
1 
 

Predicting effects of stroke lesions and recovery 

through whole-brain modeling and brain dynamics 

  

Sebastian Ariel Idesis 

 

 

TESI DOCTORAL UPF / YEAR: 2023 

  

THESIS SUPERVISOR 

Prof. Dr. Gustavo Deco, Center for Brain and Cognition – UPF 

DEPARTMENT OF MEDICINE AND LIFE SCIENCES 

 



2 
 



3 
 

Dedication 

I dedicate this thesis work to my partner, Melina, whose unconditional 

support, and encouragement have been invaluable throughout the 

difficulties of graduate school and life. I am deeply grateful to have you 

by my side. I also extend this dedication to my parents, Hugo and 

Graciela, who have consistently loved me without conditions and 

whose admirable examples have instilled in me the value of hard work 

in pursuing my aspirations. Lastly, I would like to acknowledge my dog 

and faithful companion, Mafalda, for providing tireless companionship 

throughout these years. 

Acknowledgements 

I want to sincerely express my appreciation to Prof. Deco, my advisor, 

for the unwavering support he has provided throughout my PhD studies 

and related research. His patience, motivation, and extensive 

knowledge are deeply valued. His guidance has been indispensable 

throughout the entire research and writing journey of this thesis. I 

couldn't have asked for a more exceptional advisor and mentor for my 

PhD studies. 

I also extend my heartfelt thanks to Prof. Corbetta for giving me the 

opportunity to join his team as an intern and granting me access to the 

laboratory and research facilities. Without their invaluable support, this 

research would not have been possible. 

My gratitude extends to my fellow labmates who engaged in stimulating 

discussions, worked tirelessly during late nights leading up to 

deadlines, and shared enjoyable moments with me over the past three 



4 
 

years. I want to give a special acknowledgment to Daniel Diaz, my desk 

partner, for the numerous scientific and life discussions we shared. 

Furthermore, I want to express my appreciation to my external 

collaborators who provided guidance throughout the process. 

Specifically, I am particularly grateful to Dr. Joshua Faskowitz for his 

academic and personal support over the years. 

Last but certainly not least, I want to express my gratitude to my family, 

including my partner, parents, brother, and sister, for their unwavering 

spiritual support throughout the thesis writing process and in all aspects 

of my life.  



5 
 

  



6 
 

Funding acknowledgements 

The project developed in this thesis has received the support of a fellowship 

from the EU-project euSNN (MSCA-ITN-ETNH2020-860563). 

 

 

  



7 
 

Abstract  

Stroke is the second leading cause of death worldwide and a major 

contributor to disability. However, our understanding of the 

consequences of stroke lesions remains limited, relying mainly on 

behavioral reports and descriptive correlations from neuroimaging 

techniques. 

Functional magnetic resonance imaging (fMRI), one of the most 

commonly used methods, offers various possibilities that have not 

been extensively explored in stroke patients. In this thesis, we 

introduce a novel analysis approach that shifts the focus to the 

connections between brain regions, aiming to identify biomarkers for 

severity and recovery. Moreover, by employing whole-brain models, we 

demonstrate how the integration of structural and functional information 

can enhance the accuracy of existing analyses. Additionally, we 

present a model capable of predicting the functional information based 

only on the structural damage of the patients. Lastly, given the high-

dimensional nature of the data, we utilize a deep learning autoencoder 

to uncover the embedded information and nonlinear dynamics of the 

brain following a stroke event. All of the findings presented in this thesis 

contribute to the improvement of diagnostics, classification, and 

prediction of recovery for this significant disorder. 

 

Keywords: Stroke; Brain Dynamics; Functional Connectivity; Whole-

brain model; Structural Disconnection mask; Dimensionality reduction; 

Longitudinal cohort; Recovery prediction. 
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Resumen 

Los accidentes cerebrovasculares son la segunda causa de muerte a 

nivel mundial y una de las principales causas de discapacidad. Sin 

embargo, nuestra comprensión de las consecuencias de las lesiones 

por accidentes cerebrovasculares sigue siendo limitada y se basa 

principalmente en reportes de comportamiento y correlaciones 

descriptivas de técnicas de neuroimagen. La resonancia magnética 

funcional (fMRI), el método más utilizado, ofrece varias posibilidades 

que no se han explorado ampliamente en pacientes con accidente 

cerebrovascular. En nuestro estudio, presentamos un enfoque 

novedoso centrado en las conexiones entre las regiones del cerebro, 

con el objetivo de identificar biomarcadores de severidad y 

recuperación. Al emplear modelos de cerebro completo, demostramos 

cómo la integración de información estructural y funcional puede 

mejorar la precisión de los análisis existentes. Adicionalmente, 

presentamos un modelo capaz de predecir la información funcional 

basándose únicamente en el daño estructural de los pacientes. Por 

último, dada la naturaleza de alta dimensionalidad de los datos, 

utilizamos un codificador automático para investigar la información 

latente y la dinámica no lineal del cerebro después de un accidente 

cerebrovascular. Todos los hallazgos presentados en este estudio 

contribuyen a mejorar el diagnóstico, la clasificación y la predicción de 

la recuperación de este importante trastorno. 

Palabras clave: Accidente cerebrovascular; dinámica cerebral; 

conectividad funcional; modelo de cerebro completo; máscara de 

desconexión estructural; reducción de dimensionalidad; cohorte 

longitudinal; pronóstico de recuperación. 
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Chapter 1 

1.Preface 

  

In 1970, the World Health Organization (WHO) defined stroke as the rapid 

development of clinical symptoms indicating cerebral function disturbance 

lasting over 24 hours or leading to death, without any apparent cause other 

than vascular origin (Aho et al., 1980). Despite significant advances in acute 

care, many patients continue to experience lasting deficits that only partially 

recover spontaneously or through rehabilitation. The mechanisms underlying 

recovery and the impact of rehabilitation remain poorly understood. Gaining 

insight into these mechanisms is crucial for exploring innovative treatment 

approaches, such as neurostimulation. 

 

Over the years, the field of human neuroscience has undergone a 

transformation due to advancements in recording techniques. These 

techniques have enabled researchers to progress from studying behavioral 

aspects to describing patterns of coordinated activation of brain regions. In 

this line, a notable development in neuroscience is the conceptualization of 

the brain as a dynamic system consisting of interconnected networks that 

process information through integration and segregation. As a result, the 

paradigm of neuroscientific studies has undergone a significant shift, partially 

thanks to the discovery of resting-state activity and the exploration of 

spatiotemporal patterns. This concept has led to the application of formal 

methods from graph theory and statistical mechanics to study the structure 

and dynamics of these networks (Sporns, 2013, 2014). While network-based 

understanding of the brain existed prior to these applications, recent 

advancements have been inspired by the empirical discovery of the brain's 

resting-state physiology using functional magnetic resonance imaging (fMRI) 

and the measurement of the blood-oxygenation-level-dependent (BOLD) 
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signal (Power et al., 2011; Yeo et al., 2011). Resting-state functional 

connectivity (FC) measures the inter-regional correlation of the BOLD signal, 

revealing the spatiotemporal structure of the brain's resting-state physiology. 

 

Computational brain network modeling has become a potent tool for exploring 

the causal dynamics of the human brain. By incorporating functional and 

structural connectivity data obtained from empirical neuroimaging studies, 

this approach offers valuable insights into the intricate workings of the brain. 

In particular, this theoretical framework has proven successful in elucidating 

the organized dynamics observed during resting-state networks (RSNs), 

despite the paradoxical notion that the resting brain is never truly at rest (Deco 

et al., 2017). 

Consequently, the development of accurate whole-brain models is crucial for 

comprehending how the brain's structural and functional organization 

influences its information processing abilities. Such models have the potential 

to predict functional and behavioral abnormalities in patients based on simple 

measurements like structural MRI. They can also facilitate the assessment of 

the therapeutic effects of brain stimulation, a subject of significant interest 

(Deco et al., 2019; Wagner et al., 2007). 

 

In this thesis we apply a specific model, using the most general form of 

expressing both noisy asynchronous dynamics and oscillations, namely a 

normal form of a Hopf bifurcation (Deco et al., 2017). Extensive studies in the 

past have demonstrated the effectiveness, versatility, and wide applicability 

of this model in describing dynamics at the local node level (Deco et al., 2019; 

Deco et al., 2017; Jobst et al., 2017). By employing this representation, we 

were able to accurately fit the models to neuroimaging data, not just by 

aligning with the overall average FC, but also by capturing the temporal 

patterns of fluctuations and functional connectivity dynamics. 
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This dissertation aims to explore various methodological approaches and 

their application in understanding the brain dynamics of stroke patients. Our 

primary objective is to develop a computational model capable of 

investigating the abnormal resting brain physiology resulting from specific 

lesions. Throughout this document, we will provide an overview of existing 

techniques, introduce novel methodological approaches, delve into cutting-

edge whole-brain modeling, and explore recovery prediction. Additionally, we 

will employ dimensionality reduction techniques to extract embedded 

information from the commonly studied BOLD signal. Ultimately, our findings 

will contribute strategies to enhance patient treatment, improve diagnostic 

accuracy, and enhance their overall quality of life. 

1.1 Topics and outline of the thesis 

The outline of the main topics covered in each chapter is as follows: 

 

In chapter 2, we present the dataset utilized throughout the subsequent 

chapters. The database comprises individuals who experienced their first 

stroke and were examined at 1-2 weeks, 3 months, and 12 months following 

the onset of the stroke. Additionally, the cohort includes a group of healthy 

individuals matched in age, who underwent evaluation twice within a three-

month interval. This approach allows for the assessment of both the 

differences between healthy controls and stroke patients, as well as the 

evolution of stroke effects on the brain over time. 

 

In chapter 3, we explore the utility of a novel approach, known as edge-centric 

analysis,  within a dataset of stroke patients. We employ newly developed 

measures that unveil information at the edge level, thereby providing fresh 

evidence for the potential of this approach as a promising link between 

structure and function. Additionally, we present a novel direction for mapping 

the brain in a clinical setting. This analysis yields indicators that are closely 
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associated with lesion severity and reveal the recovery of lesions, making our 

study the first to adopt an edge-centric approach with clinical applications 

over time. As a result, the goal of this chapter is to investigate the functional 

brain dynamics following stroke incidents. 

 

In Chapter 4, we construct a causal mechanistic generative model of the 

entire brain to elucidate the functional and behavioral consequences of stroke 

lesions. Notably, the incorporation of structural disconnection masks proves 

to be a pivotal factor in the model's performance, enabling the classification 

of severity and the differentiation of asymmetries in network communication. 

By utilizing the whole-brain model, in combination with the anatomical 

disconnection information, we demonstrate the emergence of changes in 

network dynamics after a stroke injury. 

 

In chapter 5 we introduce a novel predictive whole-brain computational 

model, specifically designed to predict functional information following a 

stroke-induced lesion. Significantly, our findings reveal that the predictive 

model achieves a comparable level of accuracy to previously reported 

models, despite not incorporating the patients' functional information during 

model optimization. This suggests that the model is able to capture 

relationships between structural and functional activity. The generative nature 

of the model facilitates its applicability to new datasets and has the potential 

to advance our comprehension of the disrupted brain dynamics observed in 

stroke patients. 

 

In chapter 6 we focus on the dimensionality reduction of the recordings by 

using a special type of neural network, called autoencoder, in order to uncover 

non-linear components of brain dynamics in stroke patients. We determined 

that at the acute stage, the latent representation yielded greater diagnostic 

power. Additionally, we utilize the embedded information to compare the 

prediction of recovery after one year following the incident with other 
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established methods. Our findings demonstrate an improved prediction of 

patients' recovery when incorporating the information from the latent space. 

Moreover, we discovered that complexity metrics, such as brain signal 

reversibility, offer indicators that are associated with lesion severity and 

predict lesion recovery. 

 

In the final chapter, General discussion, we summarize the main contributions 

of this dissertation, and discuss some open questions and possible future 

directions of investigation. 
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CHAPTER 2 

2. Stroke dataset description 

Work in this chapter is based on the following publications: 

 Idesis, S., Faskowitz, J., Betzel, R. F., Corbetta, M., Sporns, O., & Deco, G. (2022). 

Edge-centric analysis of stroke patients: An alternative approach for biomarkers of 

lesion recovery. NeuroImage: Clinical, 103055. 

Idesis, S., Favaretto, C., Metcalf, N. V., Griffis, J. C., Shulman, G. L., Corbetta, M., & 

Deco, G. (2022). Inferring the dynamical effects of stroke lesions through whole-brain 

modeling. NeuroImage: Clinical, 103233. 
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2.1 Subjects 

We used the Washington University Stroke Cohort dataset (Corbetta et al., 

2015), a large prospective longitudinal (two weeks, three months, 12 months) 

study of patients with a first-time, single lesion stroke. Although patients were 

studied at 1-3 weeks (mean = 13.4 days, SD = 4.8 days), 3 months, and 12 

months after stroke onset, the current study only analyzed data from the first 

time point. Furthermore, a group of age-matched control subjects was 

evaluated twice at an interval of three months. From this cohort, we selected 

96 stroke patients and 27 healthy subjects. 

 

Stroke patients were prospectively recruited from the stroke service at 

Barnes-Jewish Hospital (BJH), with the help of the Washington University 

Cognitive Rehabilitation Research Group (CRRG). The complete data 

collection protocol is described in full detail in a previous publication (Corbetta 

et al., 2015). Healthy controls were selected based on the same 

inclusion/exclusion criteria as previously done (Corbetta et al., 2015). This 

group was typically constituted of spouses or first-degree relatives of the 

patients, age- and education-matched to the stroke sample. Patients were 

characterized with a robust neuroimaging battery for structural and functional 

features, and an extensive (~2 hour) neuropsychological battery. 

2.2 Neuroimaging acquisition and preprocessing 

A complete description of the neuroimaging assessment is given in (J. C. 

Griffis et al., 2019). Neuroimaging data were collected at the Washington 

University School of Medicine using a Siemens 3T Tim-Trio scanner with a 

12-channel head coil, specifically: 1) sagittal T1-weighted MP-RAGE 

(TR=1950 msec; TE=2.26 msec, flip angle = 90 degrees; voxel dimensions = 

1.0x1.0x1.0 mm), and 2) a gradient echo EPI (TR=2000 msec; TE=2 msec; 

32 contiguous slices; 4x4 mm in-plane resolution) resting-state functional MRI 
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scans from each subject. Participants were instructed to fixate on a small 

centrally located white fixation cross that was presented against a black 

background on a screen at the back of the magnet bore. Between six and 

eight resting-state scans (128 volumes each) were obtained from each 

participant (~30 minutes total) giving a total of 896 time points for each 

participant.  

 

Resting-state fMRI preprocessing included (i) regression of head motion, 

signal from ventricles and CSF, signal from white matter, global signal (ii) 

temporal filtering retaining frequencies in 0.009 - 0.08 Hz band: and (iii) 

censoring of frames with large head movements, FD = 0.5 mm. The resulting 

residual time series were projected onto the cortical and subcortical surface 

of each subject’s brain, which was divided into 234 regions of interests (200 

cortical plus 34 subcortical). These regions were taken from the multi-

resolution functional connectivity-based cortical parcellations developed by 

Schaefer and colleagues (Schaefer et al., 2018), including additional 

subcortical and cerebellar parcels from the Automated Anatomical Labeling 

(AAL) atlas (Tzourio-Mazoyer et al., 2002) and a brainstem parcel from the 

Harvard-Oxford Subcortical atlas (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases). 

 

A structural connectome atlas was created using a publicly available diffusion 

MRI streamline tractography atlas based on high angular resolution diffusion 

MRI data collected from 842 healthy Human Connectome Project participants 

(Yeh et al., 2018) as described previously (Griffis et al., 2019, 2021).  Briefly, 

the HCP-842 atlas was built using high spatial and high angular resolution 

diffusion MRI data collected from N=842 healthy Human Connectome Project 

participants. These data were reconstructed in the MNI template space using 

q-space diffeomorphic reconstruction (Yeh & Tseng, 2011), and the resulting 

spin distribution functions were averaged across all 842 individuals to 

estimate the normal population-level diffusion patterns. Whole-brain 

deterministic tractography was then performed on the population-averaged 
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dataset using multiple turning angle thresholds to obtain 500,000 population-

level streamline trajectories. 

2.3 Neuropsychological and behavioral assessment 

The same subjects (controls and patients) underwent a battery of 

neuropsychological tests in the domains of motor, attention, language, visual, 

and memory functions at each time point. Briefly, the battery consisted of 44 

measures across four domains of function: language, motor attention and 

memory (for a complete description of the tasks measures, see (Corbetta et 

al., 2015). A dimensionality reduction was applied to the individual test data 

in each domain using principal component analysis as in (Corbetta et al., 

2015), yielding summary domain scores: Language, MotorR and MotorL (one 

score per side of the body), AttentionVF (visuospatial field bias), Average 

performance (overall performance and reaction times on attention tasks), and 

AttentionValDis (the ability to reorient attention to unattended stimuli), 

Memory V (composite verbal memory score) and MemoryS (composite 

spatial memory score). Finally, patients’ behavioral scores were z-scored with 

regard to controls’ scores, to highlight behavioral impairments.  

 

In addition to domain-specific scores, the patients’ clinical severity was 

assessed through the National Institutes of Health Stroke Scale (NIHSS) 

(Brott et al., 1989) that includes 15 subtests addressing: level of 

consciousness (LOC), gaze and visual field deficits, facial palsy, upper and 

lower motor deficits, limb ataxia, sensory impairment, inattention, dysarthria 

and language deficits. The total NIHSS score was used as an averaged 

measure of the clinical severity for each patient. 
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2.4 Lesions 

Each lesion was manually segmented on structural MRI scans and checked 

by two board-certified neurologists. The location (cortico-subcortical, 

subcortical, white-matter only) of each lesion was assigned with an 

unsupervised K-means clustering on the percentage of total 

cortical/subcortical gray and white matter masks overlay. For a more 

extensive explanation on how the overlap of each lesion group with gray 

matter, white matter, and subcortical nuclei is calculated, see the work by 

Corbetta et al, 2015. 

 

We summarize the lesion distribution and average of the used sample in 

Figure A6. 

2.5 Lesion disconnection masks 

The Lesion Quantification Toolkit (Griffis et al., 2021) produces a 

comprehensive set of atlas-derived lesion measures that include measures 

of grey matter damage, white matter disconnection, and alterations of higher-

order brain network topology. Importantly, the measures produced by the 

toolkit are based on population-scale (e.g., N = 842) atlases of grey matter 

parcel boundaries and white matter connection trajectories that were 

constructed from high-quality resting-state functional MRI and diffusion MRI 

data using state-of-the-art methods. 

 

Taking advantage of the Lesion Quantification Toolkit (LQT), the structural 

disconnection (SDC) masks consisted of a spared connection adjacency 

matrix where each cell quantified the percentage of streamlines connecting 

each region pair in the atlas-based structural connectome that were spared 

by the lesion. Therefore, the multiplication of each SDC with a template SC 

provides an atlas-based weight for each region pair corresponding to each 
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patient. For the mentioned cohort, DTI was not acquired during the subacute 

stage visit (~ 2 weeks), only during the two subsequent chronic visits (not 

included in the current study). Therefore, the estimates from the LQT were 

used. 

 

Since many stroke lesions occur predominantly in the white matter, or include 

both a gray and white matter component, the SDC mask should provide an 

accurate description of the damage to the connectome. We computed the 

total amount of disconnection (J. C. Griffis et al., 2019) as a metric of 

anatomical impairment to assess the validity of the model.   
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CHAPTER 3 

3. Functional effects: Exploring brain 

dynamics of stroke patients through 

Edge-centric analysis 

Work in this chapter is based on the following publication: 

 Idesis, S., Faskowitz, J., Betzel, R. F., Corbetta, M., Sporns, O., & Deco, G. (2022). 

Edge-centric analysis of stroke patients: An alternative approach for biomarkers of 

lesion recovery. NeuroImage: Clinical, 103055. 
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Highlights 

 

- We applied an edge-centric approach to a longitudinal stroke patient dataset 

- Highest values of co-fluctuation were associated with stroke severity 

- Normalized entropy increased across patient recovery time 

- We demonstrate a novel direction for mapping the brain in a clinical setting 

 

Abstract 

 

Most neuroimaging studies of post-stroke recovery rely on analyses derived 

from standard node-centric functional connectivity to map the distributed 

effects in stroke patients. Here, given the importance of nonlocal and diffuse 

damage, we use an edge-centric approach to functional connectivity in order 

to provide an alternative description of the effects of this disorder. These 

techniques allow for the rendering of a metric such as normalized entropy, 

which describes the diversity of edge communities at each node. Moreover, 

the approach enables the identification of high amplitude co-fluctuations in 

fMRI time series. We found that normalized entropy is associated with stroke 

lesion severity and continually increases across the time of patients’ recovery. 

Furthermore, high amplitude co-fluctuations not only relate to the lesion 

severity but are also associated with patients’ level of recovery. The current 

study is the first edge-centric application for a clinical population in a 

longitudinal dataset and demonstrates how a different perspective for 

functional data analysis can further characterize topographic modulations of 

brain dynamics. 

 

Keywords 

 

Stroke; Edge-centric; Functional Connectivity; Normalized entropy; Co-

Fluctuations; Longitudinal; Brain Dynamics 
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3.1 Introduction 

The brain can be conceptualized as a system of regions that functionally 

influence each other, forming a complex network of interactions (Bassett & 

Sporns, 2017; H. J. Park & K. Friston, 2013). Stroke causes focal brain lesions 

that alter this network organization both locally and globally (Crofts et al., 

2011; Wang et al., 2019). The tools of network science and graph theory allow 

for these changes to be quantified in various ways. Using fMRI, it has been 

shown that the functional synchronization between distinct regions of the 

brain, referred to as FC, is disrupted by stroke (Silasi & Murphy, 2014; 

Wodeyar et al., 2020). Commonly observed disruptions to this network 

organization include inter- and intra-hemispheric changes in FC  (Crofts et al., 

2011; J. C. Griffis et al., 2019; Siegel et al., 2016). Furthermore, using 

structural magnetic resonance imaging (sMRI) of the brain’s white matter 

architecture, several studies have shown how structural disconnections 

explain brain network (such as modularity and synchronization) dysfunction 

after stroke (Corbetta et al., 2015; Joseph C Griffis et al., 2019; Siegel et al., 

2016; Wang et al., 2019). These studies show how decreases in modularity 

and synchronization are strongly related to behavioral deficits. 

 

Common to many network neuroscience investigations is a reliance on 

network analyses that results in measurements specific to each brain region. 

A recent study proposed that resting-state functional connectivity (rsFC) may 

not be fully representative of brain activation patterns underlying specific 

behaviors, which was shown to be constrained by the structural connectome 

(Honey et al., 2007; Honey et al., 2009; Olafson et al., 2021). Therefore, it 

could be the case that the observed modulations of functional connectivity 

following stroke represent an incomplete picture of the brain dysfunction 

linked to ipsi- and contralateral stroke. Along these lines, new analytical 

approaches should be explored to see if they can further expand our 

understanding of these fMRI-derived modulations. In particular, new network-
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based analyses of fMRI that focus on the brain’s functional connections, 

known as edges, could help to fill these gaps.  

 

Recent studies have motivated an edge-centric approach, shifting focus onto 

the information that can be resolved on a per-edge level (Ahn et al., 2010; 

Faskowitz et al., 2020; Zamani Esfahlani et al., 2020). Using a straightforward 

unwrapping of the Pearson correlation, co-fluctuation time series 

(alternatively referred to as “edge time series”) data can be estimated for each 

edge. Unlike sliding-window time-varying connectivity, which requires the 

parameterization of a window duration, kernel shape, and step size, edge 

time series have the same temporal resolution as the original functional data. 

Importantly, the time-averaged value of an edge time series is a correlation 

coefficient. This means that edge time series are a mathematically exact 

decomposition of a functional connection into its framewise contributions. 

Previous analyses of edge time series data have shown that transient periods 

of high-amplitude activity make disproportionately large contributions to the 

time-averaged functional connectivity (Allan et al., 2015; Cifre et al., 2020; 

Petridou et al., 2013; E. Tagliazucchi et al., 2012; Zamani Esfahlani et al., 

2020). In other words, data selected from specific temporal slices can be used 

to reconstruct a similarity matrix with a high correspondence to the functional 

connectivity matrix constructed from the full dataset (Betzel et al., 2021; 

Greenwell et al., 2021). Like with co-activation pattern (CAP) analysis 

(Karahanoglu & Van De Ville, 2015; Liu & Duyn, 2013), the structure of high-

amplitude activity forms distinctive spatial patterns that are transiently 

expressed and only partly resembles the canonical functional systems 

architecture (Sporns et al., 2021). What separates edge time series from 

previous methods is that it provides an exact mathematical relationship to the 

Pearson correlation.  

 

Edge time series can be compared in a pairwise manner, creating an edge-

by-edge similarity matrix of the brain that can be submitted to network 
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analyses. Clustering this data results in a community structure of edges, 

where communities represent groups of region pairs that similarly fluctuate 

across time (Chumin et al., 2021; Jo, Esfahlani, et al., 2021). When mapped 

to brain regions, these edge communities naturally form a pervasively 

overlapping structure, such that every node participates in multiple 

communities. The distribution of edge community affiliations can be 

conceptualized as an entropy that describes how dispersed the edge 

community distribution is at each node. Up until this point, this family of 

approaches has been applied to map fMRI data from young and healthy 

samples. Consequently, these approaches have not yet been applied to 

measure the impact of neural dysfunction and/or damage.  

 

In the present study we explore the utility of edge-centric analytical 

approaches in a clinical setting, by using newly developed measures that 

disclose information at the edge level. More specifically, we measure the 

relation between edge-centric derived measures and metrics of post-stroke 

severity and classification. Additionally, this study examines how these edge 

measurements possibly change across time, in a longitudinal neuroimaging 

setting and its association with the level of patients’ recovery. In this work, we 

used the Washington University Stroke Cohort dataset (See chapter 2). We 

found that normalized entropy of the edge community distributions increased 

globally across time, as patients recovered from stroke. Furthermore, we 

found that a marker of high amplitude co-fluctuation has a significant relation 

with lesion volume and an association with the patients’ recovery after 1 year.  

In summary, the current study reveals how edge-centric analysis provides 

indicators that reveal lesion severity and reflect lesion recovery, making it the 

first study with edge-centric approach with clinical applications across time. 
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3.2 Material and methods 

3.2.1 Edge-centric calculations: Normalized entropy and 

high amplitude co-fluctuations 

Time series were extracted for each node (N=235 brain regions) of the 

parcellation by averaging the preprocessed fMRI BOLD signal within each 

node at each timepoint. Taking the statistical similarity, as commonly indexed 

by Pearson correlation, between each possible pair of nodal time series would 

result in a N-by-N (235-by-235) similarity matrix. This matrix is commonly 

referred to as a Functional Connectivity matrix. Recently, a new method has 

been proposed to represent the time series formed by comparing two nodes, 

by using an intermediate calculation of the Pearson correlation (Faskowitz et 

al., 2020; Zamani Esfahlani et al., 2020). The resulting edge time series are 

formed by first, z-scoring each of the two nodal time series independently. 

Then, the element-wise product of the z-scored time series is taken, forming 

an edge time series. Values of the edge time series reflect the co-fluctuation 

pattern between nodes. A positive co-fluctuation results when, at a specific 

point in time, both series are concordant relative to each of their mean signals. 

A negative co-fluctuation value results when, at a specific point in time, one 

time series is above the mean (a positive value) and the other is below the 

mean (a negative value). Notably, the mean of an edge time series equals 

the Pearson correlation. 

Edge time series have the same temporal resolution as the original data, 

allowing for the analysis of instantaneous (i.e., a single time frame) co-

fluctuation patterns. This data has the dimensionality of edge-by-time. At each 

frame, the overall co-fluctuation activity can be indexed by taking the root-

sum-square (RSS) of all edge co-fluctuations. Then, using these RSS values, 

the time frames can be ranked. Here, we grouped time frames into 10 ordered 

deciles based on RSS co-fluctuation activity. 
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Edges can be clustered based on the similarity of their time course. Here, we 

applied the k-means algorithm (with normalized Euclidean distance metric) to 

partition the set of edges into 10 clusters with similar co-fluctuation amplitude.  

The number of clusters was set to match the presented results in a previous 

paper (Faskowitz et al., 2020). K-means was repeated 25 times and the 

partition that was least distant from all other clusters (as assessed by 

minimum variation of information) was taken to be the representative solution 

for a given dataset (Faskowitz et al., 2018). This procedure results in a 

community affiliation for each edge. That is, each edge is associated with one 

of k communities, where k is 10. By projecting this partition to the node level, 

we find that the 234 edges (excluding self-loops; therefore N-1 edges) 

emanating from each node are affiliated with edge communities. Summing 

edge communities of each node and dividing by 234 provides a probability 

distribution over the k communities. We can then take the entropy of this 

distribution, to obtain a measurement of how dispersed the distribution of 

edge clusters are at each node. A low entropy indicates a relatively even 

distribution of edge communities associated with a node, whereas a high 

edge community indicates a high concentration in relatively few communities. 

Here, we employ the normalized entropy, which is bounded to the interval 

[0,1]. 

3.2.2 Entropy localization 

 

The difference between patients and controls was calculated for each node 

and then displayed in the brain surface plot (Figure A1).  

3.2.3 Functional system interactions 

 

To investigate the average correlations between canonical functional 

networks, we compared the within and between network average FC for both 
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patients and controls at the three distinct timepoints. The sum of weights of 

the connections between the networks was then Fisher z-transformed to be 

compared between them at the same scale expressing the co-activity of these 

networks after the stroke damage and this co-activity recovered across time. 

The connections displayed exceed the chosen threshold of 1.75 to emphasize 

the effect (Figure 3.3b)  

3.2.4 Participation coefficient 

 

We calculated the participation coefficient within each time window for each 

node using the Brain Connectivity Toolbox (BCT) 

(https://sites.google.com/site/bctnet/) (Rubinov & Sporns, 2010) function 

“participation_coef_sign.m”, averaging across 500 trials of modularity 

maximization with the “negative_asym” null model option (Rubinov & Sporns, 

2011). The participation coefficient in this study expresses the level at which 

a node is diversely associated with other nodes across all modules 

(Fukushima et al., 2018; Rubinov & Sporns, 2010). The (node) modules used 

for the participation coefficient were obtained by using the modularity 

undirected function (community detection technique from the BCT). As the 

normalized entropy did not reveal a significant relation with lesion metrics in 

an individual level at the acute stage of the injury, participation coefficient was 

calculated given its previous importance in the field (Warren et al., 2014). 

3.2.5 High amplitude co-fluctuations: similarity with FC and 

principal component analysis 

Using the RSS to sort the data (see 3.2.1. Edge-centric calculations section), 

we calculated a similarity matrix by averaging the top 10% RSS frames. The 

elements of this matrix represent the cofluctuation patterns that are 

expressed when the brain is in a high-amplitude state (i.e.: the first decile as 



39 
 

ranked by RSS). The chosen decile was based on previous literature (Zamani 

Esfahlani et al., 2020) while a comparison between the different deciles is 

described in Figure A4. The obtained similarity matrix was then compared to 

the full FC matrix (calculated from all frames) using the Pearson correlation 

(of the vectorized upper triangle for each matrix). This resulted in a coefficient 

for each subject, representing the similarity between a subject’s high-

amplitude values and the FC. This value was associated with lesion volume 

and used to reveal the number of recovered domains (Figure 3.5a) and to be 

compared with the lowest 10% scores (Figure 3.5b). Additionally, we 

calculated the first principal component (PC) of each edge time series matrix, 

for each patient, at the three different timepoints. This singular value partially 

describes the first axis of the edge-time series variance. With this addition, 

we can inspect and compare our results against a node-centric approach as 

discussed in previous literature (Novelli & Razi, 2021). 

3.2.6 Distinction between left and right hemisphere 

 

The normalized entropy calculation was performed in parallel for two subsets 

of patients according to the location of the stroke: 49 left hemisphere lesioned 

patients and 47 right hemisphere lesioned patients. In this way, the two 

groups were compared based on the entropy levels of the patients belonging 

to the corresponding subset. No classification model was assessed for this 

comparison.  

3.2.7 Distinction between subcortical and cortical region 

 

The normalized entropy calculation was performed in parallel for two subsets 

of patients according to the location of the stroke, with 33 patients with cortical 

area lesions and 23 patients with subcortical area lesions. For remaining 

patients, the lesion location was unspecific or a combination of both tissue 
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areas. As in the previous section, the entropy level of the subjects of each 

sample (in this case, patients with cortical vs patients with subcortical lesion) 

was compared to the other one without performing a classification model.  

 

3.3.Results 

We performed a series of analyses on the functional MRI data of stroke 

patients (Figure 3.1a). The first step consisted in obtaining the edge-time 

series (Figure 3.1b) which was calculated for the three distinct timepoints. 

After calculating co-fluctuation amplitude, the data was sorted and segmented 

to obtain the 10% of frames with the highest co-fluctuation amplitude (Figure 

3.1c). Lastly, the edge community entropy was calculated per node to 

observe its relationship with stroke metrics, its relation with the lesion 

localization and its fluctuation across time both by node and network (Figure 

3.1d) 
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Figure 3.1 : Pipeline of brain dynamics exploration through edge-centric analysis 

Figure 3.1: Pipeline of brain dynamics exploration through edge-centric analysis: (A) All the 

analyses were performed using the FC of the stroke patients. (B) Edge-FC is calculated by 

multiplying element-wise the product time series and normalizing the sum by the squared root 

standard deviations of both time series. (C) The elements of the co-fluctuation time series are 

the element-wise products of z-scored regional BOLD time series, from which the highest 

peaks are selected for further analysis. (D) Normalized entropy and participation coefficient 

were obtained in order to assess their fluctuation across time, their relation with stroke metrics 

and their collaboration with lesion localization 
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To measure the effect of time, we compared the first principal component 

(PC) singular value for each patient at the three different timepoints. There 

was not a significant effect of time on the first PC (F(2,147) = 0.08, p = 0.91). 

All p-values reported in the results section were corrected using False 

Discovery Rate. The same effect was observed on the top 10% high-

amplitude values (F(2,132) = 0.47, p = 0.62). There was a significant 

difference when comparing the level of entropy at the three different time 

points [F(2,702) = 30.64, p  <0.01]. Timepoint 3 showed the highest value 

(mean = 0.74, std = 0.11) followed by timepoint 1 (mean = 0.66, std = 0.11) 

and timepoint 2 (mean = 0.67, std = 0.14) (Figure 3.2). Entropy level revealed 

an increasing trend across time that was not apparent in the other two metrics. 

Based on these results, we selected normalized entropy as the variable of 

interest to be used as a potential fMRI-based indicator of recovery by 

comparing it with the corresponding values in the control group (Figure 3.3a). 
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Figure 3.2: Fluctuation across time of principal components, high amplitude co-fluctuations, and entropy 

Figure 3.2: Fluctuation across time of principal components, high amplitude co-fluctuations, 

and entropy: Representation of participants’ values at three different time points after stroke (2 

weeks, 3 months, and 1 year) for (top-left) the first PC of static nFC, (top-right) high-amplitude 

similarity with FC and (bottom) the entropy level. 
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In order to investigate the difference in entropy levels between controls and 

patients, we compared both groups at each time point. There was a significant 

difference between patients and controls at time point 1 (t(468)= 13.78, p < 

0.01), timepoint 2 (t(468)= 10.86, p < 0.01) and time point 3 (t(468)=5.45, p < 

0.01) with the magnitude of the difference between the two groups decreasing 

over time (Figure 3.3a). The increase in normalized entropy and the reduced 

difference with the control group across time could be interpreted as an 

indication of recovery. 
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Figure 3.3: Entropy and functional connectivity across time 
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Figure 3.3: Entropy and functional connectivity across time: (A) Comparison of entropy 

between patients and control at each time point. The difference is visualized in each surface 

for each node. (B) FC at each timepoint with the corresponding communication between the 

networks. (C) Entropy across time segmented by network. Asterisk indicates when the 

comparison between the three time points is significant. Systems labels: V = Visual; Sm = 

Somato-motor; Dat = Dorso-attentional; Sal = Salience; Lim = Limbic; Co= Control; Def = 

Default; Bg = Basal Ganglia; Th = Thalamus; Ce = Cerebellum; Br = Brainstem 

 

When visualizing the difference between patients and controls by node, there 

were 83 nodes in which the patients had a higher value than the controls in 

the acute stage (time point 1), 68 at time point 2, and 169 at time point 3 

(Figure 3.3a). We explored the surface projection of entropy values for each 

group and both combinations of differences (controls minus patients and 

patients minus controls) to observe both patterns (Figure A1). The 

localization of differences to individual nodes could prompt future exploration 

of this topographic pattern. Especially meaningful might be to explore the 

relationship between these maps and maps that index other topographic 

properties of the brain including cortical expansion or gene expression.  When 

visualizing the average functional correlation between the networks, 8 

connections were preserved at time point 1, 10 connections at time point 2 

and 14 connections at time point 3 (Figure 3.3b) indicating the recovery of 

the patients across time.  

 

To analyze the within-network fluctuation of the entropy level, we compared 

it for each individual network. Several of them revealed a significant difference 

across time: Visual (F(2,84) = 6.21, p < 0.01), Somato-Motor (F(2,102) = 

77.45, p < 0.01), Limbic (F(2,33)=5.87,p < 0.01), Control (F(2,87)=4.72,p = 

.01), Default (F(2,135)=13.57,p < 0.01), Basal ganglia (F(2,15)=9.26,p < 0.01) 

and Cerebellum (F(2,75)=39.3,p < 0.01). In contrast, the remaining ones did 

not expose a significant difference between the different timepoints: Dorsal-

Attention (F(2,75)  = 1.58,p = 0.21), Salience-Ventral (F(2,63) = 1.47,p = 

0.23), Thalamus (F(2,3) = 9.43,p = 0.05), Brainstem (F(2,1) = 1.32,p = 0.36) 
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(Figure 3.3c). The majority of the networks revealed an increase across time, 

indicating that the phenomena could be studied in both global and local ways.  

 

Normalized entropy was found to be negatively associated with stroke metrics 

although these relations were not significant (lesion volume: R2 = 0.02, p = 

0.37, NIHSS score: R2 = 0.05, p = 0.163) (Figure A2a). Therefore, the 

participation coefficient was explored as it was shown to have a strong 

statistical relationship with normalized entropy (Faskowitz et al, 2020). 

 

The participation coefficient was calculated for each patient in order to see its 

correspondence with the basic stroke severity metrics. Average participation 

coefficient was related in a significant manner with the lesion volume (R2 = 

0.08, p < 0.01). The same occurred for the NIHSS score (R2 = 0.05, p =0.04) 

(Figure 3.4). Furthermore, the participation coefficient relation with the stroke 

metrics was also analyzed in the other two time points showing no significant 

effect (timepoint 2: lesion volume: R2 = 0.04, p = 0.13, NIHSS score: R2 = 

0.01, p = 0.63, timepoint 3: lesion volume: R2 = 0.01, p = 0.47, NIHSS score: 

R2 = 0.01, p = 0.42) indicating that this effect is only visible at the acute stage 

(Figure A2b). When comparing participation coefficient between patients and 

controls, no difference was found for any of the 3 timepoints (Figure A3) as 

opposed to the increasing trend exposed previously by normalized entropy. 
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Figure 3.4: Relation of Participation coefficient with stroke metrics 

 

Figure 3.4: Relation of Participation coefficient with stroke metrics:  Relationship between the 

participant coefficient of each patient, (left) their lesion volume (Number of damaged voxels) 

and (right) their NIHSS score.  Lesion volume was calculated based on the topography of the 

stroke damage using a voxel-wise analysis of structural lesions in order to quantify the amount 

of damaged voxels. The National Institutes of Health Stroke Scale (NIHSS) includes 15 

subtests and was used as a clinical measure of severity for each patient. 

 

The level similarity of the highest 10% data points (ranked by the RSS. For 

more detail see methods section) with the FC were associated with a 

significant percentage of the lesion volume (R2 = 0.05, p = 0.03). Furthermore, 

they relate to a significant number of domains recovered (R2 = 0.07, p = 0.02) 

(Figure 3.5a). When comparing the correlation with the complete FC, the top 

10% data points showed a significantly higher correlation value than the 

bottom 10% (t(190) = 39.31, p < 0.01)) (Figure 3.5b). We explored the 

correlation of each decile of data points (i.e.: first 10%, 10% to 20%, and so 

on) to show the decaying effect of the correlation with the FC (Figure A4a). 

Furthermore, when compared to the other deciles, the highest 10% revealed 

to have the highest clustering coefficient, global efficiency and assortativity, 

next to the lowest distance (Figure A4b). The relation between each decile 
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with lesion volume revealed that the only decile with a significant relation is 

the top 10% (R2 = 0.05, p = 0.03) while all the others present no significant 

association (p > 0.2) (Figure A5) 

 

 

Figure 3.5: High amplitude co-fluctuations’ informative value 

Figure 3.5: High amplitude co-fluctuations’ informative value: (A) Association between the 10% 

highest value of each patient with their corresponding (left) lesion volume and (right) amount 

of domains recovered after a year. (B) Comparison between the top and the bottom 10% FC. 
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When comparing patients’ entropy level according to lesion localization, we 

found a significant difference between patients with cortical lesions (M = 0.74, 

SD = 0.12) when compared with the ones with subcortical ones (M = 0.68, 

SD = 0.12) (t(468) = -5.13, p < 0.01). In the same way, there is a significant 

difference between patients with right hemisphere lesions (M = 0.67, SD = 

0.09) when compared with the ones with left hemisphere ones (M = 0.60, SD 

= 0.14) (t(468) = -6.09, p < 0.01) (Figure 3.6), which further illustrates how 

the topography of normalized entropy can be modulated by clinical factors. 
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Figure 3.6: Entropy level according to lesion location 

Figure 3.6: Entropy level according to lesion location: Comparison in entropy level according 

to (top) the injured hemisphere and (bottom) the brain area (sub-cortical vs cortical) 
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3.4 Discussion 

In the current study we applied an edge-centric approach to a longitudinal 

stroke patient dataset. The analysis revealed a relation between the highest 

values of co-fluctuation with stroke severity and correlated with the number of 

domains recovered. Furthermore, normalized entropy was shown to increase 

across patient recovery time, suggesting a potential utility as an indication of 

recovery. Moreover, normalized entropy was shown to differentiate patients 

according to the lesion location. Lastly, the participation coefficient’s 

significant relation with stroke metrics adds another useful metric for further 

exploration. Collectively, this series of edge-centric network analyses 

demonstrate a novel direction for mapping the brain in a clinical setting. These 

analyses could potentially point towards improving diagnostic and treatment 

planning strategies.  

3.4.1 Discussion of results 

 

We employ an edge-centric analysis to calculate the normalized entropy of 

each node  (Faskowitz et al., 2020) across stroke recovery. First, we show 

that the global average of this measure changes across time significantly 

differently in our stroke sample, relative to the matched healthy control sample 

(Figure 3.3a). Furthermore, these changes in normalized entropy are 

differentially expressed within a set of canonical functional networks 

(Schaefer et al., 2018) (Figure 3.3c). Regarding the localization of the 

entropy level, previous studies associated the highest levels of entropy to 

specific networks (e.g., dorsal-attention or visual networks;  (Faskowitz et al., 

2020)). In this study we found that the difference between patients and 

healthy controls (i.e., where patients displayed more evenly distributed edge 

communities) is localized around the somatosensory cortices for the first two 

time points, whereas this difference is more diffuse in the third time point. We 

could speculate that as the stroke recovery process unfolds, edge community 
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patterns might reconfigure in such a way to promote globally higher entropies. 

It could be the case that in recovery, edge communities span many nodes 

more evenly, possibly creating higher entropy at more nodes. 

 

Another factor to take into consideration is the neurovascular coupling 

disruption produced by stroke (Lin et al., 2011). Therefore, the entropy 

increase across time could reflect the vascular coupling stabilization, 

potentially signaling a return to pre-stroke levels, as seen in previous literature 

(Blicher et al., 2012).  

 

While analyzing the individual normalized entropy scores at the first time 

point, no significant relationship was found between the patients’ globally 

averaged normalized entropy and stroke metrics. Nevertheless, previous 

studies showed a strong relationship between this measure and participation 

coefficient (Faskowitz et al., 2020). It has been found that stroke lesions with 

damaged gray matter regions and high participation coefficient, had a weak 

association with cognitive outcomes (Reber et al., 2021; Warren et al., 2014). 

Previous studies have shown that the participation coefficient reflects, at an 

areal level, the balance between intra- and inter-modular connections (Sporns 

et al., 2007). As the participation coefficient was shown to be significantly 

related with edge community entropy (Faskowitz et al., 2020), we used the 

measure here to relate to the aforementioned stroke metrics. We found that 

the participation coefficient was related with the lesion volume and the NIHSS 

score, revealing its connection with the post-stroke effects. However, in 

contrast to normalized entropy, we did not find an increasing trend across 

time of the participation coefficient, exposing one limitation of this specific 

metric. The fact that normalized entropy correlated with NIHSS score in the 

expected direction of the effect but not in a significant way, opens the door to 

debate if the metric might not be beneficial for this specific brain disorder. One 

possibility would be that participation coefficient is only applied to positive 

weights whereas the normalized entropy is based in edge communities that 
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annotate all edges regardless of their sign. In order to answer this question, 

further studies should be developed using other clinical populations to 

demonstrate the relation between their severity metrics and normalized 

entropy and/or participation coefficient. 

 

Previously, studies have tried to localize the spatial components of 

normalized entropy. In those studies, the brain systems associated with the 

highest levels of normalized entropy included visual, attentional, somatomotor 

and temporoparietal systems (Faskowitz et al., 2020). These findings were 

replicated in another study finding that overlap is greatest in primary sensory 

and attentional systems and lowest in association cortices (Jo, Esfahlani, et 

al., 2021). The current study is the first one to examine the distinct entropy 

pattern regarding stroke lesion by comparing subjects with lesions in different 

hemispheres (left vs right) and lesion depth (cortical vs subcortical). The 

findings presented here open the way for further research to explore the use 

of these metrics to explore brain organization of this disorder. 

3.4.2 Relationship to other methods  

 

Recent works has shifted the attention from regions to networks damaged 

under stroke circumstances (Boes, 2015). Along these lines, we explore the 

edge-centric brain dynamics and its fluctuation across time in the different 

functional networks (Figure 3.3c). The shift from node communities to edge 

communities provides a novel, and complementary, approach to inspect the 

brain dynamics in a disorder that not only affects the brain locally, but globally. 

In order to compare the obtained results with existing literature of the field, we 

analyze widely used metrics from a previous study (Pustina et al., 2017) and 

assessed their modulation across time (Figure A7). As the current study uses 

functional data, a threshold was needed to calculate these corresponding 

network metrics.  
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One of the metrics used in this study, normalized entropy, was previously 

compared to other measures of overlap, like flexibility and versatility (Bassett 

et al., 2011; Betzel et al., 2020; Faskowitz et al., 2020; Shinn et al., 2017). 

Furthermore, a previous study linked structural lesions in simulated stroke 

networks by measuring the diversity of weights at each node (Saenger et al., 

2018). Here, we added to this understanding by constructing a topographic 

map of entropies derived from the range of edge community affiliations at 

each node. The entropy metric here provides a time-averaged index of the 

diversity of dynamic edge co-fluctuation patterns emanating from each node. 

Future work should focus on the intersection between these dynamic patterns 

and the underlying anatomical structure (Davison et al., 2015; Liu et al., 

2021), particularly in a clinical context.  

 

Previous literature introduced related approaches such as quasi-periodic 

patterns (QPPs), which represent repeating spatiotemporal patterns of neural 

activity of predefined temporal length (Adhikari et al., 2020). The QPP 

involves propagation of activity in the default mode and task positive networks 

of the brain (Abbas et al., 2019). As in similar approaches (Petridou et al., 

2013) they require picking a seed for its analysis, adding a subjective 

component to the process in contrast to the edge-centric approach which 

requires no seed. A similar technique showed that fMRI signals could be 

represented by a sparse spatiotemporal point process where the inflection 

points contained most of the signal’s information (Cifre et al., 2020) in a similar 

way as presented in the high amplitude co-fluctuations on this study.  

 

Previous studies proposed the use of obtained fine-scale dynamics by 

observing brief and intermittent episodes of high-amplitude co-fluctuations 

involving large sets of brain regions (Rabuffo et al., 2021; Zamani Esfahlani 

et al., 2020). In a similar way, a common approach to extract and cluster 

voxel- or vertex level activity during high-activity frames is the co-activation 
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patterns, also known as CAPs (Karahanoglu & Van De Ville, 2015; Liu & 

Duyn, 2013). It is relevant to mention that while RSS co-fluctuations and 

CAPs are similar in some ways, our method is nonetheless distinct and has 

unique advantages. Most importantly, our method is built upon a 

mathematically exact decomposition of static rsFC into its frame-wise 

contributions. This decomposition enables us to quantify, precisely, how 

individual time points impact static rsFC.  Furthermore, our method does not 

rely on sliding time windows nor step-size parameters. Even more, the 

decomposition does not require that we select a seed region or brain system 

in advance. Rather, our decomposition method considers all activity levels 

and the entire network simultaneously (Liu et al., 2021; Zamani Esfahlani et 

al., 2020). These studies show how dynamic information could be utilized to 

analyze case-control differences in a clinical neuroimaging setting.  

 

Nevertheless, a remaining open question concerns the neurobiology 

underlying high-amplitude co-fluctuations, and how the resultant topography 

of the observed changes relates to stroke recovery at the neurological level. 

On one hand, their infrequent occurrence could reflect a dynamic strategy for 

limiting the consumption of metabolic resources. On the other hand, high-

amplitude frames are suggested to be, to some extent, a mathematical 

necessity emerging in correlated, modular systems (Novelli & Razi, 2021). 

Another study presented a generative model for high-amplitude co-

fluctuations in silico using computational simulations of whole-brain dynamics 

and demonstrated that such high-amplitude patterns have an origin in 

modular structural connections (Pope et al., 2021). This leads to the 

suggestion that these intermittent events are partly shaped by modular 

organization of structural connectivity indicating a potential overlap of 

functional and structural information (Liu et al., 2021; Pope et al., 2021; 

Rabuffo et al., 2021; van Oort et al., 2018). There is a concern that the high-

amplitude co-fluctuations in the cortical activity that drive the nFC could be 

artifacts, potentially specific to fMRI. This has been mitigated by evidence 
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showing that the high-amplitude events in the RSS of the edge time series 

are not systematically related to confounding variables including in-scanner 

motion, respiratory and heart rate (Zamani Esfahlani et al., 2020), and they 

readily appear in computational simulations (Pope et al., 2021; Rabuffo et al., 

2021; Wang et al., 2018). 

 

Based on these conclusions, we performed the analysis using this approach 

and we found how the highest ten percent of the data values, (sorted based 

on the RSS co-fluctuations) not only were associated with the lesion volume 

after stroke but also related to the number of cognitive domains in the patients’ 

recovery (Figure 3.5). The ability to inform about the recovery of the subjects 

suggests that the information contained in this subset of the data could be 

more explanatory than previously believed.  

 

While its contributions compared to the nFC are still debated, it has been 

proposed that the RSS peaks not only occur when the Euclidean norm of the 

BOLD signal is large but, most likely, when the expressed spatial mode is well 

aligned with the leading eigenvector of the nFC. The leading eigenvector of 

the static nFC matrix could also be obtained as the first component of the 

BOLD activity, being mathematically equivalent (Novelli & Razi, 2021). The 

fluctuation of the first principal component value at each time point and the 

edge-centric derived metrics (top amplitude co-fluctuations and normalized 

entropy) reveals how the first two stages maintain consistency across time 

while the third stage has an increasing trend across time (Figure 3.2). The 

similarities between the edge-centric approach and the principal components 

analysis of the node-centric approach reveal the strengths of the first one 

such as its simplicity or not needing any assumption used in sliding-window 

approaches (Novelli & Razi, 2021; van Oort et al., 2018). The normalized 

entropy fluctuation across time could refine our theoretical understanding of 

the patients’ recovery after suffering a stroke. 
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3.4.3 Limitations 

 

Even though Figure A8 shows possible variations in the results, an 

assumption of the bootstrap procedure is that population variation can be 

estimated from resampling from the available data. However, the present 

dataset contains, in general, relatively small lesions. With this in mind, we 

note that we are not able to make a confident prediction about how these 

results could be extrapolated to a dataset consisting of patients with larger 

lesions. 

 

The edge-centric approach involves a much larger dimensionality than the 

most-common node-centric methods. In particular, clustering a full eFC 

matrix, of size edge-by-edge, is impractical on personal computing hardware. 

To circumvent this, the edge time series, of size edge-by-time, can be 

clustered directly using k-means. However, this computational “shortcut” 

precludes the usage of other community detection methods, such as 

modularity maximization that operate on networked data (i.e., a “square” 

adjacency matrix).  

 

Furthermore, the interpretation of the edge-community structure remains 

open to interpretation, and the cognitive relevance of these communities has 

yet to be established. Lastly, throughout this study, the comparison of 

functional signals was done in an undirected manner. Measures such as 

correlation cannot determine the directionality of influence between signals.  

Further studies could analyze the effect of these metrics in asymmetrical 

networks to benefit from their directionality, such as the ones used in effective 

connectivity. 

3.4.4 Future directions 
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Even if the current study is not focused on improving predictability of stroke 

recovery, we provide novel fMRI connectivity methods that could be used in 

the future for that purpose. Given that the eFC matrix can be employed to 

boost the identifiability of fMRI data (Jo, Faskowitz, et al., 2021), future work 

could explore if similar improvements to predictive models could be obtained 

using eFC and related edge-centric data structures. 

 

The current study demonstrates that relations derived from computational and 

theoretical research on the human connectome can help to advance our 

understanding of how focal brain lesions are modulated across time. 

Additionally, these data show the emerging possibility of how network 

neuroscience and connectomics can contribute to clinical advances. By using 

the same techniques, future studies could try to replicate these results by 

studying similar brain disorders in which a typical recovery pattern is 

expected.  

 

The inclusion of animal models could also add more robustness to the edge-

centric approach providing a natural bridge for testing external manipulations 

and measuring how these metrics are affected by different system 

complexities. Furthermore, computational models could contribute to this goal 

by simulating whole-brain connectivity and adding additional information of 

network interactions. 

3.5 Conclusions 

 

In conclusion, this study added new evidence for the role of the edge-centric 

approach as a promising bridge between structure and function. Also, it 

revealed how edge-centric analysis provides indicators that relate to lesion 

severity and reveal lesion recovery, making it the first study taking an edge-

centric approach with clinical applications across time. 
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CHAPTER 4 

4. Function and anatomy integration: 

Inferring the dynamical effects of stroke 

lesions through whole-brain modeling 

Work in this chapter is based on the following publication: 

Idesis, S., Favaretto, C., Metcalf, N. V., Griffis, J. C., Shulman, G. L., Corbetta, M., & 

Deco, G. (2022). Inferring the dynamical effects of stroke lesions through whole-brain 

modeling. NeuroImage: Clinical, 103233. 
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Highlights 

 

- We derived a causal mechanistic generative whole-brain model to explain 

the functional and behavioral consequences of stroke lesions 

- The model got enhanced by adding structural disconnection masks 

- The model classified behavioral impairment severity with higher accuracy 

than empirical data 

- We showed how network dynamics changes emerge after a stroke injury 

 

Abstract 

Understanding the effect of focal lesions (stroke) on brain structure-function 

traditionally relies on behavioral analyses and correlation with neuroimaging 

data. Here we use structural disconnection maps from individual lesions to 

derive a causal mechanistic generative whole-brain model able to explain 

both functional connectivity alterations and behavioral deficits  induced by 

stroke . As compared to other models that use only the local lesion 

information, the similarity to the empirical fMRI connectivity increases when  

the widespread structural disconnection information is considered. The 

presented model classifies behavioral impairment severity with higher 

accuracy than other types of information (e.g.: functional connectivity). We 

assessed topological measures that characterize the functional effects of 

damage. With the obtained results, we were able to understand how network 

dynamics changes emerge, in a nontrivial way, after a stroke injury of the 

underlying complex brain system. This type of modeling, including structural 

disconnection information, helps to deepen our understanding of the 

underlying mechanisms of stroke lesions.   

 

Keywords 

Dynamical effects; Generative model; Stroke; Structural Disconnection 

mask; Whole-brain model 
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4.1 Introduction 

In the last two centuries, the study of patients with focal brain lesions has 

been the main approach for understanding brain organization and localization 

of function (Bates et al., 2001; Broca, 1861; Corbetta et al., 2015; Karnath et 

al., 2018; Mesulam, 1981). More recently, nonetheless, it has become 

apparent that focal lesions cause widespread abnormalities of brain network 

activity that correlate with cognitive deficits and recovery of function (Corbetta 

et al., 2018; He et al., 2007; Ovadia-Caro et al., 2013; Siegel et al., 2016; 

Wang et al., 2019). In parallel new methods have been developed to map 

lesion-related patterns of disconnection, either structural (Foulon et al., 2018) 

or functional (Boes, 2015), not directly, but using clinical scans and normative 

connectomes. However, which signals provide the most accurate prediction 

of cognitive impairments and recovery of function remains controversial 

(Bowren et al., 2022; J. C. Griffis et al., 2019; Salvalaggio et al., 2020; Weiss 

Cohen & Regazzoni, 2020). 

 

Correlational studies as those discussed above do not provide a clear 

mechanistic understanding of how brain lesions affect information processing. 

A recent development -whole-brain models- use biologically plausible 

structural connectivity coupled with a local model of activity as the input for 

the generation of global dynamics, and can thus be used to understand the 

effect of damage on global (whole brain) dynamics (Adhikari et al., 2017; 

Cabral et al., 2012; Cofré et al., 2020; Kringelbach et al., 2020; Saenger et 

al., 2018). Early attempts used volume and location information to modify a 

healthy structural connectome to approximate the effect of lesions and fitted 

the yielded global dynamics to the patient’s own blood oxygenation level-

dependent (BOLD) signals measured with functional magnetic resonance 

imaging (fMRI) (Adhikari et al., 2017; Saenger et al., 2018). These studies 

showed that focal lesions cause a decrease in both segregation and 
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integration at rest, as well as a decrease in neural state variability or entropy 

during stimulation.  

 

In this study, we innovate whole-brain models of stroke lesions in two ways. 

First, we optimize the whole brain model (Deco et al., 2017; Jobst et al., 2017) 

by converting it into a generative model to yield a Generative Effective 

Connectivity (GEC). We described the model as ‘generative’ since the 

underlying BOLD signals are generated from the model. In contrast to 

functional connectivity (FC) that describes the statistical interactions between 

regions, and structural connectivity (SC) that describes the undirected 

anatomical links between two brain regions, GEC describes causal pairwise 

interactions that show the influence one region exerts over another in a 

directed way (Gilson et al., 2016). EC links are directional and provide 

information on asymmetrical regional pairwise temporal interactions. Second, 

crucially, we take into consideration the effect of lesions on the structural 

connectome that are driven by direct damage to the white matter, rather than 

focusing solely on the connections of damaged grey matter regions. On 

average, a stroke is expected to cause disconnection in about 20% of all brain 

connections based on diffusion imaging connectomes (Joseph C Griffis et al., 

2019). Moreover, lesions that directly disconnect brain regions and/or 

interrupt intermediate links between brain regions are the main sources of FC 

abnormalities after stroke (J. C. Griffis et al., 2019; Griffis et al., 2021). Hence, 

the whole brain model is adjusted in terms of its input connectivity by the 

pattern of SC disconnection computed in each patient. 

 

To validate the use of GEC whole-brain models, we compare GEC to SC or 

FC models for the prediction of stroke-related deficits. Recent studies have 

reported a higher predictive value of GEC over FC in normal or pathological 

conditions, such as epilepsy or addiction (Hejazi & Nasrabadi, 2019; Pallarés 

et al., 2018; Wei et al., 2021). Other studies have used machine learning to 

compare the prediction of neurological deficits (motor, language, attention, 
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etc.) based respectively on lesion location, SC, or FC disconnection 

computed indirectly in normative atlases (Pini et al., 2021; Salvalaggio et al., 

2020). These studies found fairly accurate predictions for lesion and SC 

disconnection, not for FC disconnection. More clinically oriented studies have 

applied automatic classification methods to grade the severity of the stroke 

lesion (Acharya et al., 2019; Govindarajan et al., 2020; Sprigg et al., 2007). 

 

In the current study, we implemented a classifier to distinguish the 

performance of stroke patients on different neuropsychological tasks by 

comparing prediction accuracy based on SC, FC, or GEC models. 

Furthermore, by taking advantage of the asymmetric property of the GEC, we 

measured the topology of graph measures in healthy and stroke patients. 

Treating the whole-brain models as a complex cluster of networks with nodes 

and edges characterized by global integration and local specialization (Tononi 

et al., 1994), we measured changes in graph topology to understand how 

network dynamics change after a stroke injury (Adhikari, Belloy, et al., 2021; 

Vecchio, Caliandro, et al., 2019). Overall, the results show the importance of 

white matter structural disconnection for the accuracy of whole brain models 

of dynamics in stroke. 
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4.2 Material and methods 

4.2.1 FC measures 

 

Based on previous work (J. C. Griffis et al., 2019; Siegel et al., 2016) we 

defined three measures that are consistently impaired in stroke patients: 

1. Intra-hemispheric FC: average between pairwise FC of Dorsal attention 

network (DAN) and Default mode network (DMN) regions.  

2. Inter-hemispheric FC: average homotopic inter-hemispheric connectivity 

within each network 

3. Modularity: overall Newman’s modularity among cortical networks, which 

is a comparison between the number of connections within a module to 

the number of connections between modules (Newman & Girvan, 2004) 

 

4.2.2 Alternative lesion disconnection mask 

 

In addition, for the analysis of the FC impairments metrics, a second mask 

(For the original mask, see chapter 2) based on gray matter damage, was 

tested as a control (gray matter in Figure 4.2). Inspired on a previous study 

(Adhikari et al., 2017) we applied a disconnection mask measuring all 

connections incoming or outgoing from the damaged cortical parcels. In other 

words, the mask for each patient included all links observed in healthy 

controls except those from and to a node with 100% grey matter damage 

(Adhikari, Griffis, et al., 2021). The two masks therefore capture damage of 

white matter connections to/from the damaged gray matter or capture more 

directly the disconnection induced by both gray matter and white matter 

damage. Since many stroke lesions occur predominantly in the white matter 

or include both a gray and white matter component, the SDC mask shall 

provide a more accurate description of the damage to the connectome. It is 
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important to realize that, for the lesions that were only subcortical, no gray 

matter damage was computed, revealing a huge limitation of the gray matter 

mask (See Section 2.5). 

4.2.3 Whole-brain Hopf model parameter estimation 

 

We simulated the BOLD activity at the whole-brain level by using the Hopf 

computational model, which simulates the dynamics emerging from the 

mutual interactions between brain areas, considered to be interconnected 

based on the established graphs of anatomical SC (Deco et al., 2017; 

Kringelbach et al., 2015). The structural connectivity matrix was scaled to a 

maximum value of 0.2 (Deco et al., 2017), leading to a reduction of the 

parameter space to search for the optimal parameter. We calculated the 

global scale coupling value factor, G, which assesses the influence of the SC 

on the model. We selected the optimal value in which the model phases were 

more like the empirical data. The model consists of 235 coupled dynamical 

units (ROIs or nodes) representing the 200 cortical and 35 subcortical brain 

areas from the parcellation. The local dynamics of each brain area (node) are  

described by the normal form of a supercritical Hopf bifurcation, also called a 

Landau–Stuart oscillator, which is the canonical model for studying the 

transition from noisy to oscillatory dynamics (Kuznetsov, 1998). When 

coupled together using brain network anatomy (Explained above in the 

“Neuroimaging acquisition and preprocessing” section), the complex 

interactions between Hopf oscillators have been shown to successfully 

replicate features of brain dynamics observed in fMRI (Deco et al., 2017; 

Kringelbach et al., 2015). 

The calculation of the local dynamics of each individual node is able to 

describe the transition from asynchronous noisy behavior to full oscillations. 

Thus, in complex coordinates, each node j is described by following equation: 

(For more information, see Deco et al., 2019) 
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𝑑𝑧𝑗

𝑑𝑡
= 𝑧(𝑎𝑗 + 𝑖𝜔𝑗 − |𝑧𝑗|

2
) + 𝑔 ∑ 𝐶𝑗𝑘 (𝑧𝑘 −  𝑧𝑗) +  𝛽η𝑗,𝑁

𝑘=1   (4.1) 

 

Where 

  

 𝑧𝑗 = 𝑝𝑗𝑒𝑖𝜃 =  𝑥𝑗 + 𝑖𝑦𝑗        (4.2) 

 

𝛼 and 𝜔 are the bifurcation parameters and the intrinsic frequencies of the 

system, respectively. This normal form has a supercritical bifurcation at 𝑎𝑗  = 0. 

Within this model, the intrinsic frequency 𝜔𝑗 of each node is in the 0.04–

0.07Hz band (i=1, …, n). The intrinsic frequencies were estimated from the 

data, as given by the averaged peak frequency of the narrowband BOLD 

signals of each brain region. The variable g represents a global coupling 

scaling the structural connectivity Cjk, and η is a Gaussian noise vector with 

standard deviation 𝛽 = 0.04. This model can be interpreted as an extension 

of the Kuramoto model with amplitude variations, hence the choice of 

coupling (𝑧𝑘 −  𝑧𝑗), which relates to a tendency of synchronization between 

two coupled nodes. We insert equation 4.2 in equation 4.1 and separate real 

part in equation 4.3 and imaginary part in equation 4.4 (Deco et al., 2017). 

 

𝑑𝑥𝑗

𝑑𝑡
= (𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2)𝑥𝑗 − 𝜔𝑗𝑦𝑗 + 𝐺 ∑ 𝐶𝑗𝑘𝜄 (𝜒𝑗 − 𝑥𝑗) +  𝛽η𝑗(𝜏)    (4.3) 

 

𝑑𝑦𝑗

𝑑𝑡
= (𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2)𝑦𝑗 + 𝜔𝑗𝑥𝑗 + 𝐺 ∑ 𝐶𝑗𝑘𝜄 (𝑦𝑗 − 𝑦𝑗) +  𝛽η𝑗(𝜏)     (4.4) 

 

 

It is important to clarify that for the GEC+SDC model, the SDC information 

was added to the structural connectivity in order to enhance the optimization 

of it (See section “Lesion disconnection mask” in Chapter 2). 
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4.2.4 Generative Effective Connectivity calculation 

 

The analysis of GEC incorporates an indirect metric (as it is derived from other 

presented metrics) into the whole-brain model to replace the existing 

descriptive metrics of FC and SC. Previous studies have shown how GEC is 

fundamental to understand the propagation of information in structural 

networks (Gilson et al., 2016; Jobst et al., 2017). Methods for estimating GEC 

are explained in detail in a previous publication (Deco et al., 2019). Briefly, 

we computed the distance between our model and the empirical grand 

average phase coherence matrices (as a measure of synchronization of the 

system) of the healthy controls group. In the stroke patients’ group, we 

adjusted each structural connection separately using a greedy version of the 

gradient-descent approach. In order to work only positive values for the 

algorithm, all values are transformed into a mutual information measure 

(assuming Gaussianity). Therefore, the individual subject information is 

introduced by means of its disconnection (SC + each subject SDC) derived 

with the LQT. The equation of the optimization is as follows (For more 

information, see Deco et al., 2019) 

 

𝐶𝑖𝑗 = 𝐶𝑖𝑗 +  휀(𝐹𝐶𝑖𝑗
𝑝ℎ𝑎𝑠𝑒𝑠_𝑒𝑚𝑝

− 𝐹𝐶𝑖𝑗
𝑝ℎ𝑎𝑠𝑒𝑠_𝑚𝑜𝑑

)  (4.5) 

 

Where “C” is the anatomical connectivity and is updated with the difference 

between the grand-averaged phase coherence matrices (Empirical: 

𝐹𝐶𝑖𝑗
𝑝ℎ𝑎𝑠𝑒𝑠_𝑒𝑚𝑝

 and model: 𝐹𝐶𝑖𝑗
𝑝ℎ𝑎𝑠𝑒𝑠_𝑚𝑜𝑑

, scaled by a factor 휀 < 0.001). The 

prediction, therefore, is based on the current estimation of the structural 

connectivity, which gets updated optimizing the phase FC in each iteration. In 

summary, the model was run repeatedly with recursive updates of GEC until 

convergence was reached. 
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The distinction between functional and effective connectivity is crucial here: 

FC is defined as the statistical dependence between distant 

neurophysiological activities, whereas GEC is defined as the influence one 

neural system exerts over another providing directionality in the relations 

making the matrices asymmetrical (Friston, 2011; Friston et al., 2003).  

 

In the current study, we also added the structural disconnection masks 

(previously mentioned in this section) to the structural connectivity information 

provided by the simulations. Therefore, different models were used in the 

analysis (Figure 4.1a).Only using the structural information (SC-based 

model), using the effective connectivity information (GEC-based model) and 

lastly, using the effective connectivity information plus the structural 

disconnection mask information (GEC with SDC mask model). For the last 

one, the optimization benefited from the information of the SDC when 

optimizing the model. 

4.2.5 GEC correlation with clinical and behavioral variables 

 

Based on the work of (Favaretto, 2022) , we tested whether the GEC 

measures added some significant information to the obtained results from the 

static FC and dynamical FC combination in describing the behavioral 

outcome. We calculated the dynamical functional states (DFSs) using a 

sliding—window temporal correlation (window width=60s, window steps=2s) 

followed by eigenvector decomposition and clustering to establish the 

connectivity states that continuously activate across time. By construction, 

only one of the DFSs was active for each sliding window. The dynamic of the 

FC for each patient could be described in terms of a single time series of 

discrete values that alternate across time.  In other words, a DFS is a spatial 

map of the edges between brain regions which shows consistent co-

modulation in time (Cabral, Kringelbach, et al., 2017; Cabral, Vidaurre, et al., 
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2017). Only a subset (n=44) of the subjects was used for the DFSs analysis. 

The subset was made in order to use patients that were not employed for the 

principal components analysis. For more information, see (Favaretto, 2022).  

For each domain score, lesion volume, and total NIHSS score, we estimated 

the parameters of a Generalized Linear Model (GLM) with the Effective 

connectivity static principal components (SPCs) as the regressor and each 

behavioral score as output. We retained only SPCs which explained at least 

5% of the total variance, and that corresponded to an eigenvalue of the 

covariance matrix larger than 1, yielding to 2 SPCs. Therefore, for the 

regressor, we used the first two PCs (explaining 32% and 12% of the variance 

of the original data, respectively) adding to a total of 44% of the variance 

explained. Then, we estimated the GLM with both SPCs from the GEC and 

three dynamical PCs scores obtained from the above DFSs as regressors. 

The dynamical PCs scores capture numerous measures related to dynamical 

functional connectivity (Favaretto, 2022). It is relevant to clarify that the DFSs 

were added to the result of the models and were not computed every time.  

 

The behavioral domains’ assessment was described more in detail in the 

“Neuropsychological and behavioral assessment” section. We used all the 

regressors (static in combination with dynamic) at the acute stage to estimate 

the behavioral scores. No adjustments were necessary as the number of 

regressors was kept constant. In other words, as the comparison was made 

within the SPCs and within the SPCs + dyn PC, but not between them, the 

amount of regressors was the same in each comparison and therefore, not 

requiring any correction to solve difference in their quantity of variables.   

4.2.6 Classification procedure 

 

We tested how GEC classification differs from other models using SC and FC 

as division criteria. The subjects were split into two equal groups by using the 
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corresponding medians of SC lesion (number of damaged voxels in the 

lesion) and FC principal components. Therefore, our results could be 

compared with those of previous studies. The same procedure was 

performed with the principal components of two different models (GEC and 

the GEC + SDC mask) to end up with the four separation criteria (SC, FC, 

GEC, and GEC + SDC). To achieve this classification, we used the 

neuropsychological scores to classify patients who were divided based on 

their median split, applying a random forest algorithm. 

 

Briefly, the random forest algorithm builds upon the concept of a decision tree 

classifier, where samples are iteratively split into two branches depending on 

the values of their features (Breiman, 2001; Sanz Perl et al., 2021). 

 

We trained and evaluated a random forest classifier to distinguish different 

levels of severity, estimated based on the neuropsychological test results. We 

used the neuropsychological scores (see “Neuropsychological and 

behavioral assessment” in chapter 2) as features to classify using a random 

forest algorithm whether patients belonged to the low severity or high severity 

group based on the above criteria (SC, FC,EC, GEC+SDC). Dividing the 

dataset by using the median of: 

 

1) The lesion volume obtained from the SC segmentation (from the lesion 

itself) indicating the number of voxels affected by the lesion.  

2) The summation of the singular values of the first two PCs obtained from 

the FC information. 

3) The summation of the singular values of the first two PCs obtained from 

the GEC information. 

4) The summation of the singular values of the first two PCs obtained from 

the GEC information (with the SDC mask). 
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We trained random forest classifiers with 1000 decision trees using 80% of 

the subjects through cross-validation analysis. Different training criteria were 

calculated and presented in Figure B5. All accuracies were determined as 

the area under the receiver operating characteristic curve (AUC) (For more 

information, see (Sanz Perl et al., 2021)). 

4.2.7 Topological measurements 

 

The directionality of GEC opens the field to explore various topological 

attributes that cannot be done or are less informative in symmetrical and 

undirected networks such as the FC. In the current study we introduce a small 

group of these metrics:  

1) Broadcasters’ percentage was calculated as the mean of the number 

of successors (number of nodes forming directed edges from which 

the node is the source, without counting the reciprocal relations) 

divided by the amount of the neighbors (all the nodes connected, 

disregarding the directionality). A connection is labeled as reciprocal 

when the number of successors and receivers are the same, while a 

connection is directed when these values are not identical.  

 

𝐵𝑟𝑜𝑎𝑑𝑐𝑎𝑠𝑡𝑒𝑟𝑠′𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑆𝑢𝑐𝑐𝑒𝑠𝑜𝑟𝑠(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠)

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
     (4.6) 

 

2) Receivers’ percentages were obtained in the same way but with 

predecessors (number of nodes forming directed edges from which 

the node is the target, without counting the reciprocal relations) 

instead of successors.  

 

𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠′𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠(𝑒𝑥𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑟𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠)

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
     (4.7) 
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3) Broadcasters’ amount was calculated by counting how many nodes 

were having a higher weight of outgoing information than incoming 

and then average across patients. 

  

𝐵𝑟𝑜𝑑𝑐𝑎𝑠𝑡𝑒𝑟𝑠′𝑎𝑚𝑜𝑢𝑛𝑡 = ∑ 𝑛𝑜𝑑𝑒𝑠 , 𝑖𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑜𝑟𝑠 > 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠      (4.8) 

 

4) The receivers’ amount was calculated by counting how many nodes 

were having a higher weight of incoming information than outgoing 

and then average across patients.  

 

Receivers’ amount = ∑ 𝑛𝑜𝑑𝑒𝑠 , 𝑖𝑓 𝑆𝑢𝑐𝑐𝑒𝑠𝑜𝑟𝑠 < 𝑃𝑟𝑒𝑑𝑒𝑐𝑒𝑠𝑠𝑜𝑟𝑠                  (4.9) 

 

5) Reciprocity was calculated by obtaining the ratio between reciprocal 

connections and the total amount of neighbors of the corresponding 

node. Since the GEC estimation procedure set some directional 

connections to zero, reciprocity is present in fewer connections than 

in FC calculations. 

𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑖𝑡𝑦 =
𝑅𝑒𝑐𝑖𝑝𝑟𝑜𝑐𝑎𝑙 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝐴𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠
   (4.10) 

6) Average path length was calculated as the mean distance of the 

nonzero values of the network. of the Effective Connectivity Matrix 

(ECM) 

 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 = min (𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐸𝐶𝑀))   (4.11) 

 

7) Communicability was used to calculate the relation between different 

nodes by using the shortest path of the Effective Connectivity Matrix 

(ECM) 

 

𝐶𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑡𝑟𝑖𝑥 =
𝐸𝐶𝑀−𝑀𝑖𝑛(𝐸𝐶𝑀)

max(𝐸𝐶𝑀)−min(𝐸𝐶𝑀)
    (4.12) 
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4.2.8 Lesion assessment based on region interaction 

 

To analyze the interaction between brain regions, each patient’s structural 

connectivity matrix was segmented into three different groups: The 

intersections connecting cortical nodes with other cortical nodes, cortical 

nodes with sub-cortical nodes, and finally subcortical nodes with other 

subcortical nodes. The association between each of three different groups 

and other variables of interest was inspected. For assessing the value of each 

group, three different approaches were used, giving similar results. These 

approaches consisted of total disconnection (how many nodes were 

completely disconnected), partial disconnection (percentage of disconnection 

of nodes that were not completely disconnected), and the combination of 

both. As in previous sections, the relationship between the variables was 

assessed without performing any type of prediction. 
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4.3 Results 

We derived a whole brain model to infer the dynamical effects of stroke 

lesions two weeks after onset. We calculated four different models: First, a 

healthy control model (without GEC) and a healthy control model (with GEC) 

based on a healthy atlas structural connectome (see methods) in combination 

with individually measured fMRI BOLD signal. A variation of the second one 

was calculated for a posterior comparison using the stroke patients’ fMRI 

BOLD signal instead of the previously mentioned healthy control fMRI BOLD 

signal (referred as SC-model). Also, a stroke model with GEC (referred as 

GEC-Model) integrates the healthy connectome with each patient fMRI BOLD 

signal in order to use the resulting GEC as input for the model. Lastly, the 

Stroke model with GEC + SDC (referred as GEC+SDC model) integrates the 

healthy connectome weighted for stroke patients, by the structural 

disconnection produced by each individual lesion (one connectome per 

patient) next to each patient fMRI BOLD signal as input for the model. In 

contrast, one structural connectome was used for the healthy subjects as an 

average for the entire group based on the Yeo atlas (Yeo et al., 2011). To 

render the connectome directional, it was adjusted by the phase differences 

between regions computed on group average functional connectivity data. 

Then, we estimate the computational model based on coupled Stuart Landau 

oscillators (Figure 4.1a). The presented model contains a global scale factor, 

also referred as the G coupling value, which assess the influence of the SC 

in the model. We selected the optimal value in which the model phases were 

more similar to the empirical data. As the optimal model fit (simulated FC to 

empirical FC) is dependent on the global coupling, in the current study, we 

use the healthy control dataset to calculate this parameter. The result was a 

value of 3.1 as the most efficient for the used model, obtained by a parameter 

sweep of the homogeneous parameter space (a, G) around the Hopf 

bifurcation (a ≈0). It is important to clarify that the G value is a scaling factor 
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of the SC, which was adjusted in the model through iterations for each 

subject.  

We developed an effective connectivity (GEC) model in healthy controls and 

adjusted it in stroke patients to account for different descriptions of the 

structural damage. GEC captures directional interactions between regions of 

the brain. In the healthy control group, we computed the distance between 

the model and the empirical grand average phase coherence matrices 

obtained from the empirically measured fMRI signals. In stroke patients’ 

group, we adjusted each structural connection separately using a greedy 

version of the gradient-descent approach. The resulting GEC (Figure 4.1a) 

reveals the influence of one region over another in a direct way and provides 

information of asymmetrical regional pairwise temporal interactions. The 

model fitting was assessed for each patient in order to represent the similarity 

between the simulated and the empirical data at the subject level (Figure 

4.1b). 

By using a principal component analysis (PCA) of the resulting GECs, we 

calculated the relation between the main components and behavioral 

performance of the stroke patients (Figure 4.1c). Furthermore, we classify 

the level of damage severity using a machine learning algorithm (Random 

Forest classifier), revealing the enhanced performance compared to 

approaches used in previous studies. Finally, we calculated graph topological 

metrics in order to show how network dynamics change after a stroke injury. 

 

The presented mechanistic generative whole-brain model reveals the 

consequences of the stroke lesions by benefiting from structural 

disconnection maps revealing the importance of the anatomical connectivity 

disruption at the subject level. 
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Figure. 4.1: Pipeline of whole-brain models’ calculation and the corresponding derived analysis 

 

Figure 4.1: Pipeline of whole-brain models’ calculation and the corresponding derived analysis. 

(A) Pipeline: Four different models were created: Healthy model without effective connectivity 

(GEC) and Healthy model with GEC, both composed of healthy controls SC and healthy 

controls FC; Stroke model with GEC, composed by healthy controls SC and stroke patients 

FC; Stroke model with GEC plus SDC mask, composed by Stroke patients SC (Healthy SC + 

SDC mask) and stroke patients FC. A variation of the second model (Healthy model with GEC) 

was calculated as a comparison, later called as SC-Model where instead of the healthy controls 

FC, the stroke FC was used.  The control parameters of all the models were tuned using the 

grand average FC derived from the healthy controls’ fMRI BOLD data. For modeling local 

neural masses, it was used the normal form of a Hopf bifurcation. GEC is calculated by 

optimizing the effectiveness of the synaptic connections between brain regions as specified by 

the SC. (B) Model comparison (fitting): The model fitting was assessed for each subject and 

the Pearson correlation was calculated to check similarity between the empirical and the 

simulated models.  (C) Model analysis and behavior: To analyze the properties underlying the 

GEC, we performed a Principal Component Analysis (PCA), with which results, we measure 

their associative strength with the neuropsychological assessment (behavior) and their 

sensitivity to classify the severity of the stroke in each patient. Furthermore, topological metrics 

were calculated taking advantage of the asymmetric feature of the GEC. 
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4.3.1 GEC-based whole-brain models with disconnection 

masks reproduce FC impairments in stroke patients  

 

In the first analysis, we intend to test how different whole brain models predict 

the most common FC abnormalities found in stroke patients, specifically: 1) a 

decrease of negative intra-hemispheric FC between regions of the Dorsal 

attention networks (DAN) and Default mode network (DMN); 2) a decrease of 

inter-hemispheric homotopic FC; 3) a decrease of modularity. We compared 

models that simulated FC or GEC, each with different kinds of information: no 

lesion information, gray matter damage and white matter SDC. 

 

We first considered the Intra-hemispheric FC, i.e., the average pairwise 

correlation between regions of the DAN and DMN. We only considered the 

damaged hemisphere to avoid diminishing the effect with the preserved 

hemisphere. As in previous work (J. C. Griffis et al., 2019; Siegel et al., 2016), 

the empirical FC in healthy controls shows a negative correlation that is 

decreased (less negative) in stroke (t(121)= -2.08, p= .03). In contrast, the 

model FC, both without or with gray matter or SDC mask, is not significantly 

different between healthy and stroke (t(121)= .2, p= .83). However, the 

simulated GEC, only when the SDC mask is applied, showed a significantly 

less negative correlation than controls, in agreement with empirical data 

(t(121)=-10.5, p<.01) (Figure 4.2a). It should also be noted that all FC and 

GEC model measures have a much smaller variability than the empirical 

measures. This is due to the optimization of the model that used the same 

parameter value (G-coupling). Therefore, the only source of variability in the 

model for all the patients was the noise, losing variability information through 

the process. 

 

Next, we consider the Interhemispheric FC measured in healthy and stroke 

patients. As in previous work, interhemispheric homotopic FC was 
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significantly stronger in healthy subjects than stroke patients (t(121)=3.84, 

p<.01). Using SC-based models there was no significant FC difference 

between groups (t(121)=-1.09, p= .27). Again, the GEC-based model only 

when using the SDC mask replicated the normal pattern (t(121)=68.60, 

p<.01)(Figure 4.2b). 

 

Thirdly, we consider modularity. In stroke, when considering a given 

functional parcellation, modularity is decreased and recovers over time 

(Siegel et al., 2018). This result was replicated in our study: controls showed 

a significantly higher modularity value than patients (2 weeks post-stroke) 

(t(121)=2.98, p< .01). Again, the FC models with or without masks failed to 

replicate the empirical pattern (t(121)=2.05, p= .06), while GEC models that 

included the SDC mask did replicate (t(121)=53.14, p<.01)(Figure 4.2c). 

In Summary, this analysis shows that whole brain GEC models that include 

structural disconnection information resemble the empirically observed FC 

abnormalities in stroke patients including intra-hemispheric, inter-

hemispheric, and modularity. Other models that do not include lesion 

information or only gray matter damage, do not resemble empirical results. 
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Figure 4.2: FC impairment in stroke and replication with whole-brain mechanistic model 

Figure 4.2: FC impairment in stroke and replication with whole-brain mechanistic model: 

Comparison between patients and controls in their empirical FC (left), SC-based model 

(center), and GEC-based model (right) in (A) intrahemispheric value, (B) interhemispheric 

value, and (C) modularity value. Both models are performed with and without mask including 

the comparisons between the SDC mask and the gray matter mask (See Methods). The model 

based on GEC showed to be more like the empirical FC (compared to the model based on SC) 

because it was trained to optimally fit the empirical data. 
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4.3.2 GEC-based whole-brain models show the best fitting 

to the empirical data when including structural 

disconnection information 

 

Next, in order to inspect the validity of the models, we checked how the 

different models fit the empirical data. Therefore, we assessed the 

quantitative similarity between empirical FC and simulated FC from different 

models (SC, GEC, and GEC with SDC mask) in stroke patients.  

 

The GEC-based model with SDC masks showed the highest correlation with 

the empirical data (mean = 0.52), followed by the GEC-based model without 

SDC masks (mean = 0.32), and lastly  the SC-based model (mean = 0.27). 

Figure 4.3a displays the topology of the empirical and simulated FCs. Figure 

4.3b reveals the group analysis of this phenomenon (top) including the 

correlation by node of one example subject (bottom). This result shows the 

validity of the presented model and the importance of the SDC mask. The 

same analysis was run on the control group model showing that the level of 

correlation in healthy controls is similar to that obtained in stroke patients 

(Figure B9). In summary, this analysis shows that whole brain models that 

include SDC information have the highest resemblance to the empirical data 

showing the value of the lesion information in the presented models. 
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Figure 4.3: Whole-brain models similarity with empirical data 

 

Figure 4.3:   Whole-brain models similarity with empirical data: (A) FC matrices for empirical 

data (top), Simulated FC using SC (center-top), Simulated FC using GEC (center-bottom) and 

Simulated FC using GEC plus the SDC mask (bottom). Matrices were illustrated in brain 

surfaces to help visualization revealing the topological localization of the effects. (B) The 

correlation between the empirical data and each of the aforementioned models. The highest 

correlation was observed in the model based on GEC plus SDC masks. Group results are 

displayed (top) while also an individual result from one example subject is shown (bottom) 
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4.3.3 GEC-based whole-brain models show abnormalities 

of network communication in stroke 

 

Having established that GEC-based whole brain models replicate the most 

common FC abnormalities in stroke, and that are the most accurate in 

replicating empirically measured FC, it is now possible to examine deficits in 

communication, specifically differences in directional interactions both within 

stroke patients and between stroke and controls. 

 

Hence, we compared within and between network communication of GEC in 

both patients and controls (Figure 4.4a). The sum of weights of the 

connections was Fisher z-transformed to show the difference. The matrix is 

organized with sender nodes on the vertical axis and receiving nodes on the 

horizontal axis. In controls there are strong within-network and inter-

hemispheric homotopic interactions. There are also strong interactions 

between networks. It is apparent that the DMN is the strongest sender (left: 

[F (6,119) = 7.78, p<.01]; mean=1.28, SD = 1.25; right hemisphere: ([F(6, 

119)=2.73,p=.01]; mean=0.53, SD =0.77). DMN therefore appears to be the 

network with the strongest influence on other networks (See Discussion).  

 

Stroke patients seem to maintain robust within-network homotopic 

interactions, but much weakened between-network interactions. This can be 

observed clearly in the difference matrix in Figure 4.4a (GEC difference). 

Statistical comparisons among networks are shown in Figure B8 with the 

strongest differences in DMN, somatomotor, brainstem and basal ganglia. 

However, more information emerges when all lesions are flipped to one side 

and then comparing healthy to damaged hemisphere (Figure 4.4b). These 

matrices indicate that regions in the damaged hemisphere do not 

communicate with the homotopic healthy hemisphere regions, while such 

influence is maintained in the opposite direction from healthy to damaged 
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hemisphere (compare off-diagonal interaction for healthy (upper) and 

damaged (lower) hemisphere networks). Between network interactions 

seem to be damaged in both healthy and damaged hemispheres.  

 

In summary the GEC models show interesting impairments in 

communication from the lesioned to the healthy hemisphere, and a loss of 

interaction between networks which is especially evident in the DMN and a 

few other networks. This approach will be discussed in relation to other 

methods to study interactions, e.g., Granger causality. 

 

 

Figure 4.4: Network interactions derived from the whole-brain models 

Figure 4.4: Network interactions derived from the whole-brain models: (A) Network interactions 

for the GEC of (left) controls, (center) patients. The right panel exposes the difference for each 

interaction between the two groups. (B) Network communication comparing damaged from 

healthy hemisphere: In center and right panels, the matrices were re-organized to have all the 

damage hemispheres together on one side and all the healthy hemisphere on the other.  
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4.3.4 GEC-based  whole-brain models and correlation with 

clinical variables 

 

In the next analysis, we explored the correlation between (simulated FC from) 

GEC-based models and lesion, clinical, and behavioral variables. The 

analysis aims to shed light on the relation between lesion metrics (such as 

lesion volume and NIHSS score) and behavioral variables (such as motor 

tasks). Furthermore, we compared the obtained outcome with previously 

reported results in order to show the robustness of the presented models. 

 

To reduce the spatial variability across all brain regions, we first computed 

the PCs (calculated as the singular value of the first two principal 

components) from the GEC model. Two static PCs explained 44% of the total 

variance (see methods) and explained  a significant percentage of the lesion 

volume variability (R2 = .17, p < .01), and clinical severity based on the NIHSS 

score (R2 = .12, p < .01) (Figure 4.5a). 

 

Next, we explored how these PCs were related to behavioral deficits using a 

subset of patients from (Favaretto, 2022), in contrast to the complete set used 

in the previous analysis. Here we considered both static components 

(computed on the time-averaged data) or dynamic components based on a 

state decomposition analysis (see Methods) (Favaretto, 2022). It is important 

to clarify that the comparison was made only with the subjects for which we 

obtained the SPCs and Dynamic PCS. 

 

The GEC static principal components (SPCs) did not show any significant 

association with behavior (Figure 4.5b). However, the behavioral association 

in some domains improved when static and dynamic GEC components were 

combined: Motor-Left (R2 = .36, p < .01), Motor-Right (R2 = .23, p = .05) and 

Attention Visual Field-effect (AttentionVF) (R2 = .41, p < .01). In all domains, 
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except for Attention validity/Disengagement, PCs from GEC associative value 

were higher when performed with the damage mask (Figure B3).  

 

In summary, not only the PCs from the GEC model were related to lesion 

metrics but also outperformed previously reported metrics in existing 

literature, in their relation to clinical variables such as behavioral impairment. 

 

 

 

 

Figure 4.5: GEC-based whole-brain models and correlation with clinical variables 

Figure 4.5: GEC-based whole-brain models and correlation with clinical variables: 

(A) Relation between the values obtained from the PCA of the GEC and (top) the lesion volume 

(Calculated in voxels from the SC), and (bottom) the NIHSS score. (B) Associative strength of 

three behavioral domains given by the static PCA (SPCs) of the three approaches (FC, GEC 

with the SDC mask and GEC without the SDC mask) and with their corresponding interaction 

with the dynamical components (see Methods for details). Asterisk indicates when only one 

regressor shows a significance relationship of the three measurements.  
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4.3.5 GEC-based whole-brain models and classification of 

behavioral impairment 

 

In the next analysis, we intend to test the utility of the whole brain models for 

the classification of patients’ lesion severity in order to contribute to their 

diagnosis. Hence, we implemented a classification algorithm in order to 

distinguish patients’ lesion severity using as input the results of the behavioral 

tests. The division of patients according to their structural disconnection was 

based on the median value of their lesion volume, separating the sample into 

two equal groups.  

 

Given the heterogeneity in lesion location and behavioral deficits across 

patients, we infer that FC dynamics would be differently affected depending 

on the severity of the static FC impairment. Therefore, we applied a Principal 

Component Analysis (PCA) to the static FC of acute patients (after z-scoring 

to the average FC of controls subjects) to split into a low and high severity 

group. Then, we used the same logic to divide the sample using the PCs of 

the previously mentioned models. As a result, the prediction of behavioral 

impairment is based on a median split of the subjects’ singular value (Derived 

from PCA analysis) according to different criteria (SC, FC, GEC, GEC with 

SDC mask). By using a random forest classifier, we obtained the area under 

the curve (AUC) representing the accuracy of the classifier for high and low 

severity injury values, according to the median score. We used the 

performance in the neuropsychological tests, including all the behavioral 

domains (explained in the methods section), of the patients to test the 

algorithm and assess the classification. The scores were z-scored to get one 

score across domains. The outcome is visualized as histograms (Figure 4.6).  

Each row represents classification based on different signals (SC, FC, GEC, 

GEC with SDC mask). The histograms in blue correspond to the AUC values 

obtained using the real data, while the histograms in red indicate the AUC 
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values obtained after shuffling the data labels. Label shuffled is used as a null 

model to obtain the p-values shown in the insets.  

  

To measure the statistical significance of the accuracy values, we trained and 

evaluated a total of 1000 classifiers using the behavioral scores of the patients 

but scrambling the class labels. Afterward, we produced an empirical p-value 

by counting how many times the accuracy of the classifier with scrambled 

class labels was greater than that of the original classifier. All accuracies were 

determined as the area under the receiver operating characteristic curve 

(AUC). The GEC (with SDC mask) showed the highest performance (mean= 

.73, SD<.10, p<.01) followed by GEC (mean=.65, SD <.1, p=.26), FC 

(mean=.65, SD<.11, p=.029) and SC (mean=.63, SD<.10, p=.028) (Figure 

4.6). The presented result is obtained by using 80% of the subjects during the 

training of the cross-validation classification. For an exploration of other ratios 

of training, see Figure B5. 

 

In summary, the highest performance to classify behavioral impairment was 

obtained by using the GEC-model including the disconnection information, 

showing another contribution of the presented models for stroke patients’ 

diagnosis. 
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Figure 4.6: : Improving classification of lesion severity by using GEC-based whole-brain models 

Figure 4.6: Improving classification of lesion severity by using GEC-based whole-brain models: 

Each plot represents a different criterion of classification of the two groups. Histograms of AUC 

values for the random forest classifiers trained to distinguish low from high severity behavior 

impairment using as division criteria: the lesion volume of the SC (top-left), the PCs of the FC 

(top-right), the PCS of the GEC (bottom left) and the PCs of the GEC with the SDC mask 

applied (bottom-right). All classifiers were tested using the neuropsychological assessment 

performances. Histograms in blue correspond to data without label shuffling, while red 

indicates AUC after label shuffling  
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4.3.6 Topological measures in GEC-based models 

 

Since the GEC represents the directed non-symmetrical interactions between 

brain regions, it is possible through graph metrics to describe differences in 

the topological organization between healthy controls and stroke patients by 

means of a group level analysis. Following that line, the next analysis will 

explore a diverse range of graph metrics in order to show how they reflect the 

difference between the two groups. 

 

In the comparison between stroke patients and healthy subjects, patients 

have a significant higher degree ratio per node, both in broadcasters 

(t(121)=113.04, p < .01), and in receivers (t(121)=123.16,p < .01). Moreover, 

when comparing broadcasters to receivers, all patients had a larger number 

of broadcasters than receivers (Figure 4.7a). It should be noted that the 

difference in Figure 4.7a with healthy controls is somehow exaggerated by 

the fact that all reciprocal connections  were excluded for the calculation of 

broadcasting and integration. Metrics calculations are explained in detail in 

the Methods section. 

 

In addition, the average path length was higher in patients than in the control 

group (t(121)=28.5,p < .01), while the effect was the opposite for reciprocity 

and communicability where controls showed significantly higher values than 

patients (t(121)=-14.59, p < .01 and t(121)=-41.13, p < .01 respectively. 

 

To examine the influence of lesions on these metrics, the damaged 

hemispheres were aligned on the same side. Broadcasters’ percentage was 

higher in the healthy hemisphere compared to the damaged one 

(t(190)=67.01, p<.01)). The same effect was visible in the reciprocity level 

(t(190)=31.54, p<.01)), while the reverse direction was observed in the 
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receivers’ percentage (t(190)=-49.09, p<.01)) where higher values occurred 

in the damaged hemisphere (Figure 4.7b). 

 

These findings suggests that communication is less efficient in stroke patients 

(longer path length, lower reciprocity, and communicability), and this depends 

on a topological organization in which the integration among regions is 

abnormally high (higher broadcasters and receivers). Interestingly, this 

overall topological organization reflects an asymmetry between the damaged 

and healthy hemisphere, where the latter sends abnormally more to the 

damaged one. 

 

Next, it is interesting to ask how this topological organization relates to the 

canonical FC abnormalities reported in previous work (Baldassarre et al., 

2016; J. C. Griffis et al., 2019; Siegel et al., 2016). Hence, the relation 

between FC impairments in stroke (intrahemishperic, interhemispheric, and 

modularity) and the topological metrics of the GEC (Broadcasters’ amount, 

receivers’ amount, and reciprocity) was investigated giving as a result 9 

combinations (3 FC x 3 topological) (Figure 4.7d). Using the empirical FC, 6 

out 9 correlations were significant, using the simulated FC from the GEC 

model with SDC masks 5 out of 9 correlations were significant, while using 

the GEC model without any mask, only one correlation was significant.  

 

Interestingly all topological measures (broadcasters, receivers, and 

reciprocity) correlated significantly with the strength of inter-hemispheric FC 

and modularity, much less with intra-hemispheric FC. The model that includes 

only SC correlated significantly with the modularity, and since it did not 

contain any directional information, did not correlate with broadcasters or 

receivers.  

 

There was a significant difference between patients with cortical lesions when 

compared with those  with subcortical lesions: cortically damaged patients 
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showed a lower value of broadcaster amount (t(54)= -2.5, p= .013), a lower 

value of receivers’ amount (t(54)= -2.42, p= .018) and  a higher value of path 

length (t(54)= 2.28, p= .026) (Figure B6). This result implies that the 

topological measures capture prevalently cortico-cortical communication and 

less subcortical-cortical communication. 

 

Conversely, we did not find any significant differences when comparing the 

patients with lesions in the left hemisphere and the right one (t(94) = -.5, p 

=.6). Left and right hemisphere lesion produced topological measures that 

were strongly correlated: Broadcaster percentage: r=.98, p<.01; Receivers 

percentage: r=.98, p<.01; Reciprocity degree: r=.92, p<.01. This result implies 

that lesions on either side produce bilateral effects that are similar irrespective 

of the side of the lesion.  

 

In summary, topological differences between stroke patients and healthy 

controls can be obtained by the means of graph metrics, indicating how brain 

dynamics are modified due to the stroke incidents. Those differences got 

enhanced when the healthy and damaged hemispheres were aligned across 

all stroke patients. 
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Figure 4.7: Topological measures benefitted from GEC-based whole-brain models 
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Figure 4.7: Topological measures benefitted from GEC-based whole-brain models: (A) 

Comparison between stroke patients and healthy controls in (top-left) the amount of 

broadcasters per node, (top-right) the amount of receivers per node, (center-left) reciprocity 

per node, (center-right) average path length and (bottom-left) communicability. At the bottom-

right graph, it is visible the relation between both the number of receivers and broadcasters in 

both sample groups. (B) Hemispheres were flipped when corresponded to align the damaged 

and healthy hemispheres. Differences in ratio of Broadcasters (top), receivers (center) and 

reciprocity (bottom) are represented with arrows. (C) Visualization of connections in both 

healthy and damaged hemisphere indicating the relevance of interhemispheric communication. 

Blue arrows show the broadcasting increase in the healthy hemisphere and the receivers 

increase in the damaged hemisphere. Purple arrows indicate the superior reciprocity in the 

healthy hemisphere compared to the damaged one. (D) Relation between the FC impairments 

in stroke (Intrahemishperic, interhemispheric, and modularity) and the topological metrics of 

the GEC (Broadcasters, receivers, and reciprocity) in (top-left) GEC model with SDC mask, 

(top-right) GEC model without SDC mask, (bottom-left) SC model, (bottom-right) empirical FC. 

4.3.7 Relation between regions interaction and stroke-

related metrics  

 

For the final analysis, we explored the nodes communication by inspecting 

the areas they are communicated to. Therefore, the edges of the 

corresponding nodes can be distinguished in different groups in order to 

observe which interactions are most associated with previous studied metrics. 

In order to  localize which regions were involved in the affected nodes, we 

labeled the nodes based on which areas were being communicated. Each 

patient structural connectivity matrix was segmented into three different 

groups, edges that communicate two nodes from Cortical-Cortical (CC), 

nodes from Subcortical-Cortical (SC), and nodes from Subcortical-Subcortical 

(SS) (Figure 4.8a). We performed correlations between the amount of lesion 

of each group and previously reported metrics. The relations between them  

are presented here (Figure 4.8b). 
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Relation with behavior:  

- There was a significant association between the CC group with 

Language (r2=.36, p<.01), MotorL (r2=.10, p<.01), MemoryS 

(r2=.11, p<.01) and Motor IC T1 (r2=.10, p<.01) while no 

significant relation with the remaining behavioral domains 

(p>.1) 

- There was a significant association between the SC group with 

Language (r2=.16, p<.01), MotorL (r2=.33, p<.01), MemoryS 

(r2=.20, p<.01) and Motor IC T1 (r2=.35, p<.01) while no 

significant relation with the remaining behavioral domains 

(p>.1) 

- There was no significant association between the SS group 

with any of the behavioral domains (p>.2) 

Relation with FC abnormalities 

- There was a significant association between the CC group and 

interhemispheric level (r2=.23, p<.01) and modularity (r2=.07, 

p<.01) while there was no significant difference with 

intrahemispheric level (r2=.01, p=.19) 

- There was a significant association between the SC group and 

interhemispheric level (r2=.33, p<.01) and modularity (r2=.14, 

p<.01) while there was no significant difference with 

intrahemispheric level (r2=.001, p=.38) 

- There was no significant association between the SS group 

and any of the three FC abnormalities (p>.1) 

Relation with Topological metrics: 

- There was a significant association between the CC group and 

the number of broadcasters (r2=.20, p<.01), number of 

integrators (r2=.33, p<.01), and reciprocity level (r2=.26, p<.01) 

- There was a significant association between the SC group and 

the number of broadcasters (r2=.22, p<.01), number of 

receivers (r2=.19, p<.01), and reciprocity level (r2=.37, p<.01) 
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- There was no significant association between the SS group 

and any of the topological metrics (p>.3) 

Relation with Lesion volume: 

- There was a significant association between the CC group and 

lesion volume  

(r2=.72, p<.01) 

- There was a significant association between the SC group and 

lesion volume  

(r2=.51, p<.01) 

- There was no significant association between the SC group 

and lesion volume (r2=.01, p=.8) 

Relation with NIHSS: 

- There was a significant association between the CC group and 

NIHSS  

(r2=.10, p<.01) 

- There was a significant association between the SC group and 

NIHSS 

(r2=.51, p<.01) 

- There was no significant association between the SC group 

and NIHSS (r2=.01, p=.9) 

 

In summary, this analysis shows that region interaction in the structural 

disconnection information is related to previously reported metrics across this 

study. This provides an extra benefit for the inclusion of this information into 

the whole-brain models. 
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Figure 4.8: Relation between regions interaction and stroke-related metrics 

Figure 4.8: Relation between regions interaction and stroke-related metrics: (A) Distinction 

between three different types of lesions regarding the involved regions, Cortical-Cortical, 

Subcortical-Cortical and Subcortical-Subcortical. Color is used as a reference to distinguish 

the three different groups in a visual way. (B) Association between the lesion classification and 

behavior domains, FC abnormalities, topological metrics, lesion volume, and NIHSS. It is 

important to note that the lower amount of nodes in the SS group is influencing the reported 

results. 
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4.4 Discussion 

In the current study, we created a generative model based on effective 

connectivity (GEC) as a mechanistic answer to calculate post-stroke effects. 

The model replicates the most common FC impairments observed in previous 

literature by making use of the white matter structural disconnection caused 

by each patient’s lesion (SDC mask). The GEC model proves to be more 

strongly associated than previous models when relating to subjects’ 

behavioral performance. More importantly, we demonstrate that the GEC 

shows a higher performance when classifying the severity of the lesion. 

Finally, due to its asymmetrical property, it provides topological metrics useful 

for further analysis. All the presented methods and results contribute to shed 

light on the brain dynamics after stroke incidents, including the relevance of 

the structural disconnection information.  

4.4.1 FC impairment in stroke 

As reported in previous literature, there is a visible pattern of alterations in the 

FC of patients after stroke. These include an increase in the correlation of the 

intrahemispheric level (bringing it closer to zero), a decrease in the 

interhemispheric level, and a decrease in the modularity level (Arnemann et 

al., 2015; Baldassarre et al., 2016; Gratton et al., 2012; Siegel et al., 2016). 

While many studies focus on the concepts of integration and segregation 

(Adhikari et al., 2017; Bullmore & Sporns, 2009; Deco et al., 2015; H.-J. Park 

& K. Friston, 2013; Sporns, 2013), their reduction poststroke could be the 

result of a single disruptive process such as the previously observed 

reductions in network modularity in the brain (Gratton et al., 2012). Moreover, 

modularity could be considered as a quantification of the ability of the brain to 

differentiate into separable subnetworks and is an essential property found in 

many complex systems that allows the system to develop dynamic behaviors 

(Meunier et al., 2010). 
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By using simulated models, the Hopf model that included only the SC 

information did not accurately replicate the empirical FC abnormalities 

(Figure 4.3), while the model optimized with GEC did, but only when the SDC 

mask was added. Notably, the model replicated the empirical FC effects only 

when the degree of white matter disconnection was taken into account, not 

the gray matter (parcel) damage as in (Adhikari et al., 2017). This illustrates 

the critical importance of white matter damage not only for understanding the 

physiological effects of stroke (Corbetta et al., 2015; Joseph C Griffis et al., 

2019; Griffis et al., 2020), but also for accurate modeling and prediction as 

illustrated in this work. 

 

The current study underlines the validity of whole-brain computational models 

by complementing previous results (Joseph C Griffis et al., 2019) with the 

information of SDC masks. The inclusion of the SDC masks should be taken 

into consideration in the future when modeling data of stroke patients.  

 

Regarding the lesion localization, a clear distinction between cortical and 

subcortical patients is found when the SDC mask was included in the model, 

providing another advantage in using the presented model as a tool for future 

studies concerned about lesion localization and diagnostics. 

4.4.2 Associative value of GEC and enhancement by using 

SDC mask 

 

Previous literature suggests that the relationship between the structural 

disconnection and the functional connectivity patterns (FC) should be low-

dimensional (Corbetta et al., 2015; Joseph C Griffis et al., 2019) as the 

components which explained most of the variance could provide useful 

information about cognitive and behavioral impairment (Bayrak et al., 2019). 

In comparison to a recent study (Favaretto, 2022) that focused on the 
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influence of the FC components and their interaction with dynamical features, 

this study aims to prove the enhanced associative value of the GEC 

components. 

 

We investigated the associative power over all the described domains 

(Figure. B3). By comparing the dynamic components combined with the PC 

provided by the FC and GEC, the latest showed higher accuracy, especially 

for motor deficits. This is consistent with previous literature which claimed that 

functional alterations of brain networks are important for cognitive functions 

that rely on distributed networks (e.g., memory, attention, language), as 

compared to visual and motor functions for which structural damage is more 

sensitive (Corbetta et al., 2018). By performing a model which includes 

structural information, the relation over domains more sensitive to structural 

damage was more likely to be enhanced. It is important to underline that the 

present model combines both structural and functional information, providing 

more information compared to the analysis using only functional data 

(Favaretto, 2022). Future studies could introduce alternative models to control 

this issue. 

4.4.3 Network communication reveal loss of interaction after 

stroke 

 

Several studies have discussed the role of DMN as a brain hub (Power et al., 

2013; van den Heuvel & Sporns, 2013). Here we found that the DMN is the 

network that exerts the main influence over other networks and that this 

influence is significantly decreased in stroke patients, both in the damaged 

and healthy hemisphere. A functional-anatomical gradient of cortical 

organization going from sensory-motor networks to polymodal tertiary 

association networks, with the DMN sitting at the top of this hierarchy has 

been described (Margulies et al., 2016), situating the default-mode network 
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along a principal gradient of macroscale cortical organization (Raut et al., 

2020). Hierarchical dynamics as a macroscopic organizing principle of the 

human brain (Mitra & Raichle, 2016) and human cortical–hippocampal 

dialogue in wake and slow-wave sleep (Mitra et al., 2016) have also been 

described. This organization is exactly the one mandated by hierarchical 

generative models. Networks that occupy higher levels may continuously 

generate predictions to suppress prediction errors of lower brain networks, 

such as primary sensory and motor regions, which may be engaged when 

prediction errors cannot be readily cancelled out. The role of the DMN in 

exerting influence on other networks as shown here is consistent with this 

interpretation, and further suggest the testable hypothesis that stroke 

patients’ deficits may partly reflect prediction errors in sensory-motor-

cognitive processing. 

 

This analysis also provides converging evidence on the alterations of 

directional interactions caused by focal stroke lesions. Allegra et al. (Allegra 

et al., 2021), measuring Granger causality (GC) on BOLD timeseries, found 

that focal lesions cause a relative decrease of GC from the damaged to the 

healthy hemisphere, as well as a decrease of interactions within the damaged 

hemisphere. Our results using GEC-based models converge on this empirical 

observation similarly showing a loss of ‘sender’ influence from the damaged 

to the normal hemisphere, as well as an overall decrease of interactions within 

the damaged one.   

4.4.4 Improving classification of behavior severity level by 

using GEC 

 

Previous studies (J. C. Griffis et al., 2019; Griffis et al., 2020; Wodeyar et al., 

2020) showed, considering BOLD signals both at the voxel scale and ROI 

scale, that differences in structural connectivity were linked to changes in 
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functional connectivity. Thus, found that, in the brain, communication between 

different regions is mediated through anatomical connections. The damaging 

effects perceived in stroke patients’ FC were evident when also inspecting 

their SC, but not evident when looking at FC only. 

 

Furthermore, the GEC is calculated through simulations and modeling taking 

into consideration the anatomically restrained connections. In this study, the 

SC information was enhanced by the addition of the SDC mask. The 

classification using the GEC information when applying the SDC mask 

showed the highest accuracy of classification, followed by a similar value by 

the GEC without the SDC mask and afterward, with lower levels, the 

classification using only SC or FC. Despite providing a beneficial factor due 

to its enhanced classification power, further research is needed to know how 

this fluctuates across time and how the recovery of the patient is reflected on 

it.  

 

The reported results by analyzing the z-abnormalities help to shed light on 

the relation between FC and SC. The generative model presented in the 

current study exposed how the effect changes in FC as a consequence of the 

stroke damage could be observed when the disconnection information is 

added. Nevertheless, in the damaged area and lesion severity classification, 

the direction of the effect was reversed between the empirical and the 

simulated data. Future studies could clarify the underlying reason for this 

discrepancy. 

4.4.5 Topological measures benefited from GEC 

 

Previous studies discussed the role of graph theory metrics in stroke patients 

(Han et al., 2020; Idesis, Faskowitz, et al., 2022; Sun et al., 2021; Vecchio, 

Tomino, et al., 2019) revealing how properties such as global efficiency 
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indicate the efficiency of integration of distributed information through the 

whole network. Nevertheless, the studies relied on FC to calculate the 

corresponding metrics. In the current study, the analysis profited from the 

asymmetricity of the GEC to calculate topological metrics that could better 

describe the difference between stroke patients and healthy subjects. The 

calculation of broadcasts and receivers, used in the current study, exclude 

the relations that are spared reciprocally (both directions with a different 

node). Excluding the reciprocal relations (which are the majority), the higher 

number of broadcasters and receivers in the patients (compared to the 

healthy controls where an even higher percentage of the connections were 

reciprocal) was expected. The fact that every single patient presented a 

higher number of broadcasters than receivers is a relevant and unexpected 

result. Previous authors discussed this as an implication of a loss of 

integration converting it into a good biomarker for stroke treatment (Adhikari 

et al., 2020; Pallarés et al., 2018). Furthermore, a previous study (Chen et al., 

2021) tried to manipulate this phenomenon through transcranial alternating 

current stimulation (tACS) exposing the difference in integration capacity in 

stroke patients. As reciprocity was found higher in controls, this metric could 

be used as a biomarker of patients’ recovery. By assessing the reciprocity 

across time of each patient, it could be observed if the networks tend to 

partially restore, or at least compensate for, the deficit provoked by the 

damage. 

 

While the distinction between patients according to the hemisphere damaged 

did not reveal any significant information, the comparison between patients 

with cortical and subcortical lesions showed significant differences (when the 

corresponding SDC mask was applied) revealing that the measures 

presented could provide a novel method to assess distinctions in lesion 

localization. 
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The provided results open the possibility of using the metrics obtained in the 

current study to enhance the classification algorithms and create an even 

more accurate diagnosis. 

4.4.6 Region interaction association with stroke metrics 

 

Previous studies have reported the effects of after-stroke disconnections and 

their relation with global dynamic metrics such as modularity (Joseph C Griffis 

et al., 2019; Warren et al., 2014). In this study, we divided the disconnection 

matrix of each patient into different groups relative to which regions’ 

communication was impaired. We found a strong relationship between all the 

variables of interest and the Cortical-Cortical and Subcortical-Cortical group 

while no association with the Subcortical-Subcortical group. These results 

support previous findings showing that stroke effects primarily disrupt whole-

brain resting physiology by damaging interregional structural connections 

rather than only specific grey matter structures (J. C. Griffis et al., 2019). 

Based on these results, further studies could benefit from this approach to 

achieve more accurate analysis and reduce the amount of data used. 

4.4.7 Limitations 

 

The current study focuses on providing information about relationship with 

behavioral scores, classification of severity of the injury, and providing 

informative topological metrics to analyze the brain dynamics properties. 

Nevertheless, it is not clear how these parameters are modified through the 

process of the recovery of the patients. Future studies could benefit from this 

longitudinal dataset in order to address these types of questions. Localization 

of the top 5% weights in controls and patients is presented in Figure B7 to 

allow comparisons in future studies which focus on the recovery after stroke.  
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Lastly, as beneficial as it was found, the GEC consists of a bidirectional matrix 

instead of the typical symmetrical matrices obtained by analyses of FC and 

SC. Therefore, computational processes may be more time demanding and 

computationally costly. 

4.5 Conclusion 

The current study illustrated how the application of generative models 

provided a mechanistic explanation of the stroke effects in patients. We 

presented an approach to combine structural and functional data from stroke 

patients. The proposed model can also be used to compare different existing 

SDC masks to determine the one that produces the best fit to empirically 

observed FC. Together with the relevance of the SDC mask for the whole-

brain models of stroke, the current study replicates the existing biomarkers of 

stroke damage and provides evidence that the proposed model can improve 

the classification accuracy of behavioral deficits after stroke, revealing the 

strong influence of SDC in the observed effects. The present study opens a 

vast number of possibilities for further analysis providing a mechanistic 

explanation for stroke injuries and metrics due to its ability to model 

asymmetric interactions among brain regions. 
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CHAPTER 5 

5. Function prediction from anatomy: 

Whole-brain dynamic modeling predicts 

function from structure in stroke 

Work in this chapter reflects a paper currently under review. 
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Highlights 

 

- We derived a whole-brain model to infer the dynamical effects of stroke 

lesions two weeks after onset only using anatomical information. 

- We contrast the model’s accuracy with other predictive models and non-

predictive patient-specific models, to make visible the high performance of 

the presented model 

- We used the computational model to predict patient abnormalities in the 

whole-brain FC measures 

- The generative aspect of the model allows for its generalization to new 

datasets and contributes to advancing the analysis on brain disorders’ 

dynamics, as seen in stroke patients  

- . With the presented model, it is possible to measure in silico recording and 

estimate the effect of the lesions in order to shed light to the treatment and 

recovery of stroke incidents. 

 

 

Abstract 

 

Computational whole-brain models describe the resting activity of each brain 

region based on a local model, inter-regional functional interactions, and a 

structural connectome that specifies the strength of inter-regional 

connections. Strokes damage the healthy structural connectome that forms 

the backbone of these models and produce large alterations in inter-regional 

functional interactions. These interactions are typically measured by 

correlating the timeseries of activity between two brain regions, so-called 

resting functional connectivity. We show that adding information about the 

structural disconnections produced by a  patient’s lesion to a whole-brain 

model previously trained on structural and functional data from a large cohort 

of healthy subjects predicts the resting functional connectivity of the patient 
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about as well as fitting the model directly to the patient’s data. Furthermore, 

the model dynamics reproduce functional connectivity-based measures that 

are typically abnormal in stroke patients as well as measures that specifically 

isolate these abnormalities. These results show that the model accurately 

captures relationships between the structure and functional activity of the 

human brain. 

 

Keywords 

 

Whole-Brain models, Predictive, Stroke, fMRI, Dynamics 
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5.1 Introduction 

 

The development of accurate whole-brain models is essential for the 

understanding of how the structural and functional organization of the brain 

affects its ability to process information (Deco, Hagmann, et al., 2014). 

Stroke-induced alterations in resting-state FC are largely caused by changes 

in the structural connectome which forms the backbone of computational 

whole-brain models (J. C. Griffis et al., 2019). Consequently, a valid whole-

brain model should be able to predict how a large stroke-induced alteration in 

the structural connectome will change the topography of a patient’s resting 

FC. We call such a model predictive as it is predicting the functional dynamics 

from structural information and its alteration. Yet, predictive whole-brain 

computational models have been rarely leveraged in the study of stroke. 

While whole-brain models have been applied to stroke patients’ data, in 

previous work the model was fit explicitly to the functional data of each patient. 

In other words, the models could reproduce functional anomalies observed in 

patients, but not predicted from the structural alterations alone (Adhikari, 

Griffis, et al., 2021; Alstott et al., 2009; Idesis, Faskowitz, et al., 2022; Saenger 

et al., 2018). Here we propose a generative and predictive whole-brain 

computational model of the resting state that allows to predict abnormalities 

in brain function and behavior which result from a particular stroke-induced 

lesion. This approach is considered generative due to the underlying BOLD 

signals that are generated from the model. We demonstrate the model’s high 

performance by contrasting its accuracy with other predictive models and 

non-predictive patient specific model that was fitted directly to a patient’s 

functional data. Our results show that the predictive model reproduces in part 

the FC matrix of patients, patient-specific abnormalities in the FC matrix, 

summary FC-based measures that are typically abnormal following a stroke 

such as homotopic interhemispheric FC and FC between the dorsal attention 
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network (DAN) and default mode network (DMN), and patient specific 

abnormalities in those measures (Corbetta et al., 2015).  

 

Importantly, our results show that the predictive model has the same degree 

of accuracy as previously reported models, even though the model fitting did 

not include the patients’ functional information, indicating that the model 

captures a relationship between structure and functional activity. The 

generative aspect of the model allows for its generalization to new datasets 

and may advance our understanding of the altered brain dynamics observed 

in stroke patients. 
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5.2 Material and methods 

5.2.1 FC measures 

Based on previous work (J. C. Griffis et al., 2019; Siegel et al., 2016) we 

defined three measures that are consistently impaired in stroke patients: 

 

- Intra-hemispheric FC: average pairwise FC between Dorsal attention 

network (DAN) and Default mode network (DMN) regions.  

- Inter-hemispheric FC: average homotopic inter-hemispheric connectivity 

within each network 

- Modularity: overall Newman’s modularity among cortical networks, a 

comparison between the number of connections within a module to the 

number of connections between modules (Newman & Girvan, 2004) 

5.2.2 Whole-brain Hopf model parameter estimation 

 

We simulated the BOLD activity at the whole-brain level by using the Hopf 

computational model, simulating the dynamics emerging from the mutual 

interactions between brain areas, considered to be interconnected based on 

the established graphs of anatomical SC (Deco et al., 2017; Kringelbach et 

al., 2015). The structural connectivity matrix was scaled to a maximum value 

of 0.2 (Deco et al., 2017), in order to explore the range of the G parameter 

established in previous works. To calculate the Generative Effective 

Connectivity (GEC) of the healthy control group, we optimized the similarity 

between the phases of the simulated and empirical data by changing the 

value of the global coupling factor G (obtaining a value of G = 0.75 as the 

optimal one), which assesses the influence of SC in the model. The higher 

the value of the factor G, the bigger the influence of the system in each node. 

The model consists of 234 coupled dynamical units (ROIs or nodes) 

representing the 200 cortical and 34 subcortical brain areas from the 
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parcellation. When combined with brain network anatomy (explained above 

in the “Neuroimaging acquisition and preprocessing” section), the complex 

interactions between Hopf oscillators have been shown to successfully 

replicate features of brain dynamics observed in fMRI (Deco et al., 2017; 

Kringelbach et al., 2015). 

In complex coordinates, each node j is described by the following equation: 

(For more information, see Deco et al., 2019) 

 

 
𝑑𝑧𝑗

𝑑𝑡
= 𝑧(𝑎𝑗 + 𝑖𝜔𝑗 − |𝑧𝑗|

2
) + 𝑔 ∑ 𝐶𝑗𝑘 (𝑧𝑘 −  𝑧𝑗) +  𝛽η𝑗,𝑁

𝑘=1   (5.1) 

 

and 

  

 𝑧𝑗 = 𝑝𝑗𝑒𝑖𝜃 =  𝑥𝑗 + 𝑖𝑦𝑗        (5.2) 

 

Where 𝛼 and 𝜔 are the bifurcation parameters and the intrinsic frequencies 

of the system, respectively. This normal form has a supercritical bifurcation at 

𝑎𝑗  = 0 for which we used the homogeneous parameter space around the Hopf 

bifurcation (a = -0.01). Within this model, the intrinsic frequency 𝜔𝑗 of each 

node is in the 0.04–0.07Hz band (j=1, …, n). The intrinsic frequencies were 

estimated from the data, as given by the averaged peak frequency of the 

narrowband BOLD signals of each brain region. The variable G represents a 

global coupling factor scaling the structural connectivity Cjk, and η is a 

Gaussian noise vector with standard deviation 𝛽 = 0.04. This model can be 

interpreted as an extension of the Kuramoto model with amplitude variations, 

hence the choice of coupling (𝑧𝑘 −  𝑧𝑗), which relates to a tendency of 

synchronization between two coupled nodes. We insert equation 2 in 

equation 1 and separate real part in equation 3 and imaginary part in equation 

4 (Deco et al., 2017). 
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𝑑𝑥𝑗

𝑑𝑡
= (𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2)𝑥𝑗 − 𝜔𝑗𝑦𝑗 + 𝐺 ∑ 𝐶𝑗𝑘𝑘 (𝑥𝑘 − 𝑥𝑗) +  𝛽η𝑗(𝜏) (5.3) 

 

𝑑𝑦𝑗

𝑑𝑡
= (𝑎𝑗 − 𝑥𝑗

2 − 𝑦𝑗
2)𝑦𝑗 + 𝜔𝑗𝑥𝑗 + 𝐺 ∑ 𝐶𝑗𝑘𝑘 (𝑦𝑘 − 𝑦𝑗) + 𝛽η𝑗(𝜏) (5.4) 

 

 

For all cases, we will compute the goodness of fit by the mean error (squared 

difference) between the upper triangular values of the empirical and simulated 

FC. 

 

5.2.3 Generative Effective Connectivity calculations 

 

Generative Effective connectivity (GEC) utilizes differences detected at 

different times in the signals connected pair of brain regions to infer what 

effects one brain region has on the other. 

The analysis of GEC incorporates an indirect metric (as it is derived from other 

presented metrics) into the whole-brain model to replace the existing 

descriptive metrics of FC and SC. Previous studies have shown how GEC is 

fundamental for understanding the propagation of information in structural 

networks (Gilson et al., 2016; Jobst et al., 2017). Methods for estimating GEC 

are explained in detail in a previous publication (Deco et al., 2019). Briefly, 

we computed the distance between our model and the empirical grand 

average phase coherence matrices (as a measure of synchronization of the 

system) of the healthy controls group. In the stroke patients’ group, we 

adjusted each structural connection separately using a greedy version of the 

gradient-descent approach. In order to work only positive values for the 

algorithm, all values are transformed into a mutual information measure 

(assuming Gaussian distribution). Therefore, the individual subject 

information is introduced by means of its disconnection (SC + each subject 

SDC) derived from the Lesion Quantification Toolkit.  
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We fit “C” such that the model optimally reproduces the empirically measured 

covariances  

𝐹𝐶𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙  (i.e., the normalized covariance matrix of the functional 

neuroimaging data) and the empirical time-shifted covariances 𝐹𝑆𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙 (𝜏) 

where 𝜏 is the time lag, which are normalized for each pair of regions 𝑖 and 𝑗 

by √𝐾𝑆𝑗𝑘
𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(0)𝐾𝑆𝑗𝑘

𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(0).  We proceeded to update the C until the fit 

is fully optimized. The equation of the optimization is as follows: (For more 

information, see (Deco et al., 2023)) 

 

𝐶𝑗𝑘 = 𝐶𝑗𝑘 +  휀(𝐹𝐶𝑗𝑘
𝑒𝑚𝑝

− 𝐹𝐶𝑗𝑘
𝑚𝑜𝑑) +  휀(𝐹𝑆𝑗𝑘

𝑒𝑚𝑝(𝜏) − 𝐹𝑆𝑗𝑘
𝑚𝑜𝑑(𝜏)).     (5.5) 

 

Where C is the anatomical connectivity and is updated with the difference 

between the grand-averaged phase coherence matrices (Empirical: 𝐹𝐶𝑗𝑘
𝑒𝑚𝑝

 

and model: 𝐹𝐶𝑗𝑘
𝑚𝑜𝑑) and the difference between the time-shifted covariance 

matrices, both scaled by a factor 휀 < 0.001. Where 𝐹𝑆𝑗𝑘
𝑚𝑜𝑑(𝜏) is defined similar 

to 𝐹𝑆𝑗𝑘
𝑒𝑚𝑝(𝜏). After this process, C is considered as a Generative Effective 

Connectivity (GEC) matrix. The prediction, therefore, is based on the current 

estimation of the structural connectivity, which gets updated optimizing the 

phase FC in each iteration. In summary, the model was run repeatedly with 

recursive updates of GEC until convergence was reached. The distinction 

between functional and effective connectivity is crucial here: FC is defined as 

the statistical dependence between distant neurophysiological activities, 

whereas GEC is defined as the influence one neural system exerts over 

another providing directionality in the relations making the matrices 

asymmetrical (Friston, 2011; Friston et al., 2003). A similar approach has 

already been used measuring the level of non-reversibility in order to classify 

and predict the recovery of stroke patients (Idesis et al, 2023). 
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5.2.4 Models 

 

Full Predictive model: 

We calculated a predictive model to capture the dynamical effects of stroke 

lesions two weeks after onset. First, we estimated the optimal value of global 

coupling for which the modeled Hilbert phases were most similar to the 

empirical data in the healthy controls group (G=0.75). Then, we computed the 

GEC (See previous section) on the same group (Figure 5.1a). Lastly, we 

added the information of the SDC mask of each patient to the existing GEC 

to simulate fMRI BOLD data of the corresponding patient (Figure 5.1b). As a 

result, the simulated time series (referred to as “Full Predictive model”) 

contains structural information of the patient while not using the functional 

information, making it a predictive model, in contrast to the previously 

discussed non-predictive models. 

 

For each patient, the simulated fMRI BOLD timeseries for each parcel pair 

were then correlated to construct the patient’s simulated FC matrix. In order 

to isolate the degree to which the patient’s FC between two parcels was 

abnormal relative to healthy controls, empirical and simulated FC matrices for 

each patient were z-scored with respect to the healthy controls’ empirical and 

simulated FC matrices to create the patient’s empirical and simulated z-

scored FC abnormality matrices. Specifically, the healthy group-mean FC for 

a parcel pair was subtracted from the patient’s FC for that parcel pair, and 

this difference score was then divided by the standard deviation of the healthy 

group FC for that parcel pair. 

 

In addition, we separately averaged the homotopic interhemispheric FC 

entries and the DAN-DMN entries from a patient’s z-scored FC abnormality 

matrix to create averaged abnormality scores for these two classes of FC, 

which are typically abnormal in patients. 
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Predictive comparative models 

Two different predictive models were calculated in order to compare their 

performance with the full predictive model: 

 

- Predictive model without mask: In order to assess the influence 

incorporating a disconnection mask (lesion information) in the predictive 

model, this model simply consisted of the healthy group model without any 

disconnection mask.  

- Surrogate mask model: As the effect of the disconnection mask could 

simply reflect the overall magnitude of disconnection, we computed models 

in which each patient received the disconnection mask of another patient. As 

the lesion amount is similar on average but the pattern/location of the lesion 

is different, comparisons of the full predictive model vs. the surrogate mask 

model indicate how strongly the accuracy of a predictive model depends on 

incorporating the specific features of a patient’s lesion. Therefore, the model 

without mask and the surrogate mask model serves as predictive controls for 

the full predictive model. 

 

Non-predictive and patient-specific Model 

A non-predictive patient-specific model was calculated in order to compare it 

with the full predictive model. The patient-specific model utilizes functional 

information instead of predicting it, which converts it into a non-predictive 

model. For the optimization of these models, we used the patient’s functional 

information, in contrast to the predictive models where that information was 

estimated.  Therefore, each patient GEC was used instead of the healthy 

group GEC, used in the previous models.  
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5.2.5 Assessment of model accuracy 

Behavior impairment prediction 

We explored how well subjects’ behavioral scores (See chapter 2) were 

predicted by their empirical and simulated FC. We calculated two partial least-

squares regression (PLSR) models using the empirical and simulated FC 

matrices as predictors (Figure 5.2d). As a control, we included a third model 

based solely on anatomical information (the SDC matrix), as reported in 

previous literature (J. C. Griffis et al., 2019; Siegel et al., 2016). PLSR is a 

multivariate regression technique (Wold et al., 2001) that is closely related to 

principal components regression (Hotelling, 1957). Both approaches are 

especially useful for situations where there are more variables than 

observations and/or when there is high collinearity among the predictor 

variables. Nevertheless, PLSR has important advantages that are primarily 

due to differences in the criteria used for decomposition of the predictor matrix 

(J. C. Griffis et al., 2019). Detailed descriptions of theory and algorithms 

behind the PLSR approach are explained in previous literature (Krishnan et 

al., 2011) 

 

Global efficiency 

Global efficiency was calculated as the average inverse shortest path length 

(Latora & Marchiori, 2001). Unlike path length, the global efficiency can be 

calculated on disconnected networks, as paths between disconnected nodes 

are defined to have infinite length, and correspondingly zero efficiency. 

Therefore, it is an ideal metric when investigating stroke data. In contrast to 

path length, which is primarily influenced by long paths, global efficiency is 

primarily influenced by short paths. Different authors have claimed that this 

may convert global efficiency into a superior metric of integration (Achard & 

Bullmore, 2007; Rubinov & Sporns, 2010). Global efficiency is calculated as 

follows (Latora & Marchiori, 2001; Rubinov & Sporns, 2010): 
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𝐸 =  
1

𝑛
  ∑

∑ 𝑗 ∈ 𝑁, 𝑗 ≠ 𝑖 𝑑𝑖𝑗

𝑛 − 1
𝑖∈𝑁

 

       (5.6) 

 

Where N is the set of all nodes in the network, n is the number of nodes, and 

(𝑖𝑗) is a link between the nodes i and j. 

 

FC Entropy 

FC entropy is an information theoretical metric that measures the richness of 

the functional connections and therefore may be a relevant biomarker for 

many disorders (Rocha et al., 2022; Saenger et al., 2018; Zamora-López et 

al., 2016). Previous studies have reported abnormal FC entropy values when 

comparing healthy controls with stroke patients (Adhikari et al., 2017; 

Saenger et al., 2018). However, these models use generic anatomical 

connectomes based on group averages instead of personalized structural 

connectivity. Although the current study used an atlas-based structural 

connectome for modeling the healthy control subjects, this connectome was 

separately modified for each patient based on their lesion.  

 

Entropy is calculated as follows (Rocha et al., 2022):  

 

𝐻 =  − ∑ 𝑝𝑖 log 𝑝𝑖/𝑙𝑜𝑔𝑚

𝑚

𝑖=1

 

(5.7) 

 

Where m is the number of bins used to construct the probability distribution 

function of the upper triangular element of |FC|. The normalization factor in 

the denominator is the entropy of a uniform distribution, and it ensures that H 

is normalized between 0 and 1.  
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Average degree 

Average degree is a measure of the overall network connectivity that provides 

information about the network segregation and integration (Rubinov & 

Sporns, 2010). Average degree is calculated as follows (Rocha et al., 2022): 

 

 

𝐾 =  
∑ 𝑘𝑣𝑣

𝑁
 

(5.8) 

 

Where N is the number of nodes and 𝑘𝑣 is the degree of the node v as defined 

above. 
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5.3 Results 

To infer the dynamical effects of stroke lesions two weeks after onset, we 

used a computational model based on coupled Stuart Landau oscillators 

(Figure 5.1a). The model contains a global scale factor, also referred to as 

the G coupling value, which determines the influence of SC in the model. It 

also contains GEC parameters that capture directional interactions between 

regions. Both types of parameters are optimized to improve the model fit 

(similarity of empirical and model FC). In the current study, we use only the 

functional data of the healthy control dataset to optimize these parameters at 

the group level. Performing an exhaustive exploration of the homogeneous 

parameter space (a, G) around the Hopf bifurcation (a = -0.01), we found G 

= 0.75 as the optimal value of G for which the modeled FC of the Hilbert 

phases were most similar to those observed in the empirical data. Initializing 

the GEC to be equal to the SC, we iteratively adjusted its values to improve 

the similarity between the model and empirical FC at a group level. Figure 

C1 shows the role of the structural connections between parcels by assessing 

the difference between the empirical and simulated FC. 

To simulate the functional data of stroke patients, we added individual 

information about the structural damage to the healthy group GEC by using a 

structural disconnection mask.  Therefore, the model (referred to as the full 

predictive model) generated a simulated version of a functional connectivity 

matrix for each stroke patient as an output (Figure 5.1b). 

From the obtained simulations, several metrics were calculated in order to 

assess how well the model captured the functional effects of stroke. For this 

purpose, among other results, we considered the main FC-based metrics that 

are known to give abnormal values in stroke patients (mean intra-hemispheric 

FC between the DAN and DMN, mean homotopic interhemispheric FC, and 

modularity level). We used the accuracy of the model (the goodness of fit 
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level) to classify patients according to their severity level. Lastly, the fitting of 

the model was related to behavioral impairment in several cognitive domains 

(Figure 5.1c). 

The full predictive model reproduces the functional consequences of the 

stroke lesions by exploiting individual structural disconnection maps for each 

patient. Importantly, in contrast to previously reported models, it predicts a 

patient’s functional connectivity.  

 

 

 

Figure 5.1: Pipeline of predictive model’s analysis 

Figure 5.1: Pipeline of the predictive model: (A) Healthy control generative effective 

connectivity (GEC) was calculated by using the healthy template SC with each 

healthy control fMRI time series. The model was optimized using a whole-brain (WB) 

model in order to create an average GEC for the healthy controls. (B) The predictive 

model used each patient’s disconnection mask to modify the control GEC and obtain 

the patient’s simulated FC, referred to in the figure as the full predictive model. (C) 

We determined the model’s accuracy in predicting a subject’s FC matrix (Figures 

5.2a), FC-derived measures that are typically abnormal following a stroke (Figure 

5.2b), patient abnormalities in FC (Figure 5.2c) ,and a patient’s behavioral deficits 

(Figure 5.2d) . We also investigated the determinants of model accuracy by 

examining whether the accuracy of a patient’s simulated FC matrix covaried with the 
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severity of their lesion-induced structural damage (Figure 5.3a), the magnitude of 

FC-based and graph-related functional measures that are typically abnormal 

following a stroke (Figures 5.3b-5.3e), and the magnitude of the patient’s behavioral 

deficits (Figure 5.3f).  

 

5.3.1 Model outcomes and their relationship with stroke 

effects 

We assessed the validity and accuracy of the full predictive model by 

inspecting a wide range of metrics extensively reported in previous literature. 

In order to quantify the relationship between the empirical and simulated data 

(obtained from the model), we measured a goodness-of-fit level as the 

Pearson correlation between the empirical and simulated FC matrices and 

inspected if the obtained value gave an indication of impairment or 

abnormalities in any of the other metrics. 

 

We first determined how well the model predicted each subject’s empirical FC 

matrix by computing the Pearson correlation between the healthy control 

subject’s predicted and empirical FC matrix. Figure 5.2a shows the 

distribution of correlation coefficients over the entire sample, indicating that 

the predictive model generated simulated FC matrices that consistently 

showed a moderate level of accuracy (group mean, r=0.43, std=.05; Figure 

5.2a). 

 

To assess whether the model accurately predicted specifically the 

abnormalities in a patient’s FC that resulted from their stroke, we correlated 

each patient’s empirical and simulated z-scored FC abnormality matrices. 

Figure 5.2c shows that the mean correlation across patients was significantly 

positive (t(95)= 12.65, p< .01), indicating that patient abnormalities in FC were 

significantly predicted. 
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Next,  we analyzed how well the model predicted specific FC-based measures 

that are typically abnormal in stroke patients: 1) a decrease of negative intra-

hemispheric FC between regions of the Dorsal attention networks (DAN) and 

Default mode network (DMN); 2) a decrease of inter-hemispheric homotopic 

FC; 3) a decrease of modularity. Figure 5.2b shows that the empirical and 

simulated values for these three signatures of stroke were significantly 

correlated across patients (intra-hemispheric: r=.47, p<.01; inter-hemispheric: 

r=.46, p<.01; modularity: r=.40, p=.03). Previous studies have shown that 

whole-brain GEC models preserve the same three FC-based measures, 

especially when they include structural disconnection information, revealing 

the key importance of incorporating this information into the models (Idesis, 

Favaretto, et al., 2022). In addition, for each patient we separately averaged 

the entries in their z-scored FC abnormality matrix  for interhemispheric 

homotopic FC and DAN-DMN FC to assess whether the model specifically 

predicted patient abnormalities in these two FC measures. The results, shown 

in Figure C9, indicate that abnormalities in both FC measures were 

significantly predicted. Therefore, these results indicate that the predictive 

model reproduced to some extent the overall FC matrix, patient-specific 

abnormalities in that matrix, summary FC-based measures that are typically 

abnormal following a stroke, and patient-specific abnormalities in those 

measures. 

 

Finally, we used Partial Least Squares Regression (see Methods) in order to 

separately assess how well the simulated FC matrices, the empirical FC 

matrix, the z-scored FC abnormality matrix (showing how abnormal was the 

matrix compared to the control) and the SDC matrix predicted the patients’ 

behavioral scores. Although the simulated FC matrix was modestly predictive 

across behavioral domains, the model independent SDC matrix showed 

nominally better performance with the exception of the domains for Attention 

VF, Attention Ave, and Memory Verbal (Figure 5.2d). The empirical FC matrix 
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showed lower performance than the z-scored and simulated FC matrices 

across all domains, possibly because the predictive model that generated a 

patient’s simulated FC matrix explicitly incorporated their structural 

disconnection matrix. Overall, these results indicate that although the 

predictive model partly accounted for behavioral abnormalities, the model did 

not generally perform better than a purely structural measure. 
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Figure 5.2: Model prediction of patient FC and behavior 

Figure 5.2: Model prediction of patient FC and behavior. (A) The Pearson correlation between 

the empirical and simulated FC matrices of each subject was computed in order to assess 

model accuracy. (B) FC-based measures typically abnormal in stroke patients were calculated 

from the empirical and simulated FC matrices in order to compare their similarity. (C) The 

distribution across patients of the correlation between the empirical and simulated z-scored FC 

abnormality matrices for each patient.  (D) Separate partial least squares regression (PLSR) 

analyses using the empirical, z-scored, and simulated FC matrices and the structural 

disconnection matrix as regressors were conducted to predict each domain of behavioral 

impairment. 
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5.3.2 Model accuracy in relation to structural damage and 

global metrics 

 

In order to identify factors that determine how accurately a patient’s FC matrix 

is simulated by the predictive model, we next investigated whether structural 

and functional features affect how accurately the model accounts for the data 

from individual patients. Specifically, we examined whether the accuracy of 

the model’s simulation of a patient’s FC matrix, as indexed by the correlation 

between the patient’s simulated and empirical FC matrices, covaried with the 

structural damage from the patient’s lesion, the values of the patient’s graph-

based functional metrics, and the values of the patient’s simulated or 

empirical FC matrices.  

 

We found that higher model accuracy was associated with lower values of 

total structural disconnection (r: -.58, p<.01), which served as a measure of 

overall lesion damage (Figure 5.3A, left panel). When splitting the sample in 

half by using the median value of total structural disconnection, patients with 

greater total disconnection showed significantly lower model accuracy (t(94)= 

5.82, p< .01) (Figure 5.3a, right panel). A similar analysis using lesion 

volume (number of damaged voxels) as an alternative metric yielded similar 

results (Figure C2; an example of a patient lesion and the corresponding 

asymmetric effective connectivity matrix is shown in Figure C3). 

 

The dependence of model accuracy on lesion severity was consistent with its 

dependence  on the magnitude of graph-based metrics that are typically 

abnormal following a stroke (Rocha et al., 2022). We found significant positive 

correlations between model accuracy and global efficiency (r=.54, p<.01; 

Figure 5.3b), entropy (r=.30, p<.01; Figure 5.3c), and average degree (r=.58, 

p<.01; Figure 5.3d). 
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Furthermore, the Full Predictive whole brain model generated FC matrices 

whose correlation with empirical FC matrices (i.e., model accuracy) was 

significantly related to the magnitudes of intra-hemispheric FC (r=-.23, p=.02) 

and FC modularity (r=.33, p<.01) as seen in Figure 5.3e. The sign of the 

relationship was consistent with the conclusion from Figures 5.3a and 5.3b-

d that the model poorly predicted the functional measures of patients that had 

more abnormal structural or functional measures. However, model accuracy 

was not correlated with the magnitude of inter-hemispheric FC, which is 

typically lower in stroke patients than controls. 

 

Finally, separate PLSR analyses showed that model accuracy for a patient 

was well predicted by the full SDC matrix, next by the simulated FC matrix, 

the z-scored FC matrix and least by the empirical FC matrix (SDC: R2=0.66, 

p<.01, Sim-FC: R2: 0.37, p<.01, Z-scored Abnormality FC:  R2: 0.35, p<.01, 

and Emp-FC: R2: 0.27, p<.01) (Figure 5.3f). 

 

Overall, these results indicate that the model’s ability to accurately reproduce 

a patient’s FC matrix decreased as the patient’s structural measures, and to 

a lesser extent functional measures, showed larger departures from those for 

healthy controls. 
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Figure 5.3: Structural and functional determinants of model accuracy for individual patients 

Figure 5.3: Structural and functional determinants of model accuracy for individual patients (A) 

Subjects with lower levels of disconnection exhibited a higher correlation between the empirical 

and simulated FC matrices, indicating better model performance for patients with less severe 

lesions. (B-C-D) Higher global efficiency (B), entropy (C) and average degree (D) were 

associated with higher model accuracy. (E) Model accuracy for FC-based measures typically 

abnormal in stroke patients was assessed for the presented model. Accuracy of the  full 

predictive model was significantly associated with the magnitude of intrahemispheric FC and 

modularity but not  interhemispheric FC.  (F) Model accuracy predicted by each type of 

regressor (SDC matrix, FC empirical and FC simulated matrices, z-scored FC abnormality 

matrix) in a PLSR analysis of model accuracy. 
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5.3.3 Model comparison 

 

Having established the accuracy with which the Full Predictive model 

reproduced measures that are typically abnormal in stroke patients (Figures 

5.2b and 5.2c), we compared its performance with a patient-specific and non-

predictive model reported in a previous study  (Idesis, Favaretto, et al., 2022) 

that used both anatomical and functional information to simulate a patient’s 

time series (referred to as the Non-predictive patient specific model) (Figure 

5.4a).  

 

Secondly, two comparative predictive models were chosen to assess how 

much model accuracy depended on the disconnection mask that was 

incorporated in the Full Predictive model. The model without mask allowed us 

to assess the accuracy gain obtained by incorporating the patient's lesion 

information, with respect to not incorporating any lesion information (i.e., 

using the healthy group GEC for all patients). The surrogate mask model 

allowed us to assess the accuracy gain obtained by incorporating specifically 

the patient’s lesion information, with respect to using a lesion from a different 

patient (Figure 5.4b).  

 

We compared the performance of all models by computing the correlation of 

the simulated and empirical FC matrices. The Full Predictive model showed 

roughly equivalent accuracy to the Non-predictive patient specific model 

(Idesis, Favaretto, et al., 2022), while the Model with surrogate mask and the 

model without mask showed lower accuracy (Figure 5.4c).  

 

An ANOVA indicated that the main effect of model type (non-predictive, full 

predictive, no mask, surrogate mask) on accuracy  was significant (F(3,378)= 

30.74, p<.01).  Post-hoc tests indicated that the patient-specific and full 

predictive models did not significantly differ in accuracy (p<.36) but were 
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significantly more accurate than both the surrogate mask and no mask 

models (p<.01 in all cases). Model accuracy relative to the accuracy of the 

healthy control group model is shown in Figure C4. The influence of the 

global coupling parameter (GC) is presented in Figure C5. The relation 

between the accuracy of each model and the magnitude of FC measures 

typically abnormal in stroke patients is presented in Figure C6. Comparisons 

of dynamical metrics between the models are presented in Figure C8 (see 

figure caption for explanation of metrics). 

 

Overall, the results show the efficacy of the full predictive model, which does 

not use a patient’s functional BOLD data, allowing its predictions to be 

generalized to new patient datasets, and opening the door for predicting the 

expected effects of a simulated lesion or external stimulation of a patient’s 

brain. 
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Figure 5.4: Model comparisons 

 
Figure. 5.4: Model comparisons: (A) We calculated the Non-predictive patient specific model 

using both the anatomical and functional data of each patient. This model was not predictive 

since it was fit to the patient’s functional data. (B) We calculated two comparative predictive 

models to compare with the full predictive model. The Predictive No-mask model was built 

using only the healthy GEC while the predictive surrogate mask model was calculated by 

modifying the healthy GEC via the disconnection mask of a different patient. (C) The similarity 

between the empirical and simulated FC matrices was assessed for each model. The non-

predictive patient specific model and full predictive model showed similar levels of performance 

that exceeded performance for the surrogate and no-mask models.  
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5.4 Discussion 

The results show that functional connectivity in patients could be predicted by 

a whole-brain computational model strictly from the structural disconnection 

caused by patient’s lesion, suggesting that the model mechanistically 

captured to some degree the relationship between anatomical structure and 

functional activity. Moreover, the model significantly predicted abnormalities 

in patient FC with respect to the FC of the healthy control group  Although the 

model also predicted the behavioral abnormalities of patients, prediction was 

no better than that obtained using a purely structural measure, the structural 

disconnection matrix. While previous work has examined how well 

computational models can reproduce FC when model  parameters are directly 

fitted using functional and structural data from healthy controls or stroke 

patients (Adhikari, Griffis, et al., 2021; Idesis, Favaretto, et al., 2022), the 

current study moves fundamentally beyond such work by determining 

whether these models can in fact predict the effects of a stroke based solely 

on the structural information associated with a patient’s lesion (Rocha et al., 

2022).  

 

We first fit the model to data from age- and education-matched healthy 

controls based on a healthy structural connectome and the healthy controls’ 

functional imaging data. For each patient, we then determined how the 

patient’s lesion has modified the healthy structural connectome and made 

corresponding changes to the structural connectivity parameters in the 

healthy model (the GC parameters) without additional model fitting or 

recourse to the patient’s functional data. Finally, the modified healthy model 

specific to the patient generated the patient’s predicted FC, which was 

compared against the empirically measured FC. Specifically, model accuracy 

was evaluated by assessing the correlation between the patient’s empirical 

and predicted FC matrices. Because FC matrices specify the functional 

interactions between each pair of brain regions, the predicted matrices 
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potentially provide information concerning which functional connections are 

particularly vulnerable in the patient, a possibility also raised by the prediction 

of patients’ z-scored FC abnormality matrices. 

 

Perhaps the most surprising result was that the accuracy of the full predictive 

model was essentially equivalent to the accuracy obtained by fitting the model 

directly to the patient’s functional and structural data. Moreover, the accuracy 

of the full predictive model depended on incorporating the structural 

disconnection specific to that patient’s lesion, as shown by the significantly 

poorer performance obtained by substituting the structural disconnection for 

a different patient. However, the accuracy for predicting a patient’s FC matrix 

tended to be less the more a patient’s structural connectome and functional 

measures differed from the structural connectome and functional measures 

of healthy control subjects. Specifically, accuracy decreased with the 

magnitude of the total structural disconnection caused by the lesion. Similarly, 

measures of modularity and intra-hemispheric FC and graph-based 

measures that are typically abnormal following a stroke tended to be more 

poorly predicted the more they differed from healthy control values 

(surprisingly, a similar relationship was not observed for inter-hemispheric 

FC, an important signature of stroke-induced dysfunction). One interpretation 

is that the model tended to better predict patients that were more similar to 

healthy controls since it was initially based on a model computed from healthy 

control data.  Another possibility is that similar relationships are also present 

for the non-predictive patient-specific model, i.e., the dependence of model 

accuracy on structural and functional measures is not related to prediction per 

se. The results in Figures C6 and C7 provide some support for this 

alternative explanation.  For example, the accuracy of the patient-specific 

non-predictive model tended to decrease with the magnitude of a patient’s 

inter-hemispheric FC (Figure C6). However, the results do not rule out the 

first explanation as a contributing factor. 
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Previous computational work based on concepts from statistical mechanics 

has shown that resting-state organization conforms to a state of ‘criticality’ 

that promotes responsiveness to external stimulation, i.e., resting state 

organization facilitates task-based processing (Deco & Jirsa, 2012; Deco, 

Ponce-Alvarez, et al., 2014; Sanz Perl et al., 2022; Senden et al., 2017). The 

rich body of empirical work on resting-state organization has facilitated an 

important testing ground for evaluating computational whole-brain models. In 

these models, neural modules or elements are connected by ‘structural’ links 

that mirror the empirical structural connectivity of the human brain as 

assessed using diffusion-based MRI (Deco & Jirsa, 2012; Deco et al., 2011; 

Deco, Ponce-Alvarez, et al., 2014), resulting in resting-state dynamics that 

respect critically. Initial applications of whole-brain computational models to 

stroke populations (Adhikari et al., 2017; Saenger et al., 2018) used the 

biophysically-based model of Deco et al. (Deco, Ponce-Alvarez, et al., 2014), 

which involves a mean field approximation of populations of spiking neurons 

with realistic NMDA, AMPA, and GABA synaptic dynamics. However, the 

authors subsequently developed the mesoscopic Hopf model (Deco et al., 

2019) used in the current study, which provides a better fit to healthy control 

data and runs two orders of magnitude faster, allowing the use of higher- 

resolution functional parcellations that likely increase model accuracy. 

 

The whole-brain computational models presented in recent studies that 

involve stroke patients included a global coupling parameter and GEC 

parameters that encoded directional interactions between nodes that had 

direct structural connections (Adhikari, Griffis, et al., 2021; Idesis, Favaretto, 

et al., 2022). The resulting generative effective structural connectivity weights 

allowed a better fit between the empirical and modeled FC than that achieved 

by models that only varied the global coupling parameter. In both papers, 

however, the model was fit directly to a patient’s functional data, and therefore 

was not a predictive model. 
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The mesoscopic Hopf model (Deco et al., 2019) includes global coupling and 

GC parameters that affect the connectivity between nodes of the model and 

bifurcation parameters that affect the dynamics of the nodes. Specifically, the 

bifurcation parameter for a node governs the transition between noise-

dominated and oscillatory behavior. The current work assumed that strokes 

do not affect the bifurcation parameters/nodes, only the connections between 

nodes, yet prior studies indicate that delta waves are prominent perilesional 

and propagate to directly connected regions (Russo et al., 2021; Sarasso et 

al., 2020). Therefore, nodes for perilesional/partly damaged parcels and 

perhaps directly connected parcels may have abnormal bifurcation 

parameters. Evaluating this possibility is beyond the scope of this work but is 

currently in progress. On the positive side, properly accounting for abnormal 

bifurcation parameters/nodes may improve model accuracy. On the negative 

side, it is unclear how node abnormality might be incorporated into a fully 

predictive model. 

 

The presented full predictive model could be applied in future work to other 

focal and non-focal pathologies that damage the structural connectome. Also, 

the current study focused on predicting FC in sub-acute stroke patients, but 

future studies could examine whether changes in structural connectivity 

during recovery produce predicted changes in FC. Because the dataset 

consisted mostly of ischemic patients; however, model predictions will need 

to be tested in hemorrhagic stroke patients before concluding that the model 

applies more generally to stroke. 

 

In conclusion, the current study shows that the effect of stroke-induced 

perturbations in structural connectivity on functional dynamics can be 

captured by a fully predictive whole-brain computational model. Therefore, 

adding lesion information to a model trained on healthy functional data is 

sufficient to reproduce functional anomalies, even though the accuracy of 

prediction worsens for patients showing greater structural damage and 
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functional deficits. Despite this limitation, the predictive model can provide 

unique insights into how strokes disrupt resting brain organization. 
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CHAPTER 6 

6. Recovery prediction: Latent information 

contribution to the prediction of stroke 

patients’ recovery 

Work in this chapter reflects a paper currently under review. 
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Highlights 

 

- We found a low-dimensional representation encoding the fMRI data which 

preserves the typical FC anomalies known to be present in stroke patients 

- We enhanced patients’ diagnostics and severity classification. 

- We showed how low-dimensional representation increased the accuracy of 

recovery prediction. 

- We revealed how complexity metrics such as brain signal reversibility 

provided indicators that relate to lesion severity and lesion recovery 

 

Abstract 

Large-scale brain networks reveal synchronization between distinct regions 

of the brain, referred to as functional connectivity (FC), which can be observed 

through neuroimaging techniques such as functional magnetic resonance 

imaging (fMRI). FC studies have shown that brain networks are severely 

disrupted by stroke. However, since FC data are usually large and high-

dimensional, extracting clinically useful information from this vast amount of 

data is still a great challenge, and our understanding of the functional 

consequences of stroke remains limited. Here, we propose a dimensionality 

reduction approach to simplify the analysis of this complex neural data. By 

using autoencoders, we find a low-dimensional representation encoding the 

fMRI data which preserves the typical FC anomalies known to be present in 

stroke patients. By employing the latent representations emerging from the 

autoencoders, we enhanced patients’ diagnostics and severity classification. 

Furthermore, we showed how low-dimensional representation increased the 

accuracy of recovery prediction. 

 

Keywords 

Stroke – fMRI - Dimensionality reduction – Reversibility - Recovery prediction 
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6.1 Introduction 

There is a growing amount of evidence that neural activity is low-dimensional, 

at various scales, in agreement with theoretical work arguing that low-

dimensional dynamics exist in the brain because neural circuits operate more 

effectively in low dimensions (Dubreuil et al., 2020; Schuessler et al., 2020). 

This suggests that the huge dimensionality of functional neuroimaging data 

(millions of voxels or hundreds of regions) may be highly redundant, and that 

it may be possible to find low-dimensional representations, or “latent signals” 

(Humphries, 2020) preserving most of the relevant information content. 

However, evidence that a low-dimensional representation can actually retain 

the most prominent dynamical features, including, crucially, clinically relevant 

features, is still weak. 

 

In this work, we use dimensionality reduction, which maps high-dimensional 

data into a new space whose dimensionality is much smaller (Shalev-Shwartz 

& Ben-David, 2014), to investigate low-dimensional representations of fMRI 

data in normal subjects and stroke patients. This is an ideal testbed to assess 

the clinical relevance of low-dimensional representation. At the population 

level there is strong evidence that post-stroke neurological impairments have 

a low-dimensional structure (Corbetta et al., 2018). Moreover, stroke 

produces dysfunction in distributed brain networks (Carrera & Tononi, 2014), 

which are commonly identified as low-dimensional abnormalities in functional 

connectivity (FC) that predict behavioral deficits after stroke. These include 

reductions in interhemispheric network integration, ipsilesional network 

segregation, and network modularity (Arnemann et al., 2015; Baldassarre et 

al., 2016; Crofts et al., 2011; Gratton et al., 2012; Joseph C Griffis et al., 2019; 

J. C. Griffis et al., 2019; Meunier et al., 2010; Siegel et al., 2016). 

 

Classic dimension reduction techniques, such as PCA, are linear. When 

applying a linear method to neural activity data and keeping d dimensions, 
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one is implicitly assuming that the neural activity sits on a d-dimensional 

plane.  However, the actual shape – the manifold – on which the neural 

activity sits is generally a curved nonlinear surface (Cunningham & Yu, 2014). 

Machine learning can be employed to find low-dimensional, nonlinear 

representations of complex data with only a small set of latent variables. While 

several previous studies have applied deep learning in fMRI data (Firat et al., 

2015; Han et al., 2015; Huang et al., 2017), they have mainly focused on 

classification accuracy, rather than low-dimensional representations. Here, 

we apply deep learning methods directly to functional time series to extract a 

nonlinear low-dimensional representation of brain dynamics. In addition, we 

leverage the power of the recently proposed Temporal Evolution NETwork 

(TENET) framework (Deco et al., 2021; Deco et al., 2022) to analyze the 

asymmetry, or  “reversibility” in the flow of the brain signals. TENET offers 

critical insight about the degree of non-equilibrium in brain dynamics, a 

variable that has been shown to be severely altered in consciousness 

disorders (Deco et al., 2022) and could be of high clinical significance in other 

neurological conditions. TENET requires to compare cross-correlation 

matrices, whose estimation is affected by large error in high dimensional 

spaces, and therefore is expected to significantly profit from a dimensionality 

reduction step. 

 

Here, we will demonstrate that the latent non-linear components of brain 

dynamics found by machine-learning approaches retain the most important 

dynamical features that are usually identified from the high-dimensional 

original data. Furthermore, we will demonstrate that the latent representation 

is more powerful, both for diagnostic and for prognostic purposes. 

Diagnostically, the latent representation yields a better classification of clinical 

status (healthy/mild stroke/severe stroke) at the acute stage, and a better 

prediction of behavioral deficit. Prognostically, it improves the prediction of 

recovery after 1 year of the incident, as compared to other methods. 
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6.2 Material and methods 

6.2.1 FC abnormalities 

 

Local ischemia, which damages cells and neural connections at the site of 

injury, primarily affects white matter, thus altering long-range FC between 

cortical areas. Three types of large-scale FC alterations affect Resting State 

Networks (RSNs) (Siegel et al., 2016): i) within-network interhemispheric FC 

(Crofts et al., 2011; Joseph C Griffis et al., 2019; J. C. Griffis et al., 2019; 

Siegel et al., 2016) ii) between-network intra-hemispheric FC (Arnemann et 

al., 2015; Baldassarre et al., 2016; Gratton et al., 2012; Siegel et al., 2016); 

and iii) Modularity (Gratton et al., 2012; Meunier et al., 2010; Siegel et al., 

2018). 

 

6.2.2 Autoencoder 

 

An autoencoder takes an input with a high dimensionality, processes it 

through a neural network and tries to compress the data into a smaller 

representation (Huang et al., 2017). In order to achieve this, the procedure 

takes two steps: encoding (embedding) and decoding (reconstruction). The 

autoencoder, therefore, consists of a deep neural network with rectified linear 

units as activation functions and dense layers, which bottlenecks into the d-

dimensional layer (Sanz Perl et al., 2021). Gradient descent was 

implemented to backpropagate the errors, with the purpose of training the 

network. The minimized loss function consists of a canonical reconstruction 

error term (calculated from the output layer of the decoder). 

 

Subsequently, to acquire training and test sets, we produced 80/20% random 

splits. We employed the training set to optimize the autoencoder parameters. 
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The training process involved batches with 256 samples and 100 training 

epochs (if needed) making use of the loss function and an Adam optimizer 

(Sanz Perl et al., 2021) 

 

The encoder network applies a nonlinear transformation to map the input 

signal into Gaussian probability distributions in latent space, and the decoder 

network mirrors the encoder architecture to produce reconstructed matrices 

from samples of these distributions. By observing the reconstruction loss 

(comparison between the output and input signal), the performance of the 

autoencoder could be tuned to the appropriate hyperparameter configuration 

(Figure D2a). Autoencoders have proven to be effective even when applied 

on small sample sizes (Lin et al., 2022), such as the one considered here 

(time points x subjects = 48384). In order to avoid overfitting, we applied 10 

iterations of cross-validation (80/20) and early stopping techniques (as the 

performance of the model increases to a peak point, training can be stopped). 

As input for the autoencoder we used the BOLD signal of both healthy 

controls and stroke patients (Figure 6.1a). Therefore, the input (and the 

output) of the autoencoder consists of a matrix with the number of ROIs as 

the number of rows and the concatenated time points of the subjects’ time 

series as columns (every subject provides 896 samples for the AE training). 

This results in a 235-by-896 matrix of data representing each subject. 

Nevertheless, for the classification and prediction analyses, different metrics 

were used as input (See methods). 

6.2.3 Edge-centric analysis 

 

Using a straightforward unwrapping of the Pearson correlation, co-fluctuation 

time series (alternatively referred to as “edge time series”) data can be 

estimated for each edge. Unlike sliding-window time-varying connectivity, 

which requires the parameterization of a window duration, kernel shape, and 
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step size, edge time series have the same temporal resolution as the original 

time series data. Importantly, the time-averaged value of edge time series is 

the correlation coefficient. This means that edge time series are a 

mathematically exact decomposition of a functional connection into its 

framewise contributions. Previous analyses of edge time series data have 

shown that transient periods of high-amplitude activity make 

disproportionately large contributions to the time-averaged functional 

connectivity (Cifre et al., 2020; Petridou et al., 2013; Enzo Tagliazucchi et al., 

2012; Zamani Esfahlani et al., 2020). In other words, data selected from 

specific temporal slices can be used to reconstruct a similarity matrix with a 

high correspondence to the functional connectivity matrix constructed from 

the full dataset (Betzel et al., 2021; Greenwell et al., 2021).  

 

In the current study, we applied a peak detection algorithm  as described 

previously (Pope et al., 2021). The collective co-fluctuations of brain regions 

were estimated as the root sum square (RSS) of co-fluctuations between all 

pairs of brain regions (edges) at every time point. Next, BOLD time series 

were randomly shifted (using MATLAB’s circshift operator), hence 

approximately preserving each node’s autocorrelation, while randomizing the 

cross-correlation across nodes. This null model was iterated 1,000 times. 

Time points in the original time series for which the empirically observed RSS 

amplitude exceeded the null model (P<0:001) were maintained. The resulting 

peaks in the original RSS at the corresponding time points were considered 

as significant events. RSS peaks that exceed extreme z-score values (above 

or below 4.5 deviations) were excluded from the analysis. These peaks do 

not occur frequently (at most once per 1,100 frames). The correlation between 

the FC created by the timepoints containing peaks, and the original FC, gives 

an indication of how much information is contained in these specific points 

(Idesis, Faskowitz, et al., 2022). 
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Edge-centric analysis has been applied to stroke datasets in a previous study 

referenced in chapter 3 (Idesis, Faskowitz, et al., 2022). This work 

demonstrated that edge-centric measures, such as normalized entropy or 

high-amplitude co-fluctuations (transient periods of high-amplitude activity), 

can be used as indicators of lesion severity and recovery (Idesis, Faskowitz, 

et al., 2022). 

 

6.2.4 Dynamic features preserved/enhanced in latent space 

6.2.4.1 FCD 

Time versus-time matrix representing the functional connectivity dynamics 

(FCD), where each entry FCD(t1, t2) is defined by a measure of resemblance 

between FC(t1) and FC(t2) (Cabral, Kringelbach, et al., 2017; Deco et al., 

2017). Therefore, the FCD captures the spatiotemporal organization of FC by 

representing the coincidences between FC(t) matrices. It results in a 

symmetric matrix where an entry (ts1, ts2) is defined by the Pearson 

correlation between FC(ts1) and FC(ts2) (Deco & Kringelbach, 2016) 

 

6.2.4.2 Edge metastability 

We calculated the standard deviation of the edge time series which 

represents the temporal metastability. This metric gives information about 

temporal variability in the level of synchronization  (Capouskova et al., 2022; 

Piccinini et al., 2022). 

 

6.2.4.3 Modularity 

Overall Newman’s modularity was calculated, making a comparison between 

the number of connections within a module to the number of connections 
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between modules (Newman & Girvan, 2004). We adopted a constant null 

derived from the Potts model (Traag et al., 2011). We retained the full FC 

matrix, including its negative entries, for the purpose of community detection 

by applying the Louvain algorithm. Louvain bipartitions are identified by first 

inspecting a wide range of the resolution parameter, selecting upper and 

lower boundaries within which a two-community structure occurs, followed by 

a finer sampling of the range to retrieve bipartitions. 

6.2.4.4 Functional Complexity 

Functional complexity was calculated based on previous literature (Zamora-

López et al., 2016).  According to this definition, complexity emerges when 

the collective dynamics are characterized by intermediate states, between 

independence and global synchrony (Tononi et al., 1994). Thus, the authors 

choose to define complexity as the difference between the observed 

distribution of the functional connectivity and a uniform distribution. Hence, 

functional complexity is quantified as the integral between the two 

distributions. The latter is estimated by approximating the distributions with 

histograms and replacing the integral with the sum of differences over the 

bins. The equation for the functional complexity is given below; for more 

information, see (Zamora-López et al., 2016). 

 

𝐶 = 1 −
1

𝑐𝑚
 ∑ |𝑝𝜇(𝑟𝑖𝑗) − 

1

𝑚
| ,𝑚

𝜇=1   (6.1) 

 

Where |.| means the absolute value and 𝐶𝑚  = 2 
𝑚−1

𝑚
 is a normalization factor 

that represents the extreme cases in which the p(𝑟𝑖𝑗) is a Dirac-delta function 

𝛿𝑚.  

 

6.2.5 Classification 
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A random forest classifier (Breiman, 2001; Sanz Perl et al., 2021) was used 

in order to classify the participants. Briefly, the random forest algorithm builds 

upon the concept of a decision tree classifier, where samples are iteratively 

split into two branches depending on the values of their features (Breiman, 

2001; Sanz Perl et al., 2021). For the classification procedure, there were two 

different division criteria: 

1) Distinction between controls and stroke patients 

2) Distinction between patients with high vs low lesion 

volume (see chapter 2). As an alternative, we 

calculated the distinction using thee NIHSS as division 

criteria, showing similar results (Figure D10) 

 

We trained random forest classifiers with 1000 decision trees using 80% of 

the subjects through cross-validation analysis. All accuracies were 

determined as the area under the receiver operating characteristic curve 

(AUC). 

 

The same procedure was applied both in source and latent space, having as 

possible features either the upper triangle of the corresponding FC, or the 

upper triangle of the reversibility matrix (See Reversibility Section). The latent 

space information used was obtained from the latent dimension 6 due to the 

results obtained in Figure 6.2c and Figure D2. 

 

The reversibility matrix is calculated as defined in previous literature (Deco et 

al., 2021; Deco et al., 2022) in which the difference is calculated between the 

signal in the “real arrow of time” compared to the “reversed arrow of time”. 

The resulting measure captures how different, or “asymmetrical”, the signal 

is across time. Key demographic variables such as age and gender may 

strongly affect our findings. Therefore, we verified that the two groups 

(patients/controls) were matched in terms of these variables (Supp. Table 

D1). In addition, to further control for the possible confounding influence of 
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these factors, we checked that the two metrics showing a significant 

patients/control difference did not present any significant age or gender effect. 

To this aim, we divided subjects by age (using the corresponding median) 

and gender. In both cases, we found no significant differences (p>.2) between 

the groups (Figure D13). 

6.2.6 Latent space visualization through 2D-Projection Association 

dimension with each behavioral domain 

 

In order to visualize the distribution of the subjects and obtain a more intuitive 

understanding of their variability, we converted the data in the latent space 

into a two-dimensional plane. In order to achieve this goal, we used t-

Distributed Statistic Neighbor Embedding (t-SNE) (De Filippi et al., 2021; Van 

der Maaten & Hinton, 2008). The proposed approach aims to preserve the 

local and global data structure while visualizing all samples in a two-

dimensional plane. The higher-dimensional data is transformed into a set of 

pairwise similarities and embedded in two dimensions such that similar 

samples are grouped together (Van der Maaten & Hinton, 2008). Figure 6.3d 

shows this approach performed both in the separation of controls versus 

patients, and patients with high versus low severity of damage. It is relevant 

to clarify the different amount of participants in both figures, as the first 

scatterplot is a comparison between a subset of patients (to have the same 

amount of subjects per group) against the healthy controls (the dataset 

consists of 27 healthy controls) while the second is a comparison within all 

the patients presented in the dataset (96 patients). 

6.2.7 Association of reduced dimension with each behavioral domain 

 

The relation between each of 9 behavioral tasks and the features used for the 

subjects’ classification (See 6.2.5: Classification Section) was assessed by 
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means of Pearson correlation. The presented result in Figure 6.3f was 

performed with 6 dimensions. Furthermore, Figure D3 shows the same 

analysis with 10 dimensions in order to demonstrate the influence of higher 

dimensions when using dimensionality reduction approaches.  

6.2.8 FC distance 

 

In order to measure the similarity or distance between the stroke patients FC 

(at each time point) and the healthy controls FC, we used the Frobenius norm 

of the difference between the two FC matrices. The higher the FC Distance, 

the higher the damaging impact of the lesion on the FC. Similarly, the lower 

the FC Distance, the lower is the impact (Vattikonda et al., 2016). As an 

alternative approach to calculate the FC, we used the pairwise co-

classification of nodes for a consensus clustering procedure (Figure D4). Co-

classification yields a full matrix of pairwise affinities between nodes (scaled 

between 0 and 1) and one can thus use existing community detection 

algorithms for the consensus clustering step (Jeub et al., 2018). This analysis 

was added as a control as it has proven to overcome existing problems while 

identifying community structures (Jeub et al., 2018).  

6.2.9 Correlation FC/SC 

 

For each subject, the structural–functional coupling metric was quantified 

using Pearson’s correlation between structural (healthy control anatomical 

template, see methods) and functional connection strengths as reported in 

previous studies (Liégeois et al., 2020; Tsang et al., 2017; Zhang et al., 2017). 

Previous work has shown how the acute stages after stroke incidents reveal 

a low relation between the two matrices while the strength of their relation 

increase as the patients recovered, which enables its use as a metric of 

recovery across time (Zhang et al., 2017). As reported in previous studies 



152 
 

(Coletta et al., 2020), we calculated the correlation between the SC and FC 

values for each network in order to assess how the stroke incident altered the 

structural-functional coupling in the corresponding areas. (Figure D5) 

6.2.10 Prediction of recovery 

   

A random forest classifier was used in order to classify the participants based 

on their recovery, comparing the ones with high level (better recovery) against 

low level (worse recovery). For more details, see section 6.2.5: 

“Classification”. The same procedure was applied both in source and latent 

space, using as possible features either the upper triangle of the 

corresponding FC, or the upper triangle of the reversibility matrix. The latent 

space information used was obtained from the latent dimension 6 due to the 

results obtained in Figure 6.2c. 

 

The division between high vs low recovered was made by splitting the sample 

in two using the median of three distinct metrics.  

1) Behavior: Amounts of domains recovered after 

1 year. 

2) FC Distance: Distance between the subjects 

FC after 1 year and the healthy control FC  

3) Correlation FC-SC: FC-SC correlation of each 

subject after 1 year. 

 

As an alternative for the behavioral metric, we applied a principal component 

analysis of the behavioral recovery scores (
1 year score−2 weeks score

2 weeks score
) as used in 

previous literature (Ramsey et al., 2017). We used the first component’s 

median as a separation criterion (Figure D6). 
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6.2.11 Relationship of each dimension with FC abnormalities 

 

We estimated the relation between previously explained anatomical and 

functional features (See Chapter 2) with the mean and standard deviation of 

each time-pattern in the latent space giving as a result 30 possible 

associations (5 features x 6 dimensions). Results are presented in Figure D7. 

6.2.12 Latent FC means per dimension 

 

The Pearson correlation was calculated at the latent space with all the 

estimated dimensions giving as an output a matrix of DxD (Dimensions). The 

mean of the resulting matrix was obtained in order to compare across the 

different dimensions of the latent space. (Figure D2b) 
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6.3 Results 

We derived a low-dimensional embedding of the BOLD signal of a group of 

healthy controls and stroke patients and analyzed the latent information 

contained in it (Figure 6.1). The technique calculates the reconstruction error 

at each latent space dimension (2 through 10) to identify the point at which 

the error stabilizes (Figure D2a). The correlation between the source and the 

latent space exceeds the value of 0.9 at dimension 6. Once obtained the 

latent representation, the resulting matrix of size DxT (Dimensions by time 

points) of the testing set is used to analyze the embedded properties of the 

signal. As a first step, several functional features were calculated in both 

source and latent space to determine whether the information is preserved 

after the dimensionality reduction. Next, the latent representation was used 

to classify healthy controls vs patients at the acute stage (2 weeks after the 

stroke incident). Last, the low-dimensional embedding at the acute stage was 

used to predict recovery, in order to compare the recovery prediction accuracy 

with that obtained with the source space signal.  The present study shows 

how the embedded information obtained through autoencoders can improve 

over well-studied metrics of diagnostic and prediction of recovery. 



155 
 

 

Figure 6.1: Pipeline of diagnostic and predictive analyses through latent space calculations 

Figure 6.1: Pipeline of diagnostic and predictive analyses through latent space calculations: fMRI 

signals from both groups (healthy controls and stroke patients) were used as input signals for 

the autoencoder. Reconstruction error was calculated by assessing the difference between the 

output and the input signal. The latent information was used to perform three different analyses: 

Top segment shows the features both in source and latent space to verify if the information was 

preserved after the dimensionality reduction. Middle segment shows the accuracy of the 

classification used to separate healthy controls from stroke patients and to separate stroke 

patients with low and high severity. 

Lower segment shows how the latent representation is used to predict the recovery after one 

year after the stroke. 
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6.3.1 Preserved features in latent space 

 

The latent representation obtained through the autoencoder exposed how 

non-trivial dynamic features were preserved. To illustrate this point, we 

selected 5 different metrics that demonstrate various time series attributes 

(Co-fluctuations peak agreement, Functional Connectivity Dynamics, Edge 

metastability, Modularity, and Functional complexity). In all cases, the 

features were maintained, and in some cases, even enhanced. For some of 

the analysis, we focus on a specific dimensionality, with 6 dimensions, based 

on the results provided by the reconstruction error calculation (Figure D2a). 

It is worth clarifying that, as the latent reduction requires a division between 

training and testing dataset, the amount of subjects used for the latent space 

is slightly lower, as visible in the different degrees of freedom.  

 

The same analyses were performed using a classical linear dimensionality 

reduction method, principal component analysis (PCA). To compare PCA with 

the latent representation obtained through the autoencoder, we used the 

same number of dimensions for the two methods, considering the 6 first 

principal components. These components accounted for only 85 percent of 

the total variance, implying that the autoencoder achieved a more efficient 

degree of dimensional compression. The results showed a higher 

performance of the autoencoder compared to PCA in preserving the 

dynamical features and discriminating between healthy controls and stroke 

patients (Figure D14). This suggests that the non-linear dimensionality 

reduction achieved though the autoencoder is much more efficient at 

capturing relevant dynamical features. 

 

In order to assess the amount of temporal information that was preserved 

after the dimensionality reduction, we first calculated the edge time series 

(See methods section) (Figure 6.2a). Furthermore, we compared how many 
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time points classified as peaks coincided in both spaces (peak agreement). 

The metric was normalized by dividing it by the sum of Peak Hits 

(coincidence) plus Peak Miss (not coincidence) (Figure 6.2b). We calculated 

the metric across all latent dimensions. There is a significant increase in the 

peak agreement between dimensions 5 and 6 (t(170)= -8.75, p < .01), while 

no other consequent dimension exhibited significant differences revealing, 

how the level of agreement stabilized after reaching dimension 6 (Figure 

6.2c). Remarkably, the stabilization of the peak agreement coincided with the 

one observed in the reconstruction error. These findings support the selection 

of 6 as the optimal dimension for performing the following analysis.  

 

We compared the co-fluctuation high-amplitude peaks (See Methods section: 

Edge-centric analysis) in source and latent space. It has been reported that 

the aforementioned peaks contain a large amount of the signal information 

(Pope et al., 2021; Zamani Esfahlani et al., 2020). A way to assess this is by 

observing the correlation between the FC component, created by the 

timepoints containing peaks, and the original FC. Therefore, we calculated 

the association between the standard FC and the FC computed only using 

the timepoints that revealed to contain peaks, resulting in a maximum 

Pearson correlation value of R=.93 (Figure 6.2d). Furthermore, the same 

correlation was displayed for all subjects showing an average association of 

R=.84 (Figure 6.2e). 

 

We compared the distribution of FCD between controls and stroke patients, 

revealing a significant difference in the source space (t(1790)= -7.89, p < .01). 

Nevertheless, the difference gets enhanced when comparing in the latent 

representation (t(1790)= -36.20, p < .01)) (Figure 6.2f) 

 

While there is no significant difference in the source space while comparing 

the level of edge metastability between controls and stroke patients (t(52)= 
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.12, p = .9), the difference is significant when comparing in the latent 

representation (t(46)= 3.5, p < .01) (Figure 6.2g). 

 

While there is a significant difference in the source space when comparing 

the level of Modularity between controls and stroke patients (t(121)= 4.48, p 

< 01), the difference is enhanced when comparing Modularity in the latent 

representation (t(46)= 8.77, p < .01)) (Figure 6.2h) 

 

Finally, while there is a significant difference in the source space when 

comparing the level of Functional Complexity between controls and stroke 

patients (t(52)= 3.23, p < .01), the difference is comparable when calculating 

Functional Complexity in the latent representation (t(46)= 4.1, p < .01)) 

(Figure 6.2i) 

 

In summary, the latent representation highlights crucial dynamical differences 

between patients and controls. 
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Figure 6.2: Preserved features in latent space 
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Figure 6.2: Preserved features in latent space: (A) Calculation of edge time series by means of 

dot product at each time point. The highest top amplitude frames (top %10 of co-fluctuation root-

sum-squared) were selected. (B) The peaks that occur at the same time point in the source and 

latent space were labeled as “agreement frames” and this amount was used as an indicator of 

preserved dynamics. (C) The amount of agreement frames was calculated for each dimension 

revealing the dimension 2 as the lowest. There was a significant difference between dimension 

2 and 3 (p<.01) and between dimension 5 and 6 (p<.01). Following dimension 6, the number of 

frames in agreement stabilizes. (D) We compared the distribution of the FCD of healthy controls 

and stroke patients. The difference observed in source space (p<.01) increased when observing 

the latent representation (p<.01). (E) Edge metastability was compared between controls and 

stroke patients showing no significant difference in the source space (p=.9) in contrast to the 

latent space (p<.01). (F) Level of modularity was significantly different in controls and stroke 

patients both in source (p<.01) and latent space (p<.01).  (G) Level of functional complexity was 

significantly different in controls and stroke patients both in source (p<.01) and latent space 

(p<.01). 

6.3.2 Classification in acute stage and relation with 

behavior 

 

We assessed patients’ diagnostics and severity classification through 

machine learning algorithms. We performed the same analysis in both 

source, and latent space, in order to compare if the embedded information in 

the latent representation was informative. To achieve that goal, we relied on 

two different metrics, the widely used FC mean, and the brain signal 

reversibility (see Methods) as a novel metric inferring signal dynamics and 

complexity. The results revealed how the dimensionality reduction benefits 

both the metrics, but specially the reversibility one, which obtained the 

maximum classification accuracy. Furthermore, the content of the latent 

representation was projected into 2-dimensions (see methods) in order to 

visualize how the group separation is better described in a non-linear way 

(Figure 6.3d). 

 

We used a random forest classifier to discriminate healthy controls from 

stroke patients at the acute stage. As an input to the classifier, we considered 
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two summary metrics, the reversibility (assessing the degree of reversibility 

of BOLD time series, see Methods), and the mean FC, comparing the results 

in the source and latent space. The latent information used for this analysis 

was explained in detail in the methods section. As an alternative, we 

performed the same analysis but replacing the mean FC by the standard 

deviation, showing similar results (Figure D11). The mean FC and the 

reversibility matrix were selected as metrics as they integrate spatial and 

temporal dynamics, together with the complexity of the system. Furthermore, 

this study aimed to use a traditional metric (mean FC) next to a novel one 

(reversibility), which has already been used with promising results in previous 

publications (Deco et al., 2021; Deco et al., 2022). 

 

Reversibility in the latent space showed the highest accuracy performance 

(mean = .84, SD = .11), followed by Reversibility in the source space (mean 

= .70, SD = .10), mean FC in the latent space (mean = .67, SD = .13) and 

mean FC in the source space (mean = .61, SD = .11). (Figure 6.3b) 

 

While classifying between stroke patients with high and low lesion volume of 

damage, reversibility in the latent space showed the highest accuracy 

performance (mean = .73, SD = .09), followed by mean FC in the latent space 

(mean = .72, SD = .09), Reversibility in the source space (mean = .65, SD = 

.10) and mean FC in the source space (mean = .59, SD = .09) (Figure 6.3c). 

 

We searched for the association between the previously reported metrics and 

all the behavioral scores differences normalized (
1 year score−2 weeks score

2 weeks score
) 

assessing the degree of behavioral recovery (Figure 6.3f). Furthermore, we 

performed the same analysis but using the behavioral scores at the acute 

stage (2 weeks) in order to see the relations at the initial state (Figure D8). 

Each radar plot shows the relation of each metric with each of the 9 behavioral 

domains. The further the point is from the center, the higher the Pearson 
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correlation value is. Furthermore, significant relations are indicated with 

asterisks (Figure 6.3f). 

 

When using the FC at the source space, there was a significant relation with 

Motor L (r = .25, p < .05) and Attention VF (visuospatial field bias, referred as 

“AttVF”)  (r = .24, p < .05) . When using the Reversibility at the source space, 

the following domains showed a significant relation: Language (r = -.21, p < 

.05), and AttentionVF (r = .23, p < .05).  When using the FC at the latent 

space, the following domains showed a significant relation: AttValDis (the 

ability to re-orient attention to unattended stimuli) (r= -.26, p < .05) and 

memory S (spatial memory) (r = -.22, p < .05). When using the reversibility at 

the latent space, the following domains showed a significant relation: MotorL 

(r= .48, p < .05), Att ValDis (r = .40, p < .05), MemoryS (r = .34, p < .05) and 

Motor IC (r = .36, p < .05) (Figure 6.3f). Behavioral tasks abbreviations are 

explained in detail in the methods section.  

 

In summary, the reversibility matrix got the highest number of significant 

relations with behavioral domains (4), followed by the reversibility matrix in 

source space, the FC matrix in latent space and the FC matrix in source space 

with 2 significant relations. We performed the same analysis but replacing the 

average FC for the standard deviation showing a higher value in the 

relationships’ strength (Figure D9). Mean FC and standard deviation are 

global metrics that allow the comparison of the source space and the latent 

representation, converting them in ideal approaches to assess the 

comparison between the two spaces. 

 

Lastly, each domain’s highest association is visualized in Figure 6.3e, 

displaying the highest Pearson correlation value for each behavioral variable. 

As a control, we inspected the same analysis while replacing the chosen 

dimension. The result of the association between dimension 10 and the 9 

behavioral scores is presented in Figure D3. 
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Figure 6.3: Classifications using the acute stage after the incident and its relation with behavior impairment 
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Figure 6.3: Classification in acute stage and relation with behavior: (A) Reversibility was 

computed by calculating the average of the difference between the time-shifted correlation 

matrices for the forward and reversed time series. Mean FC was calculated from the mean of 

the upper triangle of the FC. (B) The classification between controls and patients at the acute 

stage showed the reversibility in the source space as the highest accuracy (mean = 79%). The 

right part of the panel shows the comparison between the input and the output signal of the 

autoencoder. (C) The distinction between stroke patients with low and high lesion volume 

indicated that the highest accuracy was given by the reversibility in the latent space (mean = 

73%). Same description of the autoencoder as in Panel B was presented in Panel C. (D) 2-

dimension projection of the latent representation obtained in the controls’ vs patients’ latent 

space (left) and the patients with low vs high lesion volume latent space (right). Asterisks 

represent the mean of each group. (E) All the metrics used for the classification approach were 

related with each of the 9 behavioral domains recovery values (score after 1 year minus score 

after 2 weeks, divided the 2 weeks score). Asterisks represent which of the relations were 

significant (F) For each behavioral domain, the corresponding metric with the highest association 

was represented indicating the respective color. Red represents the latent space metric while 

blue represents the source space. 

6.3.3 Prediction of recovery 

 

We intended to assess recovery of stroke patients across one year in 3 

different ways.  

We aimed to study the patients’ behavior, next to their functional dynamics 

and their functional-structural coupling. As in the previous analysis, we used 

FC mean and reversibility of the signal as distinctive metrics, and we 

performed the calculations in both source and latent space in order to 

demonstrate how latent information predicts better the recovery of the 

patients, especially when using the reversibility as metric. As an alternative, 

we performed the same analysis but replacing the mean FC by the standard 

deviation, showing similar results (Figure D12). 

 

To assess the recovery using functional information, for each patient we 

calculated the FC distance between its FC matrix at each measurement stage 

(2 weeks, 3 months and 1 year after the stroke incident) and the average FC 

matrix of the healthy controls (Figure 6.4a). There is no significant difference 
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between acute stage (2 weeks) and intermediate stage (3 months) (t(47)= 

0.48, p = .63),  while there is a significant difference between intermediate 

stage (3 months) and remote stage (1 year) (t(47)= 38.23, p < .01). Therefore, 

the FC distance with respect to healthy controls is a functional metric that 

indicates a progression of recovery across time. As an alternative approach, 

we calculated the Frobenius distance between the co-classification matrices 

(See methods), resulting in a similar pattern as presented before. The only 

significant difference observed was between the second time point (3 months) 

and the third time point (1 year) when comparing their corresponding 

distances with the healthy controls (Figure D4). 

 

In addition to the previous metric, we analyzed the relation between functional 

and structural connectivity, which exploits the anatomical data (Figure 6.4b). 

There is a significant difference between healthy controls and patients in 

acute stage (2 weeks) (t(76)= 61.11, p < .01). There is no significant 

difference between acute and intermediate stage (t(44)= -0.16, p = .86),  while 

there is a significant difference between intermediate and chronic stage 

(t(48)= -42.62, p < .01) revealing a more similar level between controls and 

stroke patients, after 1 year of the incident. It is important to clarify that the 

structural information is belonging to the healthy control template, and not to 

each individual patient. 

6.3.3.1 Behavior 

We inspected the recovery of the patients by using 3 behavioral recovery 

metrics (Figure 6.4c). We classified the recovery level of stroke patients 

between the ones with a higher (better) recovery against the ones with a lower 

(worse) recovery, by means of behavior as a division criterion (see Methods 

section). Reversibility in the latent space showed the highest accuracy 

performance (mean = 76%, SD = 09%), followed by mean FC in the latent 

space (mean = 65%, SD = 10%), reversibility in the source space (mean = 

54%, SD = 12%) and mean FC in the source space (mean = 52%, SD = 13%). 
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As an alternative approach, we used the first principal component of the 

recovery scores (See methods) revealing a similar result. The highest 

accuracy performance was in the reversibility in the latent space (mean = 

79%), followed by mean FC in latent space (mean = 77%), reversibility in the 

source space (mean = 58%) and last, FC mean in the source space (mean = 

52%). These results are displayed in Figure D6. 

6.3.3.2 FC Distance 

The FC distance was used to divide the stroke patients with higher against 

lower recovery level. Reversibility in the latent space showed the highest 

accuracy performance (mean = 71%, SD = 11%), followed by mean FC in the 

latent space (mean = 64%, SD = 14%), reversibility in the source space (mean 

= 56%, SD = 12%) and mean FC in the source space (mean = 55%, SD = 

12%). 

6.3.3.3 Correlation FC SC 

When classifying between higher and lower recovery level of stroke patients 

using the correlation between SC and FC as a division criteria, reversibility in 

the latent space showed the highest accuracy performance (mean = 70%, SD 

= 12%), followed by mean FC in the  latent space  (mean = 65%, SD = 12%), 

reversibility in the source space (mean = 58%, SD = 13%) and mean FC in 

the source space (mean = 55%, SD = 15%). 
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Figure 6.4: Prediction of recovery 
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Figure 6.4: Prediction of recovery: (A) FC distance (Frobenius norm of the difference between 

the two matrices) between stroke patients at each time point and the healthy controls indicating 

the decrease of distance after 1 year (p<.01). (B) Correlation between SC and FC of healthy 

controls and stroke patients (at each measurement stage) revealing the increase at the remote 

stage, showing a similar value to controls after 1 year of the incident (p<.01)., while it is not the 

case after 2 weeks and 3 months (p=.86). (C) Prediction of recovery using as input of the 

classifier the FC and reversibility matrix of the source space and the FC and reversibility matrix 

of the latent space. As division criteria to split the subjects in high vs low recovered, 3 different 

criteria were used: Amount of behavioral domains recovered, the FC distance at remote stage 

and the correlation between SC-FC at remote stage. In all the scenarios, reversibility in the latent 

space showed the highest accuracy. 

6.4 Discussion 

Deep learning models are being increasingly used in precision medicine 

thanks to their ability to provide accurate predictions of clinical outcome from 

large-scale datasets of patients’ records. However, in the case of brain 

disorders, the deep learning approach is still limited, since clinical 

neuroimaging datasets typically have a small sample size. Thus, data scarcity 

has forced the adoption of simpler feature extraction methods, which are less 

prone to overfitting. In the current study we tested whether, by reducing the 

dimensionality of fMRI timeseries of stroke patients, we retain clinically 

important features of the data. The analysis revealed that the functional 

features, such as modularity, characterize the alterations caused by stroke, 

are preserved in the latent representation. Furthermore, the latent information 

proved to be efficient for clinical classification, discriminating between 

patients and controls, and between patients with low and high lesion volume 

at the acute stage. Moreover, the information of the latent space enhanced 

prediction of behavioral deficit at the acute stage and recovery after one year. 

These results demonstrate the clinical relevance of dimensionality reduction 

for brain disease and strengthen the case of its wider adoption to improve non 

only diagnosis, but also prognosis, hence allowing for a more effective 

treatment planning. 
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Our study contributes to the literature on dimensionality reduction approaches 

in neuroscience (Bolt et al., 2022). Reducing the dimensionality of the neural 

data is possible because different areas of the brain do not activate 

independently, but tend to fluctuate in coordinated patterns that can be 

described in terms of a smaller number of features (Pang et al., 2016). 

However, a wide variety of dimensionality reduction methods are possible, 

and it is important to understand the relative strengths and weaknesses of the 

different approaches. 

 

The most widely used approach is certainly PCA. However, PCA assumes 

linearity (Manning-Dahan, 2018).  A way to tackle the limitations of the PCA 

(mainly the linearity assumptions), is employing deep learning techniques. 

These approaches have been increasingly used as a generic family of 

machine learning tools to learn features from fMRI data. (see (Khosla et al., 

2019) for a review). However, deep learning approaches are most effective 

in a supervised learning setting. In an unsupervised setting, autoencoders are 

more appropriate. At a theoretical level, our autoencoder has benefits over 

classical lineal procedures such as PCA. Autoencoders are non-linear and 

can learn more complicated relations between visible and hidden units 

(IRIARTE, 2022). A recent study used autoencoders to show that different 

brain states can be captures in terms of trajectories within a low-dimensional 

latent space (Sanz Perl et al., 2021). In this study, the authors used a 

variational autoencoder, rather than a normal autoencoder, due to the 

necessity to represent new data not used in the training stage. In contrast, 

the current study does not need to include the variational feature to the 

autoencoder, as we encoded real data and analyzed what is obtained in the 

lower dimensions. By doing so, not only does the computational cost gets 

reduced, but also the reconstruction becomes less complicated. 

 

In our study, we find that the latent space time series retain several important 

properties of the original fMRI data, such as having common frames with high-
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amplitude co-fluctuations, as suggested in previous literature given the 

modular nature of the original FC (Novelli & Razi, 2021). And critically, the 

latent space data can be used to successfully classify stroke patients and 

stroke severity. These points underscore the idea that dimension reduction 

using the autoencoder framework is helpful, as it reduces the amount of data 

under investigation while simultaneously retaining relevant characteristics of 

the original data. Thus, the latent representation can be derived from the 

source space and by sharing the same embedded characteristics while 

discarding irrelevant information, improve the achieved classification 

accuracy.  

 

One future direction is to explore how autoencoder-based dimension 

reduction can be employed in conjunction with whole-brain models and 

enhanced by using larger datasets (or simulated data). The mechanisms 

underlying the emergence of different brain states can be probed using 

whole-brain models based on conceptually simple local dynamical rules 

coupled according to empirical measurements of anatomical connectivity, for 

instance, by coupling nonlinear oscillators with the long-range white matter 

tracts inferred from diffusion tensor imaging (DTI) (Sanz Perl et al., 2021). 

Previous studies have already demonstrated the utility of whole-brain models 

in stroke research (Adhikari, Griffis, et al., 2021; Adhikari et al., 2017; Idesis, 

Faskowitz, et al., 2022). The output of these models could similarly be 

embedded in a low-dimensional space, which could be analyzed using similar 

procedures to the ones described in this project.  

 

Several previous studies have used dimensionality reduction to address 

stroke. A few studies used Artificial Intelligence to predict stroke incidents 

(Shanthi et al., 2009; Singh & Choudhary, 2017; Sudha et al., 2012) relying 

on linear procedures such as PCA for dimensionality reduction. Another study 

used dimensionality reduction approaches to associate motor and cognitive 

functions with mood disorders subsequent post-stroke (Hama et al., 2020). In 
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the study, the authors proposed a non-linear model that effectively predicted 

post-stroke neuropsychiatric symptoms, outperforming traditional linear 

classifications. Another study proved that distinction between patients with 

post-stroke vascular dementia and control subjects was enhanced by using a 

dimensionality reduction technique (Al-Qazzaz et al., 2018). Furthermore, a 

recent article showed how four well-known dimensionality reduction 

techniques can be used to extract relevant features from resting state 

functional connectivity matrices of stroke patients (Calesella et al., 2021). 

Nevertheless, their proposed approach relies on linear assumptions in 

contrast to the ones selected for our study. 

 

To date, machine learning has not been applied to explore in depth the low 

dimensionality of stroke effects in the brain. One study implemented an 

unsupervised features learning approach based on an autoencoder for 

automatically segmenting brain MR images from stroke lesions (Praveen et 

al., 2018). Nevertheless, the study focused only on anatomical information 

without considering functional data. Our study is thus novel in that it tries to 

achieve a low-dimensional representation of the functional data (Bowren et 

al., 2022; J. C. Griffis et al., 2019; Salvalaggio et al., 2020; Weiss Cohen & 

Regazzoni, 2020). While autoencoders are routinely used for dimensionality 

reduction across a wide range of fields, their usage in functional neuroimaging 

is still scant. Our findings demonstrate the large, and still underexploited 

potential of machine learning methods in the study of large-scale brain 

dynamics. Our novel approach may be fruitfully applied to a wide array of 

brain disorders, subserving both the theoretical goal of a clearer 

understanding of these diseases, and at the same time, the clinical goal of  

maximizing patients’ classification, diagnosis, and prognosis. 

 

In the present study, we reached high classification accuracies by only relying 

on functional data. In addition to the classification of low dimensional 

description of functional data, not only fMRI, but also EEG, could be quite 
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helpful to select target for non-invasive brain stimulation. Currently, there 

have been proposals to use patterns of functional connectivity (Fox & 

Alterman, 2015) to guide invasive and non-invasive brain stimulation. 

However, high dimensional data set like resting-state fMRI connectivity 

patterns are difficult to collapse in a small set of coordinates. The low 

dimensional embedding coupled with classification methods to highlight the 

most predictive components could be a strategy to select sensitive targets. 

 

It is important to note that nonlinear dimensionality reduction methods are 

often fragile in the presence of noise (Humphries, 2020) or in the presence of 

low data quality, which limits their use when statistics are limited. However, 

datasets with sufficient length, such as the one presented in this article, can 

avoid this problem. Therefore, before proceeding to nonlinear methods, it is 

worthwhile to ensure a dense enough sampling of the high-dimensional space 

such that local neighborhoods include data points from different trajectories. 

 

In our current study, we used an autoencoder model because of its ease-of-

use and flexibility. However, there are other interpretable variants that have 

been proposed to enable the inspection of embedded information (Ahrens et 

al., 2013; Kerr & Denk, 2008). These methods incorporate additional priors to 

encourage separability across latent dimensions. As our approach is 

relatively general, exploring deep representations could provide a way to 

visualize the representations formed in generative models for other 

applications in medical imaging. With new strategies for interpreting how deep 

networks represent data, we may be able to develop new regularization 

strategies to disentangle and interpret population-level variability. Moreover, 

future studies could design visualization techniques in order to interpret the 

features extracted by non-linear dimensionality reduction, which could 

provide valuable insights to the clinicians for the design of more effective 

rehabilitation protocols. 
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We selected a whole-brain metric, the average of the FC, in order to perform 

the classification and prediction analyses. Even though this metric is 

outperformed in literature by other stroke-related metrics (Siegel et al., 2016), 

we used it in order to be comparable to the performance in the latent 

representation, as when data gets reduced, the anatomical properties such 

as space localization, get lost. 

 

Lastly, whole-brain models introducing anatomical information (Idesis, 

Favaretto, et al., 2022) could be applied directly to the latent representation 

in order to add anatomical restrictions and enrich the information available for 

the proposed analysis. 

   

In conclusion, this study adds new evidence for the relevance of low-

dimensional embeddings for fMRI signals and proposes a non-linear 

dimensionality reduction approach as a promising tool to explore altered brain 

dynamics after stroke. In addition, it reveals how complexity metrics such as 

brain signal reversibility provide indicators that relate to lesion severity and 

predict lesion recovery, making it the first study of this type with applications 

to longitudinal stroke studies. Our findings demonstrate the power of a 

measure of brain signal reversibility as a general marker of pathology. While 

many complexity measures have been used as biomarkers in functional MRI, 

our measure has the twofold advantage of its simplicity and interpretability. In 

fact, the degree of signal reversibility is a general measure of how distant a 

physical system is from thermodynamic equilibrium. Healthy cognition is 

associated with complex information processing demanding a far-from-

equilibrium state (Lynn et al., 2021; Perl et al., 2021). Therefore, a higher 

reversibility holds as a strong marker of neurophysiological impairment. We 

expect similar results in a wide array of neurological and psychiatric 

conditions. 
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7.General discussion 

We summarize in this chapter the main contributions of this dissertation and 

describe open questions as well as possible future directions of investigation. 

7.1 Main contributions 

The presented thesis shed light on the effects of stroke incidents, tackling the 

problem of interpreting the resulting dynamics in several ways. By introducing 

whole-brain models, it is possible to estimate and manipulate the possible 

parameters in order to simulate the outcomes of different treatments and 

evolutions across time. Furthermore, the possibility of analysis of simulated 

data contributes to the goal of obstructing the patients in a lower level. 

 

All the presented works contribute clear evidence of the emergence of typical 

dynamics consequently of stroke incidents, reaffirming the global impact of 

this damage instead of the previously believed, local effect. 

 

While chapter 2 serves as an exploratory introduction to the dataset that is 

extensively utilized throughout the thesis, the main contribution of Chapter 3 

has been to conceptualize the human brain dynamics following a stroke 

incident as observed through fMRI recordings. In contrast to the majority of 

the studies in the field of stroke, which mostly observe anatomical features, 

this chapter examines the functional properties of brain dynamics following a 

stroke incident.  

We benefited from the longitudinal dataset to see the evolution of the metrics 

over time and establish connections with the levels of recovery. We proposed 

an alternative in order to deviate from the typical focus on nodes in fMRI 

signals by using an approach centered around edges. Through edge-centric 

methodology, we explored novelty metrics such as normalized entropy, and 
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high-amplitude co-fluctuations to evaluate the severity of the lesion and the 

progression of recovery. 

 

In summary, the insights gained from this exploration prove valuable in 

enhancing our comprehension of whole-brain models, discussed in the 

subsequent chapters (Chapters 4 and 5) and the analysis of lower-

dimensionality representations (Chapter 6). By focusing on the functional 

aspects, we expand our understanding of the complex mechanisms at play in 

post-stroke brain dynamics. 

 

Chapter 4 makes a significant contribution by conducting rigorous testing of 

influential computational models that aim to capture the entirety of the brain. 

The successful development of these models enables the exploration of 

fundamental questions that are challenging to investigate empirically. By 

employing accurate computational whole-brain models, we can 

systematically examine how variations in resting state organization impact the 

brain's information processing capacity. This includes both natural variation 

among healthy individuals and variations caused by brain damage. The 

presented models integrate both structural and functional information, 

allowing us to assess the significance of structural disconnection information. 

Moreover, these models offer the opportunity to manipulate them and 

simulate potential treatment therapies along with their expected outcomes. In 

essence, we provide a mechanistic understanding of the effects of stroke on 

patients. Through the analysis of graph metrics calculated in the model's 

asymmetric interactions, we are able to replicate the disconnections between 

brain regions, thereby revealing the underlying interactions among embedded 

brain regions. 

In summary Chapter 4 revealed the accuracy of whole-brain models in a 

stroke population by integration anatomical and functional information while 

at the same time, exposing the key role of the structural disconnection 

information. 
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The main contribution of chapter 5 lies in the introduction of a fully predictive 

model that enables the prediction of functional features based solely on 

structural information. The results demonstrate that functional connectivity in 

patients can be predicted by a comprehensive computational model using 

only the structural disconnections caused by the patient's lesion. This 

suggests that the model captures, to some extent, the mechanistic 

relationship between anatomical structure and functional activity. While 

previous research has focused on fitting computational models using 

functional and structural data from healthy individuals or stroke patients, this 

study goes a step further by assessing whether these models can accurately 

predict the effects of a stroke based solely on the associated structural 

information.  

In summary, the study demonstrates that the perturbations in structural 

connectivity induced by a stroke can be effectively captured by the fully 

predictive whole-brain computational model. By doing so, this model provides 

valuable insights into how strokes disrupt the resting brain organization and 

its functional dynamics. 

 

Finally, Chapter 6 makes a significant contribution by providing evidence of 

the existence of non-linear and low-dimensional representations within high-

dimensional data, which enhance the prediction of recovery. By employing an 

autoencoder and reducing the data's dimensionality, we gained insights into 

the dynamics of the brain following stroke incidents. Importantly, we 

demonstrated a notable improvement in predicting patient recovery when 

incorporating dynamic metrics such as signal reversibility, particularly when 

assessed within the latent representations. In summary, we explored how the 

existing cohort of patients, utilized in previous studies, can be leveraged by 

uncovering the embedded information within the data. This approach allows 

for the removal of unnecessary data while enhancing diagnostic capabilities 

and improving the prediction of recovery for patients. Furthermore, the 
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presented method performed with a high accuracy in a dataset of 100 

patients. Further studies could benefit by applying the same procedures to 

larger and more complete datasets. 

 

7.2 Challenges and future directions 

7.2.1 Limitations 

 

It is important to account for the fact that BOLD signal is an indirect measure, 

reliant on diverse assumptions, and subject to many different sources of noise 

(Veldsman et al., 2015). Nevertheless, it is proposed that in order to study 

stroke populations, resting-state fMRI is better suited than event-related fMRI 

(Veldsman et al., 2015). This is due to its capacity to expose network-based 

pathology beyond the lesion site. 

 

One of the most used techniques to relate neurological symptoms to specific 

brain areas involves identifying overlap in lesion location across patients with 

similar disorders. This approach, also known as lesion mapping, has been 

used profitably for decades, making it a reliable source of information for 

stroke patients diagnostics, treatment, and recovery prediction (Boes, 2015). 

The primary advantage of this method is that it is sensitive to even small and 

hyperacute infarction, and can be used to assess if a certain brain region is 

necessary for a given cognitive function (Karnath et al., 2018; Sperber & 

Karnath, 2018). Nevertheless, the method could also be limited when the 

symptoms are not dependent on damage to a single brain region (Boes, 

2015). Functional network metrics complement the anatomical features used 

in the clinic for decades, by adding dynamical and connectional components 

to study the global effect of the lesions, instead of just a local one. Relations 
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between areas that before were believed to not be connected, could reveal 

influence on each other by being connected indirectly.  

 

The current thesis investigates stroke population using resting-state fMRI 

data. It is worth noting that stroke patients tend to be older than the usual 

populations where the assumptions of neurovascular coupling and the typical 

analysis pipelines are based (Veldsman et al., 2015).  Lastly, the dataset 

consisted of mostly ischemic patients and should be replicated in 

hemorrhagic stroke before being generalized to all the patients who suffered 

from a stroke.  

7.2.2 Novelty approaches for existing datasets 

 

In this thesis, we present a diverse range of approaches that can be applied 

to the vast amount of existing datasets. These methods encompass, among 

others, the estimation of connectivity matrix asymmetry, the integration of 

different acquisition modalities, and dimensionality reduction techniques to 

explore embedded dynamics. By employing these approaches, we aim to 

contribute to the existing body of literature by introducing new tools that 

enable the exploration of available data. Additionally, we have made freely 

available all the codes used in our studies to facilitate their replication. Future 

studies can employ these methods to investigate the variability across 

different brain disorders by applying them to diverse populations. 

7.2.3 Exploring bigger and more diverse datasets 

The dataset presented in this study predominantly comprises ischemic stroke 

patients, and it is crucial to replicate these findings in patients with 

hemorrhagic stroke before generalizing the results to the broader population 

of individuals who have suffered from a stroke. Additionally, the localization 

of the lesion has demonstrated its relevance in relation to the observed effects 
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in the patients. In this thesis, we have described the typical lesion observed 

in the dataset under investigation (see Figure A6). To ensure the robustness 

and consistency of the presented results, it is necessary to include different 

cohorts with diverse lesion patterns and examine if the findings hold across 

these various cases.  

 

By incorporating a broader range of lesion patterns, we can enhance our 

understanding of the effects and implications of stroke on brain dynamics and 

recovery. Furthermore, the analysis performed in Chapter 5 exposed the 

relevance of the lesion location above the lesion amount by calculating the 

models using the damage of other participants with similar amount but 

different lesion pattern. 

7.2.4 Integrating different neuroimaging techniques 

 

In the presented thesis, we utilized (f)MRI recordings from stroke patients. 

While (f)MRI offers high spatial resolution at the millimeter level, it has 

relatively slow dynamics in the order of seconds. On the other hand, EEG 

provides excellent temporal resolution at the millisecond scale, but its spatial 

resolution is limited to the centimeter range due to the volume conduction of 

cortical currents through the head tissues. By combining these two 

techniques, we could enhance our understanding of brain dynamics by 

capitalizing on the high spatial resolution of (f)MRI and the superior temporal 

resolution of EEG. This integration allows us to uncover phenomena that may 

be hidden or not fully captured by a single technique alone. By leveraging the 

strengths of each modality, we can explore how the integration of multi-modal 

data describes the complex phenomenon occurring after stroke incidents. 

This holistic approach provides a more comprehensive and nuanced 

understanding of the brain's response and recovery following a stroke. The 

approach presented in Chapter 6, dimensionality reduction, allows the  
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exploration of embedded information that allows the integration of several 

neuroimaging techniques. 

7.2.5 Brain stimulation to enhance patients’ rehabilitation 

 

The utilization of whole-brain models offers a promising avenue for 

investigating the potential therapeutic effects of brain stimulation in patients, 

an area of significant current interest. To achieve the transition from a disease 

state to a healthy state, a stepwise approach can be followed. Firstly, it is 

necessary to fit a whole-brain model to a specific patient, optimizing the 

effective connectivity underlying the brain's functioning. This personalized 

model serves as a basis for further analysis. Chapter 4 gives evidence of the 

similarity between the simulations and the empirical data. Secondly, in silico 

simulations can be performed to exhaustively explore the effects of various 

parameters, such as the location and intensity of stimulation. The objective is 

to identify the optimal stimulation strategy that promotes and enforces a 

specific transition towards a target "healthy" resting brain state, as defined by 

the average functional connectivity observed in a control group.   

 

Future studies should also investigate the impact of different types of 

stimulation, such as introducing noise or applying periodic stimulations with 

varying frequencies and intensities. These investigations will provide insights 

into how a patient's resting functional connectivity model must be stimulated 

in order to reproduce a healthy resting functional connectivity model. This 

knowledge will aid in identifying therapeutic targets for brain stimulation and 

refining the techniques used in clinical practice. Chapter 5 provides a 

generalized and predictive model that allows the generalization of the results 

in order to study the treatment effects in different populations. 
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7.2.6 Exploring signal propagation after stroke 

 

The models we have presented allow us to investigate the generation of local 

dynamics and how they spread throughout the brain. This enables us to 

examine the occurrence of focal sleep-like slow waves and their long-range 

propagation within the brain. These phenomena are considered important 

electrophysiological aspects of diaschisis and provide valuable insights into 

the functional implications of focal and multi-focal injuries. Understanding the 

underlying signals following stroke incidents holds promise for the 

development of innovative therapeutic interventions and physical 

rehabilitation approaches that can enhance functional recovery. 

7.3 Closing remarks 

The thesis delves into the examination of brain dynamics following a stroke, 

offering insights and contributions in several key areas. Firstly, by adopting 

an edge-centric approach, we explore the functional features consequents of 

damage while introducing novel metrics that provide valuable information 

about lesion severity and recovery. These metrics enhance our 

understanding of the impact of stroke on brain dynamics. Additionally, we 

developed a comprehensive model that offers a mechanistic explanation of 

this neurological disorder. Notably, the model emphasizes the importance of 

structural disconnection information, shedding light on the underlying 

mechanisms at play. Furthermore, we introduce a fully predictive model in 

which the functional dynamics are predicted only by using anatomical 

information. Lastly, we present an approach utilizing dimensionality reduction 

techniques, which significantly improves the accuracy of predicting recovery 

one year after a stroke incident. This approach holds promise for enhancing 

diagnostics, treatment strategies, and rehabilitation protocols for stroke 

patients. In conclusion, this thesis contributes to the expansion of our 
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knowledge about one of the most significant neurological disorders of our 

time, stroke. It offers alternative perspectives and methodologies that can 

advance patients' diagnostics, treatments, and overall rehabilitation. By 

addressing crucial aspects of stroke-related brain dynamics, this work strives 

to improve patient outcomes and contribute to the field of stroke research.  
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A. Appendix A (Supplementary figures 

of chapter 3) 

 

 

Figure A.1 Entropy localization 

Figure A1: Entropy localization: Topological localization of entropy at (top) 2 weeks, (center) 3 

months and (down) 1 year for patients and controls. On the right panels the subtraction 

between the values obtained from controls minus the ones from patients and vice versa are 

displayed. 
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Figure A2 Normalized entropy and participation coefficient relation with stroke metrics across 

time 

Figure A2: Normalized entropy and participation coefficient relation with stroke metrics across 

time: (A) Relation between normalized entropy and stroke metrics at time point 1. (B) Relation 

between participation coefficient with lesion volume and NIHSS score at (top) 2 weeks, (center) 

3 months and (bottom) 1 year 
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Figure A3 Participation coefficient across time 

Figure A3: Participation coefficient across time: Comparison of Participation coefficient 

between patients and control at each time point revealing no significant difference in any 

moment. 
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Figure A4: Topographical parameters compared by decile 

Figure A4: Topographical parameters compared by decile: (A) Correlation between each decile 

and the total FC. (B) Comparison for each decile FC of (top-left) cluster coefficient, (top-right) 

global efficiency, (bottom-left) distance and (bottom-right) assortativity. 
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Figure A5: High amplitude per decile relation with lesion volume 

Figure A5: High amplitude per decile relation with lesion volume. Lines indicate the relation 

between each decile matrices correlation with the empirical FC being the top 10 percent the 

only one revealing significant association (p= 0.039). The remaining deciles are represented 

with a gradient color going from red to yellow. 
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Figure A6: Lesion distribution of the sample 

Figure A6: Lesion distribution of the sample: (A) Average lesion location indicating the 

percentage of damage of each region (MNI coordinates: X=115, Y=64,Z=78). (B) Average 

lesion location revealing the impact at the edge level (Top). Same information is visualized 

grouped by network to provide additional information. (C) Lesion volume of each patient. Red 

dot line indicates the mean of the sample. 
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Figure A7: Graph metrics across time 

Figure A7: Graph metrics across time: Betweenness (top-left), Degree (top-right), Global 

efficiency (bottom-left) and Transitivity (bottom-right) were calculated for the sample-average 

FC matrix after a binarization process using as an absolute threshold of 0.1 (A), 0.25 (B) and 

0.5 (C). 
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Figure A8: Distribution of normalized entropy across randomly shuffled sub-samples 

Figure A8: Distribution of normalized entropy across randomly shuffled sub-samples:  Sub-

samples of 50 random subjects were generated in order to calculate the average normalized 

entropy. The process was repeated 1000 times giving one value per iteration. The results are 

visualized in the presented histogram revealing the low variability of the used cohort. Vertical 

dashed line represents the average of the complete cohort. Brain surface shows the entropy 

variability with the corresponding localization 
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B. Appendix B (Supplementary figures 

of chapter 4) 

 

Figure B1: Correlation of SDC mask with the different types of FC 

Figure B1: Correlation of SDC mask with the different types of FC: The correlation between 

the SDC mask of each patient and the FC empirical (left) showed a significant difference from 

the association between the SDC mask and the FC simulated (right). (t(190)=-30.32, p<.01) 
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Figure B2: Distinction of FC impairments based in lesion localization 

Figure B2: Distinction of FC impairments based in lesion localization: Comparison of patients 

with cortical vs subcortical lesions in (A) interhemispheric level, (B) interhemispheric level and 

(C) modularity level, using the (left) empirical FC, (center) GEC model including the SDC mask 

and (right) GEC model without the SDC mask 

 



193 
 

 

Figure B3: Relationship value of GEC and enhancement by using SDC mask 

Figure B3: Relationship value of GEC and enhancement by using SDC mask: Relationship 

value of nine behavioral domains given by the static PCA (SPCs) of the three approaches (FC, 

GEC with the SDC mask and GEC without the SDC mask) and with their corresponding 

interaction with the dynamical components (see Methods for details). Asterisk indicates when 

only one regressor shows a significant relationship between the three measurements. 
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Figure B4: Comparison of behavioral scores of patients divided by severity level 

 

Figure B4: Comparison of behavioral scores of patients divided by severity level: 

Comparison of behavioral scores of patients divided by severity level. Columns indicate the 

behavior domain while the rows indicate the criteria used for the severity division (FC, GEC (+ 

SDC mask), SC, and GEC). 
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Figure B5: Classification with different training criteria 

 

Figure B5: Classification with different training criteria: Each row represents a different 

percentage of subjects used to train the cross validation in the classifier. The column on the 

right compares the accuracy of each division criteria performance in order to show that the 

GEC + SDC mask model has the highest accuracy disregarding of the percentage used for the 

training. 
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Figure B6: Topological metrics divided by lesion localization 

 

Figure B6: Topological metrics divided by lesion localization: Comparison between patients 

with a cortical lesion and patients with a cortical lesion in (top) broadcasters’ amount, (center) 

receivers’ amount, and (bottom) path length. 
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Figure B7: Top-Weighted areas topological localization 

 

Figure B7: Top-Weighted areas topological localization: Area localization of the nodes with the 

highest 5% weights for (top-left) controls FC, (bottom-left) patients FC, (top-right) controls GEC 

and (bottom-right) patients GEC. 
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Figure B8: Groups’ distribution comparison and significant networks interactions 

Figure B8: Groups’ distributions, comparison, and significant networks’ interactions: Groups’ 

distribution of the corresponding mean of GEC network matrix is shown on the left, revealing 

a significant difference between the two groups ([F(1, 17460) =174.19,p<.01]. When observing 

the comparison by networks (right), the network with the largest amount of significant 

differences between controls and stroke subjects is the DMN. Asterisks represent a p-value 

inferior to 0.05. 
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Figure B9: Model similarity compared to controls 

 

Figure B9: Model similarity compared to controls: Model similarity is presented as shown in 

Figure 3 while adding the control group on the right for reference. The patients GEC + SDC 

model showed a similar range of similarity to the observed in the control group model. 
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C. Appendix C (Supplementary figures 

of chapter 5) 

 

  

Figure C1: Influence of connectome nodes in the model 

 

Figure C1: Influence of connectome nodes in the model: (A) Using the healthy control group, 

we calculated the empirical FC, simulated FC, and the corresponding difference between the 

previous two matrices. The output was a difference matrix indicating the accuracy of the fitting 

in each pair of nodes. (B) We displayed the 10 nodes with the highest difference value 

revealing the locations where the model was less accurate.   
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Figure C2: Relation of model accuracy with lesion volume 

 

Figure C2: Relation of model accuracy with lesion volume: The subjects with higher lesion 

severity exhibited a lower accuracy (correlation between empirical and simulated data) in the 

model compared to the subjects with lower lesion severity.  
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Figure C3: Anatomical information 

 

Figure C3: Anatomical information: Matrix representation of the healthy group structural 

connectivity (left) and a SDC matrix of one stroke patient for visualization purposes. 
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Figure C4: Model accuracy 

 

Figure C4: Model accuracy: The similarity between the empirical and simulated FC was 

assessed for each model showing a similar performance for the patient specific mask and the 

full predictive model, while revealing a lower level for the surrogate mask model and the no-

mask model. The healthy controls were included to assess the influence of the stroke lesion in 

the simulations. 
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Figure C5: Influence of GC 

 

 

Figure C5: Influence of GC: The similarity between the (A) empirical and (B) simulated data 

was assessed with different values of global coupling revealing the optimal point for the 

simulations. 

 

 



205 
 

 
Figure C6: Relation of model accuracy to the magnitude of FC abnormalities 

 

Figure C6: Relation of model accuracy to the magnitude of FC abnormalities: The accuracy of 

the patient specific model was significantly correlated with  inter-hemispheric FC (R=.41, 

p<.01), but not with intra-hemispheric FC or modularity. All the other models (including all the 

possibilities of the surrogate mask model and the No-mask model), showed no significant 

relationship with FC abnormalities. 
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Figure C7: Relation of the accuracy of the non-predictive patient specific model to stroke 

metrics 

 

Figure C7: Relation of the accuracy of the non-predictive patient specific model to stroke 

metrics (A) Subjects with lower levels of disconnection exhibited a higher correlation between 

the empirical and simulated FC matrices, indicating better model performance for patients with 

less severe lesions. (B-C-D) Higher global efficiency (B), higher entropy (C) and higher 

average degree (D) were associated with higher model accuracy. 
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Figure C8: Dynamical metrics calculation for the different models 

 

Figure C8: Dynamical metrics calculation for the different models (A) Time versus-time matrix 

representing the functional connectivity dynamics (FCD), where each entry FCD(t1, t2) is 

defined by a measure of resemblance between FC(t1) and FC(t2). Therefore, the FCD 

captures the spatiotemporal organization of FC by representing the coincidences between 

FC(t) matrices. It results in a symmetric matrix where an entry (ts1, ts2) is defined by the 

Pearson correlation between FC(ts1) and FC(ts2). FCD was estimated for the empirical data 

and the three predictive models showing a significant difference between the predictive models 

and the model without mask. Specially, there was a significant difference between the full-

predictive model and the “No-mask” model (t(95)= 31.87, p<.01)  (B) We calculated the 

standard deviation of the edge time series which represents the temporal metastability. This 

metric gives information about temporal variability in the level of synchronization. Edge 

metastability was estimated for the empirical data and the three predictive models showing a 

significant difference between the predictive models and the model without mask. In particular, 

the difference was significant between the full-predictive model and the “No-mask” model 

(t(95)= 19.05, p<.01). 
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Figure C9: Model accuracy for predicting patient z-scored abnormalities. 

 

Figure C9: Model accuracy for predicting patient z-scored abnormalities in DAN-DMN FC (left 

panel) and homotopic interhemispheric FC (right panel). For each patient, the entries in the z-

scored FC abnormality matrix corresponding to DAN-DMN FC and interhemispheric homotopic 

FC were separately averaged for both the empirical and simulated abnormality matrices. Then 

the simulated and empirical averaged quantities were plotted against one another across 

patients. Because DAN-DMN FC for patients tends to be more positive than controls, the 

corresponding patient z-scores also tends to be positive. Conversely, because 

interhemispheric homotopic FC for patients tends to be less positive than controls, the 

corresponding patient z-scores tends to be negative. 
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D. Appendix D (Supplementary figures 

of chapter 6) 

 

 

Figure D1: Correlation between lesion volume, NIHSS and total disconnection 

 

Figure D1: Correlation between Lesion volume and NIHSS (Left) and Total number of 

disconnected tracts (Right). Both relations showed a significant relation probing the robustness 

of the elected metric. 
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Figure D2: Reconstruction error and latent FC per dimension 

 

Figure D2: Reconstruction error and Latent FC per dimension: (A) Reconstruction 

error reached a level of 0.06 at dimension 6 showing no rate of change higher than 

0.005 after it. Fitting level reached a level of 0.89 showing no rate of change higher 

than 0.005 after it. (B) The highest correlation between the latent FC and the source 

FC is shown at dimension 2 (r= .67) while the lowest correlation value is shown at 

dimension 6 (r=.38) 
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Figure D3: Association between dimension 10 and behavioral scores 

Figure D3: Association between dimension 10 and behavioral scores. For each 

behavioral domain, the corresponding metric with the highest association was 

represented indicating the respective color. Red represents the latent space metric 

while blue represents the source space. 
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Figure D4: Co-Classification matrix 

Figure D4: Co-classification matrix reveals same pattern as empirical FC when 

compared with healthy controls across time. This analysis was performed in 

comparison to the one presented in Figure 6.4a. 
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Figure D5: SC-FC correlation per network 

 

Figure D5: SC-FC correlation per network: The relation between structural and 

functional information of networks reveals a symmetry between homotopic regions in 

the healthy control and asymmetry in the stroke patients’ group 
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Figure D6 Prediction of recovery using PCA 

 

Figure D6: Prediction of recovery using the first principal component as separation 

criteria. 
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Figure D7 Association of latent representation with structural and functional features 

 

Figure D7: Association between latent representation pattern and structural/functional 

features: We calculated the Pearson correlation R value for each dimension mean 

and standard deviation, with the corresponding metric of interest. By studying the 

mean of each of the 6 of the latent dimensions, intrahemispheric value showed a 

significant relation with all of them, interhemispheric with 5 of them, modularity with 

all of them, lesion volume with 4 of them and NIHSS with 4 of them.  
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Figure D8: Correlation of mean FC with behavior impairment 

 

Figure D8: Correlation of mean FC with behavior impairment at acute stage (2 months 

after stroke incident): Each behavioral domain at the acute stage was related with the 

mean FC and reversibility in both source and latent space. Asterisks indicate 

significant relations. The reported values are as follows: FC Source: .12, .38, .38, .08, 

. 01, .001, .21, .05,.46; Rev Source:  .003, .01, .01, .002, .31, .008, .25, .08, .02; FC 

Latent: .05, .17, .17, .16, .06, .24, .09, .24, .19; Rev Latent: .03, .36, .36, .35, .40, .20, 

.36, .28, .40. 
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Figure D9: Correlation of FC STD with behavior impairment recovery 

 

Figure D9: Correlation of FCs’ standard deviation with behavior impairment recovery: 

All the metrics used for the classification approach were related with each of the 9 

behavioral domains recovery values (score after 1 year minus score after 2 weeks, 

divided the 2 weeks score). Asterisks represent which of the relations were significant. 

The reported values are as follows: FC Source: .24, .27, .16, .29, . 07, .33, .24, .15,.22; 

Rev Source:  .04, .001, .01, .05, .00, .01, .00, .00, .02; FC Latent: .02, .32, .29, .10, 

.36, .20, .03, .10, .33; Rev Latent: .18, .06, .28, .21, .07, .14, .23, .07, .26. 
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Figure D10: Classification of severity using NIHSS as division criteria 

 

Figure D10: Classification of severity using NIHSS as division criteria: The distinction 

between stroke patients with low and high lesion volume indicated that the highest 

accuracy was given by the reversibility in the latent space (mean = 74%). 
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Figure D11: Classification using the STD instead of FC mean 

 

Figure D11: Classification using the standard deviation instead of the FC average: 

The distinction between stroke patients with low and high lesion volume and between 

healthy controls and patients showed the highest accuracy in both cases in the 

reversibility of the latent space. 
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Figure D12: Prediction of recovery using STD instead of FC mean 

 

Figure D12: Prediction of recovery using the standard deviation instead of the FC average: (A) 

FC distance (Frobenius norm of the difference between the two matrices) between stroke 

patients at each time point and the healthy controls indicating the decrease of distance after 1 

year (p<.01). (B) Correlation between SC and FC of healthy controls and stroke patients (at 

each measurement stage) revealing the increase at the remote stage, showing a similar value 

to controls after 1 year of the incident (p<.01)., while it is not the case after 2 weeks and 3 

months (p=.86). (C) Prediction of recovery using as input of the classifier the FC’s standard 

deviation and reversibility matrix of the source space and the FC and reversibility matrix of the 

latent space. To split the subjects in high vs low recovered, 3 different criteria were used: 

Amount of behavioral domains recovered, the FC distance at remote stage and the correlation 

between SC-FC at remote stage. In all the scenarios, reversibility in the latent space showed 

the highest accuracy. 
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Figure D13: Input metrics grouped by demographic features 

Figure D13: Input metrics grouped by demographic features: In order to assess the influence 

of demographical factors, we calculated the classifier input metrics (FC and reversibility) for 

subgroups divided by the median age (top subpanels) and by gender (low subpanels) showing 

no significant differences (p>.2) between the groups. 
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Figure D14: Preserved features in latent space compared to PCA performance 

 

Figure D14: Preserved features in latent space compared to PCA performance: (A) Agreement 

percentage was compared for the 6 latent dimensions and the 6 first principal components, 

showing a higher performance of the autoencoder. (B) Difference between the healthy control 

and the stroke patients was assessed in the latent space and in the 6 first principal components 

for all the studied metrics. The difference in metrics was significant for each application of the 

autoencoder while the only significant difference in metrics for the application of PCA was for 

FCD. 
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Supp. Table D1 

 

 Healthy Control Stroke patients 

Age 56.6 52.3 

Gender M=59% F=41% M= 57% F=43% 

Education 13.9 13.4 

Handedness R=91% L=9% R=94% L=6% 

 

Supp. Table D1: Demographic information of the involved 

subjects 

 

Supp. Table D1: Demographic information of the involved subjects. For more information and 

detailed scores in behavioral tasks, see (Corbetta et al., 2015) 

 

 

 

  



224 
 

Bibliography  

 

Abbas, A., Bassil, Y., & Keilholz, S. (2019). Quasi-periodic patterns of brain 
activity in individuals with attention-deficit/hyperactivity disorder. 
Neuroimage Clin, 21, 101653. 
https://doi.org/10.1016/j.nicl.2019.101653  

Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain 
functional networks. PLoS computational biology, 3(2), e17.  

Acharya, U. R., Meiburger, K. M., Faust, O., Koh, J. E. W., Oh, S. L., 
Ciaccio, E. J., Subudhi, A., Jahmunah, V., & Sabut, S. (2019). 
Automatic detection of ischemic stroke using higher order spectra 
features in brain MRI images. Cognitive systems research, 58, 134-
142.  

Adhikari, M. H., Belloy, M. E., Van der Linden, A., Keliris, G. A., & Verhoye, 
M. (2020). Resting-State Co-activation Patterns as Promising 
Candidates for Prediction of Alzheimer's Disease in Aged Mice. 
Front Neural Circuits, 14, 612529. 
https://doi.org/10.3389/fncir.2020.612529  

Adhikari, M. H., Belloy, M. E., Van der Linden, A., Keliris, G. A., & Verhoye, 
M. (2021). Resting-State Co-activation Patterns as Promising 
Candidates for Prediction of Alzheimer’s Disease in Aged Mice. 
Frontiers in Neural Circuits, 91.  

Adhikari, M. H., Griffis, J., Siegel, J. S., Thiebaut de Schotten, M., Deco, G., 
Instabato, A., Gilson, M., & Corbetta, M. (2021). Effective 
connectivity extracts clinically relevant prognostic information from 
resting state activity in stroke. Brain communications, 3(4), fcab233.  

Adhikari, M. H., Hacker, C. D., Siegel, J. S., Griffa, A., Hagmann, P., Deco, 
G., & Corbetta, M. (2017). Decreased integration and information 
capacity in stroke measured by whole brain models of resting state 
activity. Brain, 140(4), 1068-1085.  

Ahn, Y.-Y., Bagrow, J. P., & Lehmann, S. (2010). Link communities reveal 
multiscale complexity in networks. nature, 466(7307), 761-764.  

Aho, K., Harmsen, P., Hatano, S., Marquardsen, J., Smirnov, V. E., & 
Strasser, T. (1980). Cerebrovascular disease in the community: 
results of a WHO collaborative study. Bulletin of the World Health 
Organization, 58(1), 113.  

Ahrens, M. B., Orger, M. B., Robson, D. N., Li, J. M., & Keller, P. J. (2013). 
Whole-brain functional imaging at cellular resolution using light-sheet 
microscopy. Nature methods, 10(5), 413-420.  

Al-Qazzaz, N. K., Ali, S. H. B. M., Ahmad, S. A., Islam, M. S., & Escudero, J. 
(2018). Discrimination of stroke-related mild cognitive impairment 
and vascular dementia using EEG signal analysis. Medical & 
biological engineering & computing, 56(1), 137-157.  

https://doi.org/10.1016/j.nicl.2019.101653
https://doi.org/10.3389/fncir.2020.612529


225 
 

Allan, T. W., Francis, S. T., Caballero-Gaudes, C., Morris, P. G., Liddle, E. 
B., Liddle, P. F., Brookes, M. J., & Gowland, P. A. (2015). Functional 
connectivity in MRI is driven by spontaneous BOLD events. PloS 
one, 10(4), e0124577.  

Allegra, M., Favaretto, C., Metcalf, N., Corbetta, M., & Brovelli, A. (2021). 
Stroke-related alterations in inter-areal communication. NeuroImage: 
Clinical, 32, 102812.  

Alstott, J., Breakspear, M., Hagmann, P., Cammoun, L., & Sporns, O. 
(2009). Modeling the impact of lesions in the human brain. PLoS 
computational biology, 5(6), e1000408.  

Arnemann, K. L., Chen, A. J.-W., Novakovic-Agopian, T., Gratton, C., 
Nomura, E. M., & D'Esposito, M. (2015). Functional brain network 
modularity predicts response to cognitive training after brain injury. 
Neurology, 84(15), 1568-1574.  

Baldassarre, A., Ramsey, L., Rengachary, J., Zinn, K., Siegel, J. S., Metcalf, 
N. V., Strube, M. J., Snyder, A. Z., Corbetta, M., & Shulman, G. L. 
(2016). Dissociated functional connectivity profiles for motor and 
attention deficits in acute right-hemisphere stroke. Brain, 139(7), 
2024-2038.  

Bassett, D. S., & Sporns, O. (2017). Network neuroscience. Nat Neurosci, 
20(3), 353-364. https://doi.org/10.1038/nn.4502  

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & 
Grafton, S. T. (2011). Dynamic reconfiguration of human brain 
networks during learning. Proc Natl Acad Sci U S A, 108(18), 7641-
7646. https://doi.org/10.1073/pnas.1018985108  

Bates, E., Reilly, J., Wulfeck, B., Dronkers, N., Opie, M., Fenson, J., Kriz, S., 
Jeffries, R., Miller, L., & Herbst, K. (2001). Differential effects of 
unilateral lesions on language production in children and adults. 
Brain and language, 79(2), 223-265.  

Bayrak, Ş., Khalil, A. A., Villringer, K., Fiebach, J. B., Villringer, A., 
Margulies, D. S., & Ovadia-Caro, S. (2019). The impact of ischemic 
stroke on connectivity gradients. NeuroImage: Clinical, 24, 101947.  

Betzel, R., Cutts, S., Greenwell, S., & Sporns, O. (2021). Individualized 
event structure drives individual differences in whole-brain functional 
connectivity. bioRxiv.  

Betzel, R. F., Byrge, L., Esfahlani, F. Z., & Kennedy, D. P. (2020). Temporal 
fluctuations in the brain’s modular architecture during movie-
watching. Neuroimage, 213, 116687.  

Blicher, J. U., Stagg, C. J., O'shea, J., Østergaard, L., MacIntosh, B. J., 
Johansen-Berg, H., Jezzard, P., & Donahue, M. J. (2012). 
Visualization of altered neurovascular coupling in chronic stroke 
patients using multimodal functional MRI. Journal of Cerebral Blood 
Flow & Metabolism, 32(11), 2044-2054.  

Boes, C. J. (2015). History of neurologic examination books. Baylor 
University Medical Center Proceedings,  

https://doi.org/10.1038/nn.4502
https://doi.org/10.1073/pnas.1018985108


226 
 

Bolt, T., Nomi, J. S., Bzdok, D., Salas, J. A., Chang, C., Thomas Yeo, B., 
Uddin, L. Q., & Keilholz, S. D. (2022). A parsimonious description of 
global functional brain organization in three spatiotemporal patterns. 
Nature neuroscience, 25(8), 1093-1103.  

Bowren, M., Bruss, J., Manzel, K., Edwards, D., Liu, C., Corbetta, M., 
Tranel, D., & Boes, A. D. (2022). Post-stroke outcomes predicted 
from multivariate lesion-behaviour and lesion network mapping. 
Brain.  

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.  
Broca, P. (1861). Remarques sur le siège de la faculté du langage articulé, 

suivies d’une observation d’aphémie (perte de la parole). Bulletin et 
Memoires de la Societe anatomique de Paris, 6, 330-357.  

Brott, T., Adams, H. P., Jr., Olinger, C. P., Marler, J. R., Barsan, W. G., 
Biller, J., Spilker, J., Holleran, R., Eberle, R., Hertzberg, V., & et al. 
(1989). Measurements of acute cerebral infarction: a clinical 
examination scale. Stroke, 20(7), 864-870. 
https://doi.org/10.1161/01.str.20.7.864  

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph 
theoretical analysis of structural and functional systems. Nature 
reviews neuroscience, 10(3), 186-198.  

Cabral, J., Hugues, E., Kringelbach, M. L., & Deco, G. (2012). Modeling the 
outcome of structural disconnection on resting-state functional 
connectivity. Neuroimage, 62(3), 1342-1353.  

Cabral, J., Kringelbach, M. L., & Deco, G. (2017). Functional connectivity 
dynamically evolves on multiple time-scales over a static structural 
connectome: Models and mechanisms. Neuroimage, 160, 84-96.  

Cabral, J., Vidaurre, D., Marques, P., Magalhães, R., Silva Moreira, P., 
Miguel Soares, J., Deco, G., Sousa, N., & Kringelbach, M. L. (2017). 
Cognitive performance in healthy older adults relates to spontaneous 
switching between states of functional connectivity during rest. 
Scientific reports, 7(1), 1-13.  

Calesella, F., Testolin, A., De Filippo De Grazia, M., & Zorzi, M. (2021). A 
comparison of feature extraction methods for prediction of 
neuropsychological scores from functional connectivity data of stroke 
patients. Brain informatics, 8(1), 1-13.  

Capouskova, K., Kringelbach, M. L., & Deco, G. (2022). Modes of cognition: 
Evidence from metastable brain dynamics. Neuroimage, 260, 
119489.  

Carrera, E., & Tononi, G. (2014). Diaschisis: past, present, future. Brain, 
137(9), 2408-2422.  

Chen, C., Yuan, K., Chu, W. C.-w., & Tong, R. K.-y. (2021). The effects of 
10 Hz and 20 Hz tACS in network integration and segregation in 
chronic stroke: a graph theoretical fMRI study. Brain Sciences, 11(3), 
377.  

Chumin, E. J., Faskowitz, J., Esfahlani, F. Z., Jo, Y., Merritt, H. L., Tanner, 
J. C., Cutts, S. A., Pope, M. E., Sporns, O., & Betzel, R. (2021). 

https://doi.org/10.1161/01.str.20.7.864


227 
 

Cortico-Subcortical Interactions in Overlapping Communities of Edge 
Functional Connectivity. bioRxiv.  

Cifre, I., Zarepour, M., Horovitz, S., Cannas, S. A., & Chialvo, D. R. (2020). 
Further results on why a point process is effective for estimating 
correlation between brain regions. Papers in physics, 12, 120003-
120003.  

Cofré, R., Herzog, R., Mediano, P. A., Piccinini, J., Rosas, F. E., Sanz Perl, 
Y., & Tagliazucchi, E. (2020). Whole-brain models to explore altered 
states of consciousness from the bottom up. Brain Sciences, 10(9), 
626.  

Coletta, L., Pagani, M., Whitesell, J. D., Harris, J. A., Bernhardt, B., & Gozzi, 
A. (2020). Network structure of the mouse brain connectome with 
voxel resolution. Science Advances, 6(51), eabb7187.  

Corbetta, M., Ramsey, L., Callejas, A., Baldassarre, A., Hacker, C. D., 
Siegel, J. S., Astafiev, S. V., Rengachary, J., Zinn, K., & Lang, C. E. 
(2015). Common behavioral clusters and subcortical anatomy in 
stroke. Neuron, 85(5), 927-941.  

Corbetta, M., Siegel, J. S., & Shulman, G. L. (2018). On the low 
dimensionality of behavioral deficits and alterations of brain network 
connectivity after focal injury. Cortex, 107, 229-237. 
https://doi.org/10.1016/j.cortex.2017.12.017  

Crofts, J. J., Higham, D. J., Bosnell, R., Jbabdi, S., Matthews, P. M., 
Behrens, T., & Johansen-Berg, H. (2011). Network analysis detects 
changes in the contralesional hemisphere following stroke. 
Neuroimage, 54(1), 161-169.  

Cunningham, J. P., & Yu, B. M. (2014). Dimensionality reduction for large-
scale neural recordings. Nature neuroscience, 17(11), 1500-1509.  

Davison, E. N., Schlesinger, K. J., Bassett, D. S., Lynall, M.-E., Miller, M. B., 
Grafton, S. T., & Carlson, J. M. (2015). Brain network adaptability 
across task states. PLoS computational biology, 11(1), e1004029.  

De Filippi, E., Wolter, M., Melo, B. R., Tierra-Criollo, C. J., Bortolini, T., 
Deco, G., & Moll, J. (2021). Classification of complex emotions using 
EEG and virtual environment: proof of concept and therapeutic 
implication. Frontiers in human neuroscience, 15.  

Deco, G., Cruzat, J., Cabral, J., Tagliazucchi, E., Laufs, H., Logothetis, N. 
K., & Kringelbach, M. L. (2019). Awakening: Predicting external 
stimulation to force transitions between different brain states. 
Proceedings of the National Academy of Sciences, 116(36), 18088-
18097. 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731634/pdf/pnas.20
1905534.pdf  

Deco, G., Hagmann, P., Hudetz, A. G., & Tononi, G. (2014). Modeling 
resting-state functional networks when the cortex falls asleep: local 
and global changes. Cerebral Cortex, 24(12), 3180-3194.  

https://doi.org/10.1016/j.cortex.2017.12.017
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731634/pdf/pnas.201905534.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731634/pdf/pnas.201905534.pdf


228 
 

Deco, G., & Jirsa, V. K. (2012). Ongoing cortical activity at rest: criticality, 
multistability, and ghost attractors. Journal of Neuroscience, 32(10), 
3366-3375.  

Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the 
dynamical organization of resting-state activity in the brain. Nature 
reviews neuroscience, 12(1), 43-56.  

Deco, G., & Kringelbach, M. L. (2016). Metastability and coherence: 
extending the communication through coherence hypothesis using a 
whole-brain computational perspective. Trends in neurosciences, 
39(3), 125-135.  

Deco, G., Kringelbach, M. L., Jirsa, V. K., & Ritter, P. (2017). The dynamics 
of resting fluctuations in the brain: metastability and its dynamical 
cortical core. Scientific reports, 7(1), 1-14.  

Deco, G., Lynn, C., Perl, Y. S., & Kringelbach, M. L. (2023). Violations of the 
fluctuation-dissipation theorem reveal distinct non-equilibrium 
dynamics of brain states. arXiv preprint arXiv:2304.07027.  

Deco, G., Perl, Y. S., Sitt, J. D., Tagliazucchi, E., & Kringelbach, M. L. 
(2021). Deep learning the arrow of time in brain activity: 
characterising brain-environment behavioural interactions in health 
and disease. bioRxiv.  

Deco, G., Ponce-Alvarez, A., Hagmann, P., Romani, G. L., Mantini, D., & 
Corbetta, M. (2014). How local excitation–inhibition ratio impacts the 
whole brain dynamics. Journal of Neuroscience, 34(23), 7886-7898.  

Deco, G., Sanz Perl, Y., Bocaccio, H., Tagliazucchi, E., & Kringelbach, M. L. 
(2022). The INSIDEOUT framework provides precise signatures of 
the balance of intrinsic and extrinsic dynamics in brain states. 
Communications Biology, 5(1), 1-13.  

Deco, G., Tononi, G., Boly, M., & Kringelbach, M. L. (2015). Rethinking 
segregation and integration: contributions of whole-brain modelling. 
Nature reviews neuroscience, 16(7), 430-439.  

Dubreuil, A., Valente, A., Beiran, M., Mastrogiuseppe, F., & Ostojic, S. 
(2020). Complementary roles of dimensionality and population 
structure in neural computations. bioRxiv.  

Faskowitz, J., Esfahlani, F. Z., Jo, Y., Sporns, O., & Betzel, R. F. (2020). 
Edge-centric functional network representations of human cerebral 
cortex reveal overlapping system-level architecture. Nat Neurosci, 
23(12), 1644-1654. https://doi.org/10.1038/s41593-020-00719-y  

Faskowitz, J., Yan, X., Zuo, X. N., & Sporns, O. (2018). Weighted Stochastic 
Block Models of the Human Connectome across the Life Span. Sci 
Rep, 8(1), 12997. https://doi.org/10.1038/s41598-018-31202-1  

Favaretto, C. A., Michele; Deco, Gustavo; Metcalf, Nicholas; Griffis, Joseph; 
Shulman, Gordon; Brovelli, Andrea; Corbetta, Maurizio. (2022). 
Subcortical-cortical dynamical states of the human brain and their 
breakdown in stroke. Nature communications, 13.  

https://doi.org/10.1038/s41593-020-00719-y
https://doi.org/10.1038/s41598-018-31202-1


229 
 

Firat, O., Aksan, E., Oztekin, I., & Yarman Vural, F. T. (2015). Learning 
deep temporal representations for fMRI brain decoding. Medical 
Learning Meets Medical Imaging,  

Foulon, C., Cerliani, L., Kinkingnehun, S., Levy, R., Rosso, C., Urbanski, M., 
Volle, E., & Thiebaut de Schotten, M. (2018). Advanced lesion 
symptom mapping analyses and implementation as BCBtoolkit. 
Gigascience, 7(3), giy004.  

Fox, M. D., & Alterman, R. L. (2015). Brain stimulation for torsion dystonia. 
JAMA neurology, 72(6), 713-719.  

Friston, K. J. (2011). Functional and effective connectivity: a review. Brain 
connectivity, 1(1), 13-36.  

Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. 
Neuroimage, 19(4), 1273-1302.  

Fukushima, M., Betzel, R. F., He, Y., van den Heuvel, M. P., Zuo, X.-N., & 
Sporns, O. (2018). Structure–function relationships during 
segregated and integrated network states of human brain functional 
connectivity. Brain Structure and Function, 223(3), 1091-1106.  

Gilson, M., Moreno-Bote, R., Ponce-Alvarez, A., Ritter, P., & Deco, G. 
(2016). Estimation of directed effective connectivity from fMRI 
functional connectivity hints at asymmetries of cortical connectome. 
PLoS computational biology, 12(3), e1004762.  

Govindarajan, P., Soundarapandian, R. K., Gandomi, A. H., Patan, R., 
Jayaraman, P., & Manikandan, R. (2020). Classification of stroke 
disease using machine learning algorithms. Neural Computing and 
Applications, 32(3), 817-828.  

Gratton, C., Nomura, E. M., Pérez, F., & D'Esposito, M. (2012). Focal brain 
lesions to critical locations cause widespread disruption of the 
modular organization of the brain. Journal of cognitive neuroscience, 
24(6), 1275-1285.  

Greenwell, S., Faskowitz, J., Pritschet, L., Santander, T., Jacobs, E. G., & 
Betzel, R. F. (2021). High-amplitude network co-fluctuations linked to 
variation in hormone concentrations over menstrual cycle. bioRxiv.  

Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2019). 
Structural disconnections contribute to lesion-induced brain 
functional connectivity disruptions via direct and indirect 
mechanisms. bioRxiv, 785576.  

Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2019). 
Structural Disconnections Explain Brain Network Dysfunction after 
Stroke. Cell Rep, 28(10), 2527-2540 e2529. 
https://doi.org/10.1016/j.celrep.2019.07.100  

Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2020). Damage 
to the shortest structural paths between brain regions is associated 
with disruptions of resting-state functional connectivity after stroke. 
Neuroimage, 210, 116589.  

Griffis, J. C., Metcalf, N. V., Corbetta, M., & Shulman, G. L. (2021). Lesion 
Quantification Toolkit: A MATLAB software tool for estimating grey 

https://doi.org/10.1016/j.celrep.2019.07.100


230 
 

matter damage and white matter disconnections in patients with 
focal brain lesions. Neuroimage Clin, 30, 102639. 
https://doi.org/10.1016/j.nicl.2021.102639  

Hama, S., Yoshimura, K., Yanagawa, A., Shimonaga, K., Furui, A., Soh, Z., 
Nishino, S., Hirano, H., Yamawaki, S., & Tsuji, T. (2020). 
Relationships between motor and cognitive functions and 
subsequent post-stroke mood disorders revealed by machine 
learning analysis. Scientific reports, 10(1), 1-10.  

Han, X., Jin, H., Li, K., Ning, Y., Jiang, L., Chen, P., Liu, H., Zhang, Y., 
Zhang, H., & Tan, Z. (2020). Acupuncture Modulates Disrupted 
Whole-Brain Network after Ischemic Stroke: Evidence Based on 
Graph Theory Analysis. Neural Plasticity, 2020.  

Han, X., Zhong, Y., He, L., Yu, P. S., & Zhang, L. (2015). The unsupervised 
hierarchical convolutional sparse auto-encoder for neuroimaging 
data classification. International Conference on Brain Informatics and 
Health,  

He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & 
Corbetta, M. (2007). Breakdown of functional connectivity in 
frontoparietal networks underlies behavioral deficits in spatial 
neglect. Neuron, 53(6), 905-918.  

Hejazi, M., & Nasrabadi, A. M. (2019). Prediction of epilepsy seizure from 
multi-channel electroencephalogram by effective connectivity 
analysis using Granger causality and directed transfer function 
methods. Cognitive neurodynamics, 13(5), 461-473.  

Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network 
structure of cerebral cortex shapes functional connectivity on 
multiple time scales. Proceedings of the National Academy of 
Sciences, 104(24), 10240-10245.  

Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, 
R., & Hagmann, P. (2009). Predicting human resting-state functional 
connectivity from structural connectivity. Proc Natl Acad Sci U S A, 
106(6), 2035-2040. https://doi.org/10.1073/pnas.0811168106  

Hotelling, H. (1957). The relations of the newer multivariate statistical 
methods to factor analysis. British Journal of Statistical Psychology, 
10(2), 69-79.  

Huang, D., Abdel-Khalik, H., Rabiti, C., & Gleicher, F. (2017). Dimensionality 
reducibility for multi-physics reduced order modeling. Annals of 
Nuclear Energy, 110, 526-540.  

Humphries, M. D. (2020). Strong and weak principles of neural dimension 
reduction. arXiv preprint arXiv:2011.08088.  

Idesis, S., Faskowitz, J., Betzel, R. F., Corbetta, M., Sporns, O., & Deco, G. 
(2022). Edge-centric analysis of stroke patients: An alternative 
approach for biomarkers of lesion recovery. NeuroImage: Clinical, 
103055.  

Idesis, S., Favaretto, C., Metcalf, N. V., Griffis, J. C., Shulman, G. L., 
Corbetta, M., & Deco, G. (2022). Inferring the dynamical effects of 

https://doi.org/10.1016/j.nicl.2021.102639
https://doi.org/10.1073/pnas.0811168106


231 
 

stroke lesions through whole-brain modeling. NeuroImage: Clinical, 
103233.  

IRIARTE, D. (2022). A deep learning approach for feature extraction from 
resting state functional connectivity of stroke patients and prediction 
of neuropsychological scores.  

Jeub, L. G., Sporns, O., & Fortunato, S. (2018). Multiresolution consensus 
clustering in networks. Scientific reports, 8(1), 1-16.  

Jo, Y., Esfahlani, F. Z., Faskowitz, J., Chumin, E. J., Sporns, O., & Betzel, 
R. F. (2021). The diversity and multiplexity of edge communities 
within and between brain systems. Cell reports, 37(7), 110032.  

Jo, Y., Faskowitz, J., Esfahlani, F. Z., Sporns, O., & Betzel, R. F. (2021). 
Subject identification using edge-centric functional connectivity. 
Neuroimage, 118204.  

Jobst, B. M., Hindriks, R., Laufs, H., Tagliazucchi, E., Hahn, G., Ponce-
Alvarez, A., Stevner, A. B. A., Kringelbach, M. L., & Deco, G. (2017). 
Increased Stability and Breakdown of Brain Effective Connectivity 
During Slow-Wave Sleep: Mechanistic Insights from Whole-Brain 
Computational Modelling. Scientific reports, 7(1), 4634. 
https://doi.org/10.1038/s41598-017-04522-x  

Karahanoglu, F. I., & Van De Ville, D. (2015). Transient brain activity 
disentangles fMRI resting-state dynamics in terms of spatially and 
temporally overlapping networks. Nat Commun, 6, 7751. 
https://doi.org/10.1038/ncomms8751  

Karnath, H.-O., Sperber, C., & Rorden, C. (2018). Mapping human brain 
lesions and their functional consequences. Neuroimage, 165, 180-
189.  

Kerr, J. N., & Denk, W. (2008). Imaging in vivo: watching the brain in action. 
Nature reviews neuroscience, 9(3), 195-205.  

Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A., & Sabuncu, M. R. 
(2019). Machine learning in resting-state fMRI analysis. Magnetic 
resonance imaging, 64, 101-121.  

Kringelbach, M. L., Cruzat, J., Cabral, J., Knudsen, G. M., Carhart-Harris, 
R., Whybrow, P. C., Logothetis, N. K., & Deco, G. (2020). Dynamic 
coupling of whole-brain neuronal and neurotransmitter systems. 
Proceedings of the National Academy of Sciences, 117(17), 9566-
9576.  

Kringelbach, M. L., McIntosh, A. R., Ritter, P., Jirsa, V. K., & Deco, G. 
(2015). The rediscovery of slowness: exploring the timing of 
cognition. Trends in cognitive sciences, 19(10), 616-628.  

Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial 
Least Squares (PLS) methods for neuroimaging: a tutorial and 
review. Neuroimage, 56(2), 455-475.  

Kuznetsov, Y. A. (1998). Elements of applied bifurcation theory. Applied 
mathematical sciences, 112, 591.  

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world 
networks. Physical review letters, 87(19), 198701.  

https://doi.org/10.1038/s41598-017-04522-x
https://doi.org/10.1038/ncomms8751


232 
 

Liégeois, R., Santos, A., Matta, V., Van De Ville, D., & Sayed, A. H. (2020). 
Revisiting correlation-based functional connectivity and its 
relationship with structural connectivity. Network Neuroscience, 4(4), 
1235-1251.  

Lin, W., Hao, Q., Rosengarten, B., Leung, W., & Wong, K. (2011). Impaired 
neurovascular coupling in ischaemic stroke patients with large or 
small vessel disease. European Journal of Neurology, 18(5), 731-
736.  

Lin, Y.-K., Lee, C.-Y., & Chen, C.-Y. (2022). Robustness of autoencoders for 
establishing psychometric properties based on small sample sizes: 
results from a Monte Carlo simulation study and a sports fan 
curiosity study. PeerJ Computer Science, 8, e782.  

Liu, X., & Duyn, J. H. (2013). Time-varying functional network information 
extracted from brief instances of spontaneous brain activity. Proc 
Natl Acad Sci U S A, 110(11), 4392-4397. 
https://doi.org/10.1073/pnas.1216856110  

Liu, Z.-Q., Vázquez-Rodríguez, B., Spreng, R. N., Bernhardt, B. C., Betzel, 
R. F., & Misic, B. (2021). Time-resolved structure-function coupling 
in brain networks. bioRxiv.  

Lynn, C. W., Cornblath, E. J., Papadopoulos, L., Bertolero, M. A., & Bassett, 
D. S. (2021). Broken detailed balance and entropy production in the 
human brain. Proceedings of the National Academy of Sciences, 
118(47), e2109889118.  

Manning-Dahan, T. (2018). PCA and Autoencoders. Montreal: Concordia 
University, INSE, 6220.  

Margulies, D. S., Ghosh, S. S., Goulas, A., Falkiewicz, M., Huntenburg, J. 
M., Langs, G., Bezgin, G., Eickhoff, S. B., Castellanos, F. X., & 
Petrides, M. (2016). Situating the default-mode network along a 
principal gradient of macroscale cortical organization. Proceedings of 
the National Academy of Sciences, 113(44), 12574-12579.  

Mesulam, M. M. (1981). A cortical network for directed attention and 
unilateral neglect. Annals of Neurology: Official Journal of the 
American Neurological Association and the Child Neurology Society, 
10(4), 309-325.  

Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and 
hierarchically modular organization of brain networks. Frontiers in 
neuroscience, 4, 200.  

Mitra, A., & Raichle, M. E. (2016). How networks communicate: propagation 
patterns in spontaneous brain activity. Philosophical Transactions of 
the Royal Society B: Biological Sciences, 371(1705), 20150546.  

Mitra, A., Snyder, A. Z., Hacker, C. D., Pahwa, M., Tagliazucchi, E., Laufs, 
H., Leuthardt, E. C., & Raichle, M. E. (2016). Human cortical–
hippocampal dialogue in wake and slow-wave sleep. Proceedings of 
the National Academy of Sciences, 113(44), E6868-E6876.  

https://doi.org/10.1073/pnas.1216856110


233 
 

Newman, M. E., & Girvan, M. (2004). Finding and evaluating community 
structure in networks. Phys Rev E Stat Nonlin Soft Matter Phys, 69(2 
Pt 2), 026113. https://doi.org/10.1103/PhysRevE.69.026113  

Novelli, L., & Razi, A. (2021). A mathematical perspective on edge-centric 
functional connectivity. arXiv preprint arXiv:2106.10631.  

Olafson, E. R., Jamison, K. W., Sweeney, E. M., Liu, H., Wang, D., Bruss, J. 
E., Boes, A. D., & Kuceyeski, A. (2021). Functional connectome 
reorganization relates to post-stroke motor recovery and structural 
and functional disconnection. Neuroimage, 245, 118642. 
https://doi.org/10.1016/j.neuroimage.2021.118642  

Ovadia-Caro, S., Villringer, K., Fiebach, J., Jungehulsing, G. J., Van Der 
Meer, E., Margulies, D. S., & Villringer, A. (2013). Longitudinal 
effects of lesions on functional networks after stroke. Journal of 
Cerebral Blood Flow & Metabolism, 33(8), 1279-1285.  

Pallarés, V., Insabato, A., Sanjuán, A., Kühn, S., Mantini, D., Deco, G., & 
Gilson, M. (2018). Extracting orthogonal subject-and condition-
specific signatures from fMRI data using whole-brain effective 
connectivity. Neuroimage, 178, 238-254.  

Pang, R., Lansdell, B. J., & Fairhall, A. L. (2016). Dimensionality reduction in 
neuroscience. Current Biology, 26(14), R656-R660.  

Park, H.-J., & Friston, K. (2013). Structural and functional brain networks: 
from connections to cognition. Science, 342(6158).  

Park, H. J., & Friston, K. (2013). Structural and functional brain networks: 
from connections to cognition. Science, 342(6158), 1238411. 
https://doi.org/10.1126/science.1238411  

Perl, Y. S., Bocaccio, H., Pallavicini, C., Pérez-Ipiña, I., Laureys, S., Laufs, 
H., Kringelbach, M., Deco, G., & Tagliazucchi, E. (2021). 
Nonequilibrium brain dynamics as a signature of consciousness. 
Physical Review E, 104(1), 014411.  

Petridou, N., Gaudes, C. C., Dryden, I. L., Francis, S. T., & Gowland, P. A. 
(2013). Periods of rest in fMRI contain individual spontaneous events 
which are related to slowly fluctuating spontaneous activity. Human 
brain mapping, 34(6), 1319-1329.  

Piccinini, J., Deco, G., Kringelbach, M. L., Laufs, H., Perl, Y. S., & 
Tagliazucchi, E. (2022). Data-driven discovery of canonical large-
scale brain dynamics. bioRxiv.  

Pini, L., Salvalaggio, A., De Filippo De Grazia, M., Zorzi, M., Thiebaut de 
Schotten, M., & Corbetta, M. (2021). A novel stroke lesion network 
mapping approach: improved accuracy yet still low deficit prediction. 
Brain communications, 3(4), fcab259.  

Pope, M., Fukushima, M., Betzel, R., & Sporns, O. (2021). Modular origins 
of high-amplitude co-fluctuations in fine-scale functional connectivity 
dynamics. bioRxiv.  

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, 
J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., & Schlaggar, B. L. 

https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/10.1016/j.neuroimage.2021.118642
https://doi.org/10.1126/science.1238411


234 
 

(2011). Functional network organization of the human brain. Neuron, 
72(4), 665-678.  

Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. 
(2013). Evidence for hubs in human functional brain networks. 
Neuron, 79(4), 798-813.  

Praveen, G., Agrawal, A., Sundaram, P., & Sardesai, S. (2018). Ischemic 
stroke lesion segmentation using stacked sparse autoencoder. 
Computers in biology and medicine, 99, 38-52.  

Pustina, D., Coslett, H. B., Ungar, L., Faseyitan, O. K., Medaglia, J. D., 
Avants, B., & Schwartz, M. F. (2017). Enhanced estimations of post‐
stroke aphasia severity using stacked multimodal predictions. 
Human brain mapping, 38(11), 5603-5615.  

Rabuffo, G., Fousek, J., Bernard, C., & Jirsa, V. (2021). Neuronal cascades 
shape whole-brain functional dynamics at rest. bioRxiv, 2020.2012. 
2025.424385.  

Ramsey, L., Siegel, J., Lang, C., Strube, M., Shulman, G., & Corbetta, M. 
(2017). Behavioural clusters and predictors of performance during 
recovery from stroke. Nature Human Behaviour, 1(3), 0038.  

Raut, R. V., Snyder, A. Z., & Raichle, M. E. (2020). Hierarchical dynamics 
as a macroscopic organizing principle of the human brain. 
Proceedings of the National Academy of Sciences, 117(34), 20890-
20897.  

Reber, J., Hwang, K., Bowren, M., Bruss, J., Mukherjee, P., Tranel, D., & 
Boes, A. D. (2021). Cognitive impairment after focal brain lesions is 
better predicted by damage to structural than functional network 
hubs. Proceedings of the National Academy of Sciences, 118(19).  

Rocha, R. P., Koçillari, L., Suweis, S., De Filippo De Grazia, M., de 
Schotten, M. T., Zorzi, M., & Corbetta, M. (2022). Recovery of neural 
dynamics criticality in personalized whole-brain models of stroke. 
Nature communications, 13(1), 3683.  

Rubinov, M., & Sporns, O. (2010). Complex network measures of brain 
connectivity: uses and interpretations. Neuroimage, 52(3), 1059-
1069. https://doi.org/10.1016/j.neuroimage.2009.10.003  

Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of 
complex functional brain networks. Neuroimage, 56(4), 2068-2079. 
https://doi.org/10.1016/j.neuroimage.2011.03.069  

Russo, S., Pigorini, A., Mikulan, E., Sarasso, S., Rubino, A., Zauli, F. M., 
Parmigiani, S., d'Orio, P., Cattani, A., & Francione, S. (2021). Focal 
lesions induce large-scale percolation of sleep-like intracerebral 
activity in awake humans. Neuroimage, 234, 117964.  

Saenger, V. M., Ponce-Alvarez, A., Adhikari, M., Hagmann, P., Deco, G., & 
Corbetta, M. (2018). Linking Entropy at Rest with the Underlying 
Structural Connectivity in the Healthy and Lesioned Brain. Cerebral 
Cortex, 28(8), 2948-2958. https://doi.org/10.1093/cercor/bhx176  

Salvalaggio, A., De Filippo De Grazia, M., Zorzi, M., Thiebaut de Schotten, 
M., & Corbetta, M. (2020). Post-stroke deficit prediction from lesion 

https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1093/cercor/bhx176


235 
 

and indirect structural and functional disconnection. Brain, 143(7), 
2173-2188.  

Sanz Perl, Y., Escrichs, A., Tagliazucchi, E., Kringelbach, M. L., & Deco, G. 
(2022). Strength-dependent perturbation of whole-brain model 
working in different regimes reveals the role of fluctuations in brain 
dynamics. PLoS computational biology, 18(11), e1010662.  

Sanz Perl, Y., Pallavicini, C., Pérez Ipiña, I., Demertzi, A., Bonhomme, V., 
Martial, C., Panda, R., Annen, J., Ibañez, A., & Kringelbach, M. 
(2021). Perturbations in dynamical models of whole-brain activity 
dissociate between the level and stability of consciousness. PLoS 
computational biology, 17(7), e1009139.  

Sarasso, S., D’Ambrosio, S., Fecchio, M., Casarotto, S., Viganò, A., Landi, 
C., Mattavelli, G., Gosseries, O., Quarenghi, M., & Laureys, S. 
(2020). Local sleep-like cortical reactivity in the awake brain after 
focal injury. Brain, 143(12), 3672-3684.  

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X. N., Holmes, 
A. J., Eickhoff, S. B., & Yeo, B. T. T. (2018). Local-Global 
Parcellation of the Human Cerebral Cortex from Intrinsic Functional 
Connectivity MRI. Cereb Cortex, 28(9), 3095-3114. 
https://doi.org/10.1093/cercor/bhx179  

Schuessler, F., Mastrogiuseppe, F., Dubreuil, A., Ostojic, S., & Barak, O. 
(2020). The interplay between randomness and structure during 
learning in RNNs. Advances in neural information processing 
systems, 33, 13352-13362.  

Senden, M., Reuter, N., van den Heuvel, M. P., Goebel, R., & Deco, G. 
(2017). Cortical rich club regions can organize state-dependent 
functional network formation by engaging in oscillatory behavior. 
Neuroimage, 146, 561-574.  

Shalev-Shwartz, S., & Ben-David, S. (2014). Understanding machine 
learning: From theory to algorithms. Cambridge university press.  

Shanthi, D., Sahoo, G., & Saravanan, N. (2009). Designing an artificial 
neural network model for the prediction of thrombo-embolic stroke. 
International Journals of Biometric and Bioinformatics (IJBB), 3(1), 
10-18.  

Shinn, M., Romero-Garcia, R., Seidlitz, J., Vasa, F., Vertes, P. E., & 
Bullmore, E. (2017). Versatility of nodal affiliation to communities. Sci 
Rep, 7(1), 4273. https://doi.org/10.1038/s41598-017-03394-5  

Siegel, J. S., Ramsey, L. E., Snyder, A. Z., Metcalf, N. V., Chacko, R. V., 
Weinberger, K., Baldassarre, A., Hacker, C. D., Shulman, G. L., & 
Corbetta, M. (2016). Disruptions of network connectivity predict 
impairment in multiple behavioral domains after stroke. Proc Natl 
Acad Sci U S A, 113(30), E4367-4376. 
https://doi.org/10.1073/pnas.1521083113  

Siegel, J. S., Seitzman, B. A., Ramsey, L. E., Ortega, M., Gordon, E. M., 
Dosenbach, N. U. F., Petersen, S. E., Shulman, G. L., & Corbetta, 
M. (2018). Re-emergence of modular brain networks in stroke 

https://doi.org/10.1093/cercor/bhx179
https://doi.org/10.1038/s41598-017-03394-5
https://doi.org/10.1073/pnas.1521083113


236 
 

recovery. Cortex, 101, 44-59. 
https://doi.org/10.1016/j.cortex.2017.12.019  

Silasi, G., & Murphy, T. H. (2014). Stroke and the connectome: how 
connectivity guides therapeutic intervention. Neuron, 83(6), 1354-
1368.  

Singh, M. S., & Choudhary, P. (2017). Stroke prediction using artificial 
intelligence. 2017 8th Annual Industrial Automation and 
Electromechanical Engineering Conference (IEMECON),  

Sperber, C., & Karnath, H.-O. (2018). On the validity of lesion-behaviour 
mapping methods. Neuropsychologia, 115, 17-24.  

Sporns, O. (2013). Network attributes for segregation and integration in the 
human brain. Current opinion in neurobiology, 23(2), 162-171.  

Sporns, O. (2014). Contributions and challenges for network models in 
cognitive neuroscience. Nature neuroscience, 17(5), 652-660.  

Sporns, O., Faskowitz, J., Teixeira, A. S., Cutts, S. A., & Betzel, R. F. 
(2021). Dynamic expression of brain functional systems disclosed by 
fine-scale analysis of edge time series. Network Neuroscience, 5(2), 
405-433.  

Sporns, O., Honey, C. J., & Kotter, R. (2007). Identification and classification 
of hubs in brain networks. PLoS One, 2(10), e1049. 
https://doi.org/10.1371/journal.pone.0001049  

Sprigg, N., Gray, L. J., Bath, P. M., Lindenstrøm, E., Boysen, G., De Deyn, 
P. P., Friis, P., Leys, D., Marttila, R., & Olsson, J.-E. (2007). Stroke 
severity, early recovery and outcome are each related with clinical 
classification of stroke: data from the ‘Tinzaparin in Acute Ischaemic 
Stroke Trial’(TAIST). Journal of the neurological sciences, 254(1-2), 
54-59.  

Sudha, A., Gayathri, P., & Jaisankar, N. (2012). Effective analysis and 
predictive model of stroke disease using classification methods. 
International Journal of Computer Applications, 43(14), 26-31.  

Sun, J., Wang, D., Chen, S., Pang, R., Liu, H., Wang, J., Zhang, Y., Wang, 
C., & Yang, A. (2021). The behavioral significance of resting state 
network after stroke: A study via graph theory analysis with near-
infrared spectroscopy. Medicine in Novel Technology and Devices, 
11, 100083.  

Tagliazucchi, E., Balenzuela, P., Fraiman, D., & Chialvo, D. R. (2012). 
Criticality in large-scale brain FMRI dynamics unveiled by a novel 
point process analysis. Front Physiol, 3, 15. 
https://doi.org/10.3389/fphys.2012.00015  

Tagliazucchi, E., Von Wegner, F., Morzelewski, A., Brodbeck, V., & Laufs, 
H. (2012). Dynamic BOLD functional connectivity in humans and its 
electrophysiological correlates. Frontiers in human neuroscience, 6, 
339.  

Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain 
complexity: relating functional segregation and integration in the 

https://doi.org/10.1016/j.cortex.2017.12.019
https://doi.org/10.1371/journal.pone.0001049
https://doi.org/10.3389/fphys.2012.00015


237 
 

nervous system. Proceedings of the National Academy of Sciences, 
91(11), 5033-5037.  

Traag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for 
resolution-limit-free community detection. Physical review E, 84(1), 
016114.  

Tsang, A., Lebel, C. A., Bray, S. L., Goodyear, B. G., Hafeez, M., Sotero, R. 
C., McCreary, C. R., & Frayne, R. (2017). White matter structural 
connectivity is not correlated to cortical resting-state functional 
connectivity over the healthy adult lifespan. Frontiers in aging 
neuroscience, 144.  

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, 
O., Delcroix, N., Mazoyer, B., & Joliot, M. (2002). Automated 
anatomical labeling of activations in SPM using a macroscopic 
anatomical parcellation of the MNI MRI single-subject brain. 
Neuroimage, 15(1), 273-289.  

van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human 
brain. Trends in cognitive sciences, 17(12), 683-696.  

Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. 
Journal of machine learning research, 9(11).  

van Oort, E. S., Mennes, M., Schröder, T. N., Kumar, V. J., Jimenez, N. I. 
Z., Grodd, W., Doeller, C. F., & Beckmann, C. F. (2018). Functional 
parcellation using time courses of instantaneous connectivity. 
Neuroimage, 170, 31-40.  

Vattikonda, A., Surampudi, B. R., Banerjee, A., Deco, G., & Roy, D. (2016). 
Does the regulation of local excitation–inhibition balance aid in 
recovery of functional connectivity? A computational account. 
Neuroimage, 136, 57-67.  

Vecchio, F., Caliandro, P., Reale, G., Miraglia, F., Piludu, F., Masi, G., 
Iacovelli, C., Simbolotti, C., Padua, L., & Leone, E. (2019). Acute 
cerebellar stroke and middle cerebral artery stroke exert distinctive 
modifications on functional cortical connectivity: A comparative study 
via EEG graph theory. Clinical Neurophysiology, 130(6), 997-1007.  

Vecchio, F., Tomino, C., Miraglia, F., Iodice, F., Erra, C., Di Iorio, R., Judica, 
E., Alù, F., Fini, M., & Rossini, P. M. (2019). Cortical connectivity 
from EEG data in acute stroke: A study via graph theory as a 
potential biomarker for functional recovery. International Journal of 
Psychophysiology, 146, 133-138.  

Veldsman, M., Cumming, T., & Brodtmann, A. (2015). Beyond BOLD: 
optimizing functional imaging in stroke populations. Human brain 
mapping, 36(4), 1620-1636.  

Wagner, T., Valero-Cabre, A., & Pascual-Leone, A. (2007). Noninvasive 
human brain stimulation. Annual review of biomedical engineering, 
9(1), 527-565.  

Wang, S. H., Lobier, M., Siebenhühner, F., Puoliväli, T., Palva, S., & Palva, 
J. M. (2018). Hyperedge bundling: A practical solution to spurious 



238 
 

interactions in MEG/EEG source connectivity analyses. Neuroimage, 
173, 610-622.  

Wang, X., Seguin, C., Zalesky, A., Wong, W.-w., Chu, W. C.-w., & Tong, R. 
K.-y. (2019). Synchronization lag in post stroke: relation to motor 
function and structural connectivity. Network Neuroscience, 3(4), 
1121-1140.  

Warren, D. E., Power, J. D., Bruss, J., Denburg, N. L., Waldron, E. J., Sun, 
H., Petersen, S. E., & Tranel, D. (2014). Network measures predict 
neuropsychological outcome after brain injury. Proceedings of the 
National Academy of Sciences, 111(39), 14247-14252.  

Wei, L., Wu, G.-R., Bi, M., & Baeken, C. (2021). Effective connectivity 
predicts cognitive empathy in cocaine addiction: a spectral dynamic 
causal modeling study. Brain Imaging and Behavior, 15(3), 1553-
1561.  

Weiss Cohen, M., & Regazzoni, D. (2020). Hand rehabilitation assessment 
system using leap motion controller. Ai & Society, 35(3), 581-594.  

Wodeyar, A., Cassidy, J. M., Cramer, S. C., & Srinivasan, R. (2020). 
Damage to the structural connectome reflected in resting-state fMRI 
functional connectivity. Network Neuroscience, 4(4), 1197-1218.  

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: a basic tool 
of chemometrics. Chemometrics and intelligent laboratory systems, 
58(2), 109-130.  

Yeh, F.-C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M., Fernandez-
Miranda, J. C., Vettel, J. M., & Verstynen, T. (2018). Population-
averaged atlas of the macroscale human structural connectome and 
its network topology. Neuroimage, 178, 57-68.  

Yeh, F.-C., & Tseng, W.-Y. I. (2011). NTU-90: a high angular resolution 
brain atlas constructed by q-space diffeomorphic reconstruction. 
Neuroimage, 58(1), 91-99.  

Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., 
Hollinshead, M., Roffman, J. L., Smoller, J. W., Zöllei, L., & Polimeni, 
J. R. (2011). The organization of the human cerebral cortex 
estimated by intrinsic functional connectivity. Journal of 
neurophysiology.  

Zamani Esfahlani, F., Jo, Y., Faskowitz, J., Byrge, L., Kennedy, D. P., 
Sporns, O., & Betzel, R. F. (2020). High-amplitude cofluctuations in 
cortical activity drive functional connectivity. Proc Natl Acad Sci U S 
A, 117(45), 28393-28401. https://doi.org/10.1073/pnas.2005531117  

Zamora-López, G., Chen, Y., Deco, G., Kringelbach, M. L., & Zhou, C. 
(2016). Functional complexity emerging from anatomical constraints 
in the brain: the significance of network modularity and rich-clubs. 
Scientific reports, 6(1), 1-18.  

Zhang, J., Zhang, Y., Wang, L., Sang, L., Yang, J., Yan, R., Li, P., Wang, J., 
& Qiu, M. (2017). Disrupted structural and functional connectivity 
networks in ischemic stroke patients. Neuroscience, 364, 212-225.  

 

https://doi.org/10.1073/pnas.2005531117

