks
with low subtask complexity but high task organization benefit
from whole-task training, as combining individually learned
subtasks is more complex for these tasks. Further, tasks that
require not only enchaining but also integrating several subtasks
can be more effectively taught using whole-task approaches
(Naylor and Briggs, 1963).

Subsequent research contrived plausible theoretical arguments
and empirical evidence for both approaches: Arguments for the
part-task approach are mostly based on classical learning theories
from psychology research like Adaptive Control of Thought
(ACT; Anderson, 1996) that assume the decomposability of
complex skills into less complex part skills (Anderson, 2002).
Based on these assumptions, for example, multiple computer-
based approaches like cognitive tutors (Anderson et al., 1995)
were developed to support mathematical skills and at least
partially proven to be successful. This atomistic approach
has been challenged by sociocultural and situated conceptions
of learning that highlight the situatedness of learning (e.g.,

FIGURE 2 | Mathematical proof construction task including solution and exemplary highlights for required resources.
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Brown et al., 1989; Lave and Wenger, 1991). The superior
effectiveness of whole-task approaches also gained empirical
support by evidence pointing to difficulties associated with
attempts to transfer and integrate part tasks to the whole task (see
Anderson et al., 1996 for a critical discussion).

Several studies and reviews (e.g., Lim et al., 2009; Melo and
Miranda, 2015; see van Merriënboer and Kester, 2007 for an
overview) document the advantages of whole-task learning for a
broad range of learning goals. For example, a meta-analysis on the
effects of four-component instructional design (4C/ID) learning
environments on school students’ learning (Melo and Miranda,
2016) revealed high positive effects on reproduction (d = 0.70)
and transfer (d = 0.65). Today, many educational theories assume
that learning is evoked and supported best by rich, meaningful
tasks (van Merriënboer, 2002), which are hard to achieve by
focusing on an atomistic approach dissecting whole tasks.

However, empirical studies highlight that, in some situations,
the benefits of learning the resources separately may be higher
than the challenges of integrating and coordinating the tools in
the complex goal task (So et al., 2013) and that additional research
may identify which aspects of a skill influence how effective
different learning approaches are (Lim et al., 2009; Wickens et al.,
2013). For example, Wickens et al. (2013) were able to show that
the effectiveness of part-task training depends not only on task
difficulty but that the approach for segmenting the whole task
into part tasks plays a decisive role. Here, segmenting into parts
that have to be used concurrently in the whole task showed a
particularly negative effect on the transfer of part-task learning
gains to the whole task. Although not prominent in the analysis
by Wickens et al. (2013), another aspect discussed repeatedly
is prior knowledge or attainment (Salden et al., 2006), as with
low prior attainment, both the part tasks and their integration
have to be learned.

Still, what has been described as a complex skill in earlier
research (c.f., Gagné and Merrill, 1990; van Merriënboer, 1997)
seems quite incomparable to skills like argumentation. For
example, creating spreadsheets for monthly sales figures (Merrill,
2002) or handling a mechanic excavator (So et al., 2013) cannot be
seen as equivalent to argumentation skills, since here not only the
integration of several subtasks or subskills in the sense of manual
skills, operations, or activities is required but also an integration
of various resources underlying the skill, which have to be
monitored, coordinated, and regulated. Further, the resources
have to be utilized in different ways (for example, when analyzing
the task, when creating a plan to solve the task, when solving the
task, and when validating the solution), cannot be sequentially
enchained, and have to be used concurrently, interacting with
each other. It is thus unclear if and how according research can be
transferred to more complex cognitive skills and their resources.

Resource-Based Cognitive Skills
Cognitive skills are often conceptualized in the sense of Koeppen
et al. (2008) as latent cognitive dispositions underlying a
person’s performance in a range of specified situations. For
example, mathematical argumentation and proof skills refer
to the cognitive disposition necessary to handle proof-related
situations and activities (e.g., Mejía-Ramos and Inglis, 2009).

Such situations may ask an individual to construct a valid
mathematical proof for a claim or to read a purported proof
and judge its correctness. However, judging a person’s success
in handling these situations is not straightforward but depends
on certain norms to evaluate success. Although norms and
values regarding mathematical proofs are generally seen as
quite consistent (e.g., Heinze and Reiss, 2003; Dawkins and
Weber, 2016), research has still repeatedly shown that they
vary to a certain extent (e.g., Inglis et al., 2013; Andersen,
2018) and should be regarded as a social construct that varies
depending on the community (e.g., Sommerhoff and Ufer,
2019; see Method for a more specific operationalization in the
context of this study).

Generally, cognitive skills are not conceived as monolithic,
indecomposable latent constructs. Several theoretical, as well
as empirical, accounts underline that cognitive skills may
heavily require multiple, correlated but potentially independent
underlying resources. For example, Shulman (1987) discusses
several knowledge facets (e.g., content knowledge, pedagogical
knowledge), as underlying teaching skills and, for example, also
problem-solving skills are assumed to have underlying resources
such as heuristics (e.g., Schoenfeld, 1985; Abel, 2003). A similar
conception can be found in vocational education, where Mulder
et al. (2009) speak of an “integrated set of capabilities consisting
of clusters of knowledge, skills, and attitudes.” The theoretical
discussion and framework by Blömeke et al. (2015) integrate
these ideas and conceptions, emphasizing the relations between
the resources underlying the resource-based cognitive skill and
task performance.

This conception of cognitive skills creates a situation that
is structurally equivalent to the part-/whole-task debate (see
Figure 1). Here, students’ resource-based cognitive skill (e.g.,
mathematical argumentation and proof skills) can be regarded as
analog to the ability to solve whole tasks, whereas the different
resources underlying the resource-based cognitive skill (e.g.,
mathematical topic knowledge) are analog to the ability to
solve the part tasks. This analogy substantially extends the part-
/whole-task debate, bringing up the question whether the results
from the part-/whole-task debate can be transferred to resource-
based cognitive skills. Here, the primary question will be, if (i)
the resource-based cognitive task can be effectively supported
by supporting the resources and (ii) the resources should be
supported sequentially one after the other (similar to learning
individual part tasks) or whether a concurrent approach (which
allows to acquire the resources in a more integrated manner)
is more effective. The answers to these questions are highly
relevant for the teaching and learning of any resource-based
cognitive skill.

Unfortunately, results from prior research (e.g., Salden et al.,
2006; Lim et al., 2009) suggest that there might not be one
answer to this question but that various other aspects, such as
students’ prior attainment, might cause differential effects. For
example, in an intervention study, Lim et al. (2009) were able
to show significant main and interaction effects regarding low
vs. high prior attainment and part- vs. whole-task learning for
some of their posttest measures, while other measures did not
show these effects.
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Mathematical Argumentation and Proof
Skills and Its Underlying Resources
Mathematics educators and educational psychologists widely
agree that mathematical argumentation and proof skills can be
seen as a resource-based cognitive skill (e.g., Schoenfeld, 1985;
Ufer et al., 2008; Chinnappan et al., 2012). For example (see
also Figure 2), students faced with a mathematical proof task
need mathematical topic knowledge to identify the mathematical
objects within the task and unpack their definitions and
meanings. Further, problem-solving skills may be needed to
guide students’ search for a solution and to purposefully apply
heuristics to construct a proof.

Several resources of mathematical argumentation and proof
skills have been proposed over the last decades (see Sommerhoff
et al., 2015 for a review): They have been partly derived
from models for more general skills like problem-solving
(resources, heuristics, control, belief systems; Schoenfeld, 1985)
or self-regulated learning (domain-specific knowledge base,
heuristic methods, metaknowledge, self-regulatory skills, beliefs;
De Corte et al., 2000) or have been proposed by qualitative
studies (mathematical strategic knowledge; Weber, 2001).
Moreover, multiple resources have been partially empirically
validated (e.g., Ufer et al., 2008; Chinnappan et al., 2012) and
shown to account for a large share of students’ variance in
mathematical argumentation skills [41.6% explained variance
in Ufer et al. (2008) by basic knowledge and problem-solving
skills; 72.6% explained variance in Chinnappan et al. (2012)
by content knowledge, problem-solving skills, and reasoning
skills]. Although quite some research indicates various possible
resources of mathematical argumentation skills via theoretical
analyses, qualitative analyses, or correlational research, currently
no concluding list of such resources, no ranking of their
importance, and mostly not even causal evidence justifying
their status exist.

Still, based on various frameworks and findings, the following
four resources appear to represent important cognitive resources
for students’ mathematical argumentation and proof skills:

Mathematical Topic Knowledge
One of the most fundamental and best-researched resources is
mathematical topic knowledge (MTK). Following widely accepted
conceptions (e.g., Hiebert, 1986; Anderson, 1996; Star and
Stylianides, 2013), it entails two facets, namely, conceptual
mathematical topic knowledge, that is, a network of knowledge
about mathematical facts, theorems, objects, and their properties,
as well as procedural mathematical topic knowledge, that is,
partly tacit knowledge, exercised in the accomplishment of a
task (Hiebert and Lefevre, 1986). Both were shown to have
a substantial impact on students’ mathematical argumentation
and proof skills (Ufer et al., 2008; Chinnappan et al., 2012),
matching more general research findings on scientific reasoning
(e.g., Schunn and Anderson, 1999; Kuhn, 2002) from psychology.

Methodological Knowledge
Meta-knowledge on mathematical argumentation and proof,
also called methodological knowledge (MK) (Heinze and Reiss,
2003; Ufer et al., 2009; Sommerhoff and Ufer, 2019), is

considered another important resource underlying mathematical
argumentation and proof skills. It comprises knowledge about
acceptance criteria for mathematical proofs (e.g., the rejection
of circular reasoning or the need for an explicit reference to
an underlying theoretical background) as well as knowledge
about different types of proofs, both of which appear particularly
essential for constructing and validating proofs.

Mathematical Strategic Knowledge
In a qualitative study with mathematics students from different
academic levels, Weber (2001) observed that mathematical
topic knowledge alone is not sufficient to successfully construct
proofs. Students were often unable to identify concepts or
methods necessary for a task or had problems applying them
purposefully. For example, students could not purposefully apply
their (available) knowledge about the fundamental theorem
on homomorphisms, as they did not recognize the theorem
as purposeful in the specific situation, although the given
task included multiple cues implying its usefulness. Data from
several other studies (e.g., Reiss and Heinze, 2004; Selden and
Selden, 2013) support this finding, implying students’ need for
mathematical strategic knowledge (MSK), that is, domain-specific
knowledge linking specific cues and hints within mathematical
tasks with the mathematical methods and concepts that can
be useful for solving the respective task (Weber, 2001). In the
broader context of research, mathematical strategic knowledge
can be seen as a domain-specific version of general problem-
solving heuristics.

In contrast to methodological knowledge, which relates to
meta-knowledge about norms and values in the context of
mathematical proofs and different types of proofs, mathematical
strategic knowledge relates to specific knowledge about how
to approach a specific task and discovering cues for such
approaches. In particular, similar to the observations by Weber
(2001), students may have methodological knowledge about
proofs and thus know what the desired proof should look like
in terms of its acceptance and features but may still be unable to
construct the proof, as they do not know how to approach the
given task, implying a need for mathematical strategic knowledge
beyond methodological knowledge.

Problem-Solving Skills
Next to these three domain-specific resources, problem-solving
skills refer to the cognitive disposition to succeed in various
problem situations, that is, situations in which an undesired
initial state has to be transformed into a goal state, yet the needed
operation to achieve this is not at hand (e.g., Dörner, 1979;
Mayer and Wittrock, 2006). The specific relation of mathematical
proof-construction skills and problem-solving skills as well as
the respective processes has been repeatedly discussed (e.g.,
Mamona-Downs and Downs, 2005; Weber, 2005), resulting
in the identification of differences and similarities, and is
still a matter of debate. However, based on the definition of
problems (e.g., Schoenfeld, 1985) as non-routine tasks for which
a learner has no immediate solution strategy, mathematical
proofs have often been conceptualized as problems (e.g., Weber,
2005). The construction of a proof can thus be seen as a
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multistep problem-solving process that, if successful, generates
a deductive chain of arguments as a solution for the problem
(e.g., Weber, 2005; Heinze et al., 2008). Despite differences
between problem solving and proof construction and the fact
that today content knowledge is seen as a more important
resource, it thus appears plausible that (general) problem solving
skills (PSS) are a resource for mathematical argumentation
and proof skills, which has been underlined repeatedly by
prior research (e.g., Polya, 1945; Schoenfeld, 1985; Reiss and
Renkl, 2002) and also partially quantitatively underpinned by
studies on secondary school students’ geometry proof skills
(Ufer et al., 2008; Chinnappan et al., 2012). Simultaneously, the
use of problem-solving heuristics, that is, strategies or rules-of-
thumb for problem-solving processes, have also been proposed
as important for mathematical argumentation and proof skills.
These are mostly conceptualized in a way that they are employed
when solving a problem and accordingly represent an important
resource for problem-solving skills themselves (e.g., Schoenfeld,
1985; Abel, 2003).

Prior research has generally underlined the importance
of these four cognitive resources for students’ mathematical
argumentation and proof skills. In particular, their importance
is supported by quantitative research results for mathematical
topic knowledge and problem-solving skills (Ufer et al., 2008;
Chinnappan et al., 2012), for methodological knowledge (Ufer
et al., 2009) in the context of secondary school geometry, as
well as for mathematical strategic knowledge by first studies in
undergraduate contexts (Sommerhoff et al., submitted).

Corresponding research thus underlines the status of
mathematical argumentation and proof skills as a resource-
based cognitive skill. However, it is currently unclear what
this implies for educational strategies to support mathematical
argumentation and proof skills and its resources. In particular,
prior research has underlined that training mathematical
argumentation and proofs skills directly by working on proof
(construction) tasks is not particularly effective (e.g., Weber,
2003; Selden and Selden, 2008, 2012). This result is often
attributed to the lack of required resources (see Selden and
Selden, 2008). Moreover, it appears possible but rather intricate
to acquire the lacking resources while working on proof tasks
without explicitly addressing them—solving respective tasks
is already demanding for students. It thus appears more likely
that approaches explicitly focusing and supporting the different
resources as well as their application in the context of proof tasks
may be an effective way of supporting students’ resources as well
as their mathematical argumentation and proof skills.

THE CURRENT STUDY

As pointed out in Theoretical Background, mathematical
argumentation and proof skills represent a resource-based skill
that has multiple underlying skills whose availability is important.
Our study is a first step to explore how acknowledging the
resources underlying a resource-based cognitive skill can be
functional in supporting the learning of the underlying resources
as well as the resource-based cognitive skill itself. For this, we

take up the part-/whole-task debate from instructional design
(Anderson et al., 1996; Lim et al., 2009; Branch and Merrill,
2011) in the pursuit of evidence for the feasibility and respective
benefits of a sequential (analog to the part-task approach)
and concurrent (analog to the whole-task approach) approach
for supporting students’ resource-based cognitive skill and its
underlying resources.

This is done by examining students’ mathematical
argumentation and proof skills, which comprise a resource-
based cognitive skill with mathematical topic knowledge
(MTK), methodological knowledge (MK), mathematical
strategic knowledge (MSK), and problem-solving skills (PSS)
as underlying resources as suggested by prior research. In a
quasi-experimental study with university mathematics students,
we investigated whether supporting each of the four resources
sequentially one after the other or supporting the resources
concurrently in the context of mathematical proofs yields
(higher) learning gains on the resources as well as on overall
mathematical argumentation and proof skills.

The research questions driving the study are the following:

RQ1 What are the effects of a sequential vs. a concurrent
instructional approach on the resources of mathematical
argumentation and proof skills?
Hypothesis: We expected positive effects on the resources
for both approaches. Moreover, we expected that the
sequential approach is superior to the concurrent
approach in supporting the resources of a resource-based
cognitive skill.
Argument: Each of the resources for mathematical
argumentation and proof skills as well as their utilization
within argumentation and proof processes are already
quite complex. Shortcomings of students regarding prior
knowledge, problem-solving skills, and other aspects have
repeatedly been reported (e.g., Harel and Sowder, 1998;
Selden, 2011; OECD, 2014). Based on this high complexity
of the “parts,” the results by Naylor and Briggs (1963)
imply that a sequential approach should be better suited
to support these resources. This appears highly plausible,
as acquiring multiple complex resources at the same time
may prove overly demanding for students as they have
to process too much information for too many different
resources simultaneously. The idea of instructional clarity
supports this, as the sequential condition covers each
resource individually and thus should lead to a higher
instructional clarity, which in turn should be beneficial for
the improvement of students’ resources.

RQ2 What are the effects of a sequential vs. a concurrent
instructional approach on overall mathematical
argumentation and proof skills?
Hypothesis: We expected the concurrent approach to yield
higher or at least comparable learning gains compared to
the sequential approach.
Argument: The hypothesis is implied by the results
from Naylor and Briggs (1963), as overall mathematical
argumentation and proof skills require a high degree
of task or rather “resource organization,” that is, the
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underlying resources need to be purposefully combined
and applied when working on mathematical proof tasks.
Accordingly, an approach integrating the resources and
thereby allowing students to directly experience the
concurrent coordination and application of the resources
within mathematical proof tasks should be favorable and
lead to integrated learning. This is further supported
by a prior review on part-task practice (Wickens et al.,
2013) that revealed smaller effects of part-task training
when parts have to be used concurrently, which holds
for the resources underlying mathematical argumentation
and proof skills.
Furthermore, the sequential approach requires students to
later, that is, after learning about each resource, integrate
the various resources and apply them purposefully when
constructing mathematical proofs. As this does not arise
as naturally as in the concurrent approach, where the
resources are already used in an integrated way during
training, this could pose another obstacle for students
following a sequential approach and may actually hinder
learning overall mathematical argumentation and proof
skills. In line with this argumentation, situated learning
theories (Brown et al., 1989; Lave and Wenger, 1991)
also suggest that students should rather benefit from
the authentic, meaningful combination of resources as
opposed to addressing them individually.

Beyond these research questions quantitatively comparing
both approaches, we were interested in how the expected
learning gains on the resources could shape participants’ proof
construction attempts and lead to the observed results for
the research questions. Here, we were primarily interested in
qualitative insights as to how the resources can be used and
integrated by students in the concurrent condition and if this
integration could lead to productive synergistic effects.

METHOD1

Design, Participants, and Context
We adopted a quasi-experimental pre–post design with two
conditions, corresponding to the sequential and concurrent
approach. The intervention was offered as a voluntary course for
mathematics university students from one of the largest German
universities and was entitled “Mathematical proofs: That’s how
to do it!,” which was aimed toward undergraduate students after
their first semester. A total of 45 students (18 male, 27 female,
mage = 20.82) participated in the study. Of these, 36 were first
year and 9 were second year students who were either enrolled
in a mathematics bachelor’s program or a teaching degree for
secondary education. One can assume that all participants had
participated in proof-based real analysis lectures, giving the
students the necessary foundation for the course. In contrast to
mostly calculation-based ‘calculus’ courses that include only some

1Further details regarding the design of the study, the teaching materials, the
employed instruments, and the obtained data can be requested for research
purposes (e.g., replication/reanalysis) from the authors.

proofs, these lectures are purely proof based and focus on the
creation of an axiomatic, deductively derived theory. However,
the courses are not explicitly designed to be ‘introduction to
proof ’ courses, but mathematical proofs are mostly introduced in
a ‘learning by observing/doing’ manner, mostly without explicitly
covering or even disentangling different aspects of proofs or
different resources needed for proofs. A typical book reflecting
the lectures is from Amann and Escher (2005).

Twenty-one students participated in the sequential condition,
while 24 students participated in the concurrent condition.
Participants’ final school qualification grade (M = 1.922,
SD = 0.52), as well as their final high-school grades in
mathematics (M = 1.86, SD = 0.56), were in between the best and
second-best grade.

Procedure
The course was scheduled across three consecutive days and
consisted of four 2-h intervention sessions plus two sessions for
pretest and posttest (i.e., two sessions per day). Without being
aware of the difference, participants could choose to participate
in one of both parallel groups, each representing one of the
instructional conditions. The course was conducted by two
experienced instructors with a mathematics and mathematics
education background. Instructors swapped groups in the middle
of the intervention to counter instructor effects.

The content of the course was based on topics and proofs from
proof-based real analysis, an introductory topic in undergraduate
mathematics. Both conditions covered the same teacher input,
content, tasks, and time on task. Yet, tasks and content were
arranged in a different order according to both conditions.

To teach the individual resources in both conditions, we
adopted a 4C/ID-inspired instructional design (van Merriënboer
and Kirschner, 2007; van Merriënboer, 2013). Following this
design, the teaching of the resources consisted of an initial
input phase with information on the resources, giving both
a theoretical background as well as information on why,
how, and when they are important during activities related to
mathematical argumentation and proof. This was combined with
a short list of elaboration and monitoring prompts that were
distributed to the students (e.g., MTK: “Excerpt all important
objects and properties from the task, explain these in your
own words, and compare them to the formal definition.;” MSK:
”Search the task for keywords that you know from other tasks.
What methods did you use there?”). The prompts represented
procedural information that students could use while solving
proof construction tasks. They were intended to scaffold the
use and application of the individual resources during these
tasks, to enhance students’ analysis of the tasks according
to each resource, and to stimulate students to elaborate and
reflect on each resource. To show how these prompts can be
purposefully applied, the instructor demonstrated and trained
their use with the students based on an example task (for each
resource individually on one task in the sequential condition;
simultaneously in each of the four tasks in the concurrent
condition). After these input and training phases, which lasted

2Grades are scaled from 1 to 4, with 1 being the best grade.
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about 15 min per resource (distributed over four sessions in the
sequential condition; clustered in two parts in the concurrent
condition; see Figure 3), students worked on proof construction
tasks individually trying to implement what they had just learned
and find more effective approaches to proof construction than
they had before.

The 4C/ID-inspired instructional design was used for two
reasons: First, each of the resources is characterized by a lower
task organization, that is, the aspects within the resources require
less organization as compared to mathematical argumentation
and proof tasks and therefore should benefit from a rather
comprehensive instructional approach (Naylor and Briggs, 1963).
Second, we parallelized instruction on the individual resources
for both conditions, as the research questions relate to effects of
their sequential or concurrent teaching, that is, the arrangement
of the resources within the course, and differences regarding the
teaching of the individual resources between both conditions may
have biased results.

The Sequential Condition
The sequential condition was intended to support each of the
four different resources separately. Accordingly, the course was
split into four sessions of 2 h each for this approach, which each
focused only one of the four resources (Figure 3, upper section).

After the input phase, students worked on exactly four
tasks in each session and analyzed them, focusing on the one
resource that was covered during that session. Each task was
then picked up in a second session and analyzed regarding
the resource covered during that session. Additionally, students
solved the task itself and created an overall solution of the task
(including the correct solution of the task as well as the analyses

regarding each of the two resources), which was discussed
with the instructor.

During students’ analyses and their work on the tasks,
the instructor gave guidance, provided procedural information,
and gave students hints to use specific prompts from the
provided list.

The Concurrent Condition
The concurrent condition also consisted of four 2-h sessions to
have similar learning times/time on task for both conditions.
However, each session included all four resources, providing
students with the opportunity to integrate the individual
resources and see connections among them.

In this condition, the content of the four input phases in
the sequential condition were rearranged to two input phases
at the beginning of the first and third session (Figure 3, lower
section). As all resources were covered during each session, it
was necessary to give a basic amount of supportive information
on all resources in the first session, so that students could work
purposefully with all four resources. The remaining information
was then introduced at the beginning of the third session.

Throughout the course, students from this condition worked
on the same eight proof tasks used in the sequential condition,
yet always analyzed them regarding two of the resources
concurrently within one session. The tasks were distributed over
the sessions so each resource would be covered in every session
and each combination of two resources (e.g., MTK and PSS, MTK
and MK, or MSK and PSS) would occur equally often. The tasks
that had already been analyzed and solved (e.g., Task 3 in Session
1) were reconsidered briefly in the next session as repetitions so

FIGURE 3 | Instructional design used for both conditions within the intervention.
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that each student worked on each task twice as in the sequential
condition to ensure similar coverage.

The students from the concurrent condition received the
same amount and kind of guidance as the students in the
sequential condition.

Instruments
Pretest and posttest of the study included scales for each of the
four resources, one for students’ mathematical argumentation
and proof skills, as well as for covariates and demographic data.
The employed scales were adapted to the content, translated
from English, or self-created if no suitable published scales were
available in the literature. Except for the covariates, which were
only assessed in the pretest, we used non-identic, parallelized
tasks for the pre- and posttest to avoid repetition effects. We
chose this approach over using identical tasks, as it was especially
important for the items within the problem solving and the
mathematical argumentation and proof scale to be unknown
and therefore retain a problem character (e.g., Dörner, 1979;
Schoenfeld, 1985).

The employed scales had been piloted prior to the reported
study. Their reliability was 0.58 < α < 0.81, with 0.58
corresponding to the only scale below 0.6 (mathematical strategic
knowledge) that had been assessed using only four items. As a
newly developed scale for a construct that has not been assessed
quantitatively before, we decided to retain the scale despite of the
low reliability. This decision was backed up by better reliabilities
in the pre- and posttest of the reported study (see below).

The scales contained open as well as closed items. Closed
items were evaluated using mark-recognition software with a
subsequent manual control. Open items were coded by two raters
following theory-based coding schemes. Double coding of over
15% of the data led to an interrater reliability of κ > 0.78
(M = 0.93; SD = 0.10). For each scale, sum scores were calculated
and scaled to values between 0 (worst) and 1 (best).

Dependent Variables
Mathematical Topic Knowledge. The scale was adapted from
existing tests in the context of university mathematics (Wagner,
2011; Rach and Ufer, 2020) and slightly modified to fit the
content area of the study. It contained eight items focusing on
conceptual topic knowledge, assessing fundamental knowledge
such as definitions, theorems, and properties of objects as well
as their connections. It further contained five items focusing
on procedural topic knowledge, assessing routine procedures as
solving equations or using the formula for the geometric sum,
which were required in the employed proofs throughout the
course and the corresponding scale.

Methodological Knowledge. The scale for students’
methodological knowledge was taken from a parallel research
project on the conception of proof (Sommerhoff and Ufer, 2019)
and was initially based on existing scales from secondary school
contexts (Healy and Hoyles, 2000; Heinze and Reiss, 2003; Ufer
et al., 2009). It contained four purported proofs that included
different possible shortcomings related to the nature and concept
of proof (e.g., circular reasoning, unwarranted implications).

Students were required to judge the validity of the purported
proofs and justify their judgments.

Mathematical Strategic Knowledge. Mathematical strategic
knowledge has, to our knowledge, not been quantitatively
measured up to now. Building on the definition of the construct,
we chose four typical tasks, the real analysis as the foundation
for four items. The tasks were presented to students alongside
four excerpts of the same task description. In a multiple-choice
format, students were asked to select those excerpts that indicate
a certain concept or method that would be purposeful to solve
the task. In a subsequent open question, students were asked to
explain their choice and describe what the excerpts would imply.
Closed and open items for each task description were combined
using a dichotomous consistency rating, evaluating whether
the selected excerpts combined with the given explanation
matched the given task.

Problem-Solving Skills. Students’ problem-solving skills were
measured using four open items, asking students to solve
problems that did not require domain-specific knowledge
(neither mathematical nor from another domain), except for
everyday knowledge and basic arithmetic skills. The items were
then scored on a scale from 0 to 4, evaluating if the main steps
for solving the problem were given and justified adequately.
As heuristics are an important resource for problem solving,
students’ knowledge about and their use of problem-solving
heuristics was additionally assessed. Hence, students were asked
how often they made use of 12 different, prototypical problem-
solving strategies (e.g., means-end analysis, creating a sketch)
taken from the literature (Polya, 1945) during proof construction.
Each of the strategies was reflected in four Likert-scale items.
Data from both aspects were combined and rescaled to 0
(minimum) to 1 (maximum).

Mathematical Argumentation and Proof Skills. Besides
the resources, a scale for assessing students’ mathematical
argumentation and proof skills consisting of four proof
construction items (four tasks in the pretest, four parallelized
tasks in the posttest; see Supplementary Material) was included.
The tasks were chosen to be novel to the students yet reflecting
prototypical tasks from real analysis lectures as well as those used
within the intervention itself. The items were scored on a scale
from 0 to 4, evaluating if the main ideas or steps needed for a
valid proof were given and adequately justified. 0 was assigned
for purported proofs that did not include a single main idea, 1
was given when at least one of the main ideas was presented,
whereas the codes 2 and 3 were given if the majority and if
all main ideas were present, while 4 was only given for proofs
including all main ideas as well as a clear overall structure
and reasoning. The scoring was (i) based on a theoretical
analysis of possible solutions and important steps within these
solutions and (ii) explicitly adapted to the norms established
within participants’ mathematics lectures, thus reflecting the
mathematical norms of early undergraduate mathematics rather
than our norms as researchers.

Further Variables
Besides the scales for the dependent variables (resources
and mathematical argumentation and proof skills), we
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also included a shortened scale for conditional reasoning
skills from the literature (Inglis and Simpson, 2008) with
16 items. As conditional reasoning skills are considered
fundamental for any kind of reasoning activity, important
for scholarly activities across disciplines, and were
also shown to significantly predict certain aspects of
mathematical argumentation and proof skills (Leighton
and Sternberg, 2004; Alcock et al., 2014), they were
included to be used as a covariate in the later comparisons
between conditions.

Finally, we gathered demographic data including gender,
degree program, final school qualification grade, and final high-
school mathematics grade.

Implementation Check and Process Data
To check the implementation within both conditions and to
survey process data, students received prefabricated exercise
sheets to work with for all tasks and analyses regarding the
resources. The sheets were gathered and digitalized after every
session throughout the intervention (see Figure 4 for an excerpt
of an exercise sheet showing the analysis of a task regarding
mathematical strategic knowledge). Subsequently, it was checked
whether students had explicitly analyzed the task regarding the
resources and whether the analysis was done on a meaningful or
a superficial level (dichotomous rating).

Additionally, a reflection scale on the content covered by
the course was created for the posttest, probing students about
several topics that may or may not have been covered by the
course (e.g., “I think I learned a lot regarding problem solving”).
To check that both conditions did indeed convey an individual
respectively concurrent conception of the resources, students
were also asked how separated they perceived the different

resources during the intervention (“I think the course separated
the individual prerequisites of proving well.”).

Statistical Analysis
Analyses of covariance (ANCOVAs) were calculated for each
resource including conditional reasoning skills and the pretest
results of the respective resource as covariates to examine the
effectiveness of both approaches regarding the four resources.
We refrained from calculating an overall multivariate ANCOVA
(MANCOVA) as both, not including the pretest scores on
the resources as well as “throwing in” all pretest scores as
covariates seemed inappropriate, both theoretically and from a
methodological point of view.

The second research question was examined similarly by using
an ANCOVA with students’ mathematical argumentation and
proof skills as dependent variable and conditional reasoning skills
and the corresponding pretest results as covariates. To further
analyze the possible influence of prior attainment on the learning
gains, a median split based on the pretest results on mathematical
argumentation and proof skills was calculated, and the effects of
each condition on each subgroup were examined.

Additionally, we calculated Hedges’ gav as a measure
for longitudinal effect sizes (Lakens, 2013) to estimate the
effectiveness of either approach on the resources and on
mathematical argumentation and proof skills beyond their mere
significance, as the number of participants in each group was low,
especially regarding the median split.

For the supplementary qualitative analysis on how the
concurrent approach can shape participants’ proof construction
attempts, a prototypical (based on the pretest scores) participant
of the concurrent condition was randomly selected. Her proof
construction attempts from Task 7 (see Figure 6), which was

FIGURE 4 | Excerpt of a student’s exercise sheet showing an analysis regarding mathematical strategic knowledge (translated).
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covered in the second last and last intervention sessions, were
then qualitatively analyzed to showcase the possible effects of the
concurrent approach, however, not implying any generality of
these exemplary findings. The qualitative analysis should thus be
understood as an existence proof on how the different resources
can be synergistically integrated in the concurrent condition.

RESULTS

Implementation Check
An analysis of the documents used throughout the intervention
confirmed that students in both conditions actively analyzed the
tasks regarding the respective resources and used the provided
prompts to elaborate and reflect on the resources. Overall, 92.5%
of the suggested analyses regarding the resources were completed,
1.9% were missing, and 5.6% were done on a superficial level.

This indication of a correct implementation was further
supported by the results of the posttest: A related samples
Friedman two-way analysis of variance by ranks on the reflection
scale, which probed students about several topics that may or may
not have been covered by the course, showed overall significant
differences between students’ answers on the covered topics
[χ2(6) = 89.048, p < 0.001). Post hoc Dunn–Bonferroni tests
showed significantly lower values for both topics not covered
during the course (“beliefs,” “quantifier logic”) in comparison to
those covered by the course.

Furthermore, a Mann–Whitney U test on students’ rating of
the perceived separateness of the resources showed the expected
significant difference (U = 327.0, p = 0.029; Msequential = 3.0
and Mconcurrent = 3.3), indicating that the participants of the
sequential condition perceived the resources as more separated
than students from the concurrent condition.

Descriptive Results
The employed scales in the pre- and posttest (Table 1) showed
acceptable values and variances as well as no signs of floor or
ceiling effects. Cronbach’s alpha was acceptable 0.64 < α < 0.84
for all scales in pre- and posttest, in particular showing better
values for mathematical strategic knowledge (pretest: 0.64;
posttest: 0.71). No indications for violations against normal
distribution or equality of variances were found for resources and
mathematical argumentation and proof skills.

Pearson correlations for each pair of parallelized scales [MTK,
MK, MSK, PS, MA&P] were calculated to safeguard against
possible problems regarding the comparability of the parallelized
pre- and posttest scales. These showed moderate to strong, highly
significant correlations [r(43) = 0.48 − 0.69, p ≤ 0.001].

The results of the pretest regarding the dependent variables,
that is, the resources as well as students’ mathematical
argumentation and proof skills, suggested that both conditions
were comparable prior to the intervention (Table 1). This was
confirmed by calculating independent samples t-tests comparing
both conditions for each of the resources and mathematical
argumentation and proof skills. None of the tests gained
significance [t(43) < 1.60, p > 0.118], solely methodological

knowledge slightly approached significance [t(43) = 1.75,
p = 0.088] in favor of the participants in the concurrent condition.

The same insignificant differences were found for students’
conditional reasoning skills [t(43) = 0.36, p = 0.720], which
were subsequently used as a covariate, as well as for the
demographic data gathered.

Effects on the Resources (RQ1)
The descriptive results of the posttest (Table 1) showed learning
gains within both conditions for most resources, leading to
pre–posttest effect sizes of gav = 0.35 − 1.73 (Table 2).
Solely students’ problem solving showed small to no gains
depending on the experimental condition (gsequential,av = 0.00 and
gconcurrent,av = 0.25).

Comparing the descriptive results of the posttest between
both conditions (Table 1), slightly higher mean scores for all
resources within the concurrent condition could be observed,
which could be an indication for higher learning gains in this
condition. To statistically control these descriptive findings,
univariate ANCOVAs on the posttest results of each resource
were calculated while controlling for conditional reasoning skills
and the respective pretest score. Results revealed a significant
difference on mathematical strategic knowledge [F(1,41) = 5.19,
p = 0.028, η2 = 0.112], confirming significantly higher learning
gains in the concurrent condition. All other ANCOVAs
were insignificant [F(1,41) < 1.538, p > 0.222], thus not
confirming the descriptive differences between both conditions.
The significant result of the ANCOVA for mathematical strategic
knowledge was also reflected in the (significant) longitudinal

TABLE 1 | Mean values for the scales obtained for both conditions in pre- and
posttest.

Sequential Concurrent

Pretest Posttest Pretest Posttest

M SD M SD M SD M SD

Mathematical Topic
Knowledge

0.33 0.17 0.45 0.21 0.40 0.16 0.49 0.14

Methodological
Knowledge

0.40 0.16 0.54 0.14 0.49 0.17 0.55 0.16

Mathematical
Strategic
Knowledge

0.35 0.16 0.57 0.16 0.39 0.17 0.69 0.18

Problem-solving
Skills

0.53 0.10 0.53 0.09 0.54 0.09 0.57 0.10

Mathematical
Argumentation and
Proof Skills

0.34 0.14 0.29 0.14 0.36 0.18 0.32 0.14

All scales ranged from 0 (minimum) to 1 (maximum).

TABLE 2 | Longitudinal effect sizes (Hedges’ gav) for both conditions.

MTK MK MSK PSS MA&P

Sequential 0.64 0.90 1.36 0.00 −0.30

Concurrent 0.58 0.35 1.73 0.25 −0.27
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FIGURE 5 | Effects of both approaches on methodological knowledge (left) and mathematical strategic knowledge (right).

learning gains [paired samples t-tests: sequential: t(20) = −10.19,
p < 0.001; concurrent: t(23) = −7.48, p < 0.001]. Although the
concurrent condition showed larger effects (gsequential,av = 1.36
and gconcurrent,av = 1.73; Figure 5, left side), adding an interaction
in the ANCOVA turned out insignificant [F(1,40) = 2.56,
p = 0.118, η2 = 0.060], thus not confirming the descriptive
differences in pre–post effect sizes.

Although no statistically significant effect in the ANCOVA
for methodological knowledge was found, descriptive data and
effect sizes gave a first indication for a between-conditions effect
(Figure 5, right side): The gains in the sequential condition
[gsequential,av = 0.90; t(20) = −4.238, p < 0.001] appear to be
larger than in the concurrent condition [gconcurrent,av = 0.35;
t(23) = −1.66, p = 0.110], indicating that students in the
sequential condition caught up with the students from the
concurrent condition. Adding an interaction in the ANCOVA
again turned out insignificant [F(1,40) = 1.21, p = 0.278,
η2 = 0.030].

Effect on Students’ Argumentation and
Proof Skills (RQ2)
The descriptive results of the pretest and posttest for students’
mathematical argumentation and proof skills (see Table 1) and
the corresponding longitudinal effect sizes in both conditions
(gsequential,av = −0.30 and gconcurrent,av = −0.27) showed slightly
lower scores. Descriptive data thus suggests that the tasks in the
posttest were more difficult for students, although they had been
designed to be parallel in structure and comparable in difficulty
to the pretest (see also Discussion; see Supplementary Material
for the items). A one-way ANCOVA on students’ mathematical
argumentation and proof skills in the posttest, controlling for
students’ conditional reasoning skills and their pretest results
on mathematical argumentation and proof skills, showed no
significant difference between both conditions [F(1,41) = 0.144,
p = 0.706].

To examine the longitudinal effects on mathematical
argumentation and proof skills in more detail, we performed
an exploratory analysis comparing students with different
prior attainment, as prior research suggested its possible role
for the effectiveness of either condition (Salden et al., 2006;

Lim et al., 2009). For this purpose, two groups were formed
using a median split according to students’ pretest results
on mathematical argumentation and proof skills. The split
resulted in four groups, a weaker and a stronger group for
both instructional approaches. Calculating the longitudinal
effects for the four groups showed mixed effects of the
intervention (Table 3).

Data suggest that students’ prior attainment had an impact on
the effectiveness of the instructional approaches and may indicate
an expertise reversal effect: Initially, stronger students actually
showed a negative development regarding their mathematical
argumentation and proof skills from pre- to posttest, whereas
initially weaker students outperformed them. Although group
sizes are small, the initially weaker students from the concurrent
condition show a quite positive development (gav = 0.71) with
a medium to large positive effect, whereas the initially weaker
students’ mathematical argumentation and proof skills did not
change profoundly in the sequential condition (gav = −0.06).
In contrast, differences between both conditions for the initially
stronger students appear to be much smaller.

The Concurrent Condition—An
Illustration of Effects
The exploratory analysis based on the median split revealed
first signs of an expertise reversal effect regarding students’
mathematical argumentation and proof skills (not for the
resources), that is, initially stronger students benefit less and

TABLE 3 | Longitudinal effect sizes (Hedges’ gav) on students’ mathematical
argumentation and proof skills for the median-split groups.

Number of
students

Pretest Posttest Effect
size
gavM SD M SD

Weaker Sequential 11 0.22 0.09 0.22 0.10 −0.06

Concurrent 8 0.15 0.11 0.23 0.10 0.71

Stronger Sequential 10 0.46 0.06 0.38 0.14 −0.84

Concurrent 16 0.47 0.08 0.36 0.14 −0.95
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even show a negative development based on the resource-based
interventions as compared to initially weaker students. Especially
weaker students in the concurrent condition seemed to benefit
from the intervention, as the concurrent focus on multiple
resources may have led to a better integration and handling of the
resources in argumentation and proof tasks. Even though data
does not allow a further statistical underpinning of this claim,
a qualitative examination may provide insights into the possible
effects of the concurrent approach for students with lower initial
argumentation and proof skills. For this purpose, we provide a
deeper analysis of a proof construction attempt by Leia (ficticious
name), a prototypical student (based on her pretest scores) from
the “weaker–concurrent” group, which she had created during
the second last session of the intervention. Leia was 23 years
old, in the first year of her bachelor mathematics studies. She
failed both exams from the first semester, which drew heavily on
proof construction.

Leia’s work on the analysis of the given proof task regarding the
resource problem solving (Figure 6) shows three main thoughts,
each fitting to one of the elaboration and monitoring prompts
given to the students. The first two mirror her attempts to make
sense of the meaning of the property of the given sequence,
which seems to work out to a certain degree as the second
point correctly reflects the given property. The third point shows
that she has created a plan for solving the task, even before
actively trying to do so in her actual proof attempt. That is,
she plans to use the general problem-solving heuristic of working
backwards, here starting from the defining property of a Cauchy
sequence (given in mathematical notation). This strategy matches
her work regarding mathematical strategic knowledge (Figure 7;
called “cues and tricks” in the intervention), which focuses on
the analysis of the task formulation and its consequences for the
solution of the task. By concentrating on the structural parts of
the given task, Leia unveils its type, referring to it as a “Show,
that something is X” task. She then lays out a broad idea on
how to solve this type of task by finding the properties that

FIGURE 7 | Leia’s notes regarding mathematical strategic knowledge
(translated).

have to hold for an object to be a member of class “X” and
then showing that these properties hold. Her work regarding this
resource only represents a small aspect of mathematical strategic
knowledge and is very procedural (regarding the solution of the
task). However, it mirrors the heuristic of working backwards
mentioned in her problem-solving analysis from a mathematical
strategic perspective, thus aligning domain-specific and domain-
general strategies.

After carrying out both analyses, Leia starts her proof attempt
(Figure 8). Apparently, she jumps quickly into the proof but is
unsatisfied by her first approach and crosses it out (Line 1). As the
crossed-out line is correct and resembles a reasonable approach
for the task, it may be assumed that Leia hesitates because she
wants to stick to the information and procedures given to her
in the intervention, asking her to clarify what is given and, in
particular, her goal. Leia’s behavior may thus be interpreted as
a hesitation or conflict to pursue her prior approaches to proof
construction, which may be even more profound and difficult for
students with higher prior attainment, who are more convinced
of their prior approaches.

Starting in her third line, she then lays out the definition of
a Cauchy sequence (with one minor error in Line 4), which she

FIGURE 6 | Task description and Leia’s notes regarding problem solving (translated).
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FIGURE 8 | Leia’s proof attempt (translated; line numbers added).

then uses in her actual proof attempt, starting from Line 6. Here,
she can successfully reduce the property of a Cauchy sequence
to the property of the given sequence (Lines 8–10) but fails to
explicate the last proof step and conclude that the resulting term
converges to zero as n increases.

Leia’s work exemplifies that especially low-attaining students
may have benefitted from a structured approach to mathematical
argumentation and proof tasks. In her case, the explicit discussion
of aspects of the task related to the resources required for the task
appear to have helped her to plan her problem-solving process
and to purposefully integrate and apply her mathematical topic
knowledge about Cauchy sequences in her planning process. This
may be seen as a result of the concurrent focus on two resources,
problem-solving skills and mathematical strategic knowledge, as
the conjunction of the results regarding both resources appear to
have shaped her solution.

Leia’s work thus highlights that the intervention had a learning
effect and that she implemented her new knowledge on how to

approach mathematical proof construction tasks. Still, her work
also highlights that this newly acquired, resource-based approach
can also constrain solution processes to a certain degree. She did
not pursue her first approach to proving the statement (Line 1)
but seems to have changed her approach. Apparently, the newly
acquired knowledge was not sufficient for her to adequately judge
how productive her attempt in Line 1 was. This may point to
an insufficient integration of the new knowledge and skills and
that using them in specific proof construction tasks was still
challenging enough to prevent complete and efficient success,
something that may be expected after such a short intervention
and may eventually disappear with more practice and routine.

DISCUSSION

Our intervention study examined two instructional approaches
to support the learning of mathematical argumentation and proof
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skills as a resource-based skill while also aiming at learning
benefits for the included underlying resources themselves. For
this, a sequential approach focusing on each resource individually
one after the other and a concurrent approach focusing on the
resources concurrently, both which were inspired by the part-
/whole-task debate from instructional design (see e.g., Lim et al.,
2009), were compared. Due to the low sample size, especially in
the median split groups, the study’s results have to be handled
with care and can only be interpreted as first evidence regarding
the effectiveness of resource-based instructional approaches.
However, power analysis confirms that the ANCOVAs employed
in this study to compare effects between conditions should have
been suited to identify large effects (f > 0.43) with more than 80%
power. Moreover, results from this study—even if some are only
tentative—will be essential for further research, as multiple effects
and possible mechanisms have been highlighted, which can now
be addressed more specifically by future research.

Effects on the Resources
The analyses of the results revealed that explicit training of
the included resources of mathematical argumentation and
proof skills lead to notable learning gains regarding some of
the resources, while others only showed a slightly positive
development. The longitudinal effect sizes indicate especially
high positive effects for mathematical strategic knowledge. These
may reflect that mathematical strategic knowledge was not
explicitly covered during the participants’ university instruction
on mathematics so that initial learning gains are easy to
achieve. They may, however, also be an indication that
mathematical strategic knowledge is indeed an important, so
far under researched resource of mathematical argumentation
and proof skills.

Comparing the impact of both approaches on the four
resources, no overall significant differences for students’
resources could be found. Solely students’ mathematical strategic
knowledge showed a significant difference in favor for the
concurrent condition. Although our assumption was that the
sequential approach would be superior for the learning of the
resources, this result appears reasonable: Mathematical strategic
knowledge refers to knowledge about cues within mathematical
tasks that lead to promising methods or concepts to tackle the
tasks and further refers to knowledge about strategies to solve
these tasks (Weber, 2001). It therefore is related to creating the
problem space, identifying operators therein, and choosing an
operator that may be useful to accomplish the task (see Newell
and Simon, 1972). The successful use of mathematical strategic
knowledge therefore corresponds to a rather comprehensive
view of tasks and is not only limited to certain aspects of the
task. In particular, mathematical strategic knowledge shows
multiple connections to the other resources, as for example,
mathematical topic knowledge is needed to create the problem
space and identify the operators. Further, methodological
knowledge is needed to identify what a goal state for the problem
is supposed to entail. Accordingly, the concurrent approach may
be especially beneficial for mathematical strategic knowledge as
implied by the data, as it may emphasize and strengthen relations
to other resources.

Effects on Mathematical Argumentation
and Proof Skills
Results on mathematical argumentation and proof skills are quite
surprising, as longitudinal effect sizes suggest a slightly negative
(yet not significant) development based on the intervention.
Multiple possible explanations for this effect arise, each of which
will have to be addressed by future research: The effect may
be a methodological artifact of a more difficult posttest. It may
however, also reflect that mathematical argumentation and proof
skills are highly complex (especially compared to those skills
usually addressed in the part-/whole-task debate) and that the
relatively short intervention may not have sufficed to transfer
the observed learning gains on the resources to mathematical
argumentation and proof skills. Finally, the observed expertise
reversal effect (e.g., Kalyuga et al., 2003) may be responsible for
this overall development as the approach is simply better suited
for even weaker students.

Despite the inconclusive overall development, data are
still suitable to compare the effects of both approaches on
mathematical argumentation and proof skills as intended by
the study. Here, an ANCOVA comparing the posttest results
did not show a significant difference between both approaches
regarding students’ mathematical argumentation and proof skills.
Still, examining this result more closely by forming groups of
differing prior attainment revealed interesting effects: Compared
to initially stronger students, weaker students showed a better
development regarding their mathematical argumentation and
proof skills. Here, especially the students from the concurrent
approach could benefit, suggesting that at least for initially
weaker students, the integration of the individual resources and
their concurrent application within mathematical proof tasks is
important to support overall mathematical argumentation and
proof skills. This is also exemplified in the qualitative analysis of
Leia, an initially weaker student from the concurrent approach.
Her work on the resources and the overall task suggests that
working concurrently on both resources was beneficial for her to
derive a solution for the task and that she was able benefit from
the structured approach to the task by using the resources.

CONCLUSION AND OUTLOOK

The current study highlights that acknowledging the resource-
based nature of a cognitive skill can inspire instruction and
raises new questions for mathematics research and education.
Our study creates first knowledge on the effectiveness of two
resource-based instructional approaches, both of which explicitly
acknowledge the resources underlying a cognitive skill, in the
context of mathematical argumentation and proof skills.

Results suggest that, in the case of mathematical
argumentation and proof skills, the sequential and the
concurrent approach can both be used to support students,
at least regarding the resources. Here, the approaches yielded
mostly similar learning gains, both regarding the substantial
short-term learning gains for mathematical strategic knowledge
as well as regarding the positive, yet less pronounced, effects
for the other resources. Regarding mathematical argumentation
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and proof skills, results of the short intervention do not
show the expected learning gains, and both approaches did
not show large differences as implied by the part-/whole-
task debate (van Merriënboer and Kester, 2007; Branch and
Merrill, 2011) but are mostly comparable in learning gains.
In particular, the concurrent work on the resources appears
to not have led to the expected superior integration of the
resources and their better application within mathematical
proof tasks in comparison to the sequential condition. This
may be due to participants’ struggles to implement the
new approach and focus explicitly on the resources while
solving the tasks so shortly after the intervention. This is
also highlighted by the qualitative example of Leia: Even for
those successful in implementing the approach, there appear
to be certain struggles when starting to solve the task and
shifting from former proof-construction approaches to rather
resource-based approaches.

However, contrary to these short-term findings, long-term
learning effects may be more positive when students have been
better trained and internalized the approaches. Although this
hypothesis will have to be confirmed by future research, it
is supported by somewhat similar research from educational
psychology (Rittle-Johnson and Star, 2011; Ziegler and Stern,
2014) focusing on sequenced learning (similar to the sequential
condition) and contrasting learning (similar to the concurrent
condition). Results reveal that the contrasting condition showed
equal short-term learning as the sequenced condition but
improved long-term learning. It thus appears plausible that the
concurrent approach may be more effective regarding long-
term learning.

Overall, further studies exploring the effectiveness of resource-
based instructional approaches are needed: (i) quantitative
studies with larger samples to obtain higher statistical power,
(ii) qualitative studies focusing on the processes during the
intervention as well as students’ proof construction processes
after the intervention in order to identify how learning gains
on the resources can be transferred to overall mathematical
argumentation and proof skills, and (iii) long-term studies
examining the observed differences regarding prior attainment
and the benefits for weaker students in the long run. Finally,
further studies should put even more focus on mathematical
strategic knowledge, which showed high learning gains in
this study but has the weak point that it was quantitatively
operationalized for the first time in this study.

Another reason for further research and a possible limitation
of this study is the selection and operationalization of the
resources included in the reported study. As pointed out
in the theoretical background and method section of this
paper, there is reasonable evidence to assume that the four
included resources actually are resources of mathematical
argumentation and proof skills and explain the majority
of variance in students’ mathematical argumentation and
proof skills. However, other resources, for example, beliefs
(e.g., Schoenfeld, 1985), could also have been investigated,
and also other operationalizations of the resources could
have been used. Future studies focusing on different
sets of resources and different operationalizations could

strengthen the results, both regarding the effectiveness of
the instructional approaches as well as regarding the status
of the resources.

Finally, including a control condition would be desirable
in future studies to consolidate the results of this study,
especially regarding the possibly negative development of
mathematical argumentation and proof skills. However,
there is no generic choice how to implement such a control
group, as most resources are not explicitly taught in “regular”
university mathematics courses in Germany. We would
therefore rather propose to compare intervention approaches
acknowledging the underlying resources with several other
approaches, not explicitly taking the resources into account
(e.g., Moore, 1994; Selden and Selden, 1995; Heinze et al.,
2008). Outcomes could show whether acknowledging the
underlying resources is beneficial for supporting students’
learning or whether other approaches show superior effects.
Here, special attention should be paid to the comparability
of the interventions, for example, by using academic
learning time, time on task, or equivalent as a general
measure.

Our studies’ main goal was to explore whether two different
approaches inspired by research from instructional design
(sequential and concurrent approach) could be purposefully
transferred to mathematics education and the context to
mathematical proofs in order to support mathematical learning.
In this regard, we were interested if both approaches would yield
different learning gains regarding a resource-based skill and its
resources. Findings reveal that the tenet of the part-/whole-task
debate (Anderson et al., 1996; Branch and Merrill, 2011), that
whole-task approaches are favorable in the context of complex
skills, cannot be transferred directly, at least not regarding short-
term effects.

However, the study indicates that including the resources
into instruction supporting mathematical argumentation and
proof skills as a prototypical resource-based skill is highly
valuable for the learning of the resources. Moreover, the effects
for the initially weaker students in the concurrent condition
underline that supporting these resources can have substantial
positive effects on students’ mathematical argumentation and
proof skills. In this regard, it appears as if the concurrent
approach investigated in this study may be especially suitable
to support students that struggle substantially with learning
proof construction.
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