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Ultrastructural analysis of discrete neurobiological structures by volume scanning
electron microscopy (SEM) often constitutes a “needle-in-the-haystack” problem and
therefore relies on sophisticated search strategies. The appropriate SEM approach for
a given relocation task not only depends on the desired final image quality but also
on the complexity and required accuracy of the screening process. Block-face SEM
techniques like Focused Ion Beam or serial block-face SEM are “one-shot” imaging
runs by nature and, thus, require precise relocation prior to acquisition. In contrast,
“multi-shot” approaches conserve the sectioned tissue through the collection of serial
sections onto solid support and allow reimaging. These tissue libraries generated by
Array Tomography or Automated Tape Collecting Ultramicrotomy can be screened at
low resolution to target high resolution SEM. This is particularly useful if a structure
of interest is rare or has been predetermined by correlated light microscopy, which
can assign molecular, dynamic and functional information to an ultrastructure. As such
approaches require bridging mm to nm scales, they rely on tissue trimming at different
stages of sample processing. Relocation is facilitated by endogenous or exogenous
landmarks that are visible by several imaging modalities, combined with appropriate
registration strategies that allow overlaying images of various sources. Here, we discuss
the opportunities of using multi-shot serial sectioning SEM approaches, as well as
suitable trimming and registration techniques, to slim down the high-resolution imaging
volume to the actual structure of interest and hence facilitate ambitious targeted volume
SEM projects.
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INTRODUCTION AND SCOPE

Pioneering connectomics efforts have enabled advances in many
steps of volume scanning electron microscopy (SEM), including
sample preparation and image acquisition (Briggman and Bock,
2012; Kornfeld and Denk, 2018). These advances were driven
by the need to upscale the amount of ultrastructural data that
can be obtained. Developing commensurate analysis approaches
to deal with the emerging large data volumes, such as “random
forest” algorithms for segmentation, remain at the frontier of
connectomics research (Berning et al., 2015; Januszewski et al.,
2018; Scheffer, 2018; Schubert et al., 2019; Dorkenwald et al.,
2020; Turner et al., 2020; Vergara et al., 2021). In comparison,
tailored small-scale volume SEM of specific regions of interest
resemble a “Niwaki” (Japanese for “sculpting trees”) task aimed
at precision rather than high throughput. As equipment access
and image analysis time are limiting in many EM laboratories,
such small-scale volume SEM projects rely on trimming down
the imaged tissue volume to target the actual structure of interest.
Here we argue – illustrated by examples from neuroscience – that
techniques developed in the context of connectomics if combined
in the right order, can also greatly advance smaller scale EM
projects in cell biology and pathology.

The superior resolution of electron over light microscopy
(LM) has proven indispensable not only for mapping
connectivity, but also for detailed structural analysis of
physiological and pathological processes that take place
in the living nervous system. Only ultrastructural analysis
can reveal many of the cellular, subcellular and membrane
morphologies and at the same time provide an integration
into the specific tissue environment – a density and breadth of
information that even advanced LM approaches cannot deliver
given the density of neuropil and the lack of intrinsic contrast.
To generate the ultrastructural correlate of a developmental or
disease-related process, specific structures within a particular
central nervous system (CNS) volume have to be targeted.
A typical experiment involves longitudinal in vivo imaging,
such as 2-photon microscopy, of a genetically labeled CNS
cell type. After fixation at a chosen endpoint, the sample
is contrasted and embedded into resin – a process during
which the ability to visualize the region of interest is lost and
even careful positioning cannot avoid uncertainty about the
relevant spatial coordinates. Hence, the search for a µm-scale
structure within a CNS volume at the mm-scale resembles a
“needle-in-the-haystack” problem, especially if a structure is has
been singled out by precedent light microscopic observation
or is rare per se. Typically, the structure of interest, e.g., a
neuron, comprises 50 × 50 × 50 µm3, which has to be found
within a tissue block that is 106 times (5 × 5 × 5 mm3) larger
(Figure 1A). Obviously, such a problem is simplified by reducing
the “haystack”s’ size, i.e., by narrowing down the search volume
based on larger and unique landmarks that define the immediate
environment of the structure of interest. Then, in order to
identify a preselected or rare event, this reduced volume has
to be subjected to a suitable volume EM technique. For this,
volume SEM has emerged as a powerful technique that can be
used to efficiently analyze comparatively large tissue volumes

if combined with a suitable sectioning approach. Volume SEM
approaches can be classified into “single shot” techniques,
where the tissue surface is imaged and then destroyed vs.
“multi-shot” approaches, where serial sections of different
thickness are collected onto solid support generating tissue
libraries for repetitive and hierarchical imaging. The two most
common “single shot” techniques are “serial block face” (SB-)
SEM (Denk and Horstmann, 2004) and “focused ion beam”
(FIB-) SEM (Knott et al., 2008), while the two predominant
“multi-shot” techniques are ribbon-type sectioning called Array
Tomography (AT) (Micheva and Smith, 2007) and automated
tape-collecting ultramicrotomy (ATUM) (Schalek et al., 2011;
Hayworth et al., 2014; Kasthuri et al., 2015). Notable, cross-over
modalities that combine advantages of both approaches have
also been suggested by others (Hayworth et al., 2015) and us
(Kislinger et al., 2020).

Out of this smorgasbord of options, we here review
approaches for targeted “multi-shot” volume SEM and provide
recommendations for tapping their full potential. We describe
options to approximate and search the targeted volume, discuss
the use intrinsic and extrinsic landmarks, and delineate ideas
on image registration. As disclaimers for the scope we chose
for this review: First, volume EM is a fast developing field,
therefore we apologize for any omission of emerging approaches.
Second, when engaging in expensive and complicated analysis
such as volume EM, all but the largest institutions will be
constrained by available instrumentation and expertise, rather
than following an idealized “best-of” workflow – a caveat
that certainly constrains our perspective as well. Third, with
sufficient effort and expertise, a given experimental aim can
certainly be achieved by various technical means. So in sum,
we are not arguing that the presented approach is the sole
viable one in any situation. Still, we feel it is valuable to
point out some advantages of the “multi-shot” approaches for
studying neuronal and glial cell biology and “rare” cellular
pathology, as these approaches originated in “connectomics”-
style neuroscience (Helmstaedter et al., 2013; Kasthuri et al.,
2015), as opposed to the complementary FIB-SEM approaches
that have a stronger rooting in cell biology with recent
developments toward high throughput (Xu et al., 2017; Hayworth
et al., 2020). The latter have also received excellent coverage
in recent reviews and original articles (Kizilyaprak et al., 2014;
Narayan and Subramaniam, 2015; Karreman et al., 2016a;
Luckner et al., 2018; Ronchi et al., 2021), to which we direct the
interested reader.

CLASSIFICATION OF VOLUME
ELECTRON MICROSCOPY
APPROACHES

Transmission Electron Microscopy
Versus Scanning Electron Microscopy
Techniques
Volume EM and connectomics pioneers in the last century
have expanded classical sectioning for transmission EM (TEM)
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FIGURE 1 | Multi-shot serial ultramicrotomy approaches for target relocation. (A) Schematic representation of the dimensions of a typical search task. The superficial
parts of a brain region in a coronal central nervous system (CNS) slab can be visualized by light microscopy (pink frame, 5 × 5 × 5 mm3). The aim is to image the
area of interest (blue neuron) which is a factor of 106 smaller (50 × 50 × 50 µm3) by volume scanning electron microscopy (SEM). (B,C) Comparison of one-shot
and multi-shot volume SEM methods. (B) A one-way search process that determines the region of interest (blue) as shown in panel (A) to be acquired by one-shot
imaging like focused ion beam-SEM (FIB-SEM) (pink, max. 50 × 50 × 50 µm3). The remaining tissue is removed by trimming. In non-one-shot imaging the sections
are screened by hierarchical imaging at different resolution levels (different shades of pink) from low to high. The lower the resolution the bigger the imaged volume
that can be inspected. (C) Advantages of multi-shot imaging regarding the reduction of the actual high resolution imaging volume. The low resolution volume (light
pink) is used to select the ROI(s) (blue) to be captured by high resolution imaging (magenta). (D) As automated tape-collecting ultramicrotomy (ATUM) does not
provide isotropic high resolution voxels, the orientation of the structure of interest (blue patterned), either cross or longitudinally, has to be chosen carefully. This initial
decision determines the high resolution imaging planes and the number of sections needed to cover the ROI.

by collecting several hundreds or thousands sections on grids
in a row (White et al., 1986). Although this serial sectioning
TEM (ssTEM) technique has been successfully applied later
on (Bumbarger et al., 2013; Bloss et al., 2018), it remains
extremely tedious and requires great experience and special
talent. Consequently, new ways of automation have been
explored (Leighton, 1981) and refined (Denk and Horstmann,
2004). In the last 15 years, automation of volume EM for
connectomics has been based on SEM instead of TEM (Kasthuri
et al., 2015; Kornfeld and Denk, 2018), so SEM will be the
focus of the following paragraphs. Still, also TEM has made
major strides toward automation. Application of large-scale
ssTEM was boosted by the development of a TEM Camera
Array (TEMCA) for increased imaging throughput based on
high-speed CCD or sCMOS cameras (Bock et al., 2011; Lee
et al., 2016). Initially, single grids were loaded using a piezo-
driven stage (Zheng et al., 2018), but recently a grid tape has
been developed with slots for single ultrathin tissue sections
(Yin et al., 2020). This collection method is very similar
to the ATUM technique detailed below, but involves further
automation for proper positioning of sections onto the slot
position of the tape. While axial resolution is determined by
section thickness in both “multi-shot” TEM and SEM, TEM
reaches higher lateral resolution and signal-to-noise ratio (Zheng
et al., 2018), while SEM tolerates thicker sections. In addition,
for high-end ssTEM (Yin et al., 2020) and pixel-by-pixel
multibeam SEM (Eberle and Zeidler, 2018) acquisition speeds
are comparable (0.5–4 Gpixel/sec). So far, high-speed automated

ssTEM equipment is only available in specialized facilities of the
pioneering groups and is not the focus of this review (but see
Zheng et al., 2018; Graham et al., 2019; Yin et al., 2020; Phelps
et al., 2021).

“One-Shot” Versus “Multi-Shot”
Scanning Electron Microscopy Variants
“One-shot” volume SEM approaches include SB-SEM (Denk
and Horstmann, 2004; Briggman et al., 2011; Helmstaedter
et al., 2013; Mikula and Denk, 2015), FIB-SEM (Heymann
et al., 2006; Knott et al., 2008; Sonomura et al., 2013), but
also Gas Cluster Ion Beam SEM (GCIB-SEM) (Hayworth
et al., 2020). Reimaging is impossible in these techniques as a
section is irreversibly removed after imaging to approach the
remaining block-face. Therefore, these methods require prior
target localization (see section “Post-embedding Subdivision”
µCT) with little correction options (Figure 1B). Even though
a given region can be acquired only once, e.g., with FIB-
SEM multiple similar regions within a block can be chosen
for volume acquisition in order to comply with quantitative
requirements (Rodriguez-Moreno et al., 2017; Serra Lleti et al.,
2021). In contrast, the modular nature of “multi-shot” volume
SEM entails the separation of physical sectioning from imaging.
This enables repetitive acquisition rounds at different resolution
(Wacker and Schroeder, 2013). The generated “tissue libraries”
provide a screening platform for targeted volume SEM and
also allow archiving tissue for subsequent analysis. Starting with
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the generation of a coarse map by low resolution prescreening
at large horizontal field widths, even meandering or multiple
regions of interest can easily be identified and selected for
subsequent high resolution acquisition (Figure 1C; Wacker
et al., 2018). This is especially relevant if the ultrastructural
morphology of the target region or its exact location are not
known a priori or not obvious, for example, in randomly
distributed sites of local pathologies, such as the plaques in
Alzheimer’s disease. Despite the impossibility for reimaging and
archiving in FIB-SEM or SB-SEM, for a given region of interest
similar targeting strategies can be used with these techniques
(Heymann et al., 2006; Bosch et al., 2015; Blazquez-Llorca
et al., 2017; Rodriguez-Moreno et al., 2017; Kikuchi et al., 2020;
Ronchi et al., 2021). So while we are not explicitly referencing
“single-shot” approaches below and rather focus on “multi-
shot” techniques, many of the general points remain valid and
beneficial for “one-shot” approaches, as described elsewhere
(Karreman et al., 2016b; Lees et al., 2017b; Luckner et al., 2018;
Kremer et al., 2021).

Comparison of Different “Multi-Shot”
Scanning Electron Microscopy Variants
Array Tomography or ATUM can equally be applied for a
given targeting project and the choice mostly depends on the
available equipment (Figure 2). In AT, 2–5 ribbons of 20–
100 sections are collected and assembled on glass or silicon
supports that roughly span 2 × 4 cm. The collection on
transparent supports offers the advantage to perform post-
embedding labeling followed by fluorescence microscopy. High
pressure freezing and freeze substitution with low heavy metal
concentrations are beneficial for preserving immunogenicity
(Collman et al., 2015; Micheva and Phend, 2018) but for
some epitopes chemical fixation with conventional embedding
is sufficient (Micheva and Smith, 2007). The transfer of every
ribbon and each support chip requires manual handling and
thereby bears some risk of losing many sections at once (Wacker
and Schroeder, 2013). On the other hand, ribbon sectioning
ensures a reproducible orientation of successive sections and
minimizes spatial separation. This is especially beneficial for
mapping the sections in the image acquisition software as
little focus adjustments are required during imaging (Kolotuev
et al., 2010; Micheva and Phend, 2018; Wacker et al., 2020).
In contrast, ATUM is based on the collection of series of
single sections onto carbon nanotube (CNT; Kubota et al.,
2018) or carbon-coated Kapton (Kasthuri et al., 2015) tape.
Although occasional knife cleaning and water level adjustments
are needed, the procedure is particularly stable and suited to
collect thousands of sections (Hildebrand et al., 2017). However,
the tape-collecting procedure requires subsequent tape assembly
onto silicon wafers. Usually, the spacing between sections results
in a lower density of sections per area compared to AT ribbons.
This complicates the process of section mapping needed for serial
imaging (Baena et al., 2019). Recently, magnetic serial section
collection onto silicon wafers has been introduced with the aim
to maximize the number of sections on a wafer (Templier, 2019;
Figure 2). This comes with the drawback of losing the section

order, thus introducing further mapping, acquisition and image
analysis challenges.

Challenges of Targeted “Multi-Shot”
Volume Scanning Electron Microscopy
While we stress the potential of “multi-shot” volume SEM and
ways to exploit it for different targeting tasks, it comes with
some challenges and limitations. One major challenge of any
targeted volume EM project is finding the structure of interest.
The search strategy for the structure of interest depends on the
tissue dimensions and the required specificity of the targeting
approach, which together determine the probability to hit the
region of interest. It is therefore important to decide for the most
beneficial sectioning and imaging orientation already early on
in a project. Lateral and axial relocation typically pose different
challenges (Figure 1D). A large field of view and small sample
depth are considered serial sectioning-friendly as this reduces
the number of required sections. Specifically, trimming and
sectioning determine the maximal z resolution, which is thereby
fixed at an early stage. The exact lateral position can still be set at
later stages thanks to hierarchical imaging and a large horizontal
field width, usually spanning the whole tissue section (edge length
typically 0.5–3 mm).

Another major drawback of “multi-shot” approaches is the
irreversible determination of the axial resolution by the thickness
of the section. Microtomy itself is intrinsically destructive and,
consequently, the determination of the section thickness is a key
decision at an early project stage. For example, a section thickness
of 100 nm is sufficient to resolve groups of cells and thicker
processes but it would not allow connectivity mapping in the
CNS or the 3D visualization of organelles that could arise as
a scientific question at a later stage of the project. So, if either
isotropic high resolution voxels (<20 nm) are required or later
limitations due to submaximal z resolution are to be avoided even
at substantial cost of pre-hoc imaging time, FIB- or GCIB- SEM
are the methods of choice.

In general, the cutting and collection process is the most
vulnerable step in the AT and ATUM workflows. Folds are
caused during sectioning or collection and have to be minimized
by plasma discharge of the solid support material (Kasthuri
et al., 2015) and support tissue surrounding the actual sample
of interest (Hildebrand et al., 2017; Baena et al., 2019). In
addition, microtomy is prone to variations in section thickness,
rotation and stretching. Consequently, “multi-shot” techniques
require more sophisticated image alignment techniques in
comparison to “one-shot” block-face methods, a process that
due to its imperfection can limit targeting precision. Indeed,
even loss of sections can occur, which needs monitoring; if in
a given project such loss could be catastrophic, considering a
block-face alternative, where such intermittent losses are less
likely, is worthwhile.

Further, while the possibility of re-imaging is the major
advantage of “multi-shot” SEM, it also necessitates tissue
contrasting with high heavy metal load in order to avoid beam
damage. Suitable protocols include rOTO and (f)BROPA en
bloc contrasting (Tapia et al., 2012; Mikula and Denk, 2015;
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FIGURE 2 | Comparison of multi-shot serial sectioning techniques. (A) Block face geometry and size, (B) schematics of sections on support, (C) diamond knife
options and (D) mounted sections, ready for imaging are shown for each technique. Array Tomography (AT) generates ribbon-type sections that are assembled on
glass or silicon. Typically, the block face shape is trapezoid with max. 2.5 mm edge length and the sections can be further adhered to each other by addition of glue
to the upper edge. The ATUM approach features rectangular (or trapezoid) section collection onto carbon nanotube (CNT) or carbon coated Kapton (ccKapton)
tape. Magnetic serial section collection (MagC) onto silicon wafers is based on random order attachment to a silicon wafer without additional support. The actual
tissue resin blocks (gray) are attached to a magnetic resin block (blue).

Genoud et al., 2018). If the previously imaged area has been
beam-damaged, its borders will become visible in subsequent
images. Therefore, it is recommended to select the low-resolution
field of views generously and image regions of interest within this
area as a second step. Notably, TEMCA-based ssTEM methods
largely overcome this beam-damage problem (Zheng et al., 2018;
Yin et al., 2020).

COMPLEMENTARY IMAGING FOR
MULTI-PARAMETRIC ANALYSIS AND
CORRELATION

Complementary imaging provides further information,
particularly by increasing the field of view to create a map
guiding a particular targeting approach.

Pre-embedding Light Microscopy
Some targeting tasks in EM and obviously one-to-one correlation
of a given structure in light and electron micrographs (correlated
light and electron microscopy, CLEM), build on prior imaging
with another imaging modality (Figure 1B). This typically
involves either wide field, confocal or 2-photon microscopy (de
Boer et al., 2015). Light microscopy can reveal characteristic
landmarks that surround the region of interest (e.g., fluorescent
cells or “negative” vasculature patterns based on tissue auto-
fluorescence), as well as additional exogenous marks that further
reduce the screening volume (Bishop et al., 2011; Begemann
and Galic, 2016; Luckner et al., 2018). Usually, overview tile

scans capture the tissue environment. This map can guide
manual dissection using a binocular microscope in order to
minimize the sample size of the actually embedded tissue
(Snaidero et al., 2020).

Post-embedding Imaging by µCT
Prior to sectioning, methods like X-ray micro-computed
tomography (µCT) enable pre hoc navigation in embedded,
osmium contrasted tissue blocks (Villani et al., 2019), thus
revealing a low-resolution 3D view of the sample with the same
contrast modality that will be used in EM. The intact sample
is scanned at a voxel size down to one µm, revealing neuronal
cell body distribution, myelination patterns or vasculature
morphology. Recently, synchrotron-based X-ray tomography
was applied in Drosophila specimen to achieve resolution of
15–20 nm for small and 0.5 µm for larger fields of view (Hwu
et al., 2017; Fonseca et al., 2018). The strength of µCT-mediated
targeting lies in its non-invasiveness. Also, the processed samples
can be inspected to assess tissue shrinkage and distortion caused
throughout the embedding procedure (Karreman et al., 2014).
High resolution µCT thus allows the correlation with light
microscopy data sets and the precise determination of the
region of interest (Kuan et al., 2020). It is, however, limited
to landmarks with high heavy metal staining in the µm range
and provides coordinates in a virtual map rather than giving
physical access to the region of interest. In practical terms, only
few EM facilities can build on expensive and space-dominating
µCT equipment, which currently prevents it from becoming a
standard technique.
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TISSUE TRIMMING

Physical subdivision at the level of the fixed or embedded
tissue reduces the actual screening volume and is therefore
an important targeting step (Figure 3). Notably, this step is
invariably “destructive,” no matter which imaging modality is
later chosen, hence an efficient trimming strategy is key in any
targeted volume EM project.

Pre-embedding Subdivision
Tissue that is handed before fixation is vulnerable to artifacts due
to cutting or stretching (Fix and Garman, 2000). Subdivision
at this point implies an almost exclusive fixed sample
approach, even if later high pressure freezing is desired, as
sectioning fresh tissue tends to cause ultrastructural damage

(Snaidero et al., 2017). Classical vibratome sectioning at a
thickness of 50–200 µm exposes anatomical structures and
fluorescent labels for light microscopic inspection (Li et al., 2011)
to guide the relocation process and facilitates the penetration,
e.g., of nuclear markers during post-fixation labeling. The
imaging plane relative to the vibratome sectioning orientation
can be preserved by a post-mortem holder that fixes the mouse
head onto the vibratome stage (Luckner et al., 2018).

Post-embedding Subdivision
Screening procedures can be further refined by subdivision of
the embedded tissue. Historically, tissue trimming is combined
with the generation of semithin sections (300–500 nm) that are
stained and inspected by light microscopy (Pasquinelli et al.,
1985; Dykstra and Reuss, 2003; Koga et al., 2015). In order to

FIGURE 3 | Tissue subdivision options for CLEM and rare events. (A) Screening strategies for CLEM or rare event targeting. The ROI (blue) is surrounded by a
typical vascular pattern (gray lines) and specific cell types like glia (gray shapes). NIRBing (pink) at different axial positions can guide a correlation process if the same
ROI from a LM experiment has to be relocated. µCT experiments (radiaton symbol) of the embedded tissue provides coordinates to guide ultramicrotomy-based
trimming. Additional fiducials like genetically encoded proteins or dyes (green) can be used. Vibratome sectioning and LM-guided selection can reduce the volume
for later EM inspection. (B) Ultramicrotomy options for screening for the ROI (blue). Ultrathin sectioning at 30–80 nm generates larger tissue libraries with many
sections assembled on wafers compared to semithin (80–500 nm thickness), semithick (0.5–10 µm) or ultrathick (10–20 µm) sections. The tissue is inspected at the
surface of each section (magenta) by SEM. Semithick and ultrathick sectioning enable coarse screening at the surface by SEM and subsequent targeted isotropic
imaging of the ROI from the whole section thickness (orange). In contrast to semithick sectioning, ultrathick tissue partitioning requires reembedding.
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minimize the risk of removing relevant tissue regions, AT and
ATUM provide the option to shift from such coarse trimming to
collection of more and thinner sections (80–500 nm thickness).
When approaching the target region, the section thickness
can be reduced progressively to the desired axial resolution
(30–200 nm). In general, the choice of section thickness is key to
efficient screening and depends on the target region size, density
in the tissue and desired resolution. The different thicknesses
require diamond knifes that are suitable for the particular
collection method (Figure 2). Ultrathin (30–80 nm; Kasthuri
et al., 2015; Zonouzi et al., 2019), semithin (80–500 nm; Terasaki
et al., 2020), semithick (0.5–10 µm; Kislinger et al., 2020) or
ultrathick (20 µm; Hayworth et al., 2015) microtomy generate
tissue libraries of decreasing section number at an increasingly
coarse axial resolution (Figure 3).

Along this continuum, a recent variation is “semithick”
sectioning, i.e., cutting at 0.5–10 µm (Baena et al., 2019;
Kislinger et al., 2020). The advantage of this approach becomes
apparent in the following example: in order to capture a
complete larval zebrafish brain at 5.5 days post fertilization
for EM analysis at 60 nm axial resolution, 17963 ultrathin
sections had to be generated and collected on 68 m of tape
assembled onto 80 wafers (Hildebrand et al., 2017). Semithick
sectioning at 6 µm thickness would shrink the same zebrafish
brain library to 200 sections fitting on a single wafer. Although
this does not meet the requirements of connectivity mapping
regarding the axial resolution, it would enable faster screening
and isotropic imaging (see below) of a particular structure of
interest (Figure 3).

“Multi-Shot” Search Combined With
“One-Shot” Imaging
Semithick and ultrathick sectioning generates small libraries and
enables fast nm-scale screening by surface scanning. Notably, the

remaining thickness below the accessible section surface can be
further imaged by “one-shot” FIB-SEM microscopy (Hayworth
et al., 2015; Kislinger et al., 2020). The axial resolution in FIB-
SEM is not limited by microtomy as it uses a gallium ion beam for
milling off the surface layer. Thus it generate volumes with high
axial resolution below 30 nm (e.g., 3.7 × 3.7 × 20 nm; Merchan-
Perez et al., 2009; Santuy et al., 2020) and even isotropic voxels
where axial and xy resolution match (5 × 5 × 5 nm; Knott et al.,
2008; Xu et al., 2017). Fast library screening and isotropic high
resolution imaging are combined in this hybrid approach called
ATUM-FIB (Kislinger et al., 2020). Serial semithick sections at
a thickness between 2 and 10 µm are collected onto plastic
tape and mounted onto a silicon wafer. The section surface is
screened at SEM resolution in order to select particular regions.
Selected sections can be remounted on SEM stubs for FIB-SEM
milling which enables acquisition at isotropic voxels. ATUM-
FIB is especially valuable for pre hoc searches in the sections
themselves for rare objects of unknown ultrastructure or tissue
distribution. A range of combinations of section thickness and
number of FIB-SEM runs are possible to balance the project’s
targeting needs, object dimension and fiducial density of with
the fact that beam time at the FIB-SEM is often limited and the
running costs for the gallium source typically are higher than tape
or silicon support material.

LANDMARKS

Landmarks increase the probability to capture structures of
interest within a tissue volume and preserve them for two- or
three-dimensional acquisition. They need to be detectable in
several imaging modalities and across scales (Figure 4) and
permit to target trimming and screening, as well as finally
relocating scarce subcellular objects within a tissue block of
several mm3 (range: XY 1–3 mm and Z 0.3–2 mm). The

FIGURE 4 | Overview of search strategies for the relocation of a region of interest. Different methods are structured according to their timing in the sample
processing workflow as in vivo (pre-fixation), after fixative addition (post-fixation) and after resin embedding (post-embedding). Complementary imaging methods
(“Complementary Imaging for Multi-Parametric Analysis and Correlation” section), tissue trimming strategies (“Tissue Trimming” section) and the variety of landmarks
(“Landmarks” section) are listed accordingly.
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different types of landmarks comprise endogenous landmarks
(“Endogenous Landmarks”) and exogenously labeled biological
structures further classified according to the method of
labeling and when the label is introduced: genetically encoded
labels (“Exogenous Tissue Branding”), pre-fixation labeling
(“Pre-fixation Exogenous Labeling”), post-fixation labeling
(“Genetically Encoded Labels”). These biological landmarks
can be complemented by additional artificial exogenous
marks (“Post-fixation Exogenous Labeling”), i.e., all types of
non-biological fiducials (Figure 4).

Endogenous Landmarks
Endogenous landmarks are non-labeled, tissue inherent
biological structures that provide sufficient signals in
complementary imaging modalities and SEM. In general, it
is advisable to map endogenous landmarks by light microscopy
methods in the living or fixed animal first, as such anatomical
features can guide targeted trimming, especially in irregular
tissue samples such as zebrafish larvae (Kolotuev et al., 2010;
Durdu et al., 2014). Even the surface irregularities of vibratome
sections or background autofluorescence from glutaraldehyde
fixation can provide topological features that facilitate correlative
workflows (Luckner et al., 2018). In CLEM approaches,
autofluorescent structures like lipofuscin or extracellular fibers
are valuable tissue-dependent landmarks. The vasculature or
tracheae (in Drosophila), represent further informative sets of
structures for coarse registration due to their electron lucent
lumen in ultrastructural datasets, which can be exploited at
low expense, e.g., by differential interference contrast (DIC)
microscopy (Bock et al., 2011; Burgoyne et al., 2018; Luckner
et al., 2018). Myelinated axons can be identified by spectral
confocal reflectance microscopy (SCoRe), which exploits the
characteristic reflected signals from multiple lasers of different
wavelength at multilayered membranes (Schain et al., 2014).

Exogenous Tissue Branding
Exogenous laser marks do not highlight a biological structure
but are added to accentuate the tissue surrounding the region of
interest – and could be considered the “in tissue” equivalent of
artificial landmarks such as etched cover slips or bead decoration
used for CLEM in cell culture (Kukulski et al., 2012; Hemelaar
et al., 2017; Russell et al., 2017; Tanner et al., 2021). Near Infrared
Branding (NIRB) marks can be burned into fixed tissue using
high laser intensity line scans (most commonly using two-photon
illumination). In confocal image stacks, these NIRB marks are
visible as dark lines surrounded by auto-fluorescence, and in EM
as sharply demarcated regions devoid of tissue (Bishop et al.,
2011). NIRB marks are introduced around the imaged region
at the particular z level (Maco et al., 2014; Karreman et al.,
2016b; Snaidero et al., 2020). Asymmetric shapes and a series
of marks at more superficial axial positions guide the trimming
process toward the desired lateral position after fixation, during
the ultramicrotomy and targeted imaging (Lees et al., 2017a).
Additional laser etching after the embedding procedure preserves
NIRB mark locations in the embedded tissue block for inspection
in the SEM (Kolotuev et al., 2010).

Pre-fixation Exogenous Labeling
Injection-mediated labeling of cells in living animals, e.g.,
using axonally transported dyes, has been introduced early
during the advent of EM (Stoeckel et al., 1977; Bentivoglio
et al., 1980). Since then, fluorescent or electron dense dyes
have been widely exploited, especially in neurobiology (Vercelli
et al., 2000). Horse radish peroxidase (HRP) was introduced
for ultrastructural analysis, as it catalyzes the reaction of a
chromogen [diaminobenzidine (DAB) or tetramethylbenzidine
(TMB)] into an electron dense product (Straus, 1959; Kristensson
and Olsson, 1971), thus allowing for light and electron
microscopic examination. Applications include the study of
blood brain barrier integrity (Brightman and Reese, 1969),
anterograde tracing (Dietrichs and Walberg, 1979; Schönitzer
and Holländer, 1981), as well as synaptic vesicle recycling (Heuser
and Reese, 1973). Such approaches continue to remain valuable
and often complementary approaches to the more recent genetic
approaches (Papadopoulos and Dori, 1993).

Genetically Encoded Labels
Genetically encoded fluorescent protein (FP) or electron density-
generating tags are introduced into the living animal by viral
approaches or by transgenic tagging. Genetic tagging provides
homogenous molecular specificity independent of the tissue
volume because the labeling is not limited by penetration depth.
At the same time, selective or sparse electron dense labeling
can facilitate image segmentation and volume reconstructions
(Thomas et al., 2019). FP tags further allow longitudinal time-
lapse imaging, thus providing dynamic information. Finally,
genetic tags can serve as fiducial markers for correlation: FPs
by direct image registration, if the underlying ultrastructural
correlate exhibits specific shapes or electron dense patterns
but in principle also by photo-oxidation of FPs to convert
fluorescence into an electron dense signal (Grabenbauer, 2012).
FP-induced peroxidation, however, tends to be inefficient and
results in low signal-to-noise, so specific protein tags have been
developed that efficiently generate electron dense signals. Photo-
sensitizer efficiently generate reactive oxygen species for photo-
oxidation (mini-SOG; Shu et al., 2011), while genetically encoded
peroxidases enzymatically generate electron dense precipitates
from chromogenic substrates (APEX, Martell et al., 2012; HRP,
Li et al., 2010). Finally, metal-binding proteins [such as ferritin
(Clarke and Royle, 2018)] have proven suitable to directly
express an electron-dense label in specific cell types or subcellular
structures in brain tissue (Joesch et al., 2016; Lin et al., 2016;
Ng et al., 2016; Thomas et al., 2019). Combinations of these tags
with specific genetic targeting techniques can provide additional
information. For example, APEX labeling of different organelles
can enable the multiplexed visualization of different cell types in
one tissue (Zhang et al., 2019), while inducible expression allows
pulse-chase experiments (Clarke and Royle, 2018). Drawbacks of
peroxidase-based labeling include chromogen application, which
is itself is penetration-limited and hence only applicable to
smaller tissue volumes like vibratome sections. A further limit
can be the delicate balance that needs to be achieved between
general heavy metal contrasting and preservation of the specific
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label. Recently, discrete gold particle detection was combined
with APEX labeling thereby improving signal detectability (Rae
et al., 2021). However, similar to complementary attempts
to genetically encode tags with characteristic electron dense
geometries like iron-sequestering nano-compartments (Sigmund
et al., 2019) or cysteine-mediated auto-nucleation of gold
nanoparticles (Jiang et al., 2020), this approach is so far limited
to cell culture applications.

Post-fixation Exogenous Labeling
Cellular and subcellular structures can be labeled after fixation,
usually on vibratome sections to improve tissue penetration.
A simple form of post-fixation labeling is a nuclear marker
staining (Hoechst, DRAQ5; Luckner et al., 2018). In order to
target molecularly defined structures at the post-fixation stage,
pre-embedding immune-labeling approaches are the method of
choice. Classical immune-gold staining on vibratome sections
provides discrete and specific signals with high precision, which
is ideally suited for intracellular structures (Norris et al., 2017;
Shibata et al., 2019; Sun et al., 2020). HRP coupled antibodies
are typically preferred to render whole cells electron-dense
as the spatial resolution of the signal is limited. The main
advantage of HRP is that it requires very low quantity of
antibody to achieve highly specific labeling of a particular cell
type. While antibody penetration without permeabilization is
restricted to the very surface (few µm) of vibratome sections,
smaller nanobodies are detectable at 100 µm beyond the surface
(Fang et al., 2018). Post-fixation labeling has to be carefully
employed, as ultrastructural preservation may be compromised.
Permeabilization constitutes the major hurdle for CLEM based
on en bloc immunohistochemistry. Only recently, this problem
has been circumvented by preservation of the extracellular
space through increased extracellular osmolarity during chemical
fixation (Pallotto et al., 2015; Fulton and Briggman, 2021).

IMAGING AND RELOCATION
STRATEGIES

Acquisition Sampling Options
Once coarse orientation has been achieved using endogenous
and exogenous guides, targeting can be further refined at the
level of image acquisition. Software for serial section mapping
is available from Zeiss/Fibics (ATLAS) and Thermo Fisher
Scientific (MAPS), as well as from non-commercial sources
(Hayworth et al., 2014; Baena et al., 2019). The differences among
these software packages, and general challenges related to their
use have previously been discussed (Baena et al., 2019). With
AT and ATUM, tile sets with large field of view can cover the
entire section at a lateral resolution of 100–500 nm (Wacker
et al., 2020). This enables the identification of coarse landmarks
including somatic layers and vasculature. Screening for the right
axial position can be achieved by acquiring every second to fifth
section at low resolution. Even the sparse acquisition of only 2–5
sections per wafer (20–100x section thickness) can be beneficial if
coarse tissue marks or guiding fiducials (such as large scale NIRB
marks) are available to identify the larger sub-region bearing the

structure of interest. Usually, another imaging round of a sub-
region is acquired on every or every other section at medium
resolution (10–100 nm) to finally pin-point the target. Only then,
the actual high resolution (3–10 nm) stack is recorded.

REGISTRATION STRATEGIES

The relocation of an area of interest requires the registration of
multimodal imaging data sets. As the scale-discrepancy between
LM and EM data sets is huge, standard registration techniques
building on image similarity are not applicable. If no µCT
data is available, sample preparation and structural deformation
that occurred between the acquisition of the LM and EM
images constitute a further challenge. Consequently, non-rigid
transformation is required, especially for chemically fixed tissue
(Korogod et al., 2015). However, local warping can lead to
registration errors. The alignment precision depends on the
distribution, density and uniqueness of all extracted landmarks.
Approaches to match graph structures independent of local
appearance or global distance matrices have been developed (Fua
and Knott, 2015). Currently, thin plate spline transformation
is the method of choice, which uses landmark pairs to align
LM and EM volumes (Hildebrand et al., 2017; Zheng et al.,
2018). The regional target registration error can be optimized by
adding more landmarks, especially in proximity to the structure
of interest (Kukulski et al., 2011; Schorb and Briggs, 2014; Paul-
Gilloteaux et al., 2017).

For connectomics analysis of functionally characterized brain
regions, blood vessels and cell body patterns typically yield an
alignment precision of about 5–10 µm (Drawitsch et al., 2018)
for visual cortex and the retina (Bock et al., 2011; Briggman
et al., 2011). In the mouse cortex, the coarse alignment by
sparse labeling of nuclei and vasculature (30 µm distance) can
be refined by characteristic electron-dense structures distributed
at smaller average distances, e.g., myelinated axons (10 µm;
Luckner et al., 2018). In cell culture CLEM experiments,
artificial fiducials spaced at roughly 1–2 µm average distance
reduces localization errors down to 50–100 nm (Kukulski et al.,
2012). Spines or boutons (Cheng et al., 2019) are comparable
high-density tissue landmarks (1 µm average distance) and
can in principle be genetically tagged by FP fusions of
pre- or postsynaptic structures. These examples illustrate that
morphological uniqueness – in which CNS tissue is rich – is
another important asset for high-precision registration.

Usually, both LM and EM 3D data sets and a potential µCT
volume are co-registered (Luckner et al., 2018). Alternatively,
or as a first approximation, maximum intensity projections of
the in vivo fluorescence anatomy and evenly spaced electron
micrographs can help render the 3D into a 2D correlation
task (Bock et al., 2011). Additional (manual) skeleton tracings
of smaller structures without characteristic contrast in the EM
data set can facilitate registration (Briggman et al., 2011).
The efficiency can be increased by a coarse segmentation of
structures that do not resemble the ones on the LM template to
create a “negative” background data set with structures different
from the one of interest. Fast skeletonization of non-target
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structures helps to restrict the fine segmentation effort to the
remaining candidates (Bates et al., 2019). Expanding this idea,
FluoEM provides a two-step registration procedure by initial
identification of the ultrastructural subvolume corresponding to
the LM data set by coarse registration (Drawitsch et al., 2018).
After all axons within an EM sub-volume of cortex have been
completely skeletonized, the ones with the most similar geometry
to the sparsely labeled LM features are computed. The required
size of the sub-volume depends on the uniqueness or anisotropy
of axon trajectories (40 µm length 90th percentile in mouse
cerebral cortex). As a key decision factor, this compromises
between computational costs and the need for further landmarks
to yield a certain targeting precision (Drawitsch et al., 2018).

Software packages for registration of multimodal volume data
sets include elastix (Klein et al., 2010; Shamonin et al., 2014),
Amira (Karreman et al., 2014), 3D correlation toolbox (Arnold
et al., 2016), BigWarp (Russell et al., 2017) or easy cell-correlative
light to electron microscopy (eC-CLEM; Heiligenstein et al.,
2017; Paul-Gilloteaux et al., 2017). The BigWarp (Hildebrand
et al., 2017) and elmr (Zheng et al., 2018) software tools, which
are now extended into the natverse platform (Bates et al., 2019),
enable the integration of EM or CLEM data into public data
repositories of other light level template drosophila or fish
larval brains. Beyond the correlation among different imaging
modalities, the information content of ultrastructural data can
be enriched by registration onto spatial gene expression atlases
(Vergara et al., 2021).

CONCLUSION AND SUMMARY

Ultrastructural analysis of a discrete structure of interest
does not necessarily require extensive high resolution volume
SEM. Instead, large-scale acquisition can be circumvented
by sophisticated targeting strategies that reduce the high
resolution imaging volume to the area of interest. Thus, the
ultrastructural volume does not have to be fully segmented
(e.g., with “random forests” algorithms or similar “brute force”
computational approaches), but can be tamed in a more
hands-on “Niwaki” fashion. Multi-shot methods like AT and
ATUM are especially suited for these targeting tasks as they
preserve a tissue library that allows for hierarchical imaging at
different resolution levels. Thereby, screening for the object of
interest can be done at the nm resolution level. The section

thickness at the initial microtomy step has to be chosen
carefully, according to the desired axial resolution as well
as the dimensions, distribution and frequency of a structure
of interest. While one-shot volume SEM methods absolutely
rely on coarse targeting methods at the mm (LM) and µm
(µCT) scales, these strategies are also helpful in guiding
multi-shot volume SEM searches. Complementary imaging of
endogenous structures or exogenous markers saves acquisition,
image analysis and correlation efforts. Obviously, availability
of equipment and expertise have to be considered at any
step. Building on these preconditions, a tailor-made multimodal
approach with appropriate landmarks and physical or virtual
sectioning methods can be designed. With increasing availability
of public data sets and refinement of automated image analysis
methods, registration bears a huge potential for the exploitation
of ultrastructural information that is further elucidated by
molecular identity and topology.
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