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Humans’ voice offers the widest variety of motor phenomena of any human activity.

However, its clinical evaluation in people with movement disorders such as Parkinson’s

disease (PD) lags behind current knowledge on advanced analytical automatic speech

processing methodology. Here, we use deep learning-based speech processing to

differentially analyze voice recordings in 14 people with PD before and after dopaminergic

medication using personalized Convolutional Recurrent Neural Networks (p-CRNN)

and Phone Attribute Codebooks (PAC). p-CRNN yields an accuracy of 82.35% in

the binary classification of ON and OFF motor states at a sensitivity/specificity of

0.86/0.78. The PAC-based approach’s accuracy was slightly lower with 73.08% at

a sensitivity/specificity of 0.69/0.77, but this method offers easier interpretation and

understanding of the computational biomarkers. Both p-CRNN and PAC provide a

differentiated view and novel insights into the distinctive components of the speech of

persons with PD. Both methods detect voice qualities that are amenable to dopaminergic

treatment, including active phonetic and prosodic features. Our findings may pave the

way for quantitative measurements of speech in persons with PD.

Keywords: Parkinson’s disease, speech, voice, dopaminergic response, motor state

1. INTRODUCTION

Parkinson’s disease (PD) is a clinically highly variable neurodegenerative disorder. A wealth of
information points to the paramount role of reduced dopaminergic neurotransmission in the
nigrostriatal pathways for PD pathophysiology. Ultimately, neuronal activity in the basal ganglia
and related circuits involved in motor control becomes dysfunctional, resulting in a characteristic
motor phenotype with loss of movement amplitude, slowing of movement, and loss of automaticity
(Hughes et al., 1992).

This loss in motor performance affects the voice in a very distinctive way. Persons with PD
(PwPD) speak more softly, slur, may often hesitate in talking, have breathiness and hoarse voice
quality, along with imprecise articulation (Logemann et al., 1978). Patients have typically shown
to lose the natural inflections in speech which brings forth variations in the pitch and tone
patterns, making their speech more monotonous. On the one hand, a cardinal symptom of PD
is the slowness of movement, i.e., bradykinesia, and sometimes we see the slow speech. On the
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other hand, we observe hastened movements, especially in
gait, termed festination, or speech, where typically PwPD can
have hastened, festinating speech, which is very characteristic.
Actually, slow bradykinetic speech is quite rare in PD. The
typical patient speaks lower (hypophonic), huskier/hoarse, and
interestingly, having a characteristic hastened speech, i.e., faster
mode of speaking.

Given this abundance of easily accessible symptoms, it almost
comes as a surprise that the standard clinical examination of
PwPD, e.g., by using the Movement Disorder Society sponsored
version of the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS), only uses one item (item III.1) for the evaluation
of speech focusing on impairment and understandability, less
on the symptomatology (Goetz et al., 2008). Indeed, the rich
information resulting from voice alterations is rarely used for
clinical decision-making, and often considered a disorder in
itself, less a symptom of PD.

With progressing disease, speech pathology also deteriorates
(Skodda et al., 2013), and may even become unresponsive
to previous successful dopamine treatment (Tykalová et al.,
2015). It is relevant to note that in later disease stages, non-
motor symptoms, e.g., pooling of saliva in the mouth, become
increasingly common and affect speech production (Muzerengi
et al., 2007). Such observations have put forth the idea that speech
production in PwPDmay respond less convincingly to dopamine
replacement therapy as other motor symptoms, or may even be
completely not responsive to dopamine therapy.

So speech is a highly appropriate “motor behavior“ that is
poorly represented in clinical assessment and decision making.
Understanding speech by advanced data analytics methods could
be instrumental for the evaluation of PwPD, e.g., for detection of
therapy response or guiding personalized evaluation of patients.

Therefore in this work, we have looked at two distinctive
machine learning-based speech analysis methodologies to assess
the dopaminergic response by classification at the “ON” and
“OFF” moments of PwPD. We have applied these techniques
to data collected at the Schön Klinik München Schwabing,
Germany, thereby testing out approaches.

2. RELATED WORK

As dopamine can dramatically alleviate the motor symptoms in
PD, there is a profound interest to quantify the effect of those
medications. Currently, there exist no standardized methods to
determine short-term and long-term medication’s effects or side
effects. Clinical ratings from experts regularly lack granularity
and are provided at a maximum of four times per day (Erb et al.,
2020). Imaging techniques such as the DaTSCAN are timely and
costly and require the patient to accept radionuclide exposition
(Booij et al., 1999). Recently, the use of machine learning to
evaluate highly granular sensor data on the response of motor
symptoms of PwPD to dopamine replacement therapy has gained
wide attention (Pfister et al., 2020).

In previous studies, other researchers have investigated speech
in PwPD using it as a paradigm for the motor phenotype of
PD. They demonstrated clearly that voice/speech can provide an

abundance of highly informative and distinguishing aspects for
the evaluation of PwPD. For example, Orozco-Arroyave et al.
(2016) show quantitative and visual distinctions of speech in
PwPD against healthy controls.

Early explorations of Skodda et al. (2010) found a positive
effect of dopaminergic stimulation on vowel articulation in
individual patients diagnosed with mild PD, later confirmed
by Okada et al. (2015). Overall, none of the examined
phonation parameters: intonation, articulation, and speech
velocity, improved significantly in the ON state, neither under
short-term levodopa administration nor on stable dopaminergic
treatment. Improvement of vowel articulation seen in individual
patients supports the personalized approach we follow in our
work. Speech measures of Poluha et al. (1998), duration of the
vowels /i/, /u/, /æ/, the quadrilateral area produced by these
vowels, and the slope of the diphthong /aI/ also did not show
a significant trend across the levodopa cycle. Likewise, Santos
et al. (2010) did not find a statistical difference in the analysis
of the acoustic parameters in PwPD at the ON and OFF motor
states. The considered parameters were as follows: fundamental
frequency, jitter, shimmer, harmonic noise proportion, index of
tremor, and voice quality. Besides, Skodda et al. (2011) reported
no Levodopa administration effect on the fundamental frequency
and the speech rate. Results of Brabenec et al. (2017) also confirm
these claims: hypokinetic dysarthria in PwPD seems to be mainly
related to non-dopaminergic deficits.

On the contrary, quantitative acoustic analyses of Rusz et al.
(2016) revealed that speech disorders of PwPD tend to improve
or remain relatively stable after the initiation of dopaminergic
treatment. They appear to be related to the dopaminergic
responsiveness of bradykinesia. Tykalová et al. (2015) found a
strong positive correlation between the total cumulative dose of
levodopa and the increased occurrence of dysfluent words and
stuttering. Likewise, results from Im et al. (2019) indicate that
levodopa medication can significantly affect speech dysfluency,
primarily associated with the severity of the OFF medication.
Speech analysis has been done on a standard Rainbow passage
reading task.

Current studies on differentiating the ON and OFF
medication states have mixed or contradictory results.
Conclusions of Ho et al. (2008) well characterize the previous
mixed results research: speech response to dopaminergic
treatment shows a consistent tendency for increased loudness
and faster rate during the ON state, but accompanies by a greater
extent of intensity decay with pitch and articulation remained
unchanged. The dopaminergic treatment effect on the final
acoustic product of speech may or may not be advantageous,
depending on individual patients’ existing speech profile. All
those conclusions support our proposed personalized approach
to voice analysis of PwPD.

Although Im et al. (2019) conclude that the comparison of
the PD participants in the ON state vs. OFF state conditions did
not reach statistical significance, the last explorations performed
recently, based on machine and deep learning by Norel et al.
(2020); Pompili et al. (2020) reported higher accuracies of ON
and OFF classification. Norel et al. (2020) analyzed voice of
PwPD describing a picture, speaking reverse counting, and

Frontiers in Human Neuroscience | www.frontiersin.org 2 May 2021 | Volume 15 | Article 667997

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Jain et al. Voice Analysis for Parkinson’s Disease

diadochokinetic rate speech tasks. Mel Frequency Cepstral
Coefficients (MFCCs) were the most informative. However, the
study reported only classification accuracy without standard
statistical measures such as sensitivity and specificity. Also, their
problem formulation, performing (“ON”–“OFF”) vs. (“OFF”–
“ON”) instead of “ON” vs. “OFF” classification is questionable.
Besides, the interpretability of the used speech representation is
limited, as individual MFCCs bins represent specific frequency
bandwidths without interpretation to speech perception and
production. Pompili et al. (2020) devised an automatic speech
processing system with deep learning-based ON–OFF classifiers.
The eGeMAPS features of Eyben et al. (2015), composed of
basic acoustic speech parameters and a storytelling speech task,
obtained the best performance. Comparing to previous systems,
the authors designed speaker-dependent models, a limitation
that might be important in clinical praxis. The accuracy of the
speaker-independent model explored in Pompili et al. (2020) was
limited up to 65% that justified their adoption of the speaker-
dependent approach.

Our work aims to explore the feasibility of detecting clinically
meaningful dopamine effects in the speech of PwPD with deep
learning methods. Deep learning requires lots of data; can it
be successfully applied to limited speech training data? On the
other hand, instance-based machine learning comes with a great
interpretation power that tries to mimic human cognition in
the analysis.

3. DATA AND PROTOCOLS

3.1. Ethics and Setup
This study was reviewed by the Ethical board from the Technical
University of Munich (No 234/16S). The data for this project
were collected by an expert hospital involved in PD care—the
Schön Klinik München Schwabing, Munich, Germany. Prior
to data acquisition, all patients involved gave written informed
consent to the study procedures, and to pseudonymized storage
of voice recordings and further speech analyses.

3.2. Participants
In-house PwPD were recruited from October to December 2017
in the Schön Clinic München Schwabing. Patients were asked to
participate and examined in a quiet exam room by a standardized
speech protocol (see below). We report age, disease duration,
MDS-UPDRS motor score III, and the speech item III.1.

3.3. Clinical Procedures
3.3.1. Speech Protocol

The speech recording protocol consisted of isolated and
connected speech. Doctors specifically designed seven different
speech protocols to highlight and bring forth the impairment
in articulation.

In the first speech protocol, Digits, the patients were asked
to count till 10 twice in German. To record the protocol
Months, the patients were asked to name the months in a
calendar year from January to December twice. The Vowels task
consists of the patients repeating the English vowels /a/-/e/-/i/-
/o/-/u/ three times. To further stress upon their articulation,

the test continued with the Pataka task, where the patients
were asked to repeat the following words three times: /pataka/,
/pakata/, /petaka/, and /pekata/ (diadochokinetic evaluation).
The patients were requested to repeated the following German
tongue twisters twice for the Twisters task: “Liebe Lilly
Lehmann,” “Dritte berittene Kavalleriebrigade,” and “Schleimig
schuppende Schellfischflossen.” The patients were given a short
reading task as an additional task, Read. We used the German
reading text from Orozco-Arroyave et al. (2016). For the final
speech task Monologue, the patients were asked to follow the
Cookie Theft description test and were asked to speak about
it for approximately 45 s. The test is described in Cummings
(2019). For consistency, the same image was shown to all
participating patients.

3.3.2. Data Acquisition

Speech raw data (.wav files) were recorded using a Rode NT1-
A microphone and a Steinberg UR22 MK2 audio interface
with a sampling frequency of 44.1 kHz and 32 floating-point
sample encoding.

The average length of each recording session was 4 min;
participants were asked to follow two subsequent recording
sessions. For validation purposes, each recording was videotaped.
Data were manually segmented according to the speech task.

3.4. Cohort
The Munich study cohort consisted of 16 PD patients (10 female,
six male) with an average age of 66 ± 7 yrs (mean ± SD) and
a mean disease duration of 11 ± 5 yrs. The mean motor score
according to part III of MDS-UPDRS was 32 ± 14 assessed
before levodopa intake and 21± 11 30 min after levodopa intake,
resulting in a mean pre-post-levodopa difference (delta UPDRS)
of 12 ± 5. Concerning item III.1 of the MDS-UPDRS, we saw a
mean score of 1.93 before medication intake, and a mean score
of 1.27 30 minutes after the intake, respectively. All the results
are reported using the cohort of 14 patients. Table 1 provides the
detailedUPDRS rating for theON andOFF states for each patient
along with other metadata such as Age and Gender.

3.5. Feature Extraction
All available speech recordings were downsampled to 16 kHz
with 16-bits sample encoding and chunked into 10-s-long
segments. The time-frequency representation of each segment
was obtained using a complex short-time Fourier transform
(STFT, 25 ms window length with 7.5 ms overlap, 201 frequency
bins), resulting in a 201 × 571 matrix. The magnitude of each
frequency channel was normalized using the mean and standard
deviation obtained from the training data.

To obtain phone attribute posterior features from the
speech segments, we use an open-source phonological vocoding
platform (Cernak and Garner, 2016). These features are also
known as distinctive and phonological features. Linguistic and
neurocognitive studies recognize them as the essential and
invariant representation used in temporal speech organization.
Their properties are explored in details by Cernak et al. (2016,
2018).
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TABLE 1 | Unified Parkinson’s disease rating scale ratings for patients in the

Schön Klinik data.

ID Gender Age III Total ON III Total OFF III.I ON III.I OFF

1 F 53 26 39 2 2

2 F 62 18 34 1 2

3 F 68 8 15 1 1

4 F 67 21 40 0 1

5 M 73 18 26 1 2

6 F 68 4 10 0 0

7 M 73 34 50 2 3

8 M 74 31 53 3 4

9 F 55 28 36 1 1

10 M 66 19 35 3 4

11 F 70 6 14 0 1

12 F 76 28 39 1 2

13 M 66 11 21 0 1

14 M 70 41 48 3 4

The phonological analysis starts with a short-term analysis
of speech, which consists of converting the speech signal
into a sequence of acoustic feature vectors composed of the
conventional MFCCs. The Mel scale is a perceptual scale often
used in speech signal processing. Then, the phone attribute
posterior probabilities are estimated for each frame. Each
probability is computed independently using a binary classifier
based on deep NNs (DNNs) and trained with one phonological
class vs. the rest. Finally, theMFCCs sequence is transformed into
a sequence of the phone attribute vectors. The features can be
further quantized or compressed using sparse coding that relies
on the phonological features’ structured sparsity.

The phone attribute posterior features are directly
interpretable, as illustrated by an example in Figure 1. The
anterior posteriors estimated by the DNNs are highly correlated
with the variation in electromagnetic articulography tongue
tip velocity. This correlation showcases the relevance of these
features and their interpretability.

4. METHODOLOGY

Motivated by Pompili et al. (2020), we hypothesize that a deep
learning-based approach may find better data-driven models
between voices of ON and OFF states. However, we want to focus
on speaker-independent modeling. Section 4.1 describes the
proposed deep learning approach. Its interpretation is limited,
and thus section 4.2 introduces the PAC-based classification that
offers an insight into the modeled problem. Section 4.3 describes
a variant of deep learning-based method devoted to personalized
speech assessment.

4.1. Deep Neural Network Based ON/OFF
Classification
All audio training files recorded with the same motor state
are concatenated together and then cut to 10-s long segments.
However, the testing files are not combined, as we have followed

utterance-level evaluation. For the recordings in the test set,
10-s long segments are split into two 5 s parts, the former
part used as validation and the latter for testing. We selected a
Convolutional-Recurrent Neural Network (CRNN) architecture,
which has shown excellent results previously in audio and speech
classification tasks. The deep learning workflow diagram in
Figure 2 shows the pre-processing (feature extraction) of audio
data, the CRNN architecture (pattern learning), and final post-
processing (decision making).

The input to the neural network architecture is 10-s long audio
that is represented by the number of time steps n and the number
of frequency bins f in each time step. The input is an (n, f )
dimensional vector, and the values of n and f depend on the
hyper-parameters that are selected to create the spectrograms.
The target values are 0 and 1 for the OFF and ON states,
respectively. The target values are repeated in each time step of
a particular recording.

The first layer of the deep learning architecture consists of
a 1 − D convolutional layer that extracts lower-level features
and speeds up the model. It contains 196 filters, a kernel size of
15, and strides of (4, 4) for the time and frequency dimensions.
Thus, the output time steps are downsampled to m, which is
smaller than the input n. Two subsequent stacked bidirectional
Long Short-Term Memory (LSTM) or gated recurrent unit
(GRU) layers have 128 units. This form of deep learning allows
the output layer to get information from the past (backward)
and future (forward) states simultaneously and can provide
additional context to the network. Dropout with the rate of 0.8
and batch normalization layers are used after each recurrent
layer. The final time-distributed dense layer with the sigmoid
activation function outputs Ty, a (1,m) dimensional vector where
themodel returns predictions between 0 and 1 for each unit ofTy.

The output values between 0 and 1 are later converted to
either 0 or 1 depending on a selected threshold value. An average
threshold value of 0.44 is selected on the validation set. The
final prediction is performed using majority voting of the neural
network’s estimated values on each 10 s sample. For example,
if more than m/2 units are predicted as ON, the whole audio
is predicted as ON and vice versa. All speech protocols are
considered in the training and testing.

4.2. Phone Attribute Posteriors Codes
Based ON/OFF Classification
Deep neural networks are used to capture phone attributes
characterized by 20 distinct features derived from Chomsky and
Halle (1991), plus the silence feature. The posterior attributes
are represented as their corresponding posterior probabilities
obtained during feature extraction of the speech segments. These
features relate to the phonation and articulation of speech, which
have proven to be useful for clinical decision making.

The proposed solution belongs to instance-based machine
learning, as no model is trained here, and knowledge is captured
in instances of the features. The phone-attribute posterior
probabilities can be characterized in terms of binary codebooks
by quantizing them using the 1-bit quantization level. Posterior
probabilities below 0.5 are normalized to 0 while probabilities
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FIGURE 1 | This figure, from Cernak et al. (2016), illustrates the variation of the electromagnetic articulography tongue tip velocity (vertical direction with respect to the

occlusal plane) and phone-attribute anterior posterior feature. The trajectories have the same number of maximums and their relation is evident. A more asynchronous

relation toward the end of utterance is caused by asynchronous relations of fast tongue tip movements causing an obstruction in the mouth and generated acoustics.

above 0.5 are normalized to 1. Phone-attribute posteriors indicate
the physiological posture of the articulary system and the
quantization step helps us identify the prominent active postures
involved in articulation. As PD affects the brain, which in
turn makes it difficult for the patient to articulate words, these
quantized posterior probabilities help in the identification and
isolation of the patients who have not received medication.

Each quantized binary sequence is referred to as a code. All
the binary sequences pertaining to one class are accumulated
together to create a codebook. In other words, a codebook
is a set of unordered codes. For binary sequence matching,
unique codebooks are required, which can be compared with
the test sample’s codebook. For this reason, we find unique
ON and OFF codebooks—such that the intersection of both
the codebooks is the null set. The codebooks are discriminative
features that represent their corresponding motor stats, and
they enable the classification of these states. The underlying
premise of constructing unique quantized codebooks is that the
codebook uniquely represents each class. The active phonological
components for each class are universal and can be found in
samples relating to others.

For the classification of any patient into their respective motor
state, quantized codebooks are created for each speech protocol.
Each code in the codebook is matched with the ones present
in the ON and OFF codebook. The particular speech sample
is classified with a motor state with more matches with its
corresponding codebook.

As the number of unique permissible patterns is small, there
are rare cases where the training dataset contains few unique
codes in each codebook. In such cases, direct matches with the
ON and OFF codebook may not exist. Thus, we take advantage
of binary pattern matching techniques.

SJACCARD =
a

a+ b+ c
(1)

For this particular use case, we have found that Jaccard distance
achieves the best results. The Jaccard Similarity score can be
computed using equation 1. For two binary sequences, a denotes
the number of times both the sequences have a value 1 for the
same phone-attribute feature. The term b represents the number
of times the first sequence has a value 1, and the second has a
value 0 for the same feature. Similarly, c can be computed by
calculating the occurrences of 0 in the first sequence and 1 in the
second sequence for the same position in the pattern.

As the final step, a majority voting is done on the class
predictions of the available speech protocol to predict the
patient’s motor state correctly.

4.3. Personalized Speech Assessment
In personalized assessment, the audio file for each protocol
for each patient is divided into validation and test sets. We
utilized the predictions from the validation section of the
speech recordings to find personalized speech protocols for each
patient. Personalized protocols are defined as the ones that
can successfully classify both the ON and OFF motor states.
In the testing stage, only these personalized speech protocols
are utilized for the assessment of the patients. Note that the
trained model in the personalized assessment is still speaker
independent. The personalized assessment is obtained using the
same CRNN model introduced in section 4.1, but as per the
protocol and thus personalized. We denote this approach as
personalized-CRNN (p-CRNN).

In our experimentation, we realized that the personalized
speech assessment is not possible for the PAC-based approach
given the extremely small validation and testing sets of a few
seconds of data. The PAC-based system relies heavily on the
previous features’ instances to findmatches with the ON andOFF
quantized codebooks. Given the relatively small data size, it yields
inaccurate results or cases where there is nomatch found between
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FIGURE 2 | The deep learning workflow diagram. Convolutional part of the model extracts relevant distinctive ON-OFF regions, recurrent part analyses those regions

and models time dependencies, and the dense layers find arithmetic relations between the analyzed regions and actual ON-OFF motor states.
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TABLE 2 | Overall classification accuracy for the proposed approaches:

Phone-Attribute Codebook (PAC), Convolutional-Recurrent Neural Network

(CRNN), and personalized CRNN (p-CRNN).

Method Accuracy Sensitivity/Recall Specificity Precision

PAC 0.73 0.69 0.77 0.75

CRNN 0.80 0.71 0.89 0.85

p-CRNN 0.82 0.86 0.78 0.80

the speaker’s quantized features and the codebooks. Thus, to
assess the patients in a personalized manner using a PAC-based
approach, there is a need for larger amounts of data, especially
two or more recordings per protocol for each patient. However,
given the higher interpretability of this approach, it may attract
medical practitioners’ attention.

5. RESULTS

We have followed leave-one-out cross-validation for all the
experiments. The data corresponding to one patient is utilized
for testing, and the data for the remaining patients are used for
training. The reported results are the average of all patients.

Table 2 shows overall classification results. The CRNN model
achieves an average accuracy of 80% over 16 different models
that are trained using the leave-one-out cross-validation method.
Data belonging to each speaker is removed from the training
set and divided into two parts for testing and validation. This
is repeated for all other speakers and model metrics such as
accuracy, precision, recall, and specificity are calculated for each
model as well as average values for all models.

Patients perform seven different speech tasks. The
performance of the models has been measured for each
task as well as their overall performance. It has been observed,
for example, that while the model for Speaker 1 achieves
precision, recall, and specificity of 1.00 for vowels task, it gives
values below 0.50 for other tasks. In contrast, while the model for
Speaker 2 achieves precision, recall, and specificity values above
0.60 for monologue and read tasks and 1.00 for the other tasks, it
gives values equal to zero for the vowels task. Model for Speaker
12 gives values above 0.80 for twisters and monologue tasks but
does not perform well on other tasks. Like the model in Speaker
1, Speaker 13 performs well only for a single task (monologue).

The fact that trained models perform well for some tasks,
but not others can indicate that personalized speech tasks might
improve overall model performance. Thus, we devised a p-CRNN
approach that outperformed CRNN one in terms of accuracy.
The results for the p-CRNN approach indicate the advantage
of the speaker-dependent personalized assessment of the speech.
This further validates our hypothesis that since the disease
uniquely affects each patient, this approach is needed to capture
medication’s response more accurately.

The PAC-based method achieved lower classification
performance, but their phone-attribute posterior features
provide a high level of interpretability as the human cognitive
system inspires them. The phone-attribute features are class

conditional probabilities of 21 phonological classes derived from
21 different DNNs. A phone is a speech segment that possesses
distinct physical or perceptual properties and serves as the
basic phonetic speech analysis unit. Different phones combined
together represent the speech segment phoneme such as classes
continuant, back, vocalic, and voice compose the phoneme/A/.
This indicated a structural dependency between different classes,
which is of paramount interest.

A two-sample paired t-test was performed to evaluate whether
the phone attribute features varied in the two motor states. The
evaluation compared their values for the 21 features across the
two medication states. The results showed significant differences
in values in the ON andOFFmotor states for most of the features.
The features fricative, silence, and continuant had high t-score
values of −18.91, 15.83, and −14.26, respectively (p < 0.001).
This indicated that these features show significant variation in the
ON and OFF states and are useful for their distinction. While the
phone-attribute features retroflex and velar had a lower t-score
value of −1.02 and −1.65, respectively (p < 0.001). Significant
statistical differences of the phone-attribute features in the ON
and OFF states motivated us to design interpretable classification
using the features.

Figure 3 of the pataka sub-task shows that only 4 out of the 21
phonological classes categorize the speech. However, as shown in
Table 3, these phonological classes are dependent on each other.
This structural dependency between different classes is utilized
for the classification of the motor states. The table clearly shows
how pairs such as high and coronal have a high 2D correlation
in the ON state and similarly continuant and tense have a high
correlation in the OFF state. By creating binary codebooks, we are
exploiting these structural-dependent features to represent the
motor states uniquely. This allows the creation of unique binary
codebooks, as shown in Figure 4. It is the example sequence of
phone attribute posteriors of the same speech sounds produced
by the same speaker in the ON and OFF states.

6. DISCUSSION

This study compares three automated machine learning methods
to evaluate people’s speech with PD in different functional motor
states resulting from their fluctuating dopaminergic treatment.
Thus, we are able to reproduce previous seminal results from
others concerning the dopaminergic response in PwPD related
to the patients’ individual speech profiles (Ho et al., 2008;
Skodda et al., 2010). The paper presents two basic speech
analysis methodologies—instance, machine learning-based, and
deep learning-based. We introduce a novel personalized speech
assessment approach that employs a speaker-independent model
using particular evaluation speech tasks.

The differentiation of variant motor states is of fundamental
importance in evaluating the motor function of PwPD and
currently provides the basis for interpreting most therapies in
advanced disease stages. Our three variant methods demonstrate
convincing and realistic accuracies ranging from 0.73 to 0.83
to achieve the task of differentiation of ON from OFF motor
states. Implementing a leave-one-out cross-validation for all the
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FIGURE 3 | An illustrated example of spoken “pataka”; a small subset of features that characterizes the speech: silence, continuant, tense, and voiced are the only

phone attributes that showed ON and OFF variation.

TABLE 3 | Correlation between some phone-attribute posterior features for the

pataka sub-task depicting the importance of structural dependency.

State Dependent pairs 2-D correlation

ON
(high, coronal) +0.97

(mid, silence) −0.88

OFF
(continuant, tense) +0.92

(tense, silence) −0.93

experiments ascertains that our results are robust, even using a
small dataset.

Our p-CRNN approach uses 10-s input audio segments easily
sampled from the patients’ recordings. Using the first 10 s of
recordings or repeating shorter segments to obtain the required
sample length, we allow for easy and economically feasible
sampling of critical health data. Another benefit of the speech-
based assessment is the equipment’s negligible cost coupled with
the procedure’s complete safety. Thus, the personalized models’
results provide a path to interpret small quantities of speech data
to recognize the individual level’s motor state. Indeed, in the
personalized model that we introduce to the literature for the
first time, we provide a safe and objective differentiation of the
patient’s functional dopaminergic state.

Among the comprehensive set of protocols used in other
similar automatic analyses, such as in Orozco-Arroyave et al.
(2018), followed to record the patients’ speech before and after
medication, different protocols have proven to show different
levels of variations in ON and OFF states. In contrast, a few
of the protocols demonstrated a steady behavior not affected by
medication. So the distinctive capability of different evaluation
protocols is shown to be a speaker-dependent parameter.

PD’s motor syndrome affects every patient in a unique
and highly individual fashion. Besides, as the impairment
in articulation may not be reflected in every spoken word,

a personalized approach becomes essential in analyzing the
differentiation introduced to the speech by variant motor states,
i.e., defining dopaminergic deficit. For this reason, we propose a
speaker-dependent evaluation methodology that selects relevant
speech protocols that highlight the impairment in speech for the
given patient. In contrast to Pompili et al. (2020), the p-CRNN
method uses speaker-independent models.

The methods applied for speech analyses may hold further
keys to relevant clinical information. The speech protocols
pataka and vowels show a higher level of variability in the
two motor states for the PAC-based approach, with the pataka
subtask being the most effective and yielding the higher accuracy.
Especially for the speech task pataka, the higher variability can be
attributed to the complexity in pronunciation of the word.

Figure 5 representing t-SNE plots for the various speech
protocols further highlights the difference in different protocols’
ability to distinguish the two classes. Monologue and read are
oftenmisclassified, which can be observed from their t-SNE plots:
The overlapping ON and OFF classes indicate the lower level
of separability, which is coherent with the PAC-based approach’s
protocol-wise accuracy scores.

One methodological issue concerns the definition of our
predicted classes, the ON and OFF motor states. Only in far
advanced patients, sudden motor state changes within seconds
are observed, which constitutes the basis for distinct ON and
OFF motor states, as described in Marsden and Parkes (1976).
In less advanced PD stages, the OFF motor state occurs more
slowly, e.g., in the morning after dopamine depletion overnight
or as wearing-off before the next dopamine medication intake.
This was the case for the PwPD examined in this project, where
we had a practical OFF motor state that does not correspond to
complete dopamine depletion. This might also help to explain the
difficulty of achieving higher accuracies beyond 0.8. Novel data
from people with PD and suddenness of ON-OFF fluctuations
may provide further information about dopamine’s role in
PD speech.
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FIGURE 4 | Representation of few binary codes for the ON and OFF states for the 21 phone attributes. Although the speaker and the speech content are the same

(speaker three saying /pataka/), we observe a substantial variation in the phone attribute quantification. The OFF variant is visually more sparse and misses some

distinctive features, like labial in initial /p/ production.

FIGURE 5 | t-SNE plots using phone-attribute posterior features for various speech protocols, (A) pataka, (B) vowels, (C) twisters, (D) digits, (E) monologue, and (F)

read, illustrating the differences in their ability to distinguish the and OFF. Experimentation show similar results where monologue and read protocols perform poorly,

while pataka and vowels allow better distinction.

Currently, the evaluation of speech contributes only a small
section in the overall motor state evaluation of PwPD. This is
represented in the single item referring to speech in the 33 item
motor rating score most often used to evaluate PwPD by Goetz
et al. (2008). This project delineates several interesting pathways
for further speech and voice usage in detecting and analyzing the
digital phenotype of PwPD and their response to medications.
Thus, the deep neural networks’ confidence scores might help
quantify and standardize short and long-term dopaminergic
medication responses.

7. CONCLUSION AND FUTURE WORK

Speech is a highly complex motor behavior that encodes a
rich combination of variations in motor output involving
various neuronal centers of the brain. Computational models
that enable quantification of speech and interpretation of
its attributes as digital biomarkers might be instrumental
for the objective early, and even prodromal detection
of relevant symptoms. The models presented here,
using a personalized adaptation, might help to provide
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a trough of insights for the analysis of impaired speech
in PwPD.

This paper shows that speech can be highly instrumental
for the clinical evaluation of relevant questions for people with
PD by detection of the dopaminergic effects on individual
speech. This may guide the medical practitioners to the
personalized evaluation of the most individual human
motor task, and the effect of the most relevant medication
for PD.

We have used an elaborate voice recording situation with
a studio-like setting. In the future, our methods might be
expanded to include data collected from mobile situations
or devices, e.g., automatically sampled, or from telephone
calls. This could help to apply the method in a more
continuous fashion.

For a more reliable interpretation of results, the current
database will need to be enlarged. Doing so will be necessary
to evaluate the personalized approach for the PAC-based
method, and will require having multiple recordings
for the same speech protocol. More data would mean a
reduced risk to over-fit, and could entail more variations of
clinical concern.
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