Fungal and Bacterial Proteases: Characteristics, and Opportunities for the Processing of Plant Proteins

WHARE WĀNAKA O AORAK

Keegan Burrow¹, Ella Harris¹, Xi Gong¹, Alaa El-Din A. Bekhit², Hannah Lee¹

¹ Lincoln University, Department of Wine, Food, and Molecular Biosciences, Lincoln, New Zealand. ² University of Otago, Food Science Department, Dunedin, New Zealand.

Introduction

Hydrolysis of proteins improves their functional and bioactive properties.

Results

Enzyme screening

Fungal and bacterial proteases have been used to hydrolyse a wide range of animal substrates¹

This work aimed to:

- 1. Screen a range of bacterial and fungal proteases.
- 2. Evaluate the effects of selected bacterial and fungal proteases on a plant protein substrate.

Methods

Table 1: Casein Hydrolysis Activity (Δfluo/min/mg soluble protein) of selected proprietary fungal, bacterial, and plant proteases (Mean \pm SD)^{*}

	Enzyme	Source	Casein Hydrolysis Activity
	HT		$3.12 \times 10^4 \pm 4.09 \times 10^{2}$ f
	4000 P	Bacterial	39.5×10 ⁴ ± 151×10 ^{2 a}
	BS CONC		17.0×10 ⁴ ± 206×10 ² ^c
	FPII		3.55×10 ⁴ ± 10.6×10 ^{2 ef}
	F31K	Fungal	21.5×10 ⁴ ± 113×10 ^{2 b}
	F60K		4.25×10 ⁴ ± 66.5×10 ² ^e
	Papain	Plant	7.11×10 ⁴ ± 41.3×10 ² d

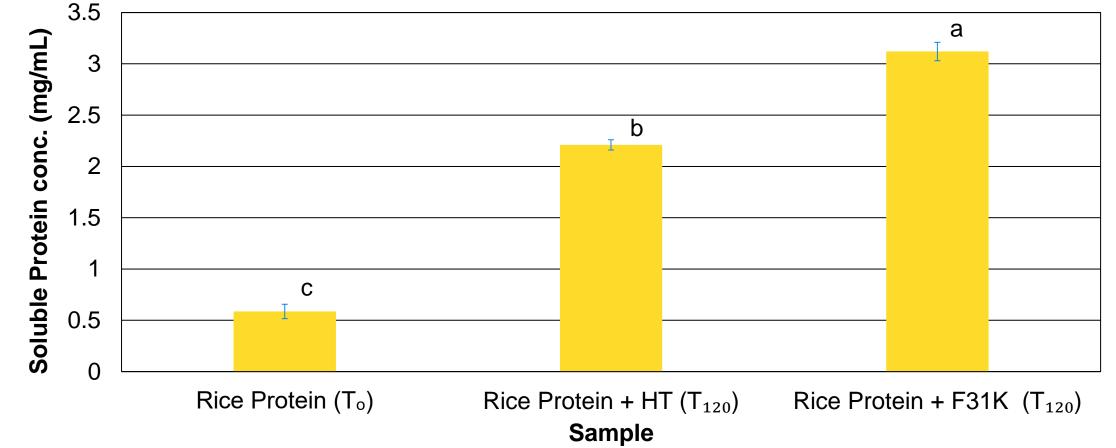
* Superscript letters indicate significant differences between proteases using ANOVA and Tukey's Test (p < 0.05).

Protein hydrolysis

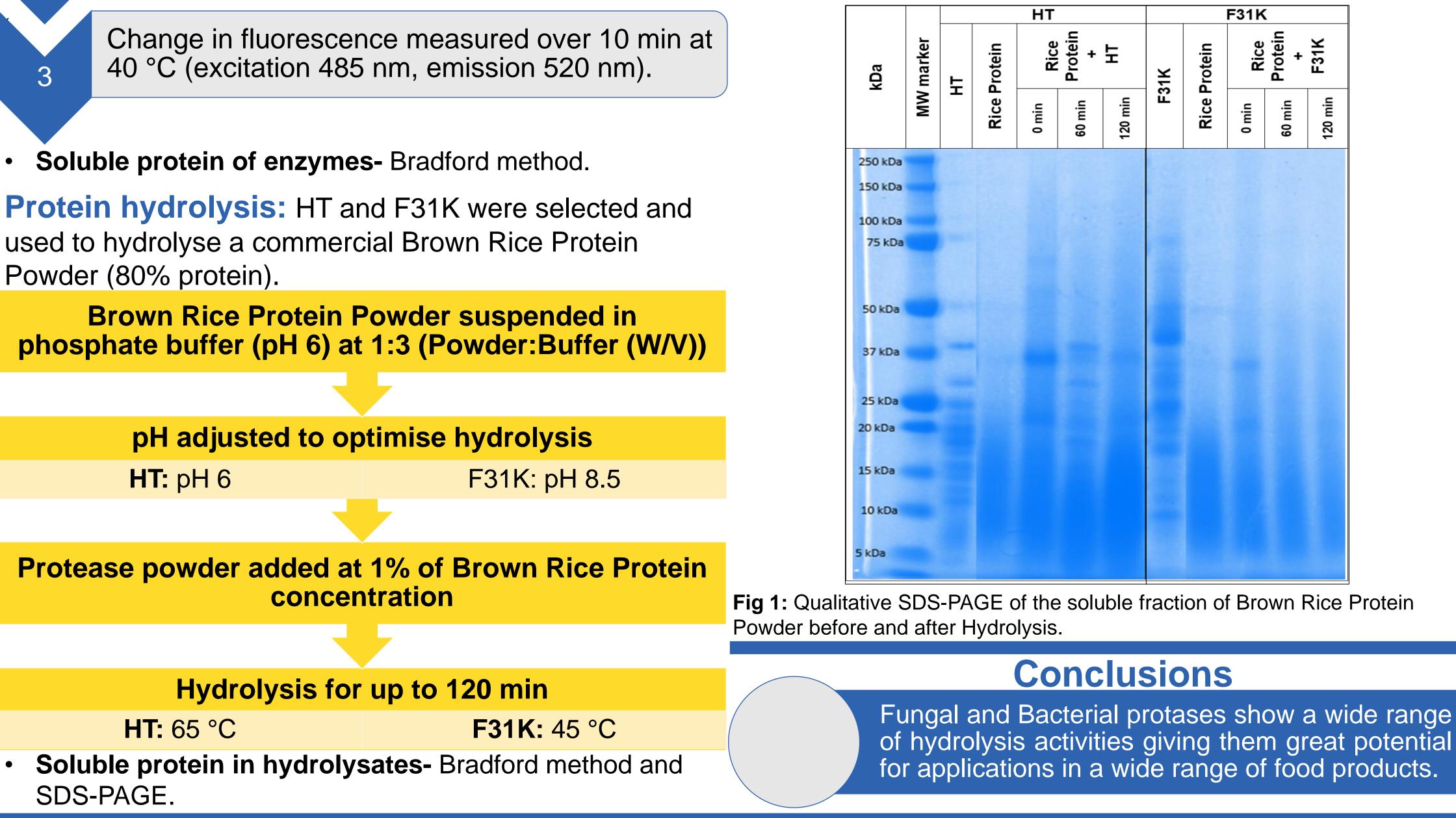
Enzyme screening: Six commercially available proprietary fungal (FPII, F31K, F60K), bacterial (HT, 4000 P, BS Conc), and plant (papain) proteases.

• Casein hydrolysis activity²-

Enzyme suspended in deionized water (1 mg/mL), centrifuged and diluted as required.


Enzyme solution (50 μ L) + 50 μ L BODIPY-FL substrate + 50 μ L buffer (sodium phosphate, pH 6.8).

3


2

Protein hydrolysis: HT and F31K were selected and used to hydrolyse a commercial Brown Rice Protein Powder (80% protein).

Brown Rice Protein Powder suspended in

Fig 2: Soluble protein conc. of Brow Rice Protein Powder before and after Hydrolysis for 120 min (Mean ± SD), Superscript letters indicate significant differences between proteases using ANOVA and Tukey's Test (p < 0.05).

Funding

This work was supported by Hibiscus Solutions, A Lincoln University Research scholarship (Titled: The enzymatic hydrolysis of plant proteins by novel enzymes), and The University of **Otago Department of Food Science**

References

- 1. Ryder, K., Ha, M., Bekhit, A. E.-D., & Carne, A. (2015). Characterisation of novel fungal and bacterial protease preparations and evaluation of their ability to hydrolyse meat myofibrillar and connective tissue proteins. Food Chemistry, 172, 197–206.
- 2. Thompson, V. F., Saldaña, S., Cong, J., & Goll, D. E. (2000). A BODIPY fluorescent microplate assay for measuring activity of calpains and other proteases. Analytical Biochemistry, 279(2), 170–178. https://doi.org/10.1006/abio.1999.4475