
“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page I — #1

Computational studies of
DNA damage and repair of
alkylating agents and UV light

Hanna Kranas

TESI DOCTORAL UPF / Year 2023

THESIS SUPERVISORS
Dra. Nuria López-Bigas & Dr. Abel González-Pérez

Department of Medicine and Life Sciences



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page II — #2



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page III — #3

To my grandpa,

I miss you and our science chats.
There is this science thing I did that I want to tell you about...

III



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page IV — #4



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page V — #5

Acknowledgements

I firmly believe that we rise by lifting others. Finally, I am here! But how much you
all had to rise, if you lifted me up so high?! And you are still so high up above me.
Thank you for showing me the way. This thesis wouldn’t be possible without a bunch
of amazing people, that lifted, and lifted, and lifted me up. Lifted my spirits and mood,
as well as my mind. I hope to one day be able to give it back, or at least pay it forward.

Firstly, I thank you. Yes, YOU, the reader! Thank you for opening my thesis and
granting my words the honor of your attention, even if just for this sentence.

There is no thesis without a supervisor. And this one had two great, supportive ones.

Nuria, thank you for bringing this compassionate component into your leadership, and
always putting the person first! I am grateful for all the kind opportunities for growth
you granted me (and supported me through), both academic and science-adjacent.
Thank you for building this amazing lab, and letting me spend 5 splendid years here,
working with you.

Abel, I cannot imagine this PhD without you, your insights, and your calm,
understanding presence. To say I enjoyed our discussions would be an understatement!
Thank you for sharing your knowledge so freely, and letting me learn in so many
aspects from you.

Although officially I had two supervisors, unofficially I feel like I had many, many
more! I was mentored in some way by each member of the BBGLab, both past and
present. Thank you all for the pleasure of getting to know you and all your brilliant
points of view!

There are two BBGLab mentors that I want to call out here (positively of course!).
Both are vital to the projects of this thesis and even more so to my life during the PhD.
Erika, Ferran, now is your turn!

Every padawan needs a great master to show them the path of the force. Ferran!!!
As we regularly have our lifting-spirits-up sessions, I’m sure you are aware of at
least a small part of my gratitude for you. And I’m sure you are equally aware that a
paragraph, or even a page in the thesis is not nearly enough to begin to express it. How
about we leave it at that, and set up pronto another one of our amazing chats, so I can
start there?

Oh, Dear! Dearest Awesome Erika. The Vitamin Person™, one and only, there is
absolutely no one like you. Thank you for all the loving support you offer, and for
letting me sometimes turn the tables and be there for you as well. You are an absolute
blessing to this world and an inspiration for how to show up, notice, care for, and lift
other people. And a freakishly smart scientist at that!

V



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page VI — #6

PhDs of the lab - we mentor each other, we support each other, we cry and laugh
together. It is no easy journey, but you make the time pass sweeter.

First, current PhDs: Katyayani, you are my favorite, very kind, understanding, and
crazy fun neighbor. I love our chats and walks, and I always feel they are too short!
Stefano, your beautiful intense energy is one of a kind! Can’t wait for another one of
our challenging discussions. Give a hug to the awesome Martina, and I am looking
forward to your newest project! Ferriol, I might call you a “PhD baby”, but I appreciate
your mature views on science and the joyful proactiveness you bring to the lab, really
a lot. Raquel, you are like a sister to me; I can’t decide if younger or older (I guess
it depends on the time!). What I mean is that connecting with you has been one of
the best surprises at the end of the PhD. Expect more to come in one of my podcast
messages!

To my dear past PhD mates: thank you for showing me the ropes, both in the lab and in
Barcelona; you made the uneasy thing of starting in a new place much more enjoyable.
First, the jokester trio: Joan, Oriol, Pepe! I loved coming into the lab in the morning
and seeing you three fooling around, you could brighten the harshest of mornings!
Joan, thank you for sharing your project with me and offering me guidance. Oriol,
you might have called me your grandma, but you are the one whose understanding
advice I needed the most! Pepe, my PhD twin, you know I don’t have enough words
to thank you for sharing this journey with me (which you are doing to this day!). Ines,
thanks for all the lunches, coffees, and music exchanges over the years; you really
knew when I needed one of them and showed up. Claudia, one thing I am sad about
regarding my PhD journey is that we couldn’t see each other more in real life instead
of online. Thank you for experiencing the little joys of life so beautifully and sharing
it with others.

To the rest of my dear labmates, past and present: I love the lab, and the atmosphere
we all created together. I believe there is not even a single person I dislike. I love how
each of you is so unique, and shows up authentically, to build together such a great
place. Even if your name is not listed here, it does not mean I care less about you or
your contribution to my life over these last years. It just means that there are so many
of you, and I don’t think I have enough space to write here. But! You can expect me
to either come tell you soon or send you a message, to thank you directly. Just you wait!

Now let’s switch gears shortly a bit to the more official, but no less important side.
Thank you to CONTRA for offering funding, great training, and chances to meet great
people. Thanks to all ESRs for sharing in this journey, with special thanks to Monica,
Paula, Michael, Nico, and Mandi. Thanks to the PIs and organizers involved, for all
their effort. I also want to thank Sohrab Shah’s lab for the great time I had when they
hosted me there.

I want to take this opportunity to also thank the members of the thesis tribunal, and
international mention reviewers, which are likely the only people to read most of this
thesis in depth. Thank you for your time, and your reviews!

VI



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page VII — #7

Huge thanks to the IRB, as an institution, for taking me in and taking care of my
PhD. Huge thanks also to the people that make up IRB. From the administrative side,
special thanks go to Leyre and Alba, thank you for the kindest support. Thanks to
my TAC committee, for guiding this thesis over the years: Robert Castelo, Travis
Stracker, Marc A. Martí-Renom. Thanks to the student councils for your tireless work
in supporting students; and thanks to the council team I was a part of for moving the
needle a bit. Thanks to everyone who built and supported the actions of the Mental
Wellbeing team. Thanks to you I learned a lot and was given amazing chances to
advocate (a tiny bit) for the improvement of mental health in academic institutions.
Equally, thanks to everyone that kindly listened to me rant about this topic for hours!

Thanks also to everyday people I met at IRB and who so happily shared their
experiences with me. Starting with a few great PIs (Direna, Alejo, Salva, Manuel, and
many others) - although I was not your student, you cheered me on. Thank you for that.

Leaving IRB for a little moment, I want to thank 2 important groups for my formation
as a scientist. First, the ISCB-SC RSG-Spain, I loved learning from all of you.
Secondly, the Awesome Leaders. Each one of you deserves your own note; I hope I
can give it to you the next time we meet. You made me better.

Thanks to the many people that I interacted with, with some for longer than others.
Thanks to the IRB Rock Band! I miss you, and I will come to hug all of you soon,
and hopefully, we can jam together again. This was such an unexpected thing, but
unforgettable, and even better so - I am so glad I met you all; friendships forged over
music are definitely ones of the best.

IRB wouldn’t be the same without what I consider people of my PhD core team.
Thank you for taking me as your friend, all your patience, fun trips, good rants, and
overall just sticking together these 5 years. Adrí, I consider you and Marina M. to
simply be my people, I love you both a lot. Now let’s go have some cheese. Paula,
your energy to fight for what is good always inspires me; thank you for standing
up for me too. Clara, thank you for always showing up in your abundant, kind, and
creative energy; it refueled my mood many times. Nico, you are just the absolute
dearest, always. Pep, thank you for always welcoming me with open arms. Marina
S., I really wish I could have seen more of you; whenever you visit it’s an absolute
joy, we miss you. Diego, thanks for always offering your thought-through perspective
both on the PhD and life, it has helped me a lot. Liza, I’m so happy we both made it!
Elena, we might not be in touch anymore, but I am forever grateful for the time we
lived together. And for introducing me to the two special people.

Irene and Tere! You showed me that if there is a will, there is a way; no distance can
keep us apart. Thank you both for your beautiful friendship. Tere, thank you for always
pointing me in the right direction. Irene, thank you for your deeply compassionate
view of me.

VII



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page VIII — #8

My dear friends from Poland. Maciszeiro, Monika, Magda, and Igor. It’s been
so many beautiful years already, and I look forward to many more: of fun, of
support, and of love. Kacpi, thank you for the lovely visits, and a shared perspective of
growing up together; and thank you for introducing me to Jaz, and her radiant kindness.

Ramoneczku, I’m not sure you know this, but this thesis is also yours. Thank you,
from the bottom of my heart, for this shared journey of the last few years. It’s simply
not possible to put into words everything I want to say to you. But let me at least start
with this: Thank you. I love how we supported each other through all the hard parts. I
loved getting to know you in-depth, learning from you, and growing together. It was,
just like you, absolutely glorious. Our paths might be diverging now, but the time they
coincided will always hold a very special space in my heart. I always, always wish
you the best! Moltes gracies i ciudate, cuqi.

To my closest - thank you for being there always, through good and the bad. Thank
you for being my main supporters through all my struggles, cheerleaders through all
the successes, lending the ear and advice whenever needed. If there is something else
after this life, I want you to be my family there too. The most, I want to acknowledge
three people:

Ika i Wtk, mom and dad. Thank you for all the opportunities and care you have given
me, that lead me to where I am today. Thank you for being my parents, and choosing
to also become my friends. Kocham Was bardzo. Mom, thank you for always being
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Abstract
Living cells are exposed to naturally occurring DNA-damaging agents that promote the
loss of genome integrity, threatening the proper functioning of the cell. To counteract
the toxic accumulation of DNA damage, organisms have acquired mechanisms of DNA
repair, comprising multiple pathways charged with correcting the different types of
damage a genome can accumulate. The aim of this thesis is the study of DNA damage
caused by alkylating agents and UV light and their repair. First, we describe the first
nucleotide-resolution alkylating damage maps in humans. Second, we present a novel
approach to partition the genome by UV DNA damage repair activity aimed at studying
the determinants of the UV mutagenic process that is unbiased by genomic features.
Both projects contribute to expanding our knowledge of how different parts of DNA
damage response interact with chromatin architecture and basic cell processes, like
DNA replication or transcription.

Resum
Les cèl·lules estan exposades a agents naturals que danyen l’ADN, posant en risc el
seu funcionament. Per tal de contrarestar la toxicitat del dany genòmic, els éssers
vius han adquirit mecanismes de reparació de l’ADN dedicats a corregir els diferents
tipus de dany. L’objectiu d’aquesta tesi és estudiar l’acumulació i reparació del dany
genòmic causat pels agents alquilants i la radiació ultraviolada. Primer, descrivim els
primers mapes de dany genòmic induït per agents alquilants en humans. A continuació,
presentem una nova aproximació per a dividir el genoma en base a la reparació del
dany genòmic causat per la radiació ultraviolada amb l’objectiu d’estudiar, de manera
no esbiaixada, els determinants mutacionals associats. Tots dos estudis contribueixen
a ampliar el coneixement de com l’acumulació de dany genòmic i la seva reparació
s’associen amb les característiques de la cromatina i altres processos cel·lulars com la
replicació de l’ADN o la transcripció.
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1. Introduction

1.1. DNA alteration processes

The importance of nucleic acids for currently existing organisms and the cells that
make them is absolutely clear. Deoxyribonucleic acid (DNA) not only works as a
‘memory molecule’, storing a cookbook with recipes for the development, functioning,
and even death of the cell; it also provides heredity directions, crucial for the
continuation and evolution of life. While originally thought otherwise, DNA is a
‘volatile’ and reactive molecule [1, 2]. This duality of the DNA molecule - its
importance, and a need to keep it intact versus the ease with which it can undergo
changes - is right at the center of an essential biological balance. Balance, which our
cells constantly need to try their best to get right. The balance between some changes
– mutations – appearing, necessary for variability and evolution in the Darwinian
sense; and preservation and protection of crucial information, necessary for the proper
functioning of the cells and organisms [3, 4]. The reactivity of the DNA itself is only
one side of this problem. On the other side are the unforgiving environments that it is
exposed to.

Both the environment outside the cell, as well as the one inside it, house many
potentially disruptive forces to DNA [2, 1, 5]. We call these kinds of disruptions ‘DNA
damage’ or ‘DNA lesions’. The ones caused by the forces coming from outside the cell
are termed ‘exogenous’, and from within it - ‘endogenous’ - damages. Apart from there
being many sources, there are also many different types of DNA damage, characterized
by differences in disruption to the molecules’ structure. Given the prevalence of DNA
damage, DNA’s constancy as an inheritable instruction manual only makes sense in
the light of the presence of extensive maintenance keeping it in check. This means
organisms and cells needed to evolve specialized mechanisms in place to: protect the
DNA from those destructive forces; repair the damage if it occurs; if non-repairable (or
happening during an important task) pass through it without introducing grave errors;
if needed, stop everything else, allowing more time for repair; if all else fails - destroy
the cell.

This tiered, hierarchical, organized, and very specialized answer of the cell to threats
to the integrity of the DNA is often called the DNA Damage Response (DDR) [5, 4].
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DDR encompasses: pathways of DNA repair, each charged with the repair of specific
lesions; the DNA damage tolerance mechanisms, allowing the cell to continue - not
without risk - when encountering unrepaired lesions during e.g. replication; and
cell-cycle checkpoints, allowing for arresting the cell in the cell cycle, buying more
time to repair or tolerate the DNA damage. If DDR is not successful, the cell should
enter one of the cell death pathways, to avoid potentially malfunctioning. The success
of DDR does not mean that the DNA remains unchanged, though. The cost of
maintaining the genome perfectly is extremely high - too high to be worth it [6]. Many
of the steps of the process are imperfect and can introduce permanent DNA sequence
errors, called ‘mutations’, that the cell can still function with, but with varying degrees
of consequences. The accumulation of mutations can lead to malfunctioning of the
cell, early senescence, and over-increased proliferation, and has been implicated as an
important factor in aging and cancer, among others [2, 6].

In this chapter, I introduce the different steps of both DNA damage and the cell’s
response to it, describing the sources of DNA lesions, DNA damage types, and the
different elements of the DDR response. Unless otherwise specified, the focus of the
chapter is on human biology. I highlight damage resulting from 2 sources pivotal for
understanding this thesis: UV light, the most frequent exogenous damaging agent;
and alkylators (which come from a variety of both endo- and exogenous sources),
specifically ones used as chemotherapies.

1.1.1. DNA Damage
In this section the reader will find examples of DNA-damaging agents and their
sources, as well as selected lesion types that they can produce.

1.1.1.1. Sources
DNA damage may come from a variety of sources that are broadly categorized into
the factors coming from processes happening naturally within the cell (endogenous)
and those from the environment outside of the cell (exogenous). Some examples
of sources of endogenous lesions include natural cell metabolism products, reactions
with molecules like water or reactive oxygen species (ROS), and accidental erroneous
work of some substrates [5, 2]. Environmental factors come from a variety of lifestyle
components, as well as exposure to viruses, radiation, and occupational mutagens [5].
This is a simplified and imperfect characterization though: some lesions categorized
as coming from endo-, can also sometimes be from exogenous sources; some sources
might be so ever-present along the human population and hard to study, that it becomes
very difficult to tell where exactly they originate. Additionally, natural cell chemistry
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can change the exogenously induced lesion into another one (e.g. a methylated base
being cut out, producing a base-less site in the backbone of the DNA) making this
categorization even more complex [5].

1.1.1.1.1. Endogenous
Every day, our cells are suffering unavoidable DNA damage which is a byproduct
of their metabolism. Types of lesions introduced in the bases as a consequence
of cell metabolism include methylation (e.g. spontaneous actions of nonenzymatic
methylators), oxidation (oxidizing substances interacting with DNA) and hydrolysis (
due to ever-present water molecules) [5, 2]. Although one cannot completely get rid of
these reactions, some lifestyle changes have been shown to give a positive impact [6].

Interactions of the DNA with water molecules, termed hydrolysis, cause spontaneous
modifications of the bases. These include depurination, depyrimidination, cytosine
deamination, and others [7]. Some of these modifications result in atypical bases,
usually easily recognized and repaired. An important example is the deamination of
5-methyl-cytosine (5mC, a DNA modification naturally present at CpG sites of inactive
genes), which produces thymine [7]. The result is a T-G mispairing. Its repair is
fairly inefficient and results in 5mC>T mutations [7]. In the case of depurination and
depyrimidination, the bond linking the DNA backbone and the base gets spontaneously
hydrolyzed. This leads to a site without any base, an abasic site [5, 2].

When Reactive Oxygen Species (ROS), like superoxide radicals or hydrogen peroxide,
come in contact with DNA, they can oxidize it [5, 2]. This can produce many different
damaging outcomes. Examples include modified bases (e.g. 8-Oxoguanine, resulting
in G>T and C>A mutations), a saturation of pyrimidine rings, lipid peroxidation, and
even breaks in the DNA backbone [5]).

An endogenous source, less known and frequent, but relevant for this thesis, is
endogenous alkylators [5]. Alkylators are a very broad category, including practically
any source of additional alkyl groups on DNA. One of the alkyl groups is methylation.
The methylation of DNA serves many important functions. Due to that, there are
agents in the cell tasked with methylating (alkylating) DNA [8]. Their actions, when
happening in the right places, do not constitute damage, but a controlled and needed
alkylation. An example of a nonenzymatic methylator present in human cells is
S-adenosylmethionine (SAM) [9, 8]. However, SAM is also prone to spontaneous
methylation in some guanines and adenines. More on alkylators, especially exogenous
ones, is explained in the dedicated exogenous section below.

3



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 4 — #18

Finally, it is important to note that processes like replication or repair, while tightly
regulated and nearly perfect, are not completely error-free [3]. It is estimated that
during replication once every 104–107 bases, a mistake is introduced [3, 4]. Repair,
when encountering a mismatch, often does not know what was the original base - and
corrects based on the most likely scenario, but not necessarily the actual one [7]. Some
repair mechanisms sacrifice the quality of repair - and a few bases at that - to repair
a very cytotoxic type of damage, or prevent cell death [4]. Finally, some existing
lesions might cause important protein complexes bound to DNA to get irreversibly
trapped (e.g. Topoisomerase I) at the site, causing them to become DNA damage too
[4]. Although not categorizable as mistakes, some steps of DNA damage repair entail
changing a lesion to another one, e.g. an improper base might get cleaved during repair,
producing an abasic site that should be further repaired [10].

1.1.1.1.2. Exogenous
Although exogenous (coming from outside environments) suggests a degree of control
over our exposure to these DNA-damaging sources, some of them are ubiquitous,
making them hard to evade. Lifestyle has a big influence: commonly known
problematic substances are tobacco and alcohol, but diet (e.g. fungi infesting peanuts,
grains, and corn stored in humid conditions, which produces dangerously mutagenic
aflatoxins) can have a huge impact too [5, 6]. Radiation is inescapable, whether from
UV exposure on a sunny day, during medical procedures (e.g. X-rays), or due to
frequent flights (space radiation) [11]. Some infections and viruses are implicated as
a risk factor for cancer (e.g. Hepatitis B virus). One’s job environment might include
dangerous, mutagenic substances (e.g. asbestos, vinyl chloride, benzene) [12]. Or
one’s health might require the use of medicine that might damage the DNA of healthy
cells in their body (e.g. chemotherapies) [13, 14].

Of note, some of the mentioned sources do not generate DNA lesions themselves,
but rather through their metabolites, produced by the interaction with oxidases of
cytochrome p450 [5]. Although cytochrome p450 is charged with deactivating
compounds into more easily excretable and less harmful forms, for some molecules
the effect is opposite, producing forms that are more active, mutagenic or cytotoxic.
As the description of all the potential exogenous DNA damage sources is out of the
scope of this thesis, next I focus on the two of the highest importance for understanding
this work: the most mutagenic part of the sunlight spectrum - UV (ultraviolet) light,
and a few selected alkylators.
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UV radiation
The ever-present sunlight, together with its many benefits, brings also risks. An
important one is the ultraviolet component of the sunlight spectrum (covering around
5.4% of the sunlight composition) [5]. The UV wavelength spectrum can be split
into three components: UV-A, UV-B, and UV-C. Each of these components is
characterized by a slightly different wavelength range. Differences in wavelengths
result, among other things, in slight differences in produced lesions and their
proportions. Importantly, the most damaging UV-C is luckily heavily filtered by the
ozone layer [5].

UV-induced damage comes in two main forms: direct DNA damage due to the
excitation of the molecule, and indirect damage, coming from photosensitizers (other,
photo-excited molecules) transferring the energy to the DNA [15, 16, 17]. In
this thesis, we focus on the direct UV damage, in the form of pyrimidine dimer
photoproducts. As UV-A – which constitutes the major UV contributor to the sunlight
spectrum – does not induce as many pyrimidine dimers, we next focus on UV-B and
UV-C.

Pyrimidine dimer photoproducts formed by UV-B light on DNA are bulky,
helix-distorting lesions [18, 19, 5]. UV-C produces highly similar lesions as UV-B, in
a shorter period of time, although in slightly different proportions [5]. Due to that, it is
frequently used in experimental studies of mutagenesis by UV and sunlight exposure.

Due to the nature of the damage induced by UV light, most photoproducts are induced
only while the light source is currently present. Without light, direct damage does not
happen. As mentioned before, indirect damages, indicated as consequences of mostly
UV-A exposure, have been reported [15, 16, 17]. For example, photo-excited melanin
is indicated in indirectly generating ‘dark’ pyrimidine dimers. UV is also known to
provoke oxidative stress.

Luckily, although exposure to UV radiation cannot be completely omitted (at least
without serious risks to health), its damaging effects can be reduced by the proper use
of sunscreen, and regulating the time spent in the heavy summer sun.

Alkylating agents
Alkylators, or alkylating agents, is a broad name for any substance that adds
alkyl (methyl, ethyl, butyl, propyl...) groups to DNA. Alkylators are usually
categorized as mono- or bi-functional, depending on whether they carry 1 or 2 reactive
groups, allowing them to interact with 1 or 2 sites in the DNA, respectively [20].
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Monofunctional alkylators mostly damage DNA by adding alkyl groups, with varying
affinity, to nitrogens and some oxygens of the base rings. Bifunctional ones can
additionally link two bases together between (crosslinks) or within the strands, or link
a DNA base with a protein [5].

Natural, endogenous alkylators are, for example, the already mentioned
DNA-methylating molecules like SAM. Exogenous alkylating agents come from
many different sources, and notable examples include metabolites of benzopyrene
present in tobacco smoke or biomass burning; historically known toxic agents like
mustard gas; chemotherapeutics [5].

For this thesis, monofunctional so-called model alkylators and alkylators used in
chemotherapy are of special interest and will be mostly described next. Model
alkylators are alkylating agents that have been extensively used in experimental studies
due to their potency. A prominent example is MMS (methyl methanesulfonate), which
methylates bases. Among monofunctional alkylators commonly used in chemotherapy,
the most known one is likely Temozolomide [21, 20].

One might wonder why DNA-damaging agents are used in the therapy of cancer if they
inflict damage on healthy cells as well. The reasoning behind this comes from the high
genetic instability that cancer cells exhibit. Many cancers have some repair pathways
impaired, while others have messed up their cell cycle checkpoints. Even if they don’t
carry defects in DNA repair pathways, the fact that they go through the cell cycle faster
than normal cells is detrimental to their ability to repair DNA. The rationale is that this
may result in apoptosis. Normal, healthy stem cells are thought to be able to remain
quiescent, with enhanced DNA repair capability. But unfortunately, high damage, even
efficiently repaired, caused by prolonged exposure can leave scars. Chemotherapies are
infamous for their strong side effects, caused by the depletion of stem cell populations
[13]. There are also (very rare) reports of secondary malignancies, especially of blood
cells, with causation pointing to mutations induced by chemotherapeutic treatment
used many years before for a different tumor [14].

1.1.1.2. Types of damage
As indicated above, apart from many sources, DNA damage also comes in various
structural shapes. In this section, I list a few categories of distortions to the structure
of DNA, focusing on the examples most relevant to this thesis.

Types of distortions induced by the damage to the DNA range from small modifications
of bases, through larger helix disturbances, to toxic breaks. Small modifications
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are usually additions or losses of tiny groups on the bases. Sometimes, the loss
encompasses the whole base, without affecting the backbone - this is termed an
abasic site. Lesions with a stronger impact on the helix structure include large, bulky
adducts and crosslinks between or within the strands. Finally, the DNA backbone can
experience breakage, which can affect one, or worse, both of the strands.

1.1.1.2.1. Bulky adducts
Bulky lesions include any larger distortions of the helix, bulging out from the DNA.
These are often adducts formed by an external molecule binding to the DNA. These
are large and often formed by metabolites of e.g. aflatoxin or benzopyrene [22]. Some
smaller bulky adducts are formed by a reaction caused by an outside agent on the DNA.
In this group belong the UV-induced pyrimidine dimer photoproducts.

Pyrimidine dimers, as their name suggests, are formed by two adjacent pyrimidines
(Cs and Ts) getting linked together. The two most frequent UV dimers of this type are
cyclobutane pyrimidine dimers (CPDs) and pyrimidine(6-4)pyrimidone photoproducts
(6-4PPs) [19]. CPDs are about more abundant than 6-4PPs, although this proportion
slightly changes depending on the wavelength [5]. These two photoproduct types are
distinct in the place where the dimer bond is formed. CPDs are characterized by the
cyclobutane ring linking the two pyrimidines. In 6-4PPs, the two pyrimidines are
bonded through the C6 position with the C4 of the other.

The 6-4PP structure is more disruptive to the helix. Luckily, the repair mechanism
charged with its repair has a higher affinity for 6-4PPs than other pyrimidine dimers,
and it is repaired faster [23]. All bulky lesions are predominantly repaired with
Nucleotide Excision Repair.

1.1.1.2.2. Alkylations
As introduced before, alkylations include a large range of modifications including any
addition of alkyl groups to the bases. The most frequently added groups are methyl
and ethyl. Alkylating damage is thus in general of a small size – depending on the size
of the alkyl group – compared to bulky lesions.

Alkyl groups can be added at various bases, and happen mostly at adenine and guanine
[9]. The groups are also attached to various atoms of the base rings. Most frequently
at nitrogens, producing e.g. N-methylpurines (NMPs) and oxygens, resulting in
e.g. O6-methylguanine (m6G). The propensity to generate more specific alkyl group
additions in some atoms or bases than others is dependent on the drug. Nevertheless,
three frequently encountered NMPs are 3-methyladenine (m3A), 7-methylguanine
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(m7G), and 1-methyladenine (1mA) [9]. In fact, m7G and m3A have been found
to constitute up to 90% of the MMS-induced lesions, with m7G appearing 8-fold more
than m3A [24]. These two methylations are also frequently induced by Temozolomide,
although in slightly different proportions: m7G constitutes 70% and m3A only 9% of
all lesions [21].

Alkylating lesions are repaired by a host of repair mechanisms. m1A and m6G are
predominantly repaired through dedicated direct reversal mechanisms. Base Excision
Repair is tasked with the removal of m3A and m7G. Nucleotide Excision Repair has
been potentially implicated for some alkylating lesions as well [9, 8].

1.1.1.2.3. Crosslinks, abasic sites, and strand breaks
Other types of distortions to DNA that are not at the center of this thesis, but important
to develop a bit more are DNA crosslinks, abasic sites, and strand breaks.

Some alkylators (and many other damaging agents, termed crosslinking agents) carry
the ability to cross-link the two DNA strands [20, 25]. These types of lesions are
broadly termed inter-strand crosslinks (ICLs). With the involvement of both strands,
their repair is not trivial and involves many DNA repair pathways [5, 25].

Abasic sites (also called AP sites, where AP stands for apurinic/apyrimidinic) are
single-nucleotide gaps in the backbone, with only the base gone. As mentioned earlier,
they can be generated due to hydrolysis of the bond between the backbone and the
lost base. Alternatively, they are a natural product of Base Excision Repair, where a
modified base needs to be excised from the backbone. This means that they are also
repaired through the next steps of the same pathway.

The backbone of the DNA can also break. Single Strand Breaks (SSBs) involve just
one strand and are quite common. They are also necessarily produced during many
cell processes. In fact, after the excision of the modified base from the backbone that
induces an AP site, the next step of Base Excision Repair involves inducing a SSB.
SSBs are usually quite easily and efficiently re-ligated. Double Strand Breaks (DSBs)
on the other hand are much more problematic for the cells. Repair pathways do not
have a way of knowing which pairs of ends fit together, although some of them attempt
to utilize homology at the break sites [4]. Nevertheless, DSB repair often comes at
either a loss or relocation of the DNA fragment.
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1.1.2. DNA Damage Response (DDR)
Each day, mutagenic processes – both endogenous and exogenous – leave tens of
thousands of different lesions in the DNA of each of our cells [2]. This amount of
damage highlights how crucial – and incredibly efficient – the response of the cell to
it is. Without repair and other damage tolerance mechanisms, DNA and the precious
information encoded within it would decay at such a rate that it would be rendered
useless [26]. Curiously, the DNA molecule seems almost built, primed with repair
in mind. All spontaneous deamination events of the 4 main bases happen to yield
very atypical products that can be easily recognized and repaired [7]. (An important
exception is 5mC, which when deaminated yields thymine). The double helix structure
carries twice the same information, automatically suggesting the basis for most of the
DNA repair mechanisms: using the untouched strand as a template for the repair of the
damaged one .

Cells can recruit different elements of the DNA damage response (DDR) upon need.
Dedicated signaling pathways are activated upon detection of high DNA damage,
upregulating the repair proteins. Some repair mechanisms operate constitutively, while
others are triggered at certain events (e.g. upon failure of a cellular process or at least
an interference) [26]. There are repair mechanisms linked to transcription, that arrive
quickly after transcriptional machinery clashes with a lesion [27]. When repair is not
able to handle the damage before replication, tolerance mechanisms like translesion
strand synthesis (TLS) are employed to continue this process [28]. Finally, cells have
dedicated checkpoints throughout the cell cycle, stopping it if DNA damage is found,
to allow the other players of the DDR time to cope with the damage [4]. This section
concisely outlines the components of the DDR with a special detail for the specific
elements related to the handling of UV- and alkylation-induced lesions.

1.1.2.1. DNA Repair
With the variety of structural changes that DNA lesions produce, a one-size-fits-all
solution does not seem appropriate. The cells have evolved multiple specialized repair
mechanisms suited best for different DNA damage types.

1.1.2.1.1. Direct reversal of damage
Direct reversal of UV damage with photolyases is probably the first discovered and
described repair mechanism [22]. As the name suggests, in this approach the lesion
on the DNA is directly reversed by a dedicated enzyme. This repair approach is useful
when highly mutagenic or cytotoxic lesions are present, and a need for a very rapid
response arises. Some of the enzymes able to perform this type of repair can survive,
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but some of those have been named ‘suicide enzymes’ as they get destroyed in the
process [4]. In the second case, one can imagine that this is quite costly - one molecule
gets sacrificed to repair one damaged site only.

The 2 very important mechanisms of direct damage reversal in humans are MGMT and
ALKBH2-3 [8]. MGMT is tasked with the transfer of the methyl group from the m6G
lesion to itself, destroying itself in the process of repairing the base [4, 26]. ALKBH
components are involved in the repair of m1A lesions [9]).

1.1.2.1.2. Base Excision Repair
There are two incision-based repair mechanisms: Base Excision Repair (BER)
and Nucleotide Excision Repair (NER, described in the next section). The main
mechanical difference between the two comes from how the damage is excised. After
the excision, the process looks similar: DNA polymerase fills the gap, using the other
strand as a blueprint, and the DNA ligase brings together the free ends [10].

The main difference in the excision of the damage between the two Excision Repair
mechanisms is driven by the structural differences of the lesions that those repair
mechanisms dedicate themselves to (although there might be a degree of overlap).
BER focuses on small lesions. It repairs bases with a small change in them (alkylation,
deamination, oxidation) or AP sites [10].

The BER pathway starts with a group of glycosylases, each dedicated to the
recognition of a slightly different group of (slightly structurally similar) modified
bases. These glycosylases scan the DNA, flipping the bases out of the chain one
by one, checking each for modifications. Once they encounter a modified base, they
remove it from the backbone, leaving an AP site. AP sites are next recognized by the
AP endonucleases, which nick the DNA backbone at the site. The nick is filled in by
DNA polymerase and ligated to the other free end by DNA ligase, bringing the DNA
at the site back to its original structure [10]. (Of note, this is a huge simplification for
the needs of this thesis. Note that the details of processing the abasic site can differ
depending on whether the dominant short-patch (generating a single nucleotide gap)
BER pathway is involved, or the long-patch (2-10 nucleotides gap) BER [10].)

The glycosylase responsible for detecting m3A and m7G is the mammalian methyl
purine DNA glycosylase (MPG, further called AAG) [10]. For purposes of this thesis,
we assume most abasic sites are processed by the APE1 AP endonuclease.
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1.1.2.1.3. Nucleotide Excision Repair
NER is a dedicated repair mechanism for any large distortions of the DNA double
helix, so-called bulky lesions introduced above [29]. To achieve that, NER machinery
does not just cut out the affected bases, as the bulky lesion is rather too large to
handle, but a larger oligonucleotide fragment that surrounds it. This makes it very
versatile, permitting the removal of bulky adducts of very different types. While mostly
handling the ever-present UV-induced adducts, it can also handle those produced by
the metabolism of aflatoxin, benzopyrene, and platins, among many others [22].

Rather than a single enzyme, like in the case of BER, NER consists of a large
multi-protein complex that checks the DNA for the large, helix-disrupting lesions [29].
The current paradigm is that NER detects lesions in two ways: probing the DNA or
being actively recruited when needed [29]. When the damage is found, the complex
cuts the phosphodiester backbone at the same strand, and both sides of the lesion,
initiating the excision of a roughly 30 nucleotides-long (in humans) fragment [27, 23].
DNA helicase helps uncouple the oligonucleotide from the DNA so that the DNA
polymerase and ligase can fulfill their roles in filling and closing the gap [27].

Importantly, apart from the global NER mechanism based on probing the DNA for
damage at any site, NER has another sub-pathway, which recognizes the damage
differently. The Transcription-Coupled NER (TC-NER) allows additional recruitment
of this repair pathway when damage stalls RNA polymerases (RNA Pol II) during
transcription [29, 27, 23]. Through this coupling, RNA polymerase is backed up, the
repair complex is recruited to repair the lesion on the template strand, and transcription
can be restarted right after [29].

In global NER, the damage is recognized primarily by the XPC (Xeroderma
pigmentosum, complementation group C) protein [23, 18]. XPC promotes the
assembly of the complex responsible for the dual incision, although it does not form
part of it. In the case of TC-NER, the stalled RNA Polymerase II together with the
CSB (Cockayne syndrome type B) translocase actively recruits and assembles all of
the incision core complex factors [23, 18]. The final complex is identical for both
pathways.

The XPC and CSB damage recognition proteins are frequently implicated as crucial
for two diseases (that their names are derived from: Xeroderma Pigmentosum and
Cockayne Syndrome). Mutations in XPC inactivate the global NER pathway, leaving
the cells proficient only in the transcription-coupled repair. In the opposite manner,
CSB inactivating mutations affect the transcriptional coupling of NER, leaving the
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cells to rely purely on the global pathway [23, 18].

Excision is performed systematically by a group of factors, including the Transcription
factor II H (TFIIH). TFIIH is a complex crucial for both transcription initiation and
repair. Importantly, TFIIH carries away the excised oligomers with the lesion [18].
These excised oligomers have a half-life of about 10 minutes before they get degraded
[19].

When it comes to the repair of the UV-induced pyrimidine dimers, the contributions
of the two pathways to the repair of the two damage types are different. CPDs do not
disturb the helix structure as much as 6-4PPs. This makes them escape recognition by
XPC, which relies on strong helix distortions. (Binding of other factors helps recruit
the XPC factor there, but is not very efficient and out of the scope of this thesis [29,
23, 18].) Thus, 6-4PPs are more efficiently repaired and prioritized by the global NER.
CPD repair is mainly left to TC-NER as the unnoticed lesions still stall RNA Pol II
[23, 18].

1.1.2.1.4. Other DNA repair mechanisms
There are quite a few more repair mechanisms that, although not the focus of
this thesis, deserve a mention. These include Mismatch Repair (MMR) tasked
with fixing mononucleotide mismatches; Homologous Recombination (HR, also
called recombinational repair) that repairs e.g. DSBs using the sister chromatids;
Non-Homologous End Joining (NHEJ) which is an error-prone approach to ligating
DSBs; Alternative End Joining (alt-EJ), and Fanconi Anemia (FA) Pathway [4, 5].

1.1.2.2. Damage tolerance mechanisms
Tolerance mechanisms come into play when damage disrupts central cell processes,
and if not dealt with quickly it might lead to catastrophic consequences for the cell.
This can happen e.g. during replication, where unrepaired lesions and delay caused by
them might lead to cell death. Sometimes, repair mechanisms are unable to cope with
a heavy damage load in a timely manner. This is where translesion polymerases, also
known as DNA damage bypass, come to the aid [28].

Translesion polymerases (TLSPs) are special polymerases that are able to synthesize
DNA over lesions. This comes at a cost of accuracy: substitutions and deletions.
TLSPs specialize, i.e. tend to synthesize with a slightly better accuracy over some
lesions than others [28]. Usually, TLSPs are employed very shortly, before the precise
polymerase takes over [26].
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1.1.2.3. Cell cycle checkpoints
In some phases of the cell cycle, damage poses more of an issue than in others.
Hence, cells have checkpoints for DNA damage at 3 different times of the cell cycle.
These checkpoints delay the progression of the cell cycle to buy more time for the
repair machinery to handle the damage [4]. Specifically, these checkpoints can block
transitions from G1 to S, from G2 to M, or slow down the S phase [4, 26]. Failures in
repair, tolerance, and inability to exit the cell cycle arrest due to damage, lead the cell
to die.

1.2. Consequences of the loss of integrity of the DNA

Although not a focus of this thesis, this chapter serves as a brief highlight of
consequences of DNA damage at different levels (more can be found in [6]). As briefly
indicated in the previous chapter, DNA damage can have many problematic outcomes
not only for the molecule but also for the cells and whole organisms. DNA damage
can be deleterious and can lead to mutations. Apart from causing enough of a crisis to
the cell to induce cell death mechanisms, it can have other effects, both for cells and
for whole organisms.

The impact of DNA damage induced loss of integrity of the DNA can be most
appreciated through DNA repair diseases (e.g. Xeroderma Pigmentosum or Cockayne
Syndrome). Some alterations to repair pathways are not survivable. Others produce
diseases or syndromes that strongly increase the risk of cancer [30]. DNA damage is
also an important factor in organ functioning, neurodegenerative diseases, infertility,
frequent aircraft travel, and potential space exploration [24, 6]).

Unrepaired DNA damage can lead to deletion of bases or substitutions in the
DNA of the daughter cells. There are many different types, but overall we call
those permanent errors ‘mutations’ or ‘alterations’ of the DNA sequence. They
range from small ones (e.g. single base substitutions, in-dels) through middle ones
(multiple-base-substitutions and indels) to large ones (structural variants). Somatic
mutations have been mapped both in cancer cells [31, 32] as well as healthy tissues
[33, 34]. The vast majority of these mutations are considered harmless. Some
mutations, however, can have an array of effects on the functioning of the cells,
like changes in protein structure, silencing of the genes, and changes in expression.
Moreover, mutations have been implicated as a factor in tumorigenesis [6, 35, 36], and
some other diseases.
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Finally, DNA damage and its many consequences – including mutations, as well as the
persistence of the lesions themselves [37], and repercussions of cell’s response to the
damage – are considered strong contributors to aging [6].

1.3. Genomic studies of DNA Damage and Repair

Knowing the potential dire consequences of the DNA damage induced loss of integrity
of the genome, one might expect a vested interest in studying the related processes. In
fact, the topic has been approached from many angles throughout the years, leading to
recent development of assays allowing to precisely locate the DNA lesions induced by
an array of DNA damaging agents, and the activity of different DNA repair pathways.
In this chapter, I first present a short historical overview of the studies of DNA damage
and repair, to then focus on the next-generation sequencing-based, whole-genome, and
high-precision strategies for mapping locations of the two stages of the mutagenic
process: the DNA damage and the activity of its repair.

1.3.1. History of DNA damage and repair studies
This section serves to paint a very general picture of the history of the DNA damage
and repair field and is based on a few important reviews. For a deep dive and specific
references, I refer the reader to these prominent works [38, 22, 39].

The mutagenic effects of different radiation sources (Ionizing Radiation and UV) on
the cells, as well as cells’ potential to recover from them (photoreactivation), were
already noticed between the 1920s and 1940s. Curiously, the scientists had a vague
idea of the damage and repair mechanisms of the cells but did not yet know that the
subject of damage was the DNA. The potential repercussions of mutagenesis for the
structure of the DNA became clearer with the discovery of the double helix structure
in 1953. That finding was followed by a mass of molecular experiments, many of them
extensively using mutagenesis as a tool to study e.g. gene function. But at the same
time, the interest in understanding mutagenesis itself was quite low.

The first successfully detected DNA damage was a CPD (cyclobutane pyrimidine
dimer) induced by UV irradiation, in 1967. The different mechanisms of the repair
of UV-induced DNA lesions were elucidated in the 1940-50s (photoreactivation, not
present in human cells), and 1980-90s (nucleotide excision repair, present in human
cells). In the meantime, many methods for quantification and detection of various kinds
of DNA damage were being developed. Two notable examples are the still popular,
so-called ‘comet assay’ (single cell gel electrophoresis assay, 1980s), which visualizes
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the amount of DNA single-strand breaks in each observed cell; and the LM-PCR
(ligation-mediated PCR, 1990s) that was used for mapping sites of enzymatic clipping
of CPDs by endonuclease from DNA. The problem with approaches like the comet
assay is that while allowing for an overall relative quantification of damage it does
not provide information about the location of the damage in the DNA. On the other
hand, methods similar to LM-PCR can provide the position of the damage with even
nucleotide precision but are limited in breadth, providing this information for specific
genomic regions only.

The first methods combining higher resolution and wide breadth appeared during the
2010s, using CHIP-Chip approaches. First, genome-wide maps of UV lesions in yeast
were generated using chromatin immunoprecipitation with an antibody against CPDs,
combined with microarrays. Soon after the first map of UV-induced damage in humans
at a chromosome scale appeared. The resolution was further improved by adapting the
idea to CHIP-seq in 2017 [40], which while resulting in many interesting insights, was
still not at the level of nucleotide resolution. The use of sequencing was the right bet
though, and many truly high-precision maps of DNA Damage and repair have been
developed since the advent of next-generation sequencing (NGS).

1.3.2. Genome-wide high-resolution DNA damage and repair
maps

Together with the first technologies of NGS the possibility appeared to map elements
both genome-wide and at high-resolution. The sequencing methods on their own could
not read the damaged DNA bases (either not recognizing other bases than basic A, C,
G, and T, or even being hindered by the bulky damage). Thus, in the last decade
or so, the efforts to combine the historical knowledge on recognizing DNA damage
and repair with the promises of the NGS skyrocketed [41, 42, 39]. Many successful
methods have been developed, using various strategies, at different resolutions, and
for different species, resulting in damage and/or repair maps for many mutagens.
Next, I will summarize a few common NGS-based strategies undertaken in several
selected damage and repair mapping efforts, outlined in Table 1.1 and visualized in
Figure 1.1. Finally, I will specifically detail three methods and associated datasets of
high importance for the work presented in this thesis: HS-damage-seq and XR-seq
employed to map UV-induced lesions and their repair, and an alkylation mapping
method called NMP-seq.

The efforts in NGS-based mapping of DNA damage and its corresponding repair can be
divided into two main strategy types: end marking and lesion reversal or bypass. End
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Method, dataset Methodology Damage type Map
type

Kinetics Resolution

XR-Seq [18] lesion reversal,
antibody-based

UV-C (CPD,
6-4PP)

Repair - excised frag-
ment

XR-seq [23] lesion reversal,
antibody-based

UV-C (CPD,
6-4PP)

Repair + excised frag-
ment

CPD-seq [43] end marking
(break), enzy-
matic cleavage

UV-C (CPD) Damage + single nu-
cleotide

Damage-seq [44] end marking
(pol block),
antibody-based

cisplatin and
oxaliplatin
adducts

Damage - single nu-
cleotide

Pt-XR-seq [44] lesion reversal,
antibody-based

cisplatin and
oxaliplatin
adducts

Repair - excised frag-
ment

NMP-seq [24] end marking
(break), enzy-
matic cleavage

MMS (m7G,
m3A)

Damage + single nu-
cleotide

tXR-seq [45] lesion bypass,
antibody-based

UV-C (CPD);
Benzopyrene
(BPDE-dG
adduct)

Repair - excised frag-
ment

HS-Damage-seq
[19]

end marking
(pol block),
antibody-based

UV-C (CPD,
6-4PP)

Damage + single nu-
cleotide

Table 1.1: Damage and repair mapping methods and datasets outlined in this thesis. The table
includes the methodology used, type of damage mapped, map type, resolution, and whether
kinetics are included in the dataset. Datasets of special importance have the method names
bolded.

marking takes its name from the preparation of reads so that one end is located close
to where the lesion was, allowing to, later on, infer from the sequenced and mapped
reads its precise location. Lesion reversal/bypass methods rely on either reversing the
un-sequenceable damage or bypassing it with low-fidelity translesion polymerases so
that a read can be generated containing the location of the damage inside its sequence.

The methods can also be divided based on the methodology used for recognizing the
damage. One big group of methods uses enzymatic cleavage of the lesion for its
recognition (like the LM-PCR approach mentioned above), while the other one is based
on labeling and pulling down of the reads containing the damage (like CHIP-Chip
and CHIP-seq approaches) - usually with specialized antibodies, or using chemical
labeling. Enzymatic methods are considered more accurate, as the antibodies used in
immunoprecipitation can be biased toward the recognition of damage within specific
nucleotide contexts with varying affinities.
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Figure 1.1: Schematic, visual representation of described damage-mapping strategies.

1.3.2.1. End marking
End marking can be achieved in two manners: a polymerase block or a generation of
a single-strand break. Polymerase block induced by a big enough lesion (or a label
attached to it) causes the synthesis of the strand and the corresponding read to end
there. A single-strand break can mark the end of the read when generated close to the
damaged site, followed by adapter ligation. End marking methods generate single base
pair or single nucleotide precision damage maps.

Notable examples of approaches based on polymerase stalling are Damage-seq
[44] and HS-Damage-seq [19]. They utilize specialized anti-damage antibodies to
immunoprecipitate DNA carrying the damage. The next step is the end marking:
the primer extension with a high-fidelity polymerase is performed, and when the
polymerase blocks on the lesion, the extension ends there, marking the location of
the lesion. HS-Damage-seq takes its name from ‘high-sensitivity’ due to the addition
of a second enrichment step. Subtractive hybridization depletes the reads containing
both adapters (which means they were read through completely by the polymerase)
carrying non-damaged DNA. A strong side of these sister methods is that they can
be adapted to study any polymerase-blocking lesions given the availability of specific
antibodies.

The end-labeling single-strand breaks usually are generated using enzymatic cleavage
of the damage from the DNA. The differences between enzymatic approaches come
mostly from enzymes used for nick creation. For example, CPD-seq [43] and NMP-seq
[24], aimed at mapping UV-induced CPD and MMS-produced lesions respectively,
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follow roughly the same protocol and even use the same endonuclease (APE1) to cut
the DNA after cleaving the damaged base, diverging in the lesion cleavage enzyme:
CPDs by T4endoV and NMPs by AAG.

1.3.2.1.1. HS-Damage-seq mapping UV photoproducts in human fibroblasts
In high-sensitivity damage sequencing (HS-Damage-seq, [19]), extracted DNA is first
sheared through sonication, followed by end repair (for background noise reduction)
and ligation of first-round adapters to both ends of the produced double-stranded
fragments (Figure 1.2). Strands are separated, and fragments containing damage
are immunoprecipitated using specialized antibodies, depleting the undamaged DNA
from the sample. Primer extension with a high-fidelity polymerase is performed next,
from the 3’ end of the fragment. When the polymerase encounters the lesion, it gets
blocked, and the extension ends there. The primer has Biotin attached, allowing for
streptavidin-based purification, and the non-extended fragments are discarded through
subtractive hybridization. For the captured, proper fragments the second-round adaptor
is added, and PCR is used for the second-strand synthesis and amplification, forming
the library for the sequencing.

Figure 1.2: HS-damage-seq protocol outlined in depth, with datasets of interest.

HS-Damage-seq was designed and utilized to map the most frequent photoproducts
– CPDs, and 6-4PPs – in healthy human fibroblasts as well as “naked” (stripped
of nucleosomes, proteins, etc.) DNA extracted from the cells, shortly (10 or 20s)
irradiated with UV-C. Together with the method, the authors published the datasets
they generated, covering the 2 most abundant di-pyrimidines for each photoproduct

18



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 19 — #33

type. Importantly, for the cellular DNA (non-naked) they generated these damage
maps at multiple time points after exposure, giving unique insights into the changing
landscape of UV damage as time progresses and repair happens. 6-4PPs in TT and
TC context were mapped at 0h, 20m, 1h, 2h, 4h post-exposure, and CPDs in TT and
CT at 0h, 1h, 8h, 24h, 36h, and 48h. Authors propose an approach called ‘subtractive
HS-damage-seq’ to infer repair in each time interval, in between every two consecutive
time points, by simply subtracting one landscape from the other.

Of note, due to the nature of technologies used in these experiments, HS-Damage-seq
(and similar methods reliant on PCR and sequencing) have to deal with amplification
and saturation effects. Thus, they do not provide a total, accurate quantification of
damage along the genome in the population of cells, but rather a relative measure.
This has important implications for directly comparing one landscape to another and
makes it impossible to infer the exact, total amount or rate of repair.

1.3.2.1.2. NMP-seq mapping of MMS-induced lesions in yeast
N-methylpurine sequencing (NMP-seq, [24]) starts by sonicating the DNA, after
which the adapters are ligated to double-stranded DNA fragments (Figure 1.3).
Next, a nick is created in the site of the lesion, through enzymatic means: AAG
(3-alkyladenine DNA glycosylase) cleaves the base, leaving an AP site, to be next
cut by APE1 (Apurinic/apyrimidinic endonuclease 1) in order to leave a single-strand
break immediately upstream of where the damage was. Strands are separated, and a
secondary, double-stranded adaptor with Biotin is ligated to the free 3’OH nicked ends
created by the enzyme. This allows undamaged strands and the other side of the nicked
fragments to be filtered out when pulling down the Biotin with streptavidin. PCR is
performed for second-strand synthesis and amplification to prepare the library for NGS
(using the Ion Torrent Proton sequencing platform).

NMP-seq is the first and so far only (at the time of writing this thesis) method designed
for mapping alkylating damage. It was employed to map N-methylpurines m3A and
m7G produced by a short (10m) treatment with the alkylating agent MMS in yeast. To
understand the impact of BER, MMS yeast damage maps were generated at different
time points after exposure in both wild-type (WT) and BER-impaired (mag1∆ mutant)
yeast cells. In both cases, there was a clearly observable reduction in the number
of mapped lesions. In the BER-impaired strain, the effects of NER repair could be
appreciated. The authors additionally generated a damage map of chronically (3h)
MMS-treated mag1∆ strain.

Although NMP-seq is the only method specifically created for that task, in principle,
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Figure 1.3: NMP-seq protocol outlined in depth, with datasets of interest.

lesions produced by alkylators could be also mapped by AP-site or single-strand break
detection approaches (mentioned in one of the sections below), provided an enzymatic
or chemical way to convert one into the other.

1.3.2.2. Lesion reversal and bypass
Strategies based on lesion reversal and bypass come in handy when the DNA damage
is too small to cause polymerase block, when no reliable enzymatic approaches
are available to process it, or to map excised oligonucleotide fragments, as in the
case of NER. In lesion reversal, the damage is directly reversed to a sequenceable
nucleotide, so that it can be processed by the high-fidelity polymerase. The rest of the
methods bypass the lesion altogether with Translesion Strand Synthesis (TLS) utilizing
low-fidelity polymerases. Lesion reversal and bypass strategies are characterized by a
slightly worse - although still high - resolution of read insert size. While this might not
be the best for locating the damage, it works perfectly for NER repair activity mapping,
aided by damage sequence specificity. For this reason, next, I describe only the XR-seq
(XR standing for eXcision Repair) family of methods [18, 44, 45].

XR-seq methods ingeniously utilize the facts that the NER machinery excises the
damaged DNA fragments together with bulky lesions, and that in humans the length
of these fragments, although short, is sequenceable. First, the DNA bound to the
NER proteins is pulled down by dedicated antibodies. Next, similarly to Damage-seq
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approaches, isolated fragments are purified by immunoprecipitation with specific
anti-damaged-DNA antibodies, to further enrich the ones carrying the damage of
interest. The main difference between XR-seq [18] and Pt-XR-seq [44] comes in the
type of damage mapped, and hence antibodies used at this stage (against photoproducts
or Pt-d(GpG) diadducts) as well as an enzyme used for lesion reversal to allow for
mapping the read (photolyase and sodium cyanide, respectively). The tXR-seq (t
standing for translesion) extends these methods to currently non-reversible lesions
repaired by NER (like BPDE-DNA adducts) by swapping the lesion reversal for lesion
bypass by translesion DNA synthesis (TLS) polymerases [45].

1.3.2.2.1. XR-seq mapping of NER of UV-induced lesions in human cells
As described above, Excision Repair sequencing (XR-seq, [18]) begins with
immunoprecipitation of TFIIH complex and excised oligonucleotides carried by
it (Figure 1.4). After adapter ligation to the single-stranded DNA fragments,
another round of immunoprecipitation is performed, with anti-CPD and anti-6-4PP
antibodies. Next, photoproducts are reversed with the dedicated photolyases, so that
the high-fidelity polymerase can perform uninterrupted during PCR. After that, the
samples are purified on the gel, and only fragments of sizes corresponding to small,
excised oligonucleotides are used for sequencing.

XR-seq has been used for mapping UV-induced lesions in two important, consecutive
papers.

The first one [18] published the method together with single time point (1h) damage
maps after a 20s-long UV pulse. The treated cell populations included healthy human
fibroblasts, as well as cells from patients with diseases of two subpathways of NER:
Xeroderma Pigmentosum, and Cockayne Syndrome. This unique dataset elucidated
differences in repair by global and transcription-coupled NER as compared to the cells
in which both mechanisms are intact.

A year later [23], the authors followed with a dataset exploring the kinetics of NER
in healthy human fibroblasts, this time performing XR-seq at different times after
exposure to the mutagen. Repair of CPDs was registered at 1h, 4h, 8h, 16h, 24h,
and 48h, and that of 6-4PPs at 5m, 20m, 1h, 2h, and 4h. As the approach comes from
the same group that devised and inferred the repair of photoproducts by subtractive
HS-damage-seq, it is only natural to compare their resolution: XR-seq is more precise
and can measure repair “down to 0.1% of damage for a given region” (citing the
authors of [19]), while subtractive HS-damage-seq capabilities end at 10%. But
XR-seq has some caveats too - due to the short time in which excised fragments are
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degraded, it represents only around 10m ‘snapshot’ of the repair process before the
given time point of measurement; additionally, XR-seq provides only information for
each photoproduct overall (e.g. CPDs) while subtractive HS-damage-seq separates the
information by di-pyrimidines (e.g. CPDs in TTs and CPDs in CTs).

Figure 1.4: XR-seq protocol outlined in depth, with datasets of interest.

1.3.2.3. Other methods: detection of breaks, and third-generation sequencing
While out of the scope of this thesis, it is worth mentioning the existence of approaches
aimed at detecting abasic sites (SSiNGLe-AP [46]), single-strand (GLOE-seq [47],
SSiNGLe [48]), and double-strand breaks (END-seq [49]). Apart from providing
crucial information on the location of these endogenous events in the cells, as well as
their appearance after exposure to external factors, they could also be used for mapping
other DNA lesions that are chemically or enzymatically convertible into one of these
events (e.g. NMPs). GLOE-seq, aimed at the detection of free 3’OH single-strand
breaks has shown proof of this concept.

Finally, while still in their infancy and also not covered in this thesis, one cannot ignore
the promising potential of third-generation sequencing approaches for applications
in DNA adductomics. Also called long-read sequencing, PacBio SMRT-seq and
Nanopore methodologies have been applied to directly – without any prior handling
– detect naturally occurring modifications on DNA in a genome-wide manner. This
holds great promise for the direct detection of DNA damage. In fact, there are
already two SMRT-based methods, one mentioned above, mapping single-strand
breaks (SSiNGLe, SMS variant [48]) and RADAR-seq [50], employed for the task of
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detecting ribonucleotides and UV-lesions in small, bacterial genomes. While PacBio
SMRT holds an important limitation in mapping bulky lesions, due to the use of
polymerases and the potential of a block occurring, Nanopore seems to be well suited
for the task, with first successes in recognition of 8oxodG, 6mA, 5mC sites [51].

1.4. Studying mutational processes

Despite decades of accumulated studies on DNA repair machinery, a genomic
perspective has only very recently become within reach, thanks not only to the
development of massively parallel sequencing techniques but also the annotation of
genomic elements.

Once obtained the whole-genome landscape of a mutational process - whether through
a damage map, repair map, or mutations gathered from many datasets - one can start
to probe it from different angles. I will focus mostly on its relation with genomic and
chromatin features, and the effects of impairment of dedicated repair mechanisms.

1.4.1. Genomic features
The DNA - the genome - inside the nucleus is subject to many processes, interactions,
and modifications. The differential activity of these processes along the genome
creates regions with distinct characteristics, which we call broadly genomic ‘features’.
A few examples of features follow:

the sequence composition of a given fragment,
whether the sequence encodes a gene or a regulatory region,
whether the given region is transcribed (or expressed) or not,
when does this DNA fragment undergo replication,
whether a protein is bound to DNA,
how accessible or folded is this part of the genome,
where within the 3D space of the nucleus is this sequence located,
whether the DNA, or the histones it is wrapped around, carry a modification or
a mark.

Note, that many of the features are specific to the tissue and will have a degree of
variability depending on the cell type.

DNA damage and repair happen in the context of these, and other features of the
genome. Hence, there is a vested interest in developing an understanding of the
interplay of DNA damage deposition, and DNA repair activity with the genomic
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features, resulting in particular mutational patterns. Moreover, elucidating the factors
affecting the mutagenic process is an important step for improving modeling the
expected mutation rate for driver discovery.

Since mutations are the consequence of unrepaired damage, the study of mutations
provides an archaeological record of the activities of damage and repair. Mutations
may thus be exploited for the purpose of understanding the interaction of genomic
features with the mutagenic process. Indeed, many correlations between these
processes have been found already. Mutation rates have been shown to be influenced by
replication timing, expression, chromatin conformation, and accessibility (measured
by the DNAse I Hypersensitive Sites, DHSs) [52, 53, 54, 55, 40, 56, 57, 58] - mostly
features happening at a large scale. Associations with smaller-scale features have been
shown as well, including intron-exon boundaries [59], transcription factor binding
sites [60, 61] nucleosome-linkers alternation, nucleosome DNA wrapping orientation
[62], among others [63]. In fact, features of various scales have been shown to affect
damage, repair, and mutation rates [64].

One of the most prominent small-scale genomic features so far in the study of
mutagenesis is the nucleotide context of the mutation: in the case of single base
substitutions this is defined by the nucleotide change (reference and alternate allele)
and the 5’/3’ nucleotides flanking the substitution.

When considering all mutations from a tissue, one important factor needs to be taken
into consideration: they are generated by a mixture of various mutagenic processes.
Hence, came the idea of decomposing the mutational signals and correlating them
with the metadata of various tissues and samples. Different mutagenic processes are
known to have different preferences towards generating mutations at certain nucleotide
contexts. Hence, the frequency profiles based on these nucleotide contexts are used to
for the decomposition task. The decomposed parts of the mutational profile are termed
‘mutational signatures’ [65]. Mutational signatures highlight these sequence context
differences of various mutagenic processes. Interpreting the signatures within the
sample history context, and with knowledge of the biology underlying some mutagenic
processes, the etiology of some signatures has been recognized (with varying degrees
of certainty) [66, 67, 68]. Examples relevant to this thesis include the set of mutational
signatures SBS7 (single base substitutions, 7a-d) strongly associated with UV light
exposure, and SBS11 indicated as potentially related to Temozolomide treatment
[65, 69, 70].

Mutation rate variability analyses have been carried out for different signatures,
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helping to elucidate important differences in associations with chromatin features
depending on the underlying mutational process [62, 63]. Although they can serve
as a useful first step, these correlations are still difficult to interpret mechanistically.
For that, one needs to go to the two steps of the mutagenic process that can be directly
affected by the features: damage distribution and DNA repair activity. Exploiting
available data (damage and repair maps), these two parts of the mutagenic processes
have been explored within the context of features like exon-intron boundaries or
nucleosomes [62, 71]. Interestingly, a few clear differences in the interplay with
genomic features have been found for some damage types. For example, damage
formation with respect to the nucleosomes and linkers shows opposite patterns for
UV-induced lesions and benzopyrene adducts [62, 63].

Of note, most of these interactions have been explored using two main approaches. The
first consists of correlating the mutations/damage/repair rates across different genomic
regions (usually obtained by dividing the genome into chunks) with the representation
of features across the same regions. This approach has been used both for large-scale
(e.g., expression, replication timing) and small-scale features (e.g., DHS). Another
approach, more frequently applied to study fine-grained features which cover relatively
small parts of the genome (and contain therefore comparatively few mutations), is
based on stacking specific size windows around the feature [63]. Then, it is possible to
compare the observed mutation rate of the mutagenic process accumulated across the
stacked features with that expected on the basis of the sequence context obtained from
the same stacked features. Importantly, all studies so far start by mapping the genomic
features of interest and then probing the components of mutagenesis with respect to
them. Until recently [72], no approaches aimed at partitioning the genome based on
underlying differences in the intensity of the mutational processes had been carried
out.

Genomic feature associations with damage, repair, and mutation rates produced by UV
light have been studied quite extensively. On the other hand, far less is known (mostly
due to a lack of data) on features interacting with the mutagenic processes produced
by chemotherapeutic or alkylating agents. I review both in the next sections, with a
special focus on UV damage repair.

1.4.2. Genomic features influencing UV mutagenesis
1.4.2.1. Damage formation
Regarding sequence contexts, CPD damage happens more frequently in TT
di-pyrimidines, and 6-4PPs form predominantly in TT and TC contexts [19]. UV CPD
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lesions have been found to be distributed uniformly across chromatin states, regardless
of the di-pyrimidine context [19]. 6-4PP formation seems to be mostly uniform, with
a slight increase in active and poised promoter and repetitive chromatin states, and a
slight decrease in the heterochromatin state [19]. Moreover, the 3D conformation of the
genome inside the nucleus seems to entail a relative increase in UV damage formation
on the sites closest to the nucleus periphery, and a protective effect resulting in decrease
in UV lesions at the center of the chromatin in the nucleus [23, 40, 73]. The wrapping
of the DNA around the nucleosomes seems to also experience this protective function
against CPD formation, with fewer UV lesions in DNA where the minor groove is
facing ‘in’ towards the nucleosome [43, 62].

Many studies [43, 19, 71, 74, 75] implicated that various Transcription Factors (TFs)
bound on the DNA might decrease or increase UV lesion deposition along the genome.
This variability in effect seems to be caused by TF-specific changes to the structure of
the DNA induced upon binding and hence is dependent on the TF, type of the damage,
strand, and position relative to the TF binding motif [19, 71, 74].

1.4.2.2. Repair activity
Not only damage, but also repair can be sometimes biased towards specific sequence
patterns. The XR-seq study of 6-4PPs found TCs to be the most frequently damaged
di-pyrimidines, in opposition to HS-damage-seq [23]. This suggests that while in
both contexts the 6-4PP damage is highly deposited along the genome, 6-4PPs in TC
contexts are repaired more efficiently.

One might assume that as Global NER shows higher activity than TC-NER in the
repair of 6-4PPs ,this takes place rather uniformly along the genome than the repair
of CPDs, where TC-NER plays a more important role. In reality, the repair of both
lesions exhibits variability along the genome, at different scales, and associates to the
presence of different chromatin features. This makes sense in light of the postulated
‘access, repair, restore’ model of repair, stating the remodeling of chromatin necessary
for improving access of the repair machinery [23, 29].

The works of [18, 76], using both healthy and mutant human fibroblasts, confirmed
the higher efficiency of CPD repair in all transcribed regions (including enhancers),
especially on the transcribed strand, and positively correlating with the RNA levels of
transcripts. The contribution of TC-NER is made evident through a simple comparison
of repair in mutant cells. In XPC, lacking the global NER pathway, the observed effect
is even higher. In CSB, where TC-NER is turned off, the CPD repair is happening
quite uniformly along the genome.
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These findings have been expanded by studies of the kinetics of XR-seq [23]
and subtractive-HS-damage-seq [19] in healthy human fibroblasts. For CPDs, the
complementarity of the two datasets highlights the high repair that correlates well with
decreases in the amount of damage in the transcribed strand. For 6-4PPs and global
NER, these effects seem to be driven not by transcription, but by higher accessibility to
the regions: damage levels decrease with time at DNaseI hypersensitivity sites. Both
types of repair exhibit higher activity in active (open and acetylated) chromatin states at
early time points. On the other hand, lower, but persistent through time, repair activity
is observed in inactive (heterochromatic, repressed, repetitive regions) states. (This
persistence shows up as an increase in repair at later times in comparison to the active
chromatin states). The reason for the increased repair of inactive chromatin regions
at later time points is not clear - it might be just that other regions have been mostly
repaired already, and repair can move on to the de-prioritized parts of the genome.
Alternatively, as postulated above, there might be an active remodeling of chromatin
and nucleosomes, improving accessibility of repair in these sites [23, 29].

3D structure of the chromatin inside the nucleus seems to be a relevant factor for NER
efficiency too [23, 73]. Although no effect was found for very early UV repair, at
2h after irradiation the nucleus-centric regions exhibited increased repair compared
to the outskirts [73]. Nucleosomes seem to affect NER too [23], both at the level of
nucleosomes-linkers, as well as whether a minor or a major groove of DNA faces the
nucleosome [43, 62, 75]. Specifically, nucleosomes bound to the DNA seem to impede
NER’s access to it [23]. The presence of bound transcription factors exhibits a similar
negative effect on NER [61, 71].

Locally, NER repair seems to be enhanced whenever there is active replication of the
region, although on a larger scale, repair of early replicating regions is faster, especially
for CPDs [77]. This effect seems to be most pronounced in early replicating inactive
and transcribed chromatin states, and might be related to the increased accessibility
of the said regions [77]. Similarly, most likely due to improved accessibility, exons
relative to introns exhibit patterns of more efficient repair (especially in the case of
global NER) [76].

1.4.3. Features of the alkylation-based mutagenesis
1.4.3.1. Damage formation
Little is known about alkylating damage formation in relation to genomic features.
Currently, the best source is the yeast MMS NMP-seq data [24]. NMP-seq mapped
m3A and m7G formation was slightly higher on the non-transcribed strand. This effect
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was stronger for m3A and was magnified in a chronically treated, BER-deficient strain.

NMP-seq was further used to characterize the effects of 2 bound transcription factors
[78]. In both cases, TF binding was found to impact the generation of the lesions, with
a clear reduction in the formation of m7Gs. (Of note, at specific positions of the TF
motifs, the formation was sometimes instead increased.)

1.4.3.2. Repair activity
Similarly as in the case of NER, BER seems to be affected by the chromatin
structure. Nucleosome-bound regions experience impeded BER of m7Gs, and the
minor groove-inwards positioned DNA exhibited lower repair (likely due to lower
accessibility, as indicated by DNase-seq) [24, 62, 63]. These effects have been
found to be further modulated by the presence of various histone marks, especially
acetylation, associated with the unwrapping of nucleosomes [24]. The presence of
bound transcription factors inhibits BER as well, although the width of the region
around it that is affected is smaller (likely due to the smaller size of BER compared to
NER) [78].

Exploration of the BER-deficient mag1∆ strain produced interesting insights: for
example some time after MMS exposure (allowing the action of repair), m3A lesions
on the transcribed strand progressively disappeared [24]. This suggests an involvement
of TC-NER as a fall-back mechanism for m3A repair (at least in yeast), further
supported by results for other repair mutants generated in the same study.
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2. Objectives
The thesis’s main objective is to broaden the understanding of the interplay between
DNA damage caused by different agents, its repair, and general cellular processes.
This may be separated into two specific objectives tackled by each of the projects:

Alkylating damage maps
1. Obtain nucleotide-resolution, genome-wide maps of DNA damage for several

alkylating agents in human cells. This includes:

Develop an end-to-end automated computational pipeline coupled to an
experimental alkylation damage mapping library preparation that yields
the location of alkylated bases along the human genome (i.e. alkylation
damage maps).
Compare these alkylation damage maps in human cells with those obtained
in yeast and with the body of knowledge on alkylation lesions.
Uncover the human sequence context preferences for damage formation of
two alkylating agents, MMS and TMZ, and their genomic distribution, as
a first step to apply the damage maps to the study of the dynamics of repair
of alkylation lesions.

UV Repair states
2. Develop a novel approach to study DNA repair dynamics across the genome that

is not constrained by the prior mapping of genomic features. This includes:

Establish a normalization and filtering protocol to appropriately compare
existing UV damage and snapshot repair maps.
Develop a method to infer UV damage repair based on maps of
UV-generated damage at consecutive time points and encode this inferred
repair (and snapshot repair) in a continuous manner along the entire human
genomic sequence.
Exploit the kinetics of inferred repair activity (and snapshot repair) to
segment the human genome into regions with distinct UV-generated DNA
damage repair activity, thus obtaining UV-induced damage DNA repair
states.
Study the composition of genomic features underlying the differences in
UV damage repair activity across these DNA repair states.
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3. Methodology
Given that this thesis is a computational, bioinformatics thesis, the pipelines developed
as part of it are considered results, not methodology.

3.1. Experimental AB-seq protocol for alkylation
damage mapping

Here we describe the technical details of our team’s approach to generate
ready-to-sequence alkylation damage libraries at nucleotide resolution for different
time-from-exposure conditions and damaging agents along with the necessary
controls. All AB-seq (Alkylation BER sequencing) experiments described in this
section were performed by other lab members: Erika López-Arribillaga, Katyayani
Anshu, Nuria Samper or Morena Pinheiro.

3.1.1. Cell lines and reagents
Human cell line RPE-1 hTERT were grown in DMEM:F12 (Invitrogen, 31330-095)
at 37°C in 5% CO2 in the corresponding media supplemented with 10% FBS (Gibco,
100822139) and Penicillin-Streptomycin (Gibco, 15140122). Cells were treated with
the indicated concentrations for the indicated times with Temozolomide (Sigma,
T2577) from a 103 mM stock diluted in DMSO, cell-culture grade DMSO (PanReac
AppliChem A3672,0100), or MMS (Sigma, 129925-5G), in serum-free media. Cells
were washed twice with PBS prior to analysis or recovery. For recovery, cells were
incubated in DMEM:F12 10% FBS after wash out of the treatment for the indicated
time before processing.

3.1.2. Damage map library preparation
Human genomic DNA (gDNA) was extracted using the DNeasy Blood and Tissue
Kit (Qiagen, 69504), following the manufacturer’s instructions. During sample
preparation, all purifications between reactions were performed using AMPure XP
beads (Beckman Coulter, A63880). For sample preparation, the gDNA was digested
with Fragmentase (NE BioLabs, M0348) followed by a PreCR Repair reaction (NE
BioLabs, M0309S) and A-tailing (NE BioLabs, E7546), the first P7 adaptor (with
protected modified ends) was ligated with a T4 Ligase (NE BioLabs, M0202S).
Two simultaneous enzymatic reactions were performed (1) with hAAG (NE BioLabs,
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M0313S) to leave an abasic site where a m7G or m3A was and (2) with hAPE1
(NE BioLabs, M0282S) to nick the abasic sites, leaving ligatable 3’-OH groups.
The remaining DNA was subjected to dephosphorylation of 5’ ends (Quick CIP NE
BioLabs M0525S), next the DNA was denatured by heating at 95ºC for 5 min and
immediately cooled on ice. Finally, a double-stranded biotinylated second P5 adaptor
ligation was performed by a Quick DNA Ligase (NE BioLabs, E6056S). The second
P5 adaptor should only ligate at the cut site APE1 has left, and those fragments
were captured by streptavidin beads (Streptavidin C1 Dynabeads; Invitrogen, 65001),
to perform a PCR (KAPA High Fidelity Polymerase; Roche, 7958927001) before
sequencing in Illumina platform (NovaSeq 6000 with 150 bp pair-end reads).

3.1.3. Generated datasets
4 samples comprising a full dataset were prepared as follows: 30 min treatment with
10 mM MMS, no recovery, paired with a vehicle: H2O and 30 min treatment 5 mM
TMZ, no recovery, paired with a vehicle: 5% DMSO. Vehicle-treated samples were
used as controls and are called untreated henceforth.

3.1.3.1. Multiplex Indexed Adaptors
In the sequences of adaptors below, the following abbreviations are used: ‘5Phos‘ is a
phosphorylated 5’ end, that can bind to a free 3’OH; ‘3ddC’ stands for dideoxycytosine
terminator at the 3’ end that blocks polymerase extension; ‘*T’ represents an extra
hanging T (to be paired with an A added in the gDNA fragment during A-tailing) with
a phosphorothioate bond to prevent degradation; ‘5Biosg’ is 5’ biotin; and ‘3InvdT’
stands for inverted dT at 3’ end that inhibits both the extension by polymerases as well
as degradation.

Untreated
P7 UDI001-forward

/5Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCACCCGCGGTTATCT
CGTATGCCGTCTTCTGCTTG/3ddC/

P7 UDI001-reverse

CAAGCAGAAGACGGCATACGAGATAACCGCGGGTGACTGGAGTTCAGAC
GTGTGCTCTTCCGATC*T

P5 UDI001-forward

/5Biosg/AATGATACGGCGACCACCGAGATCTACACAGCGCTAGACACTCTT
TCCCTACACGACGCTCTTCCGATC/3InvdT/
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P5 UDI001-reverse

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTCTAGCGCTGTGT
AGATCTCGGTGGTCGCCGTATCATT/3ddC/

MMS
P7 UDI003-forward

/5Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCACGGACTTGGATCT
CGTATGCCGTCTTCTGCTTG/3ddC/

P7 UDI003-reverse

CAAGCAGAAGACGGCATACGAGATCCAAGTCCGTGACTGGAGTTCAGAC
GTGTGCTCTTCCGATC*T

P5 UDI003-forward

/5Biosg/AATGATACGGCGACCACCGAGATCTACACCGCAGACGACACTCTT
TCCCTACACGACGCTCTTCCGATC/3InvdT/

P5 UDI003-reverse

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTCGTCTGCGGTGT
AGATCTCGGTGGTCGCCGTATCATT/3ddC/

DMSO
P7 UDI005-forward

/5Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCACATCCACTGATCT
CGTATGCCGTCTTCTGCTTG/3ddC/

P7 UDI005-reverse

CAAGCAGAAGACGGCATACGAGATCAGTGGATGTGACTGGAGTTCAGAC
GTGTGCTCTTCCGATC*T

P5 UDI005-forward

/5Biosg/AATGATACGGCGACCACCGAGATCTACACAGGTGCGTACACTCTT
TCCCTACACGACGCTCTTCCGATC/3InvdT/

P5 UDI005-reverse

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTACGCACCTGTGT
AGATCTCGGTGGTCGCCGTATCATT/3ddC/
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TMZ
P7 UDI007-forward

/5Phos/GATCGGAAGAGCACACGTCTGAACTCCAGTCACCAAGCTAGATCT
CGTATGCCGTCTTCTGCTTG/3ddC/

P7 UDI007-reverse

CAAGCAGAAGACGGCATACGAGATCTAGCTTGGTGACTGGAGTTCAGAC
GTGTGCTCTTCCGATC*T

P5 UDI007-forward

/5Biosg/AATGATACGGCGACCACCGAGATCTACACACATAGCGACACTCTT
TCCCTACACGACGCTCTTCCGATC/3InvdT/

P5 UDI007-reverse

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTCGCTATGTGTGT
AGATCTCGGTGGTCGCCGTATCATT/3ddC/

3.1.4. LC-MS/MS experimental set-up
Cells were treated with the drug, washed and had gDNA extracted using DNeasy
Blood and Tissue Kit (QIAGEN, Ref.69504), treated with RNaseA and purified with
AMPure XP magnetic beads at a 1:1.8 DNA:beads ratio and eluted in 100 µL EB
buffer. Samples were incubated for 30 min at 100ºC in presence of 0.01 N HCl,
and put on ice. To isolate the most labile modifications, we transferred samples to
Amicon Ultra 0.5 ml 3K columns, centrifuged extensively, and rescued the methylated
bases-containing flow-throughs, or “thermal fraction”.

The fraction which did not pass the membrane was subjected to enzymatic hydrolysis
at 37ºC with calf intestinal Alkaline Phosphatase, DNase I and Snake Venom
Phosphodiesterase I. This digestion yielded the “enzymatic fraction”. Samples
were then desalted with acetonitrile prior to liquid chromatography-tandem mass
spectrometry analysis (LC-MS/MS). This was performed on a LTQ-Orbitrap XLmass
spectrometer combined with an EASY-nLC 1000. Desalted samples were injected into
the columns and were distinctly separated through reversed-phase chromatography by
a homemade analytical column of 50 cm with an inner diameter of 75 µm and packed
with 4 µm Hydro-RP of 80 Å. The MS operation mode comprised a positive ionization
with a 2 kV nanospray and a temperature of 200ºC.

Full MS scans were taken with the following parameters: one micro scan, 6×104
resolution, and mass range between 100 and 700 m/z. Fragmentation was achieved
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by collision-induced dissociation (CID) at a normalized collision energy of 35
and 25 NCE for bases and DNA/RNA nucleosides, respectively. The isolation
window was narrowed to 2.0 Th and activation time was set to 10 ms. The
data were collected and acquired in Xcalibur software. Calibration curves were
constructed using commercially available standards for modified and unmodified
bases/deoxynucleosides and acquired data from the untreated and treated samples
analyzed with Skyline software, using the fragment areas and retention times of each
compound.

3.2. Computational part of AB-seq

Here we describe the technical details of our computational approach to derive
genomic maps of alkylation damage at nucleotide resolution starting from the AB-seq
damage libraries described above. All the steps below – unless explicitly indicated
otherwise – are integrated into an in-house computational pipeline that can be
efficiently run parallel on multiple cores on the cluster, with just a configuration file
provided. The version of the pipeline code used in the thesis can be viewed in the
GitHub repository at https://github.com/bbglab/ABseq-PIPE. (Note that at
the time of writing the thesis, as this work remains unpublished, so does the repository.
Once we generate all planned maps, the pipeline will be published alongside them,
and the code will be made fully open and available. In the meantime, the code can be
viewed upon request.)

The pipeline was implemented in python3 for human reference genome version hg19
canonical. Pipeline includes an environment outlining necessary versions of packages
and tools.

3.2.1. Workflow step by step
The pipeline was run for a library comprising 4 samples (MMS, TMZ, untreated,
DMSO). It was executed using 49 cores and 250GB total, utilizing the threading
options in external tools whenever possible, and the parallelization with a
Python multiprocessing package Pool class whenever possible.

3.2.1.1. Main damage processing pipeline
Files corresponding to the same sample re-sequenced at different times, machines,
and/or lanes are merged in the same order for both read1 and read2. Reads are
deduplicated in a paired-end manner using a bbmap clumpify.sh tool as follows:
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clumpify.sh threads=49 in1=DMSO_1.fastq.gz in2=DMSO_2.fastq.gz
out1=DMSO_1.dedup.fastq.gz out2=DMSO_2.dedup.fastq.gz
dedupe

↪→

↪→

Trimming low sequencing quality bases (less than 15) and adaptor sequences (P7
forward adaptor, preceded by A, on 3’ side for read1 and P5 reverse adaptor on 3’ side
for read2), discarding sequences ending up shorter than 15 nucleotides is performed:

cutadapt --times 3 --overlap 9 -j 49 -m 15 --nextseq-trim=15
--pair-filter=any -a AGATCGGAAGAGCACACGTCTGAA... -A
AGATCGGAAGAGCGTCGTGTAGGG... -o
DMSO_1.TRIMMED_PAIR.minSEQQ15.fastq.gz -p
DMSO_2.TRIMMED_PAIR.minSEQQ15.fastq.gz
DMSO_1.dedup.fastq.gz DMSO_2.dedup.fastq.gz

↪→

↪→

↪→

↪→

↪→

Alignment of reads to the human hg19 reference genome is done in a paired-end mode,
forcing the reads to be separated by a maximum insert size of 2kb as expected from
the fragmentation.

bowtie2 -x Bowtie2Index/genome -1
DMSO_1.TRIMMED_PAIR.minSEQQ15.fastq.gz -2
DMSO_2.TRIMMED_PAIR.minSEQQ15.fastq.gz -S
DMSO.TRIMMED_PAIR.minSEQQ15_both.sam -p 49 --maxins 2000
--no-mixed --no-discordant

↪→

↪→

↪→

↪→

From produced alignment files, bam files are generated considering only properly
mapped pairs, filtered for mapping quality (discarding less than 15), sorted and
indexed. Read1 file generation (for read2 -f 131 used instead):

samtools view -F 12 -f 67 -b
DMSO.TRIMMED_PAIR.minSEQQ15_both.sam >
DMSO_1.TRIMMED_PAIR.minSEQQ15_1.bam -@ 49

↪→

↪→

Read1 mapping quality filtering (for read2 -f 131 used instead):

samtools view -@ 49 -q 15 -F 12 -f 67 -bS
DMSO_1.TRIMMED_PAIR.minSEQQ15_1.bam >
DMSO_1.TRIMMED_PAIR.minSEQQ15_1.minMAPQ15.bam

↪→

↪→
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Read1 sorting (same for read2):

samtools sort DMSO_1.TRIMMED_PAIR.minSEQQ15_1.minMAPQ15.bam -@
49 -m 5G -o
DMSO_1.TRIMMED_PAIR.minSEQQ15_1.minMAPQ15.sort.bam

↪→

↪→

Read1 indexing (same for read2):

samtools index
DMSO_1.TRIMMED_PAIR.minSEQQ15_1.minMAPQ15.sort.bam -@ 49↪→

The total overlap of each read1 with problematic regions is calculated using bedtools
and awk. The definition of problematic regions (all_disallowed.bed) is the
same for both projects and can be found below in the methods chapter 3.3.1.2 of the
Repair States framework.

intersectBed -abam
DMSO_1.TRIMMED_PAIR.minSEQQ15_1.minMAPQ15.sort.bam -b
all_disallowed.bed -bed -wao | cut -f1,2,3,4,6,16 | awk
'BEGIN{{ FS=OFS=\"\t\" }} {{ a[$1 FS $2 FS $3 FS $4 FS $5]
+= $6 }} END{{ for (i in a) print i, a[i] }}'

↪→

↪→

↪→

↪→

Duplicate reads (with respect to chromosome, start, end, and strand) are dropped. Next,
the reads are filtered to keep only those overlapping problematic regions less than the
set threshold (10%). Reads aligned to the mitochondrial genome are discarded, and
only ones on chromosomes are considered (chr1-22, chrX, and chrY) next.

Positions of lesions are inferred from the reads (if reads do not point to the outside
of the reference genome assembly), assuming that they are immediately upstream
of the start of read1, and on the complementary strand. Additionally, the pentamer
corresponding to the reference sequence of the inferred lesion position and the 2bp
contexts on each side are retrieved. The information is saved into bed-like files and
sorted with bedtools.

sortBed -i DMSO1.bed_unsorted -faidx human.hg19.genome >
DMSO1.bed↪→

Finally, the inferred damage positions are deduplicated. The whole above process is
accompanied by saving outputs and statistics about the most crucial steps, and is then
automatically summarized into a table of read counts through all of it.
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3.2.1.2. Integrated downstream validation analyses
3.2.1.2.1. Context sequence plots
Total counts of bases and two types of contexts (tri- and pentanucleotide) are
calculated. Next, all positions with contexts including an unknown base (N) are
discarded. Positions are collapsed over both strands. The total genomic amount of
bases, trinucleotides, and pentanucleotides is calculated with overlaps from the forward
strand of the reference genome. The total counts of bases and contexts within each
sample are normalized by the total genomic counts (summed over both strands). The
normalized counts are put into frequencies (the sum of all becomes 1). All three
options: raw counts, normalized counts, and frequencies can be visualized on either
single-sample (for bases and both contexts) or treated-control pair plots (bases and
triplets only).

3.2.1.2.2. Genomic damage distribution plots
The generation of genomic chunks is the same for both projects and can be found below
in the methods chapter about the Repair States framework. For each sample, from the
final, position-deduplicated files, from the collapsed strands, the number of mapped
positions within each consecutive 1Mb chunk of the human genome is counted. In each
chunk, the base-position count is normalized by the genomic count of the bases on both
strands within the chunk. Both the raw and normalized counts can be plotted for any
given genomic interval (here for chunks 0-249, corresponding to chromosome 1 of the
human genome, and 150-200 for the zoom-in). Disallowed chunks (high coverage (at
least 40%) by problematic regions, defined in 3.3.1.2.5) are marked in light gray on the
plot, if present. Later on, the chromosome ideogram generated on the NCBI Genome
Decoration Page (https://www.ncbi.nlm.nih.gov/genome/tools/gdp) was
added manually.

3.2.2. Other analyses
Analyses included in this section do not form part of the integrated AB-seq analysis
pipeline. All code and version requirements can be accessed in the GitHub repository
at https://github.com/bbglab/ABseq-analyses. (Note that at the time of
writing the thesis, as this work remains unpublished, so does the repository. Once we
generate all planned maps, this code will be published alongside them, and will be
made fully open and available. In the meantime, the repository can be viewed upon
request.)
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3.2.2.1. Similarity of context frequencies and landscapes
The genome-normalized trinucleotide context frequencies are analyzed with a custom
R script (adapted from Maria Andrianova, a postdoc in the lab), which includes cosine
similarity calculation, PCA analysis, and visualization. All analyzes are performed
on the matrix with rows representing samples, columns the triplets, and values the
genome-normalized frequencies.

Cosine similarity of the context frequency profiles is calculated using the cosine

function from the lsa package and plotted using pheatmap library. PCA is
performed using the prcomp function. Plots are generated using ggplot2, for
the first two principal components: scores for the samples with noted the variance
explained, and loadings of the triplet contexts in the principal component.

We also performed variants of these analyses for two different conditions. First, for
comparison with published MMS damage data [24], only G and A-centric contexts
were available, so we filtered, recalculated, plotted the frequencies, and performed
cosine similarity and PCA for both yeast and the human AB-seq data using only
those contexts. In the second case, the comparison with the COSMIC mutational
signature SBS11 (GRCh37 version, [65, 69, 70]), the mutational frequency values
of 96 pyrimidine-centered channels were summed into corresponding triplets (e.g.
A[C>A]A, A[C>G]A and A[C>T]A become ‘ACA+TGT’ triplet). The AB-seq TMZ
data was then represented in a similar format, summing the two triplet frequencies
together (so ACA and TGT become ‘ACA+TGT’), and this format was used for the
cosine similarity and PCA analyses.

Finally, in an analysis of genomic damage distribution landscapes, instead of cosine
similarity we applied correlation. We gathered total corrected counts of mapped
sites in either 1Mb or 100kb chunks along the whole genome in each sample into a
vector. Vector correlations were calculated using the cor function, and plotted using
pheatmap library.

3.2.2.2. Representation of LC-MS/MS results
For each experiment replicate, we obtained picomoles of the modifications (m7G,
m3A) in the thermal fraction and of the non-modified DNA nucleosides (dG, dA) in the
enzymatic fraction. Each of the picomol values was divided by the injected percentage
of its corresponding fraction. These corrected values were then used to calculate the
ratios of modification to the non-modified nucleoside (m7G/dG and m3A/dA) and
finally transformed into percentages.
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3.3. Repair states framework for UV DNA damage

Here we detail all technical aspects of our bioinformatics framework for segmentation
of the genome into UV repair states, characterized by differences in dynamics of NER
repair. The work described in this subchapter was performed in close collaboration
with Ferran Muiños and is based on the work of Joan Frigola. All the steps outlined
below are contained in code repositories with automated snakemake and nextflow
pipelines for processing the data, as well as python scripts, jupyter notebooks, and
a singularity distribution. The current versions of the code and package requirements
can be accessed in the following GitHub repositories:

Preprocessing:
https://github.com/bbglab/repair-states-preprocess

Repair states learning:
https://github.com/bbglab/repair-states-hdphmm

Downstream analyses:
https://github.com/bbglab/repair-states-analyses

(Note that at the time of writing the thesis, as this work remains unpublished, so does
the repository. Once the project is published, the updated code will be published
alongside it, fully open and available. In the meantime, the repository can be viewed
upon request.)

First, I describe the needed processing of input damage and repair data that will be
used for the segmentation. Next, I outline the modeling steps needed to obtain that
segmentation. After that, I explain the steps of postprocessing of the obtained repair
states segmentation, and, finally, the analyses annotating various datasets on top of that
segmentation.

3.3.1. Input data preprocessing
All of the preprocessing steps are included in the https://github.com/bbglab/
repair-states-preprocess data repository. Steps are grouped into 4 automated
snakemake pipelines. In this section, I describe the steps alongside examples of
commands included in the pipelines.

3.3.1.1. Chunking the genome
Genomic chunks along the whole genome were generated using bedtools,
according to the hg19 chromosome lengths reference file with only canonical
chromosomes, for each given chunk size:
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bedtools makewindows -g human.hg19.genome -w 100000 >
chromosomes_100kb_division.txt↪→

3.3.1.2. Problematic regions
We gathered three sources of potential confounders for sequencing including regions
we consider low-trust. We call this set ‘problematic regions’. The three categories
include low-complexity regions, blacklisted regions, and regions with mappability
issues.

3.3.1.2.1. Low complexity regions
Regions of low complexity (many repeats, or consisting mostly of tracts of one
base) are problematic for sequencing and aligning to the genome. To download
low complexity regions we accessed the UCSC table browser at https://genome.
ucsc.edu/cgi-bin/hgTables and changed the following terms: 1) assembly: Feb.

2009 (GRCh37/hg19), 2) group: Repeats, 3) track: RepeatMasker, 4) table: rmsk, 5)
region: genome, 6) filter: click on create, on the new page paste Low_complexity after
“repClass does match”, and click submit, 7) output format: BED - browser extensible
data, 8) output filename: paste hg19_low_complexity_regions.gz, 9) file type returned:
gzip compressed.

Regions in non-canonical chromosomes were filtered out, and the remaining ones were
sorted with bedtools according to the genome chromosome lengths reference file.

3.3.1.2.2. UCSC Excludable blacklisted regions
UCSC provides two blacklists of regions that can cause trouble for genome alignment
tools. The first list – DAC – gathers regions identified as artifactual in multiple
different tissues and cell types. The Duke list contains regions that have proven to
be burdensome for short-sequence tag signal detection.

The excludable regions were downloaded from http://hgdownload.cse.ucsc.

edu/goldenpath/hg19/encodeDCC/wgEncodeMapability/, and noncanonical
chromosomes were filtered out. Next, the regions from both lists were sorted together
and finally merged into non-overlapping regions using bedtools merge.

The two blacklists are recommended to be used with a complementary mappability
filter (see below).

3.3.1.2.3. UCSC 36mer alignability
Issues with mappability might mean that a region from the reference genome
does not align to itself; or aligns to multiple different sites in the genome. The
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information on the alignability of 36mers along the genome was downloaded
from http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/

wgEncodeMapability/wgEncodeCrgMapabilityAlign36mer.bigWig, and
exported to BedGraph format using bigWigToBedGraph. Any region without
a score or a score different than 1 (signifying only one match) was discarded,
and so were noncanonical chromosomes. The remaining regions (signifying great
alignability) were complemented using bedtools to obtain alignability-problematic
regions:

bedtools complement -i mappable.bed -g human.hg19.genome >
unmappable.bed↪→

Finally, the regions with mappability issues were sorted using bedtools.

3.3.1.2.4. Unified problematic regions and disallowed chunks
All three problematic lists were merged using bedtools merge into a single list of
non-overlapping problematic regions, and next sorted.

To obtain the base-pair overlap of each genomic chunk of a given size with the
problematic regions, we intersected the two datasets first:

bedtools intersect -wao -a chromosomes_100kb_division.txt -b
problematic.bed -sorted -g human.hg19.genome↪→

Next, we summed the problematic overlaps for each specific chunk. Each chunk with
40% or more problematic overlap is flagged as disallowed.

3.3.1.2.5. Disallowed chunks
Chunks that are considered disallowed from the analyses are chunks either highly
covered by problematic regions (see above), or the ones that have a count of 0
pyrimidine pairs (defined right below) in the reference genome or a count of 0 of
damage at any 0h time point of the damage data (processing in 3.3.1.4). All the
disallowed chunks are zero-ed in analyses.

For the AB-seq damage distribution plots (described in 3.2.1.2.2), the definition of the
disallowed chunks includes only the chunks highly covered by the problematic regions.

3.3.1.3. Pyrimidine pairs
For the set of the 3 pyrimidine pair contexts of interest (TT, CT, and TC) we performed
a search for overlaps with the reference genome. To obtain the occurrences on the
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other strand, we added the reverse complements of the three patterns to the search.
The search for all 6 patterns was performed on the forward strand of the hg19 reference
genome. All found sites with the strand and marked specific di-pyrimidine were sorted
by the starting position and saved as a bed file.

Next, we wanted to filter the pyrimidine pairs by the problematic regions. The premise
of the filtering lies in the idea of how the damaged sites are mapped - through the
mapping of R1 reads from HS-damage-seq.

Hence, first, we simulated 50bp-long ‘pseudo-reads’ next to each pyrimidine pair, in
the same orientation that we would obtain if the damage was mapped there using
the HS-damage-seq protocol. We generated the pseudo-reads iteratively for each
chromosome using bedtools. Afterward, we sorted the reads using the chromosome
lengths reference file.

grep -P "^chr1\t" pyrimidine_pairs_positions.bed | bedtools
flank -i stdin -g human.hg19.genome -l 0 -r 50 -s |
bedtools sort -faidx human.hg19.genome

↪→

↪→

Next, iteratively for each chromosome, we calculated the total problematic regions
coverage of each pseudo-read:

grep -P "^chr1\t" pyrimidine_pairs_pseudoreads.bed | bedtools
coverage -a stdin -b problematic.bed -sorted -g
human.hg19.genome | cut -f1,2,3,4,5,6,8,10

↪→

↪→

Finally, we extracted the positions of pyrimidine pairs back from the pseudo-reads and
filtered them using a maximum threshold of 60% coverage (30bp) for the pseudo-read
overlap of problematic regions. The resulting files were sorted again.

grep -P "^chr1\t" pyrimidine_pairs_pseudoread_overlaps.bed |
bedtools flank -i stdin -g human.hg19.genome -l 2 -r 0 -s
| awk '$NF < 0.6' | bedtools sort -faidx human.hg19.genome
| cut -f1,2,3,4,6

↪→

↪→

↪→

After the filtering, the remaining pyrimidine pairs were chunked, one chromosome at
a time, to obtain the sorted per-chunk count for each di-pyrimidine:
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grep -P "^chr1\t" filtered_pyrimidine_pairs.bed | bedtools
intersect -wao -a <(grep -P "^chr1\t"
chromosomes_100kb_division.txt) -b stdin -sorted -g
human.hg19.genome | awk -F '\t' '{{ print
$1"\t"$2"\t"$3"\t"$7"\t"$NF }}' | awk -F '\t'
'{{a[$1"\t"$2"\t"$3"\t"$4] += $NF}} END{{for (i in a)
print i"\t"a[i]}}' | bedtools sort -faidx
human.hg19.genome

↪→

↪→

↪→

↪→

↪→

↪→

↪→

The sorted, per-di-pyrimidine chunked count data was gathered into a coherent data
frame, with one row per chunk, and filtered pyrimidine pair counts represented in the
columns.

3.3.1.4. HS-damage-seq damage
The HS-damage-seq used in this thesis [19] was downloaded from GEO using the
accession number GSE98025. Both replicates for specific conditions used in the thesis
were extracted (CPDs at 0h, 1h, 8h, 24h, 48h; 6-4PPs at 0h, 20m, 1h, 2h, 4h) from the
compressed directory for cell line NHF1 (Normal Healthy Fibroblasts). Note that we
did not use the available 36h time point data for CPDs, as the authors [19] indicated a
high similarity of the 36h and 48h profiles.

For each file, we obtained the positions of the damaged di-pyrimidines (located in
positions 4-5 in the original files) using bedtools. Finally, the resulting file was
sorted.

zcat damage_file.bed.gz | awk -v FS='\t' -v OFS='\t' '{{$4 =
"0\t0\t" $4}} 1' | bedtools slop -i stdin -g
human.hg19.genome -b -4 -s | bedtools sort -faidx
human.hg19.genome | cut -f1,2,3,6

↪→

↪→

↪→

For each damage position, we extracted the corresponding di-pyrimidine sequence
from the reference genome. We performed a ‘sanity check’ - checked the
correspondence of the mapped positions to all available pyrimidine pairs in the
reference genome. With this fitting properly we moved on to filtering of the damages.
For this, we used the pseudo-read filtered pyrimidine pairs. The damage positions for
each file passed this step only if they were found in a position of an allowed pyrimidine
pair. This was performed in a per-chromosome manner.

bedtools intersect -f 1.0 -r -u -wa -a <(grep -P "^$chr1\t"
damage_positoins.bed) -b <(grep -P "^$chr1\t"
filtered_pyrimidine_pairs.bed) -sorted -g
human.hg19.genome

↪→

↪→

↪→
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Each filtered damage file was chunked, the count of damaged di-pyrimidine types was
obtained for each chunk, and the chunks were sorted using bedtools.

bedtools intersect -wao -a chromosomes_100kb_division.txt -b
filtered_damage.bed -sorted -g human.hg19.genome | awk -F
'\t' '{{ print $1"\t"$2"\t"$3"\t"$7"\t"$NF }}' | awk -F
'\t' '{{a[$1"\t"$2"\t"$3"\t"$4] += $NF}} END{{for (i in a)
print i"\t"a[i]}}' | bedtools sort -faidx
human.hg19.genome

↪→

↪→

↪→

↪→

↪→

The chunked counts from files that constituted 2 replicates of the same condition (i.e.
CPDs at 0h, replicates A and B) were summed. All conditions corresponding to a given
damage type were gathered in a data frame, where each row represented a chunk, and
columns the counts of di-pyrimidines in all conditions. As the used cell line was of
male origin, we doubled the counts corresponding to X and Y chromosomes to make
the damage counts across sex chromosomes comparable to that across autosomes.

At this stage, we generated the disallowed flags for each chunk (see 3.3.1.2.5) using
the 0h damage, pyrimidine pair counts, and problematic regions. In the next steps, all
the chunks with the disallowed flag were zero-ed.

3.3.1.4.1. Damage counts normalization
We set out to reduce the impact of the genome composition, and the experimental
saturation that HS-damage-seq tends to suffer from (see 1.3.2.1.1) on the damage
counts. First, we added 1 pseudo-count to the filtered damage count and filtered
pyrimidine pair count of the chunk. Next, we divided the filtered damage counts of
a specific di-pyrimidine in each condition by the corresponding filtered pyrimidine
pair count in the chunk. Finally, we divided the genome-normalized damage counts by
the total sum of all counts in this condition. This constitutes what we further refer to as
‘normalized damage score’, and can be also thought of as genome-normalized relative
damage counts.

3.3.1.4.2. Inferring total repair from normalized damage
To obtain a measure of total repair happening in a specific time interval, we focused
on the normalized damage scores between any two consecutive time points. For each
damage type and di-pyrimidine, in each chunk, we calculated the divergence of the
scores between the start and end of each interval. Divergence is computed as a log fold
change of normalized damage scores in the start time point divided by those at the end
time point. It is given by the following equation: Div(t0, t1) = log d(t0) − log d(t1),
where t0 represents the start time of the interval, t1 represents the endpoint of the
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interval, and d(t) represents the normalized damage score at time t. Next, we refer to
the normalized damage scores’ divergences as Inferred Repair.

3.3.1.5. XR-seq repair
For inferred repair, see above. This subsection is focused on snapshot repair.

The XR-seq data from [23] was recovered from GEO with the accession number
GSE76391. The files for conditions of interest for NHF1 cells were collected (CPDs
at 1h, 4h, 8h, 16h, 24h, 48h; 6-4PPs at 5m, 20m, 1h, 2h, 4h) from the compressed
directory. Each condition was separated into two replicates (1 and 2) and by the
counts on a given strand. We sorted each of these subfiles using bedtools and
the chromosome lengths definition file. Next, each subfile was intersected with the
genomic chunks using bedtools.

bedtools intersect -wao -a chromosomes_100kb_division.txt -b
xr_file.bed -sorted -g human.hg19.genome | cut -f1,2,3,7,8↪→

The total repair score of a chunk was calculated by multiplying the 25bp density score
(provided in the original file) of a given XR-seq annotated fragment by its total overlap
with the chunk and dividing by 25, and then summing over all fragments overlapping
the chunk. These total repair scores were summed over the files that constituted 2
replicates and separate strands of the same condition (i.e. CPDs at 0h, replicates 1
and 2, strands MINUS and PLUS). Finally, all conditions were gathered in a data
frame so that a row represents a chunk, and each column has the repair score of each
condition. As the repair density was already normalized by chromosome coverage, we
did not need to double the sexual chromosome scores. As the XR-seq density scores
capture the NER excised fragments, whose half-life is estimated to be around 10m (see
1.1.2.1.3 and 1.3.2.2.1), they represent a detailed picture of repair at a specific moment
rather than total repair along a longer time interval. Hence, we further refer to XR-seq
repair scores as Snapshot Repair.

3.3.2. Correlation of damage and mutations
3.3.2.1. Processing of mutations
We retrieved the ‘simple_somatic_mutation’ files from ICGC [79, 31] for two skin
cancer datasets: SKCA-BR (Skin Adenocarcinoma Brazil) and MELA-AU (Skin
Cancer Australia). The mutation files were filtered to select only single base
substitutions on canonical chromosomes. The records were deduplicated, and sorted
with bedtools.
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cat simple_somatic_mutation.SKCA-BR.tsv | awk -F '\t'
'$14=="single base substitution"' | awk -F '\t' '{{print
"chr"$9"\t"$10"\t"$16"\t"$17"\t"$8 }}' | sort | uniq | awk
-v FS='\t' -v OFS='\t' '{{$2 = $2-1 "\t" $2}} 1'| sed
's/^chrMT/chrM/g' | input.bedtools sort -faidx
human.hg19.genome

↪→

↪→

↪→

↪→

↪→

We were interested in samples that exhibited signs of high UV mutational activity.
We calculated the percentage of the fraction of mutations in each sample that happens
to be in the most frequent UV mutational contexts (C>T and G>A). We plotted the
sample fractions for both datasets (Figures 3.1 and 3.2) and decided on the threshold
of a minimum of 70%. The samples not meeting this threshold were discarded.

Figure 3.1: Histogram of SKCA-BR samples
representing the fractions of potential UV mu-
tations (C>T and G>A) that they carry.

Figure 3.2: Histogram of MELA-AU samples
representing the fractions of potential UV mu-
tations (C>T and G>A) that they carry.

Next, from the high-UV exposed samples we obtained just the mutations within the
di-pyrimidine contexts same as our damage data. This included XTT, TTX, XCT,
CTX, XTC, and TCX (where the middle nucleotide is the reference allele of the base
substitution), as well as their reverse complements. The mutations with the triplets
were sorted according to the chromosome lengths reference file.

We chunked and filtered each of the filtered mutation files using bedtools, counting
the number of mutations in each context per chunk.

bedtools intersect -wao -a chromosomes_100kb_division.txt -b
UV_context_mutations.SKCA-BR.bed -sorted -g
human.hg19.genome | awk -F '\t' '{{ print
$1"\t"$2"\t"$3"\t"$7"\t"$NF }}' | awk -F '\t'
'{{a[$1"\t"$2"\t"$3"\t"$4] += $NF}} END{{for (i in a)
print i"\t"a[i]}}' | bedtools sort -faidx
chromosomes_100kb_division.txt

↪→

↪→

↪→

↪→

↪→

↪→

Finally, we gathered the mutations from both datasets and summed their counts in
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chunks. Apart from the context-specific counts, we calculated the count of all UV
mutations found per chunk and made sure to sort the file.

3.3.2.2. Plots aligning the damage, repair, and mutations
To visualize a small part of the data along a fraction of the genome (Figure 4.21),
we gathered the following 100kb-chunked data tracks: filtered TT pyrimidine pairs,
filtered non-normalized CPD TT damage counts at 0h, normalized CPD TT damage
scores at 0h and 48h, TT-corrected snapshot repair score at 1h, and UV-context
mutations. All the data tracks were zero-ed in disallowed chunks.

We plotted the tracks along a 90-100Mb part of the human chromosome 1, which
did not have at this resolution any disallowed chunks. The normalized damage score
tracks were represented within the same y-axis minimum and maximum bounds for
easier comparison.

The data explainers in the A part of the figure, as well as the chromosome ideogram in
B, were both added manually. Chromosome 1 ideogram was generated on the NCBI
Genome Decoration Page (https://www.ncbi.nlm.nih.gov/genome/tools/
gdp)

3.3.2.3. Correlations calculations
For each damage type, we calculated two different correlations: 1) between damage
at 0h and damages at the following time points, 2) between UV-context mutations and
the damage at the earliest and latest time point. These correlations were calculated for
both non-normalized damage, and the normalized damage scores, at 100kb resolution.

First, we calculated the log10 of both variables (i.e. mutations and damage at 0h). The
non-finite values were masked. Using the scipy.stats.linregress function,
we calculated the Pearson correlation (R) coefficient between each two variables.

The damage-damage correlations were next saved as a table (presented in Appendix,
Tables B.1 and B.2). The mutation-damage correlations were represented on KDE
density plots, together with the space covered by the two log10 variables in question.

3.3.2.4. Subsampling correlations
To explore the correlations of the UV-context mutations with all the damage time points
and how they vary along the 100kb-chunked genome, we performed sub-sampling
correlations.

First, we log10-transformed both variables of interest and masked non-finite values. We
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bound the values of the two variables in the same chunk together. Next, we shuffled
the chunks. The shuffled chunked genome was then split into sub-samples of size 40.
The smallest window, below the size of 40, was discarded.

In each window, we used the scipy.stats.linregress function to calculate
the R correlation coefficient between the two sub-sampled variables. We plotted the
correlation coefficients for all windows as boxplots, one boxplot per one damage time
point. This was performed for all damage types, and both non-normalized as well as
normalized damage scores.

3.3.3. Sticky HDP HMM-based repair states partitioning
Steps of the HDPHMM mentioned in the section are included in the following GitHub
data repository: https://github.com/bbglab/repair-states-hdphmm. The
code can be executed using Nextflow (v21.04) pipeline with the Python

interpreter in a Singularity (v3.7.3) container where all the software
dependencies have been resolved. A few steps including the clustering of the
hidden states into repair states, reproducibility analyses, and graphical representation
of the framework are instead available in the https://github.com/bbglab/

repair-states-analyses repository.

3.3.3.1. Modeling assumptions
In our framework we conceptualize the repair states as intrinsic states of genomic
chunks which determine characteristic repair dynamics. We assume that the generative
process that links a repair state with the observable repair dynamics is stochastic,
meaning that each repair state can result in a range of observable repair dynamics,
although with some characteristic propensities that allow us to tell apart one state from
another.

In order to carry out the modeling, we need first a way to encode the observable
repair dynamics using the inferred repair and snapshot repair data per chunk. We
assume that the observable repair dynamics have been produced in accordance with
the following generative process: each genomic chunk is associated with a hidden
state (unobservable latent variable of the model) that determines the distribution that
the observable repair dynamics have been randomly sampled from. We also assume
that hidden states have some level of persistence, meaning that a chunk is more
likely to be in a hidden state if the adjacent chunks are in the same hidden state.
This sort of persistence is convenient when fitting a model on sequential data, as it
primes the model to come up with parsimonious solutions that are often in accordance
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with biology: in our case, since the properties of genomic chunks are not expected
to be independent when the chunks are in contact or close proximity, we deem this
persistence an adequate modeling assumption.

3.3.3.2. Rationale behind sticky HDP HMM as a method of choice
A common choice in the field for this type of modeling is to employ Markov processes
with a specified number of hidden states (Hidden Markov Model or HMM). There are
well-known, efficient methods to fit these models. However, with the development
of efficient learning methods for more complex probabilistic graphical modeling (e.g.
variational inference) alternative methods have become a good practical choice.

Here we adopt the so-called sticky Hierarchical Dirichlet Process Hidden Markov
Model (sticky HDP HMM). This method has several conceptual and practical
advantages compared with the classical HMM approach:

It can automatically learn an optimal number of hidden states.
It is compatible with several distributional assumptions for the observable
emissions.
It is conceptually very flexible, allowing fine-tuning e.g. the degree of
persistence of the hidden states.
There are efficient implementations of learning methods already packaged
as ready-to-use Python APIs, like in the package “bnpy: Bayesian
nonparametric machine learning for python”, the API of choice in our analysis
(https://github.com/bnpy/bnpy).

3.3.3.3. Encoding of observable repair dynamics
For modeling we encoded the observable repair dynamics from both sources (inferred
and snapshot) corresponding to each chunk the following way. We computed the
5-quantile (herein “quantiles”) of the chunk relative to all the chunks reported for
the given repair track. Quantile 0th henceforth gathers chunks with the lowest values
(representing the lowest repair scores) in the given data track and 4th with the highest.

For inferred repair, we obtained quantile encodings for each time interval, each damage
type, and each di-pyrimidine context, totaling 16 tracks. For snapshot repair, we
computed the quantiles for each time point and type of damage, amounting to 11 tracks.
This way, the data emitted by each hidden state comes at a total of 27 tracks with
quantile values. We further binarized the quantile data so that each preceding track
spans 5 binary channels, giving a total of 135 binary channels. For the disallowed
chunks, the observable repair dynamics are encoded as the zero vector.
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3.3.3.4. Dirichlet Process
In order to specify the generative process whereby hidden states are related to one
another that allows us to carry out an effective learning of the optimal number of
clusters, we need to introduce the Dirichlet Process. The Dirichlet Process (DP) can
be formally defined as a distribution on probability measures on a measurable space Θ,
uniquely defined by a base probability measure H and a concentration parameter γ > 0

and characterized by the following property: if G ∼ DP (γ,H) then for any finite
partition A1, ..., AK of Θ, (G(A1), ..., G(AK)) are distributed as a Dirichlet distribution
with parameters (γH(A1), ..., γH(AK)).

However technically sound, the DP can be more explicitly understood by using a
more constructive definition based on the so-called stick-breaking construction. This
is accomplished in a three-step process:

1. First an infinite countable partition of the unit interval {βk}k≥1 is randomly
generated by sampling vk ∼ Beta(1, γ) and combining them into the weights
βk = vk(1−vk−1)(1−vk−2)...(1−v1) for each k ≥ 1. This is also known as the
Griffiths-Engen-McCloskey (GEM) or stick-breaking process and it is usually
denoted as β ∼ GEM(γ).

2. Then for each component k we draw Θk ∼ H from the base distribution H .

3. With these ingredients we can then assemble a discrete distribution on the
countable set {Θk}k≥1 with probabilities βk for each k.

Intuitively, randomly sampling from a DP always produces countable discrete
distribution such that: 1) each possible value that the distribution can take (atom) is
sampled from the base distribution H and 2) the variance of the probability mass of
the atoms depends on the concentration parameter γ.

3.3.3.5. Generative model
We will denote yt and Zt the observable repair dynamics and the hidden state,
respectively, corresponding to chunk t (Figure 3.3). The observable repair dynamics
yt takes a binary 135-vector as value, whilst the hidden state Zt takes a positive integer
k ≥ 1 as value. We denote by Θk the vector of parameters governing the emission
distribution corresponding to hidden state k, i.e. if Zt = k then yt ∼ F (Θk), where F

is the joint probability mass function corresponding to the product of 135 independent
Bernoulli random variables, each component representing one of the encoding tracks
of the observable repair dynamics.
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To model the transitions between states in adjacent chunks we need to introduce the
distributions πk defined for each possible hidden state: these distributions encode the
probabilities to transition from state k to any other possible state. In more concrete
terms, the hidden state in chunk t + 1 is assumed to be randomly sampled from
πZt . Note that since πk are countable, discrete probability mass functions, they
can be realized as random draws from a DP. In the generative modeling approach
adopted here, each πk is randomly drawn from a DP with base distribution Hk and
concentration parameter γk, where: Hk = 1

α+κ
(αβ + κδ(k)), γk = α + κ, β being the

a priori distribution on the hidden states randomly drawn from GEM(γ), δ(k) is the
delta-distribution giving probability mass of 1 to k, and κ (Greek letter kappa) is the
self-transition bias (governing how sticky transitions between hidden states are) and α

is an additional concentration parameter [80].

Figure 3.3: Plate diagram representing the sticky HDP HMM model. Top-left: stick-breaking
process generating the β prior used for modeling the transition probabilities between hid-
den states. Middle-left: generative process for the transition probability vectors based on the
stickiness parameter κ (kappa), the concentration parameter α, and the β prior. Right: the
observable repair activity per chunk y is randomly emitted from a distribution that depends on
the hidden state and the parameters governing each hidden state; the hidden states Z are ran-
domly sampled from the transition probability vector π corresponding to the preceding state in
the sequence of chunks.

3.3.3.6. Learning
The learning is carried out in two steps: mean-field variational inference and hidden
state allocation to genomic chunks.
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3.3.3.6.1. Mean-field variational inference
Variational (Bayesian) inference stands for the learning strategy whereby the full
intractable posterior distribution on the latent factors Z is approximated with a tractable
distribution q(Z) known as the variational distribution. In this setting, the set of
parameters governing q(Z) is fitted via an optimization strategy that is equivalent
to the minimization of the Kullback-Leibler divergence between the true, intractable
posterior and the variational distribution. In mean-field variational inference, the
variational distribution q(Z) is assumed to be fully factorized over some partition of
the latent factors.

To learn the set of hidden states, their transition probabilities, and their respective
emission parameter vectors, we resorted to a mean-field variational inference
algorithm, known as “memoized online variational inference” that is already
implemented as a Python API [81].

3.3.3.6.2. Default configuration of the mean-field variational algorithm
The main hyperparameters for the variational inference step are:

γ governing the stick-breaking leading to the β prior; set at 5 across all runs;
α governing the variance of the transition probability vectors of each state; set at
0.5 across all runs;
κ governing the self-transition bias between hidden states (stickiness) was set at
100 for the main run (but we carried out reproducibility analyses for the values
200 and 300 as well).

Other technical configuration values worth mentioning are:

The initial number of hidden states that are subsequently pruned by the
variational inference step was set to N = 50.
Number of batches. Before execution, each sequence of observable binary
vectors is randomly assigned to one batch, then the variational inference
algorithm visits batches one at a time in random order. The number of batches
was set to B = 10.
Number of laps. Each full pass through the complete set of batches is a lap. The
number of laps was set to L = 300.
Moves. The optimization strategy to escape local optima in the gradient ascent
process was set to “merge-shuffle”.
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3.3.3.6.3. Viterbi’s algorithm
Using the outputs of the variational inference step, we can then run Viterbi’s algorithm
to carry out a final allocation step of hidden states to each genomic chunk. Viterbi’s
algorithm is a dynamic programming algorithm that finds the most likely sequence
of hidden states Z resulting in the sequence of observable emissions y by using the
learned transition probabilities between hidden states and the emission multivariate
Bernoulli distributions corresponding to each hidden state. The output of this step
gives us the map of hidden states across genomic chunks.

3.3.3.6.4. Python API
The mean-field variational inference and Viterbi’s algorithm steps were run using the
“Bayesian nonparametric machine learning for python” or “bnpy” package: https:
//github.com/bnpy/bnpy.

3.3.3.7. Hidden states’ hierarchical structure
The hidden states learned may in part reflect heterogeneity that is not biological, rather
technical, explained by e.g. data sparsity, different repair activity mixtures being
included in the same genomic chunks or by means of the learning algorithm itself.
With that regard, we deemed the number of hidden states that we learned a good upper
bound of the true number of repair states. Motivated by this, we aimed to discover the
hierarchical structure of the hidden states by clustering them into a lower number of
states based on the similarity of their repair activity.

First, we investigated the disallowed chunks within the hidden states. All disallowed
chunks in all runs were grouped together in one hidden state that did not cover any other
chunks. We renamed this state as ‘disallowed’ and excluded it from most analyses,
including clustering of the hidden states.

Upon allocation of hidden states across genomic chunks, we stacked the divergence
scores derived from the inferred repair and snapshot repair data across genomic chunks
belonging to the same hidden state. As a result, for each hidden state, we derived a
vector of mean divergence scores across the inferred repair data tracks, and mean of
ranks across the snapshot repair data tracks. Using these vectors we computed the
hierarchical agglomerative clustering based on the mean divergence score vectors.

Agglomerative hierarchical clustering method: Unweighted Pair Group
Method with Arithmetic Mean (UPGMA) with Euclidean distance (https:
//docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.

hierarchy.linkage.html#scipy.cluster.hierarchy.linkage).
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From the topological information of the resulting hierarchy, we could compute
different flat clusterings of hidden states, one for each number of flat clusters we
wanted to consider (granularity). Flat clusters were assigned using the fcluster
function from scipy.cluster.hierarchy.

3.3.3.7.1. Clustering the hidden states into repair states
We found the high number of hidden states allocated by the model to be difficult
to interpret. Hence we used agglomerative clustering to cluster the hidden states
into an interpretable number of final ‘repair states’. We performed the clustering for
granularities varying between 2 and the number of hidden states learned in each case.
Next, we needed to decide on a number of flat clusters that represent most coherently
the substructure of the hidden states.

For each of the granularities, we inspected the matrix of the means of scores
representing the vectors used for the clustering, together with the resulting clustering
dendrogram, and the hidden states colored by the assigned flat clusters. We looked
for the highest possible granularity level where different flat clusters would continue
to reflect distinct repair activity profiles as per the vectors of mean scores. We also
verified if the learned transition probabilities between hidden states were compatible
with this clustering, checking the coherence of frequent within-cluster transitions.
Based on these two criteria, we decided on a final set of 12 repair states.

We saved the dendrogram, the ordering of the clustered hidden states, and the clusters
corresponding to repair states for use in further analyses. Note that the 12 repair
states everywhere in this thesis are already represented as re-numbered and ordered
by average mutation count (more in 3.3.4.1). Both the matrix with the dendrogram and
the transitions were plotted with seaborn clustermap.

3.3.3.8. Graphical representation of the framework
To plot the figure representing the repair states partitioning framework step by step
along a small genome part (Figure 4.23), we gathered a set of 100kb-chunked data
tracks from 93rd to 98th Mb of chromosome 1 (marked in orange, did not have any
disallowed chunks). The tracks included: normalized CPD TT damage scores at 8h
and 24h, inferred CPD TT repair between 8-24h, snapshot repair at 1h, and quantile
encodings of the two aforementioned repair tracks.

For inferred and snapshot repair, on the right of the plotted track fragments, we
represented the distribution of all the scores for this track. Horizontal lines represent
the cut-offs of the five quantiles within this distribution.

55



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 56 — #70

Below the plotted fragment, we added the whole chromosome 1 colored by the
hidden states and repair states assignment. Above the plotted fragment, we added the
chromosome ideogram, generated on the NCBI Genome Decoration Page (https:
//www.ncbi.nlm.nih.gov/genome/tools/gdp).

3.3.3.9. Reproducibility analysis
In order to validate our approach and assess the amount of technical variability that
our clustering method might introduce in the results, we set out to run the clustering
method across several configurations and using different input datasets.

We carried out two types of comparisons:

Compare runs fit across different stickiness levels (κ hyperparameter value)
Compare runs fit using full data (all replicates combined) with partial data (single
replicates)

To assess the concordance between the different resulting hidden state partitions of
the genome, we devised a method that checks the consistency not just at the level of
inferred hidden states, but also across the entire hierarchical structure underlying the
repair dynamics.

3.3.3.9.1. Contingency tables
Given two flat clusterings of hidden states with the same granularity (N ) produced
by separate runs of our clustering method (run1 and run2), we can create an N × N

contingency table that provides the counts of genomic chunks mapping to each pair
i, j of flat clusters, belonging to run1 and run2 flat clustering indices, respectively.

Note that the indices in the flat clustering need not be compatible with each other. We
can then relabel indices in both flat clusterings to render the trace (sum of the diagonal
entries) of the contingency table as high as possible. Such a reindexing provides
the most likely compatible indexings relative to the chosen granularity level N . The
higher the counts in the diagonal, the stronger the evidence that both flat clusterings
are consistent.

Given two hidden state allocations with their respective clusterings based on mean
divergence observable repair, and a granularity level N , we can build the reindexed
contingency table and score the proportion of counts in the diagonal via a generalized
MCC score.

56

https://www.ncbi.nlm.nih.gov/genome/tools/gdp
https://www.ncbi.nlm.nih.gov/genome/tools/gdp


“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 57 — #71

3.3.3.9.2. Generalized MCC score
Given an N × N contingency table with compatible indexes and a query flat cluster
index F we can render a 2 × 2 table by collapsing all the flat clusters different from
F into one class. With such a contingency table we can then compute an MCC score,
which measures how consistently F -labeled chunks are allocated to the same F class
of hidden states. We can proceed with all possible flat cluster indices, computing the
MCC of the corresponding collapsed 2 × 2 contingency table, then averaging out all
the MCC values into what we call a “generalized MCC score”.

This method provides a valuable means to test at which granularities the highest
reproducibility levels are reached. In other words, we want to assess with which
granularities clustered states correspond well to one another when allocated using
slightly perturbed data and learning configurations. With this information, we can
then go about defining informed criteria as to what amount of the inferred and
snapshot repair heterogeneity is biological rather than technical and apply yet another
post-processing step to define prototypical repair state families. The rationale would
be the following: we would like the repair states to be as granular as possible, but also
as reproducible as possible across perturbations of the standard clustering algorithm.

3.3.3.9.3. Reproducibility across replicates
To obtain the input inferred and snapshot repair for replicates, we simply processed
the HS-damage-seq and XR-seq data in the same way, only without the step of
summing over the replicates. Next, we matched the inferred repair from A replicate of
HS-damage-seq with the snapshot repair of replicate 1 of XR-seq and did the same for
B and 2.

We ran the repair state clustering method across 3 chunk-size configurations (1Mb,
100kb, and 10kb) with the input repair divergence scores derived from the following
settings (rest of configuration parameters kept as in the default configuration):

Standard run:
• full HS-damage-seq (replicate A + replicate B)
• full XR-seq (replicate 1 + replicate 2)

Damage-seq replicate A and XR-seq replicate 1
Damage-seq replicate B and XR-seq replicate 2

3.3.3.9.4. Reproducibility across stickiness levels
We ran the repair state clustering method across 3 chunk-size configurations (1Mb,
100kb, and 10kb) with the input repair divergence scores derived from the full data
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(rest of configuration values kept as in the configuration by default) across 3 kappa
stickiness levels: 100, 200 and 300.

3.3.4. Post-processing of repair states
All the code necessary for the analyses indicated below is available in https:

//github.com/bbglab/repair-states-analyses repository, and includes a
mixture of python scripts and snakemake workflows.

3.3.4.1. Ordering and naming states by mutations
After obtaining the 12 final repair states, we needed a simple way to name and order
them. To do that, we calculated the average count of UV-related mutations of chunks
belonging to each state. We then sorted and numbered the repair states from the highest
average count of mutations (RS1) to the lowest (RS12). We chose a color palette for
the ordered states. Both the ordering and the palette are kept consistent throughout all
the presented analyses.

3.3.4.2. Repair state logos
With the final repair states assigned, we set out to visualize their repair dynamics using
the original input data tracks (inferred and snapshot repair). We aimed to represent the
repair activity for each damage and di-pyrimidine pair (whenever available) along all
intervals/time points.

To this end, for each repair state, we generated the following ‘logo’ of repair activity.
The subplots (henceforth ‘boxes’) order corresponds to: first inferred CPD TT repair,
second inferred CPD CT repair, then snapshot CPD repair, followed by two boxes of
inferred repair for 6-4PPs (TT and TC), and finally snapshot 6-4PP repair. The last box
in the logo represents mutations.

In each box, the values in the chunks assigned to a specific repair state are represented,
along all the time intervals (or points). The values of specific chunks are plotted as
scatters. The small, connected boxplots, each represent the median and 25th and 75th
percentiles of the values for this repair state at a specific time.

In inferred repair boxes, we represented the divergence scores. For snapshot repair, we
presented the ranks of TT-corrected repair scores (ranked along all genomic chunks
and scaled from 0 to 1). In the mutations box, we plotted the ranks of the UV-related
mutations.

The full logos of the repair states were plotted as rows, one underneath the other,
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ordered from RS1 to RS12. The plots were arranged with matplotlib.

3.3.4.3. Comparison of orderings
We aimed to verify how the ordering of the repair states by average mutation counts
corresponds to their repair activity. First, we generated the orderings based on each
of the logo boxes (see above). For inferred repair, in each repair state, we summed
the means of values in all intervals for the given damage type and di-pyrimidine. In
the case of snapshot repair, in each repair state, we summed the means of ranks of the
values for all time points for the given damage type. Each ordering was generated by
sorting the states from the lowest sum to the highest.

The repair state orderings were compared with the mutations-based one using
the Jaro-Winkler metric implemented as jaro_winkler_metric function in
the python jaro package (https://pypi.org/project/jaro-winkler/).
Importantly, this metric takes into account the transpositions, which is important for
the order comparisons here. Jaro-Winkler metric in this implementation ranges from 0
to 1, with 0 being zero similarity, and 1 the exact same ordering.

3.3.4.4. Repair state transitions
To visualize how frequently one repair state ‘changes’ to another, we counted the times
each ‘origin’ state transitioned to any other ‘destination’ one. Then, we normalized the
transition count by the size of the destination state (in chunks). These normalized
transition frequencies were plotted, indicating the origin repair state as ‘from’ and the
destination state as ‘to’. The plots were generated using seaborn clustermap.

3.3.5. Processing of genomic features
For all annotations, non-canonical chromosomes were discarded. All regions in
the feature file were always sorted using bedtools and the chromosome lengths
definition file, and merged, before overlapping with the 100kb genomic chunks.

3.3.5.1. RefSeq and LADs
The hg19 RefSeq annotations (including genes, exons, TSS, TES, and 2kb next to the
TSS), as well as CpG Islands and LADs, were taken from the COORDS directory of
the ChromHMM tool [82] distribution. The coordinates of RefSeq and CpG Islands
provided were originally taken from the UCSC genome browser. LAD locations in
human fibroblasts provided in this distribution are originally from [83]. Each of these
annotations was summarized as a simple base-pair overlap of the feature with each
100kb chunk.
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3.3.5.2. Chromatin states
We downloaded the chromatin states generated by the core 15-way chromHMM model
(Table 3.1) for the E055 cell line [84, 85].

Label Name Description
TssA Active TSS Enriched in TSS of actively transcribed

genes
TssAFlnk Flanking Active TSS Enriched in immediate neighborhood of

TSS of actively transcribed genes
TxFlnk Transcribed state at gene 5’ and

3’
Enriched at 5’ (downstream of TSS) and 3’
(upstream of TES) of actively transcribed
genes

Tx Strong transcription Enriched in gene bodies of transcribed
genes

TxWk Weak transcription Enriched in gene bodies of transcribed
genes

EnhG Genic enhancers Enriched in gene bodies of transcribed
genes

Enh Enhancers Not enriched at TSSs
ZNF/Rpts ZNF genes & repeats Enriched for ZNF genes and satellite re-

peats
Het Heterochromatin Enriched at heterochromatin regions and

centromeric and telomeric repeats
TssBiv Bivalent/Poised TSS Enriched in TSS of repressed genes
BivFlnk Flanking Bivalent TSS/Enh Enriched around TSS of repressed genes
EnhBiv Bivalent Enhancer Not enriched at TSSs
ReprPC Repressed PolyComb Enriched at gene bodies of repressed genes
ReprPCWk Weak Repressed PolyComb Enriched at gene bodies of repressed genes
Quies Quiescent/Low No marks

Table 3.1: Chromatin State descriptions for the 15-way chromHMM core model. Source: Table
S3 reference from [85]

In the Roadmap Epigenomics Consortium [86, 85], E055 denotes a cell line
corresponding to foreskin fibroblast primary cells (closest cell type to the one used to
produce the XR-seq and HS-damage-seq maps). For each of the 15 chromatin states,
we calculated their base-pair overlap with each 100kb chunk.

3.3.5.3. Genomic features mapped through CHIP-seq
The CHIP-seqs for histone marks were downloaded from two different datasets,
and two slightly different cell types (specified below). Some of the histone mark
types repeated in the two sets. We decided to include both and check for any
differences. Apart from histone marks, we also downloaded the CTCF transcription
factor CHIP-seq data.

We processed all CHIP-seqs in the same manner. Whenever possible, we chose the
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file corresponding to peaks from 2 biological replicates. The peaks were filtered for
the −log10 q-values (qValue) threshold higher than −log10(0.05) and the enrichment
(signalValue) threshold higher than 1.5. For all histone marks, we used the base-pair
overlap of the merged, filtered peaks with each 100kb chunk.

3.3.5.3.1. Roadmap Epigenomics
We downloaded the hg19 histone marks available for the E055 (foreskin fibroblast
primary cells, same one as chromatin states) cell line from Roadmap Epigenomics [86,
85] in the narrowPeak format. These marks included: DNase, H3K27ac, H3K27me3,
H3K36me3, H3K4me1, H3K4me3, and H3K9me3.

3.3.5.3.2. ENCODE
The other set of histone marks for the hg19 reference was downloaded from
ENCODE [87, 88, 89, 90] for the GM23248 cells (arm skin primary fibroblasts).
The retrieved marks were H2AFZ, H3F3A, H3K27ac, H3K27me3, H3K36me3,
H3K4me1, H3K4me3, H3K79me2, H3K9ac, H3K9me2, and H4K20me1.

Files downloaded correspond to these identifiers in the ENCODE portal [88]
(https://www.encodeproject.org/): ENCFF126IUT, ENCFF885LXS,
ENCFF371OCE, ENCFF289CWH, ENCFF599FDC, ENCFF251CWC,
ENCFF113GWR, ENCFF300JYE, ENCFF765TBF, ENCFF642UWE,
ENCFF194AYL.

3.3.5.3.3. CTCF sites
Sites of bound CTCF in hg19 were downloaded from ENCODE for lower leg skin
tissue. The corresponding ENCODE portal [88] identifier is ENCFF637FOR.

3.3.5.4. Expressed genes
3.3.5.4.1. Expression in fibroblasts
The expression (given by RPKM – Reads Per Kilobase of transcript, per Million
mapped reads – values per gene) table in two fibroblast samples was downloaded from
(Table S1 from [91]). We averaged the expression in each gene over the two samples
by taking the median of their RPKM values. Next, for every chunk, we multiplied the
base-pair overlap of the gene with the chunk by its median expression. The final score
of the chunk was the sum of these scores over all genes overlapping the chunk.

3.3.5.4.2. GTEx Constitutively expressed genes
The median gene-level TPM (transcripts per million) expression across 54
non-tumor tissue types was downloaded from the GTEx Portal [92]. The dataset
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includes two types of skin tissue: suprapubic non-sun-exposed skin (GTEx code
“skin_not_sun_exposed_suprapubic”) and lower leg sun-exposed-skin (GTEx code
“skin_sun_exposed_lower_leg”).

Downloadable file: https://storage.googleapis.com/gtex_analysis_v8/
rna_seq_data/GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_

median_tpm.gct.gz

For the two skin tissue types, we selected the genes with median TPM > 50 across
the GTEx dataset as “constitutively active” in the tissue. From the two gene sets we
then retrieved the hg19 genomic coordinates of all the exonic sequences (CDS, 5-UTR,
3-UTR from Gencode v31) mapping to the canonical transcripts of genes in the gene
sets (Ensembl canonical transcripts v97) as a BED file.

Finally, the constitutively expressed genes, regardless of the sun exposure, were
encoded in each chunk as a simple base-pair overlap for both lists.

3.3.5.5. Replication timing
BigWig Repli-seq files for BJ cell line (Foreskin Fibroblasts) each containing
replication timing tags signal for a given phase were retrieved from UCSC
(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/
wgEncodeUwRepliSeq/).

We exported each file to bed format using bigWigToBedGraph. In total, we
obtained 6 data tracks corresponding to the 6 cell cycle phases: G1b, G2, S1-4. For
each of the data tracks, we calculated the 75th percentile of the tag density values, and
cut off all values below this threshold. This thresholded tracks were then encoded in
each chunk as a simple base-pair overlap of the high tag density.

3.3.6. Analyses
3.3.6.1. Percent of genome covered by each DNA repair state
To explore the coverage of the whole genome by the repair states, we used the
assignments including the disallowed state. With matploltib we plotted a stacked
bar chart for the whole genome, with each stacked bar representing one state, and
the percentage of the genome it covers. The same approach was repeated for all
chromosomes, one chromosome at a time.
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3.3.6.2. Contribution of NER pathways to DNA repair states
To elucidate the contributions of the two NER pathways (transcription-coupled and
global) we used the XR-seq data for 3 cell lines [18]. Apart from healthy human
fibroblasts (NHF1) the dataset also has data for two repair-mutant cell lines, one each
in components of either of the two pathways. XPC refers to Xeroderma Pigmentosum
cells, which are proficient for the transcription-coupled and deficient for global NER.
CSB, referring to Cockayne Syndrome, is the opposite. This XR-seq dataset with 1h
time point for the two mutant cell lines and the NHF1 cells was retrieved from GEO
using GSE67941 accession number. The dataset was processed in the same manner as
the rest of XR-seq to obtain chunked snapshot repair.

As one of the cell lines was of female origin (GM16095 - CSB), and others of male,
we excluded the X and Y chromosomes from the further analysis. Disallowed chunks
were excluded as well.

To compare the distribution of repair at 1h exhibited by the three cell lines in each of
the repair states, for each of them we plotted violinplots of their snapshot repair
(measured as TT-corrected repair scores) along all of the states. These plots were
generated separately for each damage type, with matplotlib.

3.3.6.3. Feature enrichments
For each feature represented in the chunks (for details refer to 3.3.5) the process of
calculating the enrichments was the same. We went state by state and calculated the
following values:
A: the number of base pairs covered by the repair state,
B: the sum of the scores of the feature in all chunks,
C: the sum of the scores of the feature in chunks covered by the repair state,
D: number of bases in the genome (defined by summing the chromosome sizes from
the reference file).

The fold enrichment of the repair state for a specific feature is then defined as
(C/A)/(B/D). Of note, the features were zero-ed in all the disallowed chunks.

Next, we set out to visualize the fold enrichments. For that, we grouped the features
by similar categories (as represented in the Results). In each group, the features were
reordered based on the correlation of their values. (Apart from replication timing
features, that were ordered by the order of phases of the cell cycle).

We plotted the reordered features in each group against all repair states, representing
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the fold enrichments on a seaborn clustermap as a heatmap. Importantly,
we represented only enrichments (values above 1), and no depletions. The same
representation was used in the junction analysis, but for hidden states instead of repair
states, and with added the hidden state clustering dendrogram.

3.3.6.4. Junction analysis
Starting from the logo-based hierarchical clustering of hidden states (UPGMA with
Euclidean distance) and the chromatin state enrichments (features) for each hidden
state, we devised a way to regress the hidden states against the chromatin features. Our
method yields, for each hidden state, an associated sequence of characteristic features
with enrichment annotations.

First, from the logo-based hierarchical clustering we extracted the binary (rooted) tree
representing its topology. This tree has hidden states as leaves. Each internal node
of the tree (herein junction) splits the set of hidden state descendants into two sets
of hidden states. For each chromatin state and each junction, we carried out a group
comparison using the enrichment values by computing the difference of the means of
each group. For each junction in the hierarchy topology, we selected the 3 features with
the highest difference of means (characteristic features) if the difference was higher
than 1.5.

Note that in this step many possible fitting approaches could be potentially applied to
separate hidden state partitions by using the chromatin state features as explanatory
variables.

Finally, since each hidden state is reached from the root of this hierarchy topology
through a unique sequence of junction turns, we can pinpoint whether at each turn the
path takes the enriched or depleted side relative to the characteristic features of the
junction. Thus each hidden state can be described as a sequence – sorted from root to
leaf – of characteristic feature sets with enrichment/depletion effect size annotations.

The junction analysis was also visually represented on a dendrogram plot from
scipy.cluster.hierarchy, with the top features annotated at each junction,
together with the differences. The direction of the difference is indicated by an arrow
to avoid confusion.
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4. Results
The main objective of this thesis is to gain more insight into the causes of variability of
mutation rate along the human genome by searching for the mutual influences of DNA
damage, repair, and the features of the genome that result in particular mutational
patterns. We investigate different types of damage known to be a source of mutations:
the maps generated in our group of alkylating agents, like MMS and TMZ (the second
one commonly used in chemotherapy), and publicly available damage maps of UV
light. The combined knowledge from both of those projects helps us disentangle the
interactions of the (epi)genome, damage, and repair mechanisms that often lead to the
creation of mutations in cancer patients’ genomes.

4.1. AB-seq: maps of alkylating DNA Damage in
human cells

To obtain a damage map, a unified analysis pipeline comprising both a lab protocol and
a bioinformatics processing framework tailored to process the specific data produced
are needed. To facilitate the comprehension of this chapter focused on my work
developing the bioinformatics part, I also introduce the corresponding experimental
part developed in the lab. This chapter focuses on describing the steps of the AB-seq
(Alkylation BER sequencing) protocol in a high-level manner and the motivation
for including them, as well as downstream analyses of the data. Detailed technical
descriptions of all tools and parameters included in the pipeline can be found in the
Methods chapter of the thesis.

4.1.1. Experimental in-house alkylation mapping protocol
While alkylation damage maps have been successfully produced in yeast cells [24], at
the time of writing this thesis there is no publicly available nucleotide-precision map of
alkylator-induced damage in human cells. To our knowledge, the preliminary results
of the AB-seq method described here constitute the first map of this kind, for two
alkylating agents, MMS and TMZ, in comparison with their corresponding controls:
untreated DNA and DMSO-treated DNA.

The experimental part of the AB-seq protocol (Figure 4.1) is inspired by a previous one
implemented to map MMS-induced methylation in yeast [24]. First, the DNA of cells
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Figure 4.1: Conditions tested and schematic representation of the experimental AB-seq proto-
col developed in the lab for the mapping of alkylation damage in human cells.

subjected to damaging agent or control conditions is extracted and fragmented with a
mix of restriction enzymes to shear the DNA into fragments of similar sizes and with
no relevant sequence bias at the cut site. Double-stranded DNA fragments are then
ligated to first-round adaptors, and a nick is introduced in the place of the lesion, by
the successive action of a glycosylase and an endonuclease (AAG and APE1). Next,
the strands are separated, and second-round, biotinylated adaptors are ligated to the
free 3’OH ends that have been released by the endonuclease at the site of the excised
base. After biotin purification, the obtained fragments are subject to PCR amplification
and standard Illumina sequencing.

4.1.2. Computational in-house damage processing pipeline
The reads from the sequenced libraries need to be computationally processed to obtain
the precise genomic positions of the alkylating lesions e.g. produce the actual damage
maps. To this end, I have developed a highly-parallelized in-house processing pipeline
(Figure 4.2).
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Figure 4.2: Schematic of the computational steps of the AB-seq method developed in the lab
for the mapping of alkylation damage in human cells.

4.1.2.1. Read processing
Lists of reads sequenced from each sample are usually distributed across several files
depending on the total sequencing output. These need to be merged in the proper
order for both paired-end reads files. After that, the reads are deduplicated in a
paired-wise manner (to discard only duplicates in both reads, highly likely to be
PCR duplicates). Next, with one read1 and read2 file for each sample, each file is
trimmed for low sequencing mapping quality bases (potential sequencing errors), and
for specific adaptor sequences (e.g. for fragments shorter than the expected sequencing
insert size, the adaptor sequence from the other side might show up at the end of the
read). Trimmed reads that might be too short for the next step are discarded.

After trimming artificial and potentially erroneous sequences that might interfere with
the process, the read1 and read2 sequences are aligned to the reference genome. In
the pipeline, based on paired-end sequencing, only pairs of reads that map in the
proper orientation and with the expected insert size given the previously described
fragmentation approach are kept. After the alignment, the pairs of reads with low
mapping quality (e.g. low probability of a proper match to the reference) are filtered
out.

As the experimental part of AB-seq is designed so that the original location of the
damage is immediately adjacent to the start of read1, the next steps utilize just read1
sequences. Those are first deduplicated. To ensure the high quality of mapped
positions, the reads with a high overlap of regions problematic for their alignment
(e.g. low mappability, highly repetitive, more in Methods) are discarded. The position
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of the damage is inferred by taking the base immediately upstream of the end of read1
in the opposite strand. Positions are deduplicated. The counts of reads at all the
processing steps are summarized in an automatically-generated table (Table 4.1) with
the following columns for each sample:

Paired Reads: the number of pairs of reads received,
Pair-deduplicated Reads: the count of unique pairs after pair-informed
deduplication,
Trimmed: counts the pairs left after sequencing quality and adaptor trimming,
Overall Alignment Rate: the percentage of reads mapped to the reference
genome (according to set bowtie2 filters),
Mapped in proper pair: number of read pairs mapped in proper orientation and
distance between each other,
MAPQ>=15: pairs of reads with mapping quality score at least 15 (probability
of an incorrect match equals 1

10
√
10

),
Read-deduplicated: the number of read1 reads that are unique,
Overlapping <10% Problematic: read1 reads that overlap less than a given
percentage threshold of problematic regions,
Valid Positions: positions of damage inferred from read1 reads considered valid
(on chromosomes of interest and mapping within the assembly),
Position-deduplicated: the number of unique inferred positions.

Sample Paired

Reads

Pair dedup.

Reads

Trimmed Overall Alignment

Rate

Mapped in

proper pair

DMSO 870906 650177 646674 91.95% 594648

TMZ 4771523 3893584 3851689 94.03% 3621916

Untreated 2837921 2006593 2000028 92.64% 1852757

MMS 3714684 3257220 3227443 93.68% 3023388

Table 4.1: Per-sample read counts at all preprocessing steps of the computational processing
of AB-seq results, for 4 samples: DMSO, TMZ, untreated, MMS.

Sample MAPQ>=15 Read dedup. Overlap <10%

Problematic

Valid

Positions

Position

dedup.

DMSO 551487 525275 346467 345883 343582

TMZ 3332198 3102463 2180663 2178119 2158870

Untreated 1724564 1634986 1112599 1110945 1102042

MMS 2766826 2649981 1865808 1864369 1856451

Table 4.1: (Continued)
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The pipeline includes basic visualization summary plots of the produced damage maps.
For example, the frequencies of damage across the four nucleotides and their triplet and
pentameric contexts (e.g., including one or two bases on each side of the damaged one;
see below) are compared across treated and control samples. Moreover, the overall
distribution of damage sites along the genome, for different bin sizes is computed and
visualized.

4.1.2.2. Sequence context analyses
It is known that alkylating agents mostly produce damage in G’s and A’s [9]. The
results of NMP-seq (that serves as an inspiration for AB-seq) confirmed that mapping
damage using a BER-like approach maps lesions mostly in these two bases [24].
Hence, in the first analysis of the damage maps, we explored both bases and larger
sequence contexts in which the AB-seq mapped damage. We inspected raw counts of
the bases, trinucleotides, or pentamers corresponding to mapped positions; and we also
looked at normalized counts (corrected by the expected genomic counts of the same
contexts) and at their frequencies.

4.1.2.2.1. Modified bases
We started by inspecting plots of raw base counts (Figure 4.3). First, looking at the
raw counts we noticed that controls have consistently fewer reads overall than the
treated samples. This is not the case when looking at specific bases, where sometimes
controls have more reads. When interpreting this result, it is important to keep in mind
that treated samples are enriched for the signal, damage in Gs and As, and thus in
relative terms the proportion of Cs and Ts with damage is lower than in the untreated.
In other words, a lower absolute number of reads in those bases does not mean that
there are fewer of them in the treated cells than in untreated cells. It just means we
capture preferentially, and enrich successfully, for the actual damages.

Importantly, for both alkylator-treated samples, we saw an important increase of
positions mapping in G’s and a potential one in A’s (relative to C’s and T’s), compared
to controls. Across TMZ-treated samples, both G’s and A’s counts were higher than
their counterparts for DMSO. While for MMS the increase in reads mapping to A’s
is not as obvious while looking at the raw counts, one can see it if interpreting the
frequencies (Figure 4.4). Frequencies are normalized both by the genomic context
(allowing the proper study of actual enrichments in bases or contexts over the genomic
composition) and the total number of reads sequenced in the sample (helping with
proper interpretation in light of experimental variability and saturation). Of note, the
frequencies of the 4 bases in the control samples were considerably flatter than in the
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Figure 4.3: Raw counts of bases mapped in treatment (filled color bars) and corresponding
control (hatched bars) AB-seq samples. Left: Temozolomide and DMSO; right: MMS and
untreated.

treated ones. If one visually compares the frequency levels of A and T in the untreated
sample – and sees they are practically the same – and then notices that the frequency
of A’s is higher than that of T’s in MMS, the presence of modifications in A’s becomes
obvious.

Figure 4.4: Frequencies of genome-normalized bases mapped in treatment (filled color bars)
and corresponding control (hatched bars) AB-seq samples. left: Temozolomide and DMSO;
right: MMS and untreated.

Relation to other datasets
To validate the result, we looked at related datasets from the literature and the lab.
We revisited the MMS damage mapping in yeast paper [24] and saw similar results:
high enrichment in G’s and minor in A’s upon treatment. Additionally, we checked
the liquid chromatography tandem mass spectrometry (LC-MS/MS) results of DNA
extracted from drug-treated cells in vivo that provided us with percentages of modified
to unmodified nucleotides in the samples (Figure 4.5). No modified bases were
detected for the controls. For the treated, consistently for both drugs, m7G was
more abundant than m3A. With this, we confirmed that the AB-seq damage mapping
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outcomes, with respect to mapped bases, are in agreement with previous works, and
that the G and A reads in treated samples probably reflect the expected proportions of
m7G and m3A adducts.

Figure 4.5: Results from LC-MS/MS of treated and control samples in the experiments in the
lab, used to quantify the induced m7G and m3A damage. Each dot represents a replicate.
Means are shown with dashed lines.

The high concentration found in G’s was consistent with the literature: most
BER-recognizable, MMS- and TMZ-induced damages are m7G. Next, we wanted to
understand how the ratios of m7G and m7A look for both drugs and how the results
from the two methods – damage maps and LC-MS/MS – correspond to each other. For
the damage mapping, first, we calculated the fold increase of mapped bases in treated
over what is expected from the control (Figure 4.6), to then calculate G/A ratios of
those (results were similar for raw and normalized frequency counts). For LC-MS/MS,
we calculated the ratios of means represented in (Figure 4.5). Interestingly, there was a
higher ratio of m7G to m3A in MMS (7.564 damage map, 162.43 LC-MS/MS) versus
TMZ (4.398 and 100.54). The differences between the methods might be due to the
differences in the metrics behind the ratios (that represent different things: for maps,
we compared fold changes of bases over control, and for LC-MS/MS we compared
means of percentages mapped over the whole genome) as well as different sensitivities
and experimental settings of the methods. For the differences between agents, a
potential source could be that – although the treatment times were the same – the
doses differed. It would be surprising though that this would cause such a pronounced
difference in the ratio of mapped damages in two bases. Taking into account that MMS
is a direct methylator, and TMZ needs to be metabolized into one, we suggest a slightly
different preference or mode of action for the modification deposition of the two
agents. In addition, the difference could also be explained in part by the mechanism of
nucleophilic substitution both agents have: while both are monofunctional methylating
agents, MMS is as SN2-type methylator and TMZ is an SN1-type methylator [9].
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Figure 4.6: Fold changes of bases in the treated sample over control, for raw count types of
two treatments from AB-seq experiments: left TMZ/DMSO, right MMS/untreated. The dashed
line points out 1 (equality).

4.1.2.2.2. Trinucleotide damage patterns
Trinucleotide context analysis serves to understand the local sequence context
preferences of the damage formation and to compare them to mutational signature
patterns produced by the damaging agent if those are available. It is important to note,
that the trinucleotide context in the generated control samples was not perfectly flat
(which might be due to the glycosylase or endonuclease sequence bias, or due to some
endogenous damage, or other damage introduced during the handling of the samples).
But, when comparing raw counts, it became obvious that the control pattern is still
flatter and smaller than that observed in the treated samples (TMZ and DMSO on
Figire 4.7, MMS and Untreated on Figure 4.8).

Figure 4.7: Raw counts of triplets mapped in Temozolomide treatment (filled color bars, ticking
to the top) and corresponding DMSO control (hatched bars, ticking to the bottom) AB-seq
samples. Grey markings on the bars and stars next to the triplet indicate it to be within the top
5 highest ones either amongst the A-centric or G-centric contexts.

To properly infer the most enriched contexts, we inspected genome-normalized
frequencies (TMZ amd DMSO on Figure 4.9, MMS and Untreated on Figure 4.10).
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Figure 4.8: Raw counts of triplets mapped in MMS treatment (filled color bars, ticking to the
top) and corresponding untreated control (hatched bars, ticking to bottom) AB-seq samples.
Grey markings on the bars and stars next to the triplet indicate it to be within the top 5 highest
ones either amongst the A-centric or G-centric contexts.

There was a very clear enrichment in G-centric triplets in the treated samples: the top
5 TMZ triplet contexts were GGG, GGA, GGT, GGC, and TGG; for MMS those were
GGG, TGG, GGT, TGT, and TGA. The most frequent triplets were slightly different
for the two alkylating agents. While all TMZ top 5 were enriched in the MMS-treated
sample too, only 3 of them were found in the top 5 of MMS, and in a different order.
This added to the suggestion of a small, but present, difference in the sequence context
preferences between the MMS and TMZ.

Figure 4.9: Frequencies of genome-normalized triplets mapped in Temozolomide treatment
(filled color bars, ticking to the top) and corresponding DMSO control (hatched bars, ticking
to bottom) AB-seq samples. Grey markings on the bars and stars next to the triplet indicate it
to be within the top 5 highest ones either amongst the A-centric or G-centric contexts.

To quantify the differences between control, MMS, and TMZ trinucleotide patterns, we
calculated the cosine similarity of the genome-normalized triplet frequency profiles
(Figure 4.11). A clear conclusion emerged: the two control profiles were nearly
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Figure 4.10: Frequencies of genome-normalized triplets mapped in MMS treatment (filled
color bars, ticking to the top) and corresponding untreated control (hatched bars, ticking to
bottom) AB-seq samples. Grey markings on the bars and stars next to the triplet indicate it to
be within the top 5 highest ones either amongst the A-centric or G-centric contexts.

identical, and the treatment ones were highly similar to each other; while the control
and treatment profiles showed only some similarity between themselves. This is not
surprising - the background measured in controls is somewhat present in the treatment.
The similarities between the drugs are expected as well - both are alkylators that
deposit the same modifications.

Figure 4.11: Cosine similarity of the trinucleotide genome-normalized frequency profiles be-
tween the 4 AB-seq samples.

Next, we set out to deepen the understanding of how these profiles separate from each
other. Maria Andrianova from our lab performed Principal component analysis (PCA)
using the genome-normalized frequency data (Figure 4.12). The two first principal
components explained nearly all (99.6%) of the variance in the data. The first principal
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component (PC1) clearly separated patterns of both controls from both treatments and
negatively correlated with the latter (hence we represent -PC1 below). The triplets
with the largest weights for PC1 in the direction of controls were mostly C, T and
A-centric; while the high-weight contexts for the other – treatment – direction, were
G-centric: -PC1: GGG, GGT, TGG, GGA, TGA, TGT. When inspected together with
the plots of normalized frequencies of triplets shown above (TMZ and DMSO on
Figure 4.9, MMS and Untreated on Figure 4.10), one can notice that these specific
contexts concentrated in the high frequencies for all samples, but in different orders.
The second principal component (PC2) separated the two treatments and highlighted
the triplets with the highest loadings for both directions: -PC2, associated with MMS:
TGG, TGT, CGG, CGT; and TMZ-related PC2 with GGA, GGG, GAG, and GGC.
Again, viewing these high-weight PC2 triplets in the circumstance of the trinucleotide
profiles above, many clearly varied in position when ordered by frequency between
the TMZ and MMS. Additionally, some were on rather the low-frequency end but still
differed in rank between the two samples. These distinct patterns not only further
established the success of mapping alkylating damage, but also show the differences
in induced adducts and potential context preferences of the two damaging agents.

Figure 4.12: PCA of the trinucleotide genome-normalized frequency profiles between the 4
AB-seq samples. A: scores of the samples on the -PC1; B: -PC1 loadings of triplets; C: scores
of the samples on the PC2; D: PC2 loadings of triplets.

Relation to other datasets
Similarly as for bases, we aimed to compare the AB-seq results to previously published
data. We compared the AB-seq TMZ data with the COSMIC mutational signature
SBS11 [65, 69, 70] associated with this treatment. The first 4 top trinucleotide TMZ
contexts were reflected within the top 5 contexts of the SBS11 mutational signature
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(Figure 4.13): T[C>T]C (GGA), A[C>T]C (GGT), C[C>T]C (GGG), T[C>T]T (AGA,
not in top 5 of AB-seq data), G[C>T]C (GGC).

Figure 4.13: COSMIC Mutational Single Base Substitution Signature 11, represented along
the 96 mutational channels (6 pyrimidine-centered mutation types and 2 neighboring bases).
SBS11 is suggested to be associated with Temozolomide treatment. Adapted from COSMIC
[65, 69, 70].

To quantify the closeness of the damage trinucleotide patterns to the SBS11 signature,
we calculated the cosine similarity of the genome-normalized triplet frequency profiles
(Figure 4.14). The data required a slight transformation: as for mutations we do not
have a specific triplet available, but rather 3 mutational channels representing two
triplets (e.g. A[C>A]A, A[C>G]A and A[C>T]A represent the sum of ACA and
TGT triplets) we used the sum of the represented triplets for both cases and compared
profiles this way. The mutational signature seemed to be highly similar to the TMZ
AB-seq patterns, and not to the ones of DMSO. We concluded that the Temozolomide
damage profile is coherent with the mutational signature potentially induced by this
treatment.

Figure 4.14: Cosine similarity of the summed (based on similar mutational channels) trinu-
cleotide genome-normalized frequency profiles of TMZ and DMSO AB-seq samples and the
COSMIC Signature SBS11.
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In the case of MMS, no mutational signature in human cells is currently available.
Instead, we looked at NMP-seq yeast damage data [24]. For that, we downloaded two
0h MMS-treated samples (0.2% and 0.4%, 10m MMS treatment or 23.6 and 47.2 mM
respectively) and a noMMS control, extracted and counted the triplets for all of them,
and performed the downstream analysis in the same manner as for the AB-seq data
(adding the step of discarding of damages overlapping NotI restriction enzyme sites).
After normalizing for the genome content (Figures 4.15 and 4.16), triplet contexts were
quite flat compared to observed AB-seq results in human cells.

Figure 4.15: Frequencies of genome-normalized triplets mapped in treatment MMS treated
replicate 1 (filled color bars, ticking to the top) and corresponding no MMS control (hatched
bars, ticking to bottom) [24] yeast samples. Only A and G-centric triplets were available. Grey
markings on the bars and stars next to the triplet indicate it to be within the top 5 highest ones
either amongst the A-centric or G-centric contexts.

Figure 4.16: Frequencies of genome-normalized triplets mapped in treatment MMS treated
replicate 2 (filled color bars, ticking to the top) and corresponding no MMS control (hatched
bars, ticking to bottom) [24] yeast samples. Only A and G-centric triplets were available. Grey
markings on the bars and stars next to the triplet indicate it to be within the top 5 highest ones
either amongst the A-centric or G-centric contexts.
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Moreover, when intending to find the top 5 A-centric and G-centric triplets from the
AB-seq data (Figure 4.10) in each yeast sample, we found the overlap to be quite poor.
Comparing AB-seq untreated top contexts to the yeast noMMS, one finds 3 in the top of
noMMS for A’s, and rest at the very tail; and 2 for G’s (GGG, GGA) and similarly rest
at the bottom of the frequency ranking. The same comparison for the MMS-treated
samples yielded varying results depending on the MMS dose for the yeast: for the
higher dose, the 4 top AB-seq A triplets could be found at the top of the list, while for
the smaller dose just 3. For G triplets the overlap was the same in both cases: 2 at the
top (GGG, TGG), but in a different order.

To understand the low correspondence between the trinucleotide MMS patterns in
human obtained by AB-seq to the ones obtained by NMP-seq in yeast, we again
utilized the cosine similarity and PCA, selecting only the A and G-centric parts of the
genome-normalized triplet frequency profiles (Fig 4.17). To perform the comparison
as fair as possible, similarly to the NMP-seq data, we filtered the AB-seq damage
(including the genomic counts) to exclude any triplets overlapping NotI sites.

Figure 4.17: Cosine similarity, B and C: PCA of the A and G-centric trinucleotide genome-
normalized frequency profiles, excluding damages overlapping NotI sites, of MMS and un-
treated AB-seq samples (human) and the two MMS and no MMS yeast samples from [24]. For
PCA, scores of the samples on the B: PC1 or C: PC2 are represented.

Although the MMS signatures clustered close together in both cases and were highly
similar, we were surprised by the very high similarity of the treated samples of one
species and the opposing species controls. This disparity – in line with the low triplet
overlap mentioned above – might be explained through a few paths: differences in the
protocol (e.g. length or dosage of treatment, different sequencing platform used) or
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differences between yeast and human (e.g. in chromatin accessibility to the damage,
mechanistic DNA repair differences, cell response to the drug).

4.1.2.2.3. Pentanucleotide damage patterns
Two important findings from trinucleotide patterns - non-flat controls, and context
differences for the two agents - were reflected when extending the context to two
bases more and exploring the pentamer sequences (Appendix, Figures A.1, A.3, A.2,
A.4). Similarly, both cosine similarity and PCA analysis using these extended contexts
yielded a separation of control pentamer patterns from treatment on PC1, and a
separation of treatments from two agents on PC2 (Appendix, Figure A.5). This further
solidified the differences in the sequence preferences of the two alkylating agents.

4.1.2.3. Damage distribution along the genome
We aimed to visually represent the damage map and inspect the general distribution
of damage along the genome in the 4 bases. To this end, we generated
damage-distribution plots of base counts in 1Mb chunks along chromosome 1, and
its zoomed-in fragment of Mb 150 to 200 (TMZ and DMSO on Figure 4.18, MMS and
Untreated on Figure 4.19). All the counts represented were normalized by the genomic
counts of the base in each chunk.

Knowing that C and T bases are expected to be almost exclusively background and
not actual damage, it is important to notice that their distribution in treated samples
was at around the same level or lower than in the controls. Of note, A’s distribution in
treated samples was substantially higher than what was expected from controls (where
it would be overlapping the T’s distribution). Visually, the landscapes of the bases,
especially G’s and A’s, seemed quite similar both within the same sample as well as in
the matched one.

79



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 80 — #94

Figure 4.18: 1Mb chunk landscapes of the distributions of genome-corrected counts of bases
mapped in a TMZ treatment sample and matched DMSO control. A: chromosome 1, B: zoomed-
in view of 150Mb to 200Mb of chromosome 1.

To characterize in depth this perceived affinity of the shapes of the landscapes along
the whole genome, we evaluated their correlations. We took the vectors of total counts
of damaged positions in chunks along the whole genome and compared them using
the correlation metric (Figure 4.20). The analysis was repeated for 2 resolutions of
different chunk sizes: 1Mb, and 100kb, using the corrected total counts (summed over
all bases).
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Figure 4.19: 1Mb chunk landscapes of the distributions of genome-corrected counts of bases
mapped in MMS treatment sample and matched untreated control. A: chromosome 1, B:
zoomed-in view of 150Mb to 200Mb of chromosome 1.

The DMSO landscape seemed to differ the most from others. The untreated sample
was closer to the treated ones. The treated sample profiles, as expected, were the
most similar. The high similarities might point to either too high of a chunk size used
for the differences to be seen, or too high sparsity of the data or noise-to-signal ratio
for this type of analysis. Taken together, these results suggest that we were able to
successfully build damage maps of alkylating agents and create sufficient opportunities
for insightful analyses into damage formation in the context of features.
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Figure 4.20: Correlation of the corrected genomic distribution landscapes between the 4 AB-
seq samples. Left: 1Mb, right: 100kb resolution..

4.1.2.4. Next steps
There are many further, interesting analyses planned to be done utilizing this data.
Next, the computational team will analyze the damage formation with respect to
different (epi)genomic features. From the experimental side, we are currently working
on adapting the protocol to the generation of maps at different times after the exposure.
This way, cells have time to recover from the damage and repair some of it, and we can
use this to infer and study the activity of repair. This study could be done both within
specific features, as well as in a more comprehensive manner - with the repair states
framework we developed and tested on UV damage maps.
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4.2. Framework for genome partitioning into UV
DNA Damage Repair States

Analyzing damage deposition and repair activity is crucial to understand mutagenesis,
since mutagenesis is the end result of their interplay. These two components of the
mutagenic process have long been known to be directly affected by genomic features.
As outlined in the Introduction (1.4), this interplay has been explored already, but only
in the context of specific features. The usual approach focuses on one specific feature
and stratifies the genome according to it, to then regress mutation, damage, or repair
rates against it. This is not very efficient if one wants to study multiple epigenetic
features, or if a given feature does not cover the entire genome.

This chapter focuses on an idea with two goals: partitioning the genome solely by the
activity of DNA damage repair, in a way that is biologically meaningful. It starts with
the introduction to the UV damage and repair data. However rich and unprecedented,
DNA damage and repair mapping data pose many challenges for a correct downstream
analysis and interpretation. I explain the motivations – confounders – behind the
necessary data processing.

Inspired by the idea of partitioning the genome into chromatin states ([82, 84, 85]),
we reasoned that we could devise a strategy to partition the genome solely by the
activity of DNA damage repair. With this repair-based, data-driven partitioning, we
could undertake systematic surveys to uncover links to various features. I outline
the computational HMM-based framework implementing this idea and finish by
presenting the resulting states of repair activity along the genome (further termed:
repair states) and a comprehensive exploration of their relations to various features.
All the technical details and parameters are described in depth in the corresponding
Methods chapter of this thesis.

Most of the results presented in this thesis are focused on the 100kb chunk size.
Although we found the 10kb model to be quite reliable as well - and more useful for
fine-grained analyses of smaller-sized features - the sparsity of the data at this level,
and the consistency of results with the 100kb resolution, made us focus on the larger
chunks.
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4.2.1. DNA repair is a major influence on the distribution of UV
mutations along the genome

We aimed to find a way to partition the human genome into segments of similar
UV-induced damage repair dynamics. We started by exploring UV mutagenesis at
three different levels: DNA damage (photoproducts), its repair (NER), and UV-induced
mutations. Whole-genome sequencing nucleotide-precision datasets are available for
all three (Figure 4.21 A).

4.2.1.1. Damage and repair maps as great tools to study UV mutagenesis
UV damage sites for cellular DNA kinetics mapped with HS-damage-seq were
obtained from [19]. Overall, we obtained data for 20 conditions, defined by the
combination of damage type (6-4PP or CPD), the di-pyrimidine contexts, and the time
elapsed after UV light irradiation (apart from the 36h time point, see Methods 3.3.1.4).
We binned the amount of damage mapped to equal-sized chunks of genomic sequence
(100kb; heretofore genomic chunks). We noticed three confounders of the number of
damage sites per genomic chunk. First, damage right after exposure (0h time point)
closely follows the amount of “damageable sites” - corresponding pyrimidine pairs
along the genome (as represented for CPDs in Figure 4.21 B). Secondly, more CPDs
were mapped at 1h after irradiation than at 0h – unlikely with an agent like UV-light
which produces DNA damage when present (we are not considering indirect damages
here) – thus suggesting experimental saturation of the HS-damage-seq protocol at
early time points following exposure (see 1.3.2.1.1). Third, the counts of damage
sites were not reliable in genomic chunks with no damageable sites, or no damage
mapped at 0h, or within those with more than 40% overlap of problematic regions (low
mappability, repetitive, UCSC-blacklisted). We applied suitable corrections for these
three confounders by filtering out damage sites close to large problematic regions and
normalizing each di-pyrimidine count by its genomic context and total sites mapped at
each time point.

NER activity, consisting of sequenced excised DNA fragments, measured by
XR-seq snapshots for both damage types at different times after exposure to
UV (amounting to 11 conditions) was downloaded from [23]. We corrected the
chromosome-sequencing-depth normalized repair counts for each chunk by the
genomic counts of TTs (as they constitute the vast majority of the reads), due to the
dependency of XR-seq scores on total available damageable sites (as suggested by
[76]).

To obtain mutations that are highly likely produced by UV light exposure, we
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exploited skin cancer samples sequenced within ICGC (International Cancer Genome
Consortium [79, 31]), and chose only samples where at least 70% of mutation calls
were UV-attributable. Then, to make UV damage, repair, and mutations comparable,
we filtered the mutations for UV-specific trinucleotide contexts, defined by the
predominant di-pyrimidines for photoproducts – TT, CT, TC – forming a part of the
mutation triplet.

Figure 4.21: Characteristics of the data used in this work to study UV mutagenesis. A)
Datasets used at the three studied levels of mutagenesis. B) Data with various corrections
plotted along the 90-100Mb of chromosome 1.

To explore the relationship between the three levels of data associated with UV
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mutagenesis and their experimental representations, we first plotted them along a small
part of chromosome 1 (example for CPD TTs in Figure 4.21 B). We could appreciate
visually the clear correspondence of uncorrected counts of damage sites at 0h with
the number of available TT sites. On the other hand, after the corrective steps, the 0h
damage landscape appeared quite flat, especially when compared to the distribution of
the damage after 48h. This implies that, over time, the variability of the unrepaired
damage along the genome increases. Moreover, the landscape of damage at 48h after
UV exposure resembled the genomic distribution of mutations. The landscape of repair
intensity measured 1h after exposure to UV tracked the inverted landscape of damage
sites at 48h. This rapid exploration of these three types of data thus highlighted the
well-known fact that DNA repair plays a predominant role in shaping the landscape of
damage after exposure, rendering it similar to the observed distribution of mutations
across tumors originating from the same tissue.

4.2.1.2. Unrepaired damage at late time points correlates better with mutations
To show the point established in the previous section more quantitatively, we
performed correlation analyses. We correlated normalized damage scores at different
time points with the mutations across all genomic chunks (Example for CPD TTs on
Figure 4.22). We observed a poor correlation of mutations with the normalized damage
at early time points, which improved at later time points. Additionally, the normalized
damage scores at 0h had a very small value range. In line with increased variability,
the scores of damage left at 48h covered an increased range.

Of note, when we performed the same correlation analysis for the non-normalized, raw
counts, the correlations both between damage and mutations (as well as between the
0h damage and other damage time points (Appendix, Tables B.1, B.2)) were higher
(Appendix, Figure B.1). It seems, as one might expect, that the amount of damageable
sites has a degree of influence over the amount of produced mutations. We decided
to correct for that effect, however, and explore the repair activity irrespective of the
availability of sites to be damaged.

Other damage types and di-pyrimidine contexts exhibited the same trend of increased
correlations with mutations at later time points (Appendix, Figures B.2, B.3, B.4). The
correlations were slightly weaker than for CPD TTs.
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Figure 4.22: Correlations of normalized CPD TT damage score with UV mutations within
100kb chunks. A) KDE plot of 0h damage with mutations, B) KDE plot of 48h damage with
mutations, C) Subsampling correlation of damage at various time points with mutations, with
a sample size of 40 shuffled chunks. Each point in the boxplot represents a single sample. R is
the correlation coefficient.

4.2.2. Segmentation of the genome into repair states
The activity of DNA repair machinery varies along the genome, and lesions in parts
of the genome with a lower repair activity have a higher chance to remain unrepaired
when the DNA undergoes replication. These damages then end up more likely set in
the genome as a mutation. Due to that, we decided to focus our study on the activity of
repair. The consecutive steps of encoding the repair data, constituting the repair state
segmentation framework, are visualized in (Figure 4.23).

Although XR-seq data provides accurate information about the intensity of DNA
repair, it can only be thought of as snapshots at a given time point, and not a measure of
total repair between two points in time. The amount of DNA repair effected between
the two time points in a genomic chunk can be inferred by subtracting the count of
damage sites mapped in the chunk at a later time point from the count of damage sites
mapped at the immediately prior time point (subtractive HS-damage-seq, see 1.3.2.1.1
and 1.3.2.2.1). This inference of the repair based on the damage is a complex and
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challenging task, though.

For example, the issue with experimental saturation (see 1.3.2.1.1) makes subtractive
HS-damage-seq problematic and opens up its results to misinterpreting e.g. the
percentage of damage that is repaired in a specific time interval. To avoid this pitfall,
we took a slightly different approach. Firstly, we used the normalized damage scores,
to avoid the confounders explained in the previous chapter. Secondly, instead of
inferring repair by subtracting the damage from two consecutive time points (further
called the time interval), we calculated their divergence. Divergence is defined by the
following expression: Div(t0, t1) = log d(t0) − log d(t1), where t0 and t1 represent
the start and end time points of the time interval, respectively, while d(t) represents
the normalized damage score at time t. The divergence score can be also understood
as a log-fold change of normalized damage scores. As can be appreciated in (Figure
4.23), when the normalized, relative damage scores of the 8h and 24h CPDs overlap
– meaning that the amount of damage stayed in a similar condition with respect to
the rest of the genome – the divergence score equals 0. When the 24h damage scores
are below those at 8h – meaning that the damage status of these chunks relatively
decreased – divergence is positive and high. On the other hand, when the later time
point damage is above that from an earlier time point (signifying a relative increase
of the damage status), divergence scores are below 0 and low. From now on, we
refer to the divergence scores – the repair inferred from the HS-damage-seq data –
as ‘inferred repair’, and to the repair intensity directly measured through XR-seq as
‘snapshot repair’.

To partition the genome by the repair activity, we sought a method that took two
important factors into account: 1) the position of the chunks within the distribution
of dynamics of inferred and snapshot repair along the whole genome, and 2) the
relation of the neighborhood between chunks, so that the state assigned to a chunk
influences the state of the neighboring one. We decided to go with Hidden Markov
Models (HMMs). HMMs are a group of methods proven and tested time and time
again for analyzing biological sequential data. One of the best-known examples of the
use of this type of models in the field of biology is probably chromHMM [82, 84, 85].
ChromHMM was designed for ‘chromatin state’ discovery - the unsupervised learning
task of identifying functionally different genomic regions based on the input of various
types of chromatin features. In our case, we were interested in using the method for
the task of discovering differentially repaired regions – ‘repair states’ – by inputting
various tracks of DNA damage repair information (Figure 4.23).
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Figure 4.23: The framework for the segmentation by repair states: from the inference of repair
from the damage mapping data, through encoding the repair tracks as quantiles, and the final
assignment of the hidden and repair states.

The specific HMM model we were intent on using required an input that was encoded
in a binarized manner. To binarize a particular repair data track, we split each
distribution of inferred or snapshot repair points (each point a chunk) into 5 quantiles
(0-4). Then, the specific repair computed for a chunk was encoded as a binary sequence
of five elements (one per quantile) with 1 in the element of the sequence corresponding
to the quantile to which the chunk belonged and 0 in all others (Figure 4.23). As both
damage types have different time intervals, and the three di-pyrimidines seem to exhibit
different behavior, we encoded all conditions separately, when possible. This encoding
was performed along all time intervals and all chunks (Figure 4.24). We gathered all
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the data tracks and we zeroed out the disallowed chunks (as defined in 3.3.1.2.5).

Figure 4.24: Graphical representation of the HDP HMM model and its use for repair state
partitioning, along the sequence of chunks along the genome. In green: encoded repair data
tracks, serving as observations. In black: hidden repair states.

The encoded repair input matrix for the model can be thought of as observations made
as we go through the genomic chunks (in green, Figure 4.24), which are emitted by
some hidden states (R1 to RN on Figure 4.24) of the genome that we do not know.
The goal of the HMM is to uncover those hidden states. Here, we employed a sticky
Hierarchical Dirichlet Process HMM (sticky HDP-HMM, [93, 80, 81]). The HDP part
is used to infer the number of states (N ), probabilities for an observation to be emitted
from each state (emissions, Θ), and transition probabilities (π) between states from the
data. ‘Sticky’ comes from the propensity of states to ‘stick’ together. Once the model
found a parsimonious set of states from the observed data, we ran Viterbi’s algorithm
to allocate the states across chunks. More on the model and used parameters can be
found in the Methods 3.3.3.

Starting with genomic chunks of size 100kb, sticky HDP-HMM allocated some 30
hidden states (Figure 4.23). This number includes one empty, ‘disallowed’ state,
formed by all the disallowed chunks encoded as zero vectors, pulled together by the
model. This disallowed state is discarded from analyses that follow.

For the sake of interpretability, we decided to further reduce the number of final
repair states. We did so by clustering the hidden states based on the similarity of
their repair kinetics (Figure 4.25), as follows. We calculated the mean of each data
track across all chunks belonging to a specific hidden state. For inferred repair, we
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used a mean of divergence scores, while for snapshot repair it was the mean of ranks,
standardized from 0 to 1. The vectors of mean repair tracks representing each hidden
state were clustered with the aim of obtaining a number of clusters ranging from 5 to
16. After exploring the clusterings (Figure 4.25) and transition matrices (Appendix,
Figure B.5), we decided on 12 clusters as the most coherent. Those 12 clusters are
further considered as and termed ‘repair states’.

Figure 4.25: Clustering of the hidden states based on vectors of means of each data track into
12 final repair states. For inferred repair data tracks, the mean of divergence scores was used.
For snapshot repair, the mean of ranks of normalized scores was used.

4.2.2.1. Reproducibility of the hidden state assignments
To gauge the quality of the models and states we performed a few reproducibility
analyses. In the first one, we compared the assignment of the hidden states separating
the data by replicates, to assess the coherence for a given chunk size (10kb, 100kb,
1Mb, Appendix Table B.4 and Figures B.7, B.8, B.9). We found the replicate
reproducibility to be lower the smaller the chunk size - as expected when the data
is relatively sparse. Still, a large proportion of state assignments was reproduced even
for 10kb (45% for 12 clusters, compared to 70% for 100kb). In the second analysis, we
explored different levels of the stickiness parameter to understand its influence on the
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assignment of hidden states. Importantly, regardless of how sticky – with a stronger
trend to merge similar states – the model was, the number of resulting states was similar
(Appendix, Table B.3 and Figure B.6).

In summary, in this section, we obtained the repair-based partitioning. Next, we
needed to check whether it was successful in terms of uncovering differences in repair
dynamics along the genome.

4.2.3. Repair states reflect qualitatively different repair dynamics
along the genome

What is a repair state? In order to study the differences between the repair states
and best interpret their biological meaning, we wondered how they could be visually
represented so that we can gather all the relevant pieces of evidence together. To do so,
we decided to go back to the original input data tracks - repair inferred from damage,
and the snapshot repair per condition.

Inferred repair is represented as is, meaning, we used the actual divergence scores
obtained from the normalized remaining damage scores within each time interval.
Negative and low scores can be interpreted as repair speed being lower, and conversely,
positive scores suggest a more intense repair. The distribution of divergence scores
and normalized snapshot repair (see below) of all chunks of a specific repair state
for consecutive time intervals across di-pyrimidine types constitute that repair state’s
‘logo’. In the inferred repair parts of logos, the scores of each chunk were represented
as light-colored scatters, above which the line and the box both represent the median
and 25th and 75th percentiles of the scores.

To visualize the snapshot repair, we first ranked the values in the chunks at a specific
time and condition along the whole genome. We used ranks, and not original scores,
to more easily visualize the differences in repair. The lower the rank, the lower the
repair. Aligning the ranks along all time points we obtained snapshot repair boxes of
the logos. There, the ranks of each chunk were represented as light-colored scatters.
The dashed line is the median and the box marks the 25th and 75th percentiles of the
ranks.

This way, for each repair state, we dedicate one row – a ‘logo’ – with multiple columns
(boxes), representing a specific repair data type throughout all the intervals (inferred
repair) or sampling times (snapshot repair). We sorted the boxes first by the damage
type (CPD, then 6-4PP). Within those, we first presented the inferred repair for both
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di-pyrimidines, followed by snapshot repair.

Additionally, we were interested in visualizing the distribution of the number of
UV-related mutations across repair states alongside their logos. Thus, we added a
small boxplot with the distribution of mutations across the genomic chunks in each
state at the end of each logo. We ranked the mutations similarly as with the snapshot
repair, and represented the ranks of each chunk as scatters, with the median and 25th
and 75th percentiles marked with the state-indicated color point and box. The repair
states were then sorted and numbered from the highest average count of mutations to
the lowest.

To exemplify this representation, we present two CPD TT subsamples of repair state
logos from two sides of the spectrum: the one with the most (RS1) and least (RS12)
mutations (Figure 4.26).

Figure 4.26: Subsample example of state logos, for CPD TTs and states RS1 and RS12, with
explainers guiding the interpretation. For inferred repair, the divergence scores of each chunk
are represented on the Y-axis. For snapshot repair and mutations, ranks scaled to the 0-1 range
are represented on the Y-axis. Scatterplots represent values of chunks, darker lines indicate the
median, and shaded bound mark the 25th and 75th percentiles of values.

Figure 4.27 presents the logos of all repair states in the human genome numbered
RS1 through RS12. The three states represented at the top of the figure possess clear
differences in their logos, reflective of their underlying DNA repair dynamics: RS1
shows the lowest DNA repair intensity among repair states, which becomes more
apparent over time and begins to increase only at the end of the measured period;

93



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 94 — #108

RS2 also presents low repair intensity, with the chunks ranking hovering around 0
throughout all the intervals; and RS3 while similar to RS2 has repair picking up the
tempo earlier and stronger.

Apart from the differences between the states, we want to note the variability of repair
activity within some of them. By ‘within’ we mean the distinctive ways in which each
damage type or different di-pyrimidines are repaired. For most of the states, the logos
for the snapshot repairs deviate slightly between the two damage types. 6-4PPs have
shorter time points (max 4h versus 48h for CPDs), which might partially explain this,
like in the case of RS2 where the shorter 6-4PP snapshot course could form part of the
longer one of the other damage type. Nevertheless, this is not as clear for all of the
states. For RS4, the snapshot repair of 6-4PPs clearly trails down, while for CPDs it
is fairly maintained until 16h, to undergo a short bump of activity before going down.
This discrepancy makes sense in the light of two NER pathways and their preferences:
although there are overwhelmingly more CPDs, the global NER’s high affinity for
more toxic 6-4PPs may result in less intense overall repair of CPDs at certain time
points, unless detected by TC-NER during transcription.

When focusing on repair differences of di-pyrimidines, a few conclusions emerged. In
the case of 6-4PPs, the logos of inferred repair for both di-pyrimidines within the state
are nearly indistinguishable. One can notice a similar trend of very high similarity for
TT di-pyrimidine logos between both damage types. This would suggest that CPDs
in TTs and 6-4PPs in TTs and TCs get repaired in a highly similar fashion. However,
we know (see the paragraph above) that there are small differences in the way the two
damage types are processed by the snapshot repair. It is possible that repair inferred
as divergence is less sensitive than the direct measurement of snapshot DNA repair, as
subtractive HS-damage-seq is considered a less sensitive method of measuring repair
than XR-seq [19]. Additionally, XR-seq takes all di-pyrimidines into account at once,
and we see some slight differences in the repair of CPDs of the two di-pyrimidines (TT
and CT). Hence, we trust the first conclusion, going in line with the literature: 6-4PPs
and CPDs are repaired in slightly different manners.
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Figure 4.27: Logos of all 12 repair states, across all repair data modalities, with the mutation
rank on the right. For inferred repair, the divergence scores of each chunk are represented on
the Y-axis. For snapshot repair and mutations, ranks scaled to the 0-1 range are represented
on the Y-axis. Scatterplots represent values of chunks, darker lines indicate the median, and
shaded bound mark the 25th and 75th percentiles of values.
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As mentioned, in some cases we could notice the differences in the inferred repair of
TT and CT CPD di-pyrimidines. The most obvious example would be RS11, where
TT repair intensity rises sharply early after exposure, and then decreases moderately,
while CTs experience a lower intensity of repair - the bump is softer and flatter. This
could reflect underlying differences in the preference of NER for the repair of CPDs
of the two types of di-pyrimidines.

4.2.3.1. The mutation rate of repair states relates closely to their repair activity
We noticed that the spectrum of the repair states visually roughly follows the order
established by the distribution of mutations. As expected, the states at the top – with
more mutations – seem to have a later repair onset, as well as less intense repair overall,
in stark contrast to the ones at the bottom. We set out to measure how well the order
by mutations corresponds to the repair efficiency (Table 4.2).

We needed to encode the repair efficiency in a simple manner, to be able to order the
repair states following this variable. To do so, for each box of a logo, we calculated
the mean of each data track (ranks in case of snapshot repair) and summed them
for each state. The states were sorted from the lowest sum – representing the repair
activity in a given box – to the highest. Then, we compared the produced orderings
to the one by mutations. We used the Jaro-Winkler metric, which takes into account
transpositions (Table 4.2). While most of the orderings resulting from individual boxes
were quite similar to the one established by mutations, interestingly, the snapshot repair
of 6-4PP differed the most. Overall, the orderings by the efficiency of repair of CPDs
corresponded better to the one by mutations, suggesting a higher contribution of this
damage type to UV mutation formation.

We also wanted to understand the frequency of transitions between each pair of the
final repair states. We calculated the number of transitions to each state and weighted
it by the total size of that state, to be plotted as a heatmap (Figure 4.28 ). First, we
noted that as expected, each repair state ‘sticks’ to itself - tends to transition more to
itself than other states. A second observation was that, quite interestingly, repair states
at the very edges of the ordering (either with very high or very low respective amounts
of mutations) transition very little to other states. This seems especially true for the
mutationally high states (RS1-RS2). On the other hand, more transitions between
different types of states are observed for repair states at the middle of the mutation rate
spectrum, mainly between each other. It seems that ‘extreme’ low activity states form
larger, connected stretches, and are harder for the repair to get into, and get out of.

All the results presented so far support the claim that the repair states reflect genuine
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Logo box Ordering Jaro-Winkler
metric

Inferred repair CPD TT RS1, RS3, RS5, RS7, RS2, RS8, RS6,
RS4, RS9, RS12, RS10, RS11

0.89

Inferred repair CPD CT RS1, RS5, RS3, RS7, RS2, RS8, RS6,
RS12, RS4, RS9, RS10, RS11

0.89

Inferred repair 6-4PP TT RS1, RS5, RS3, RS7, RS8, RS2, RS6,
RS12, RS9, RS4, RS11, RS10

0.86

Inferred repair 6-4PP TC RS1, RS5, RS3, RS7, RS2, RS8, RS6,
RS12, RS9, RS4, RS11, RS10

0.86

Snapshot repair CPD RS1, RS2, RS3, RS4, RS5, RS6, RS11,
RS7, RS10, RS9, RS8, RS12

0.96

Snapshot repair 6-4PP RS1, RS10, RS11, RS12, RS2, RS3,
RS4, RS5, RS6, RS7, RS8, RS9

0.67

Table 4.2: Orderings of states by various states logo boxes, and their corresponding Jaro-
Winkler metric comparing them to the ordering by mutations. In the used implementation, the
Jaro-Winkler score of 0 represents no match, and 1 is a perfect match.

Figure 4.28: Heatmap of transition frequencies between the 12 repair states and the disallowed
one.

differences in terms of the DNA damage repair activity operative across the genome.
Consequently, we deem our approach successful at the first of the goals: partitioning
the genome into distinct repair regimes.

4.2.4. Repair states distribution across genomic regions
We were curious about how the repair states distribute along the genome. Is there a
dominant repair state? Do some states cover specific genomic elements?
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To further characterize the repair states, we checked the percentage of the genome
each of them covered (Figure 4.29). While some states covered a larger portion of the
genome (RS1, RS9), the overall genome coverage by repair states was surprisingly
homogenous (as compared to e.g. chromatin states). When repeating the same
analysis over each chromosome separately (Appendix, Figure B.10) we noted similar
distributions of repair states across chromosomes. The noteworthy exception was
the higher RS12 coverage of chromosomes 19 and 22. These chromosomes are
characterized by small size, high gene density, and, importantly, a central location
within the nucleus [94].

Figure 4.29: Percentage coverage of the human genome by repair states, in 100kb chunks.

Next, we sought to explore the states at the gene scale. We calculated fold enrichments
of different elements from RefSeq data, as well as CpGIslands, within the state with
respect to the genome as a whole (Figure 4.30). Repair states with more intense repair
(RS8-RS12) were enriched for exons, and transcription start and end sites, with RS12
showing the highest enrichment. RS12 stood out compared to other intensely repaired
states due to the high enrichment in CpG islands, associated with promoter sequences.
Interestingly, RS5 seemed to exhibit some enrichment for these regions as well.

We reasoned that the observed relationship between these repair states and
transcriptionally active regions is underpinned by transcription-coupled NER. Thus,
we next sought to explore the contributions of both NER pathways to the repair states.
To this end, we exploited publicly available XR-seq data [18] of two mutant cell lines:
XPC (Xeroderma Pigmentosum, TC-NER proficient) and CSB (Cockayne Syndrome,
TC-NER deficient, global NER active), together with a normal cell line (NHF1). The
snapshot repair of these three cell lines was measured at 1h after UV exposure. We
pre-processed the dataset in the same manner as the rest of the XR-seq data. Finally,
we compared the TT-corrected counts of snapshot UV-damage repair for the three cell
lines across repair states (Figure 4.31).

The first observation derived from this comparison was that the differences in repair
intensity observed across repair states appear to be driven, primarily, by TC-NER.
Global NER also showed a trend (albeit much smaller) of increase that correlates with
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Figure 4.30: Fold enrichments of various genomic regions (RefSeq and CpGIslands) in repair
states as compared to the whole genome.

the increase in overall repair intensity across repair states. This was quite surprising,
as the original study using this same data found the repair in CSB cells to be uniform
along the genome. This upward trend could be potentially explained by recent studies
suggesting that global NER can be also stimulated by transcription [95, 96]. The trend,
while present, was slightly less prominent for 6-4PPs in CSB and NHF1 cells. States
between RS4 and RS9 ‘broke out’ of the trend. This might be a subtle reflection of the
fact that 6-4PPs are predominantly repaired by the global pathway.

In RS9-12 states, the snapshot repair exhibited by TC-NER was markedly higher than
the one by the global pathway. The situation was reversed for the other states, although
the effect was subtle. This goes in line with the enrichments of RS9-12 in exons, TSS,
and TES regions (Figure 4.30), and might suggest a higher contribution of TC-NER
to the repair activity of these states. (This did not appear to be the case for RS8, also
enriched for these elements.) Interestingly, RS12 seemed to have the highest repair
activity of all states, regardless of the NER status of the cell. This suggests that the
regions of the genome covered by this highly efficient repair state are intensely repaired
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by both pathways of NER.

Figure 4.31: TT-normalized score of snapshot repair at 1h across states for three cell lines:
XPC (TC-NER proficient) and CSB (global NER proficient) mutants, and NHF1 (proficient in
both NER pathways). Plotted values were cut off at 4 for ease of comparison, and as most of
the data concentrated within this window. The plots with the full data range can be seen in
Appendix, Figure B.11

In summary, the partition of the human genome by repair states recapitulates our
knowledge of the two NER pathways, in particular with respect to likely transcribed
regions.

4.2.5. Repair states reflect the underlying features of the genome
To further explore the biological relevance of repair states, we set out to study their
degree of overlap with several features of the genome. The three different sets of
features we investigated were: chromatin states and marks, replication timing data,
and other epigenetic features (related to expression and chromatin structure). All of
the features were taken from the closest cell type available (outlined in the methods).
First, we calculated a score for each feature tracking its representation in each genomic
chunk. (Usually, that score was a simple overlap. Specific ways of scoring each feature
can be found in 3.3.5.) Then, we calculated the fold enrichment of the feature within
the chunks assigned to the specific state with respect to the genome as a whole.
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4.2.5.1. Influence of chromatin states and histone marks
It is known that chromatin states influence repair in different ways [19]. It would be
useful to know whether chromatin states might underlie the repair states.

Figure 4.32: Repair state fold enrichments of 15 canonical chromatin states from the E055
(Foreskin Fibroblast Primary Cells) Roadmap Epigenomics cell line.

To this end, we explored the correspondence between repair states and chromatin
states (Figure 4.32). We noticed a clear pattern of enrichment for Quiescent
and Heterochromatin segments across repair states with less intense repair (RS1-6)
Repressed and Bivalent chromatin states across repair states of medium repair intensity
(RS5-9), and Transcribed and Enhancer regions across repair states with highest repair
intensity (RS9-12). Interestingly, RS12 seemed to be strongly enriched for both the
Transcribed and Enhancer as well as Repressed and Bivalent states. We did not observe
a one-to-one correspondence of any repair state to the chromatin state, with some repair
states showing enrichment for the same chromatin states. This suggests that while

101



“ThesisA4_HKranas” — 2023/8/1 — 16:08 — page 102 — #116

chromatin states may constitute part of the underpinning of repair states (as established
here and in [19]), more genomic features must be at play in their definition.

As chromatin states alone could not explain the repair states, we next examined the
enrichments in histone marks (some used as inputs for the chromHMM chromatin
states) across repair states. We gathered 18 histone mark-cell type combinations from
ENCODE [87] and Roadmap Epigenomics [85] (Figure 4.33).

Figure 4.33: Repair state fold enrichments of histone marks and DNase from the E055 (Fore-
skin Fibroblast Primary Cells) Roadmap Epigenomics and GM23248 (Arm Fibroblasts Pri-
mary Cells) ENCODE cell lines.

Low repair activity was enriched in histone marks associated with heterochromatin,
gene deserts, and gene expression silencing (H3K9me3, H3K9me2 [97]). Repair
states with intermediate repair intensity were enriched in the H3K27me3 mark,
related to transcriptional shutdown. The remaining repair states were enriched in a
variety of histone marks related to chromatin accessibility, transcription, gene bodies,
and regulatory elements, in agreement with previous findings in works analyzing
HS-damage-seq and XR-seq data [19, 23]. Interestingly, while RS8 appeared enriched
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for expressed regions (Figure 4.30) – same as RS9-12 – it was clearly distinguished
from the other gene-rich repair states by its enrichment for chromatin states (Figure
4.32) and chromatin marks (Figure 4.33) related to bivalent and repressed regions.
This may explain the clearly lower normalized repair snapshot score of this state in
the XPC mutant cell line (Figure 4.31). RS11 exhibited the strongest enrichments
for HK20me1 (highly transcribed genes), H3K79me2 (transcriptionally active genes),
and one of the H3K36me3 (exons) tracks. RS12 was also enriched for H3K36me3
(although measured from a different cell type), with additional contributions of one of
the H3K4me1 tracks and H3K4me3 (TSS of actively transcribed genes, and priming
for rapid gene activation), as well as H3K27me3 (transcriptional shutdown) and its
antagonistic H3K27ac. Interestingly, the ‘bivalent’ occupation of the same locus by
the H3K4me3 and H3K27me3 frequently happens at important developmental genes.
In summary, the observations made on enrichment for histone marks across repair
states extend the previous ones on chromatin states. Still, we could not define well all
of the repair states. We wondered which other known covariates could help explain
them. Next, we explored replication timing, expression, and features related to the
chromatin structure inside the nucleus.

4.2.5.2. Influence of the replication timing
The timing of replication is one of the most critical determinants of the mutation rate
[58, 55, 54, 72]. Active replication in the region is thought to promote DNA repair
regardless of the phase of the cell cycle [77]. But early replicating genomic regions
tend to be repaired more than late replicating areas [77]. We reasoned that replication
timing should be one factor underpinning the genome segmentation on repair states.
To this end, we checked the fold enrichments (Figure 4.34) of replication timing tags
mapped across genomic chunks for interphase phases of the cell cycle (G1b, S1-4, and
G2).

Replication timing corresponded closely to the repair states, with a ‘fade’ going
through the consecutive phases of the cell cycle. All 4 states with intense repair
(RS9-12) correlated with early replication (G1b and S1). RS12 exhibited high
enrichment in G1b, which is considered very early replication as this phase of the
cycle is focused on growth and preparation for the synthesis of DNA. RS1-3 on the
other hand corresponded to late replication (S4 and G2). The least intense repair state
RS1 was strongly enriched in delayed replication in the G2 phase (cell cycle phase
focused on growth and preparation for cell division). Interestingly, one state stood
out of this clear fade pattern - RS5, exhibiting later replication than the states around
it. RS5 was also the most Heterochromatin-enriched repair state, and heterochromatic
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Figure 4.34: Repair state fold enrichments of replication timing tags from the BJ (Foreskin
Fibroblast Cells) ENCODE cell line.

regions close to lamina tend to have later replication times [97]. Taking all these results
into account, they suggest that the priority of DNA repair closely follows the priority
of replication.

4.2.5.3. Influence of the chromatin 3D structure and expression
Next, we explored other features of the (epi)genome that did not fit the previous
categories (Figure 4.35).

The first group (Figure 4.35) consisted of features related to the 3D structure of
the chromatin inside the nucleus. LADs (lamina-associated domains) are regions of
heterochromatin in close contact with the nuclear lamina. We noticed the enrichment
for LADs across low and intermediate repair intensity repair states (RS1-6), which
were also enriched for the Heterochromatin state (with the exception of RS4 and
the addition of RS7). The rest of the states, exhibiting high repair intensity, are not
enriched in LADs. This suggests a more centric placement of the parts of the genome
covered by these repair states inside the nucleus. This is consistent with observations
of increased activity of NER in nucleus-centric regions 2h after exposure [73].
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Figure 4.35: Repair state fold enrichments of chromatin structure features (LADs and CTCF)
and expression features (protein-coding expression, and constitutively expressed genes loca-
tions in the skin under UV exposure or not). LADs were taken from Tig-3 (Lung fibroblasts
cells) cell line, CTCF from the lower leg skin tissue in ENCODE. Expression in protein-coding
genes was averaged over two patient juvenile skin fibroblast samples. Genes constitutively ex-
pressed in the skin were taken from GTEx data on the median gene-level expression by tissue.

CTCF is a chromatin-binding factor that functions in the maintenance of the chromatin
structure, with effects that can be both activation or repression of transcription, overall
regulating and promoting interactions between regulatory elements such as promoters
and enhancers. High enrichment in CTCF found in RS8, RS9, and especially RS12
may thus imply an overrepresentation of regulatory chromatin interactions across these
three repair states.

The second group of features (Figure 4.35) related to transcriptional activity across
repair states. We explored the overall expression of protein-coding genes in skin
fibroblasts, as well as coverage of states by constitutively expressed genes in the same
tissue. We found that intensely repaired states RS10 and RS11 were the most highly
enriched for the overall expression. Curiously, RS12, the most intensely repaired state,
appeared less enriched than RS11 and RS10 for expressed regions. Nevertheless, RS12
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was the most highly enriched repair state for a set of genes that are constitutively
expressed in the skin, irrespective of exposure to UV light.

In summary, the analysis of the overrepresentation of a number of genomic features
across repair states reveals known associations linking less intensely repaired states,
–bearing more mutations– to repressed, packed, inaccessible, close to the lamina and
late replicating genomic regions. Conversely, as also known, intensely repaired states
appear enriched for parts of the genome that are predominantly genic, expressed,
transcribed, accessible, internal, and early replicating. Moreover, the gradient of
repair states – representing an inferred order of UV damage repair intensity agnostic
of any genomic feature – reproduces the spectrum of certain genomic features, such as
replication timing, chromatin accessibility, and transcriptional activity. Interestingly,
while these and other genomic features explain quite well the repair states partition,
some features are less clear in this respect. The repair states might thus be regarded
as a framework to systematically test the strength of the influence of genomic features
with the intensity of DNA repair.

4.2.5.4. Feature composition of states
What makes a state? What tells one state apart from another? We wondered to what
extent the repair states can be characterized by the patterns of enrichment in different
sets of genomic features.

To address these questions we devised an approach to compare, in a hierarchical
manner, the repair states against the enrichments in sets of genomic features. We
focused on chromatin states, and for this analysis, we went back to the more granular
27 hidden states that make up the 12 repair states.

First, we sought to assess the fidelity of the correspondence between the hidden
states and the chromatin states. We were seeking to answer two questions: do the
smaller hidden states belonging to a given repair state reproduce the same enrichment
pattern? Do different enrichment patterns converge to the same repair state? We
represented the chromatin state enrichments for the 27 hidden states together with the
repair-activity-based clustering dendrogram (Figure 4.36). The hidden state numbers
were colored by the repair state color. We found that in general the hidden states that
cluster together based on repair activity (and especially make up the same final repair
state) tend to be enriched in the same features. However, we also noticed that the
chromatin state enrichments do sometimes fail to separate distinct hidden states in this
visual analysis. This ambiguity underscores a limitation for a complete explainability
of the repair activity in terms of chromatin state enrichments alone.
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Figure 4.36: Hidden state fold enrichments of 15 canonical chromatin states from the E055
(Foreskin Fibroblast Primary Cells) Roadmap Epigenomics cell line, with the repair-dynamics-
based hidden state clustering dendrogram. Hidden states are colored by the repair state they
are clustered into.

Next, we sought to determine the combination of chromatin state enrichment features
that best characterize each hidden state. We conceptualized our solution as follows.
We seek paths that traverse the dendrogram (representing the hierarchical clustering
based on repair activity) starting at the root of the dendrogram and ending at each
hidden state leaf. Such a path can be described as a sequence of binary decisions as
to which of the two possible downward edges to choose, through all traversed nodes
(hereto “junctions”). These two edges at the junction always define two sets of leaves
(hidden states). Thus, at each junction, we want to know how to make a decision to
reach a set of hidden states with a specific state of interest. To do so, we compared
the enrichments of the two sets of hidden states separated by each junction. For each
chromatin state one by one, we calculated the means of enrichment in the two sets.
Next, we calculated the difference of the means in the group. Once the differences
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of the means were calculated for each chromatin state, we selected the top ones. As
a result, for each hidden state, we provide a collection of features that represent the
characteristic chromatin state biases consistently with the hierarchical structure that
underlies the repair dynamics.

We represented the results atop the dendrogram (Figure 4.37). At each junction, the
top 3 features with the absolute difference of means above 1.5 were highlighted. The
arrow indicates the directionality of the sign of the difference at the junction - e.g.
for the topmost junction, the group of states on its left side is more enriched (positive
difference of means) in Bivalent Enhancer than the right-side group.

The annotated dendrogram clearly visualized the relationships between the chromatin
states and the hierarchy of repair states, at various levels. In most cases, for the hidden
states clustering into the same repair state, there was no feature significantly separating
them under the used threshold. This suggests a high coherence of the repair states not
only in repair dynamics but also in chromatin state composition. However, there are
5 cases where separation could be observed, namely RS9, RS10, RS12, RS8, RS3.
When inspecting the highlighted features (Figure 4.37) together with the hidden state
enrichments (Figure 4.36), we could see the coherence between the two pictures.

We believe that this simple method helps capture the between- and in-state differences
better than inspecting the enrichments by eye. The analysis presented here provides
a systematic way to find a representative set of features (chromatin states) alongside
their importance that best explains the repair states consistently within their underlying
hierarchical structure. We plan to extend this analysis to include more features in the
future and delve deep into characterizing each repair state.

Finally, we close this chapter, concluding that we find the spectrum of repair activity to
be closely related to the spectrum of features of the human genome in matching tissue
types. This way we fulfilled our second goal. Not only was the presented segmentation
of the human genome by repair successful, but we also found it to be biologically
meaningful.
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Figure 4.37: Junction analysis annotated atop repair-dynamics-based hidden state clustering
dendrogram. At each junction, a difference of the means of the two groups of hidden states
below is calculated, using the fold enrichments of 15 canonical chromatin states from the E055
(Foreskin Fibroblast Primary Cells) Roadmap Epigenomics cell line. Hidden states are colored
by the repair state they are clustered into. Arrow indicates that the direction related to the sign
of the difference (meaning higher enrichments) printed is always the left branch.
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5. Discussion
In this chapter, I first discuss the two projects separately and conclude with a common
discussion of the implications of this thesis as a whole.

5.1. Alkylation damage mapping in human cells

Many chemotherapeutic agents still in use are alkylators - they act by overwhelming
the cancer cells with alkylating damage. This is due to the fact that cancer cells
frequently are deficient in specific DNA repair mechanisms. Many healthy, DNA
repair-proficient cells, likely get destroyed by chemotherapy too, but they can generally
withstand this damage better. Even so, if they survive, they can be left with a
mutational footprint [65, 13]. Some of these mutations have been associated with a
subsequent clonal expansion and malignant transformation [14]. Moreover, alkylators
can be also found in nature, both endo- and exogenous [5, 20, 98]. Hence, studying
the impacts of exposure to alkylating agents on both cancerous and healthy cells in the
body has implications for our understanding of basic cell biology, as well as therapy
development and use.

The AB-seq damage mapping approach presented in this thesis, while closely
inspired by yeast NMP-seq [24], is the first applied to mapping alkylating damage
in human cells. When comparing the results from the two protocols, we found
some discrepancies. The frequencies of modified bases were the same, with expected
modifications happening predominantly in G’s and A’s. The most salient differences
were in the sequence contexts of the damaged positions. While the frequencies of
damaged bases detected by AB-seq varied across trinucleotide contexts –relative to
the frequency of trinucleotides in the genome– the damaged bases found by NMP-seq
were distributed fairly uniformly across trinucleotide contexts. We speculated on the
few possible causes of this deviation.

The causes might be biological - due to differences between the model systems used
in the two protocols: yeast and human cells. Since our analysis of context-specific
damage takes into account the normalization by the genomic background, the effect
of the nucleotide genome composition should not be at play here. One possible
explanation for the reported disparity could be differences related to how the damage
interacts with DNA and how the repair mechanisms operate in the two species.
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There might be a divergence in repair mechanics charged with cleaning up alkylating
lesions, strong enough to leave an observable mark during the treatment time. In both
species, BER is known as one of the main alkylation-repair mechanisms [5, 20, 98],
contributions of NER have been reported in yeast, and so far remain not known in
humans [24]. The two species also differ in the epigenome (e.g. usage of the chromatin
marks; some can exist in one species and not in another [99, 100]). Hypothetically, this
could have an effect on damage deposition and repair mechanics as well.

The disparity could have also originated due to a technical difference between the
two protocols. In NMP-seq, cells were stored frozen prior to DNA extraction, while
AB-seq samples were processed immediately after exposure to the alkylating agent.
Importantly, the concentrations and lengths of treatments differed. In NMP-seq, two
MMS concentrations were used: 0.2% (23.6 mM) and 0.4% (47.2 mM). In AB-seq
we used less: 10mM. Additionally, NMP-seq treatment was only 10 minutes long,
while we exposed the cells to MMS for 30 minutes. The treatment regimen in AB-seq
was then roughly 5 times weaker, but 3 times longer. (However, one should also note
that yeast cells have a cell wall as a protective mechanism, while eukaryotic cells do
not.) This might have caused differences in how many lesions can get deposited on
the DNA, and where. Furthermore, the longer treatment time allows for more repair to
happen while the damage is still being deposited.

These causes for the protocol differences can be further explored by introducing some
variability in the AB-seq. We could modify treatment times and doses, or generate
maps in cells deficient in various repair mechanisms.

NMP-seq focused only on the damage induced by a model alkylator MMS. While
convenient for protocol development, MMS is not in use in treatment anymore due
to its potency and following toxicity. We applied AB-seq to map damage from both
MMS and Temozolomide (frequently used in the treatment of e.g. glioblastoma). Our
results constitute the very first map of TMZ damage ever, opening the opportunity to
explore its unknown damage formation. Although we do not have previous damage
data to compare with, there is a mutational signature potentially associated with TMZ
treatment - SBS11. We found the coherence between the trinucleotide profile of this
signature and that of the damaged bases to be surprisingly high. Given the fact that
before a lesion has a chance to become a mutation there are several steps at which it
may be repaired, one could expect the final mutational pattern to differ more. (Even
more so when considering that m6G is the most mutagenic modification – hence likely
highly contributing to SBS11 – introduced by TMZ, which we do not map in AB-seq,
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as discussed further below.) Notwithstanding, this high coherence between SBS11 and
AB-seq damage patterns might suggest that the mechanisms of repair of this type of
damage do not have very different preferences across trinucleotide contexts.

Having mapped damage from two sources of alkylation, we had a unique opportunity
to compare them. The lesions that both sources induced were, as expected,
highly enriched for G’s and A’s, corresponding to expected m7G and m3A lesions.
Interestingly, the G/A ratios of the lesions were different between the two agents.
In MMS, we mapped significantly more G’s than A’s than for TMZ. There might
be a technical reason explaining this - TMZ treatment was only 5mM, while MMS
was two times more concentrated. There might be a biological reason contributing
as well, because of the metabolism differences of the two drugs. MMS is a direct
methylator, while TMZ first needs to be metabolized by chemical hydrolysis to an
actively methylating molecule (MTIC, and further AIC and a methyldiazonium cation
[21]). Their chemistry is also slightly different, TMZ being an SN1-type methylator,
and MMS an SN2-type one [9]. Their modes of action might thus differ. We believe
this to be highly likely, as we also observe different trinucleotide context preferences
between the two agents.

There are a few important limitations regarding the AB-seq damage maps. First, the
backgrounds mapped in DMSO and untreated samples are not flat, even though we do
not expect any damage. We have explored different strategies for blocking unspecific
damage to improve this, but we could not successfully resolve this issue or figure out
the source for those unspecific reads. Secondly, these backgrounds in controls clearly
contribute to the signal observed in the treated samples. While the contributions are
negligible for damage in G’s, they might impair fine-grained analyses of the infrequent
damages in A’s. One possible strategy to circumvent this limitation and provide an
estimate of the amount of true damage per trinucleotide consists in decomposing
the trinucleotide profile of damage counts as a weighted sum of two signals, the
inferred damage and the observed background, from which the probability that a given
damage site at a specific trinucleotide is true damage can be computed. Therefore,
we could assign a damage-or-not probability for each trinucleotide context. This
relatively simple rationale can be extended to consider not one but several background
processes that might operate simultaneously – although with different intensities –
in each treated/untreated case, using techniques that have been previously applied to
model mutagenesis as a mixture of elementary mutational processes [65, 70].

Other considerations pertain to types of lesions induced by alkylating agents that are
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not currently mapped by AB-seq. The most toxic lesion induced by many alkylating
agents is likely m6G [20, 98, 9]. m6G is repaired by direct reversal by MGMT
[20, 98, 5], making it difficult to map with enzymatic approaches such as AB-seq.
Moreover, so far AB-seq was used for mapping damage from mono-functional
alkylators. Bi-functional alkylators (such as platinum-based drugs), apart from adding
alkyl groups to a single base, can also form bonds between two different bases
[20, 5]. These very disruptive and helix-distorting lesions are inter- and intra-strand
crosslinks (ICLs). Due to their complicated structure, BER cannot deal with this type
of damage, rendering AB-seq – which relies on BER-related lesion processing for its
recognition – useless for their detection. AB-seq in its current form is applicable only
to mono-alkylating lesions. Mapping inter or intra-strand lesions left by bi-functional
alkylators will probably require a very different approach.

This project has many future plans and applications and constitutes an important
direction for the lab. The version presented here focused on 2 agents and 1 time point,
in 1 cell line. These dimensions are being actively expanded. We are planning to test
multiple alkylating agents, both mono- and bi-functional. We are already extending
the MMS and TMZ maps to multiple recovery time points after exposure. We are
preparing to map the damage in TMZ-sensitive and resistant colorectal cancer cell lines
and in repair-pathway-mutated cells. We would like to also follow the alkylator-treated
cells until the mutation formation. This multidimensionality will allow us to study
the alkylating damage formation, repair activity, mutation variability, and alkylator
differences from many angles.

Finally, a compelling and crucial set of computational analyses relating the mapped
TMZ and MMS damage formation with features of the genome is out of the scope of
this thesis. Nevertheless, we believe the AB-seq protocol work presented here serves
as a crucial first step and unfolds the path to many future feature analyses. One of the
naturally following directions would be using the alkylation data with the repair state
discovery framework presented next.

5.2. UV repair state discovery

Mutagenesis, including damage formation and repair activity, has been extensively
studied in the context of interactions with features of the genome (see 1.4). However,
the idea presented in these studies of partitioning the genome by the features has been
an important limitation of the approaches hitherto. Some features do not cover the
whole genome, leading to uncharacterized gaps in the analysis. Moreover, certain
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features may be overlooked, due to lack of prior knowledge. Developing approaches
that are not constrained by known features is a crucial next direction in the study of the
determinants of DNA repair and the mutagenic process.

The ‘repair states’ framework presented in this thesis proposes, for the first time, an
ab initio partitioning of the genome not biased by any prior knowledge of features of
the genome. Thus, this repair-data-driven partitioning does not require any feature
information. We start only with the genome itself - and the repair activity along it.

Encoding repair activity is no simple feat. We do not have a measure of total repair,
but either snapshots of repair activity in a given moment or damage landscapes at
different time points. While some measure of total repair can be inferred from the
consecutive damage landscapes, as explained in the Results, this has its important
caveats. We needed to perform several normalizations, calculate divergences between
each two time points, and still take care when interpreting the inferred repair scores.
Additionally, the approach we used required binarized data, which we provide by
calculating the quantiles of each data track. However, although this ranking is
computationally convenient, there are a few aspects worth keeping in mind. The
first, obvious one is the information loss - instead of seeing all the scores’ values,
we get 5 categories representing each data track only. Moreover, in the case of inferred
repair, when the original damage landscapes are close to each other, we will obtain a
small range of divergence scores, reflecting little repair activity happening. However,
the quantile labels will continue to underscore differences, even if the true effect
between the top and bottom chunks is very small. Thus, caution should be taken when
interpreting inferred repair divergence scores and quantile encodings between close
time points, or for long recovery times when there is little damage left. Moreover, this
means that not all the inferred repair tracks carry the same amount of information; it
might be worth considering for the choice of time points of damage maps in the future.

We successfully segmented the genome into 12 repair states. Repair states are
mathematical abstractions obtained from the repair dynamics of the genome, and are
reflective of them. (By ‘repair dynamics’ we mean how differential repair activity
changes through time after exposure). We use repair states to understand these genomic
differences in the dynamics of the repair process.

The repair states did not only exhibit differences between each other but also a degree
of variability in the repair of the different damage types and contexts within the same
state. It is important to keep in mind that we segmented a continuous process. Thus,
one can see the repair states as a spectrum of the continuum of repair intensities. A
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strong argument for this is that states with similar dynamics tend to transition between
each other more frequently than more different states. It is important to acknowledge
that the repair states presented here were built at a certain resolution (100kb). This
means that this segmentation likely captures larger aspects of repair dynamics, rather
than smaller, higher-resolution ones, and needs to be interpreted as such.

With the feature-agnostic repair state segmentation done, we could comprehensively
probe many genomic features for their distribution across repair states. We confirmed
an inverse correlation between repair intensity and mutation rate across repair states.
We found the repair state spectrum to be closely related to several genomic features.
Low-intensity repair states correlated with heterochromatic, low-accessibility regions,
undergoing late replication. This goes in line with the idea that NER, as a rather
large protein complex, might be hindered by its size for accessing tightly-packed DNA
[78, 23]. On the other hand, high-intensity repair states corresponded predominantly
to areas with a high density of genes and regulatory regions, actively transcribed, and
early-replicating. These repair states showed a higher intensity of TC-NER repair
than all others, linking the results with the mechanistic explanation. Finally, repair
states with intermediate repair intensity were enriched for bivalent, repressed, and
intermediate replicating regions. We observed the clear-cut correspondence between
the order of replication and the intensity of NER repair.

Importantly, we established that repair states, and the differences in repair activity they
represent, are not a simple reflection of chromatin states. Chromatin states vary in size,
with the Quiescent state covering most of the genome [82, 84], while repair states are
distributed quite uniformly. This suggests that repair states are rather governed by a
combination of many features, including chromatin states and others (e.g. replication
timing), that together converge into this fairly homogeneous higher-level landscape. In
summary: there is no single genomic feature that underlies the repair dynamics; rather,
what we uncovered with the repair states are the composites of various features.

Even after including all features explored in this thesis, some repair states seemed
indistinguishable from each other. This could be explained in two ways. Similar
states could simply be an artifact of the model, matching some slight differences in the
dynamics, when the underlying biological mechanics of the two states are the same.
We believe this explanation is not very likely, given our repair states reproducibility
analyses from independent replicates. Alternatively, we just might not know yet the
genomic features that distinguish the repair states from each other.

Many of the aforementioned repair and feature relations are already established in the
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literature. Even though we start with repair, instead of features, we arrive at similar
observations. We successfully recapitulated them, taking an entirely different approach
- this means we added consistency and coherence to existing knowledge.

Ideally, we would like to produce repair states at different levels of resolution,
especially in smaller chunk sizes. However, currently, there is one important limitation
to this: the achievable resolution hinders studying the very fine-grained features (e.g.
nucleosome positioning) known for their considerable impact on repair. This limitation
is only temporary though, as its source is not in the framework itself, but in the
sparsity of available data. We believe this limitation can be instead presented as
an opportunity for developing more damage maps with higher resolution as deeper
sequencing damage data is produced. This data is bound to appear shortly, as panel-like
approaches utilizing deep sequencing have been recently presented [101, 102]. With
time and further developments, we will be able to probe smaller chunks and likely
reveal smaller-scale repair states and their interactions with fine-grained features.
Additionally, the repair states analysis at a smaller scale could benefit from using
strand-resolved information. Currently, we aggregate all the input data over both
strands. With smaller chunks, we could extend the models by separating the strand
information by the activity of transcription or sense of replication. Knowing the impact
of these two features, this could bring interesting new insights into the repair state
analysis.

5.3. General considerations

Studying repair and its interplay with various features of the genome, and correlations
with mutations fuels the general development of genomics and advances knowledge
of cell biology. Thanks to AB-seq, for the first time we have insight into alkylation
damage (and soon repair) in human cells. Next, AB-seq damage maps can be employed
for different types of analyses. This would include already developed approaches [63,
64] (more outlined in 1.4) as well as the repair states.

There are quite a few things to contemplate when re-purposing the repair states
framework for the analysis of AB-seq data. First, the damage types are different -
instead of helix-distorting bulky lesions, there are small methyl or ethyl groups added
to a single base. Additionally, the nature of the source of the damage is widely
different. UV pulse is very time-constrained and short, and once taken away, there
should be no new damage appearing. (Of note, this is a simplification, as there
are reports of so-called dark CPDs that seem to occur long after the UV exposure
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[15, 16, 17]). Alkylators are chemical agents that need to enter the nucleus, some of
them need to get metabolized, and finally need to be washed off. This makes the exact
moment when the damage stops being generated by chemical agents hard to pinpoint.
Due to these differences in kinetics, the chemical treatments are longer. What we
consider the ‘0h’ time point, supposed to represent the damage formation, is likely
already affected by repair. Moreover, these different damage types are repaired by
different pathways. NER is a large complex with an elaborate damage recognition
system. BER recognition is simpler and relies on two single enzymes. Differences
between the damage types and repair machinery need to be carefully considered and
suitable adjustments need to be made to the framework. If successfully applied to
AB-seq data, repair states analysis would open the possibility of comparisons of repair
states from these widely different conditions.

Of note, we do not plan to directly map the intensity of alkylation repair, as has been
done for UV damage with XR-seq. Due to the nature of the BER repair, this is a
challenging problem. The implication of this is that we would only have the repair
inferred from alkylating lesions mapped through time. While not presented in this
thesis, we did previously generate the UV repair states without the snapshot repair.
The results were coherent, although we did observe a loss of quality of the repair states
partitioning. This will be something we will have to take into account.

There are other damage and repair maps publicly available (some outlined in 1.3.2),
although lacking the time-resolved component. Once there are more maps generated
at different time points, the repair states framework could be employed to analyze
them. It would be intriguing to compare repair states produced for two different
damaging agents, whether or not they share the same repair mechanism. On the other
hand, to compare the contributions of different repair pathways to the repair of one
specific damage type, we would need to map the repair of the damage under various
repair-deficient backgrounds. This happens to be planned for AB-seq damage maps,
intertwining the contributions of the two projects closely.

An important factor to consider when using damage and repair mapping to study
mutagenesis is the differences in the setting. In UV damage/repair mapping, cells
are treated with only one, short (10-20s) UV-C light pulse [18, 23, 19]. The main
components of sunlight that we are most exposed to are UV-A and UV-B [5]. While
UV-C is the most mutagenic of the three, its contributions in everyday sunlight
exposure are negligible due to the ozone layer filtering [5]. While to a lesser extent,
UV-B, and less so UV-A, also lead to di-pyrimidine photoproduct formation, of similar
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types [5]. One cannot ignore the potential differences in the damage formation that
come from the difference in the energy of the radiation. Moreover, mutations are
usually produced by repeated, long-term exposures. Our cells are exposed to damaging
UV light every day, with varying intensities throughout. In the case of chemotherapy,
the single treatment usually lasts for hours and is repeated multiple times over the
course of a few weeks. Likely, the mechanics of damage formation and repair activity
are intertwined in time and space and affect each other. Additionally, DNA Damage
response is reported to be regulated by the circadian clock, meaning that DNA repair
might act slightly differently depending on the time of day [103]. The experimental
settings for both damage mapping datasets include only a single, and considerably
shorter treatment, albeit with a stronger dose of the mutagen. This is useful for
separating the process to understand the components of mutagenesis in an easier
setting. In the future, there should be a focus on understanding these crucial exposure
components of the mutagenic process. This could be done by generating damage and
repair maps under varying exposures - both in terms of repetitions, as well as lengths.
Nevertheless, we believe that the current damage maps are highly useful already. They
can be thought of as probability distributions for mutational generation, supported by
increasing correlations with mutations after exposure to the mutagen, that we presented
for UV.
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6. Conclusions
We believe that both projects constituting this thesis advance our study of how different
mechanisms of DNA repair interact with basic processes of the cell, such as DNA
replication, transcription, and chromatin structure maintenance. Both projects have
opened interesting future paths for the study of the determinants of the DNA damage
and dynamics of DNA repair of different types of lesions. We present the following
conclusions in the two projects:

Alkylating damage maps
We have presented AB-seq (Alkylation BER sequencing), an end-to-end
genome-wide nucleotide-precision method for mapping alkylation, comprising
an experimental DNA-damage capture library preparation with a computational
pipeline to precisely map the captured damage sites to the human genomic
sequence.
The analysis of AB-seq libraries for two alkylating agents, MMS and TMZ,
rendered enrichments in bases corresponding to the most prevalent known
alkylating lesions (m7G, m3A).
Methylation maps for MMS and TMZ uncover slight differences in the sequence
context preferences of the two agents, specifically in tri-nucleotides, suggesting
potentially different paths to damage formation.
These methylation maps open the door for analyses of the dynamics of repair
of the damage generated by these two alkylating agents, and the determinants
underlying both the deposition of methyl groups and their repair. In particular,
combined with the use of mutant human cells, these maps will shed light on
the contribution of different DNA repair systems to the correction of alkylation
damage.

UV Repair states
We presented a novel approach to partition the genome according to the
dynamics of DNA repair, named DNA repair states.
Applying this approach to time-course UV-light damage and repair maps, we
obtained UV damage DNA repair states, that represent genomic regions with
differences in their kinetics of repair of two types of UV-induced photoproducts.
The two NER pathways contribute to the differentiation between repair states,
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with an important contribution of both to DNA repair states with the highest
repair intensity.
We showed that the spectrum of repair intensity of DNA repair states clearly
anti-correlates with the rate of UV-generated mutations observed in melanomas,
especially for CPDs.
DNA repair states with low repair intensity are enriched for repressed, packed,
inaccessible, close to the lamina and late replicating parts of the genome.
Conversely, high-intensity repair states are enriched for predominantly genic,
expressed, transcribed, accessible, internal, and early replicating parts of the
genome.
Nevertheless, we show that the DNA repair states obtained at this resolution
(100Kb) are not explained by a single, or simple combination of a few genomic
features; rather, the interaction between several genomic features underlies the
differences in repair intensity across DNA repair states.
New sets of genomic features can be systematically probed for their association
with the intensity of DNA repair using these DNA repair states.
The repair states framework here could be used for the analysis of the repair
of other types of DNA damage, as well as analysis of smaller, local-scale
determinants, once higher-coverage damage maps become available.
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A. Appendix to Alkylating Damage
Maps

Figure A.1: Pentanucleotide probability frequencies for the DMSO sample.

Figure A.2: Pentanucleotide probability frequencies for the Untreated sample.
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Figure A.3: Pentanucleotide probability frequencies for the TMZ sample.

Figure A.4: Pentanucleotide probability frequencies for the MMS sample.
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Figure A.5: A: Cosine similarity, B and C: PCA of the pentanucleotide genome-normalized
frequency profiles between the 4 AB-seq samples. For PCA, scores of the samples on the B:
-PC1 or C: PC2 are represented.
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B. Appendix to UV Repair States

B.1. Damage and mutations correlations

1h 8h 24h 48h

Normalized score CPD TT 0.86 0.24 -0.16 -0.34

Normalized score CPD CT 0.85 0.57 0.02 0.30

Raw counts CPD TT 0.98 0.88 0.47 0.45

Raw counts CPD CT 0.85 0.61 0.21 0.28

Table B.1: Correlation coefficients of correlations between CPD 0h damage with other time
points within 100kb chunks, for both normalized score and raw data counts.

20m 1h 2h 4h

Normalized score 6-4 TT 0.86 0.68 0.30 -0.15

Normalized score 6-4 TC 0.84 0.58 0.29 -0.07

Raw counts 6-4 TT 0.93 0.85 0.36 0.27

Raw counts 6-4 TC 0.92 0.77 0.50 0.19

Table B.2: Correlation coefficients of correlations between 6-4PP 0h damage with other time
points within 100kb chunks, for both normalized score and raw data counts.
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Figure B.1: Correlations of raw CPD TT damage counts with UV mutations within 100kb
chunks. A) KDE plot of 0h damage with mutations, B) KDE plot of 48h damage with mutations,
C) Subsampling correlation of damage at various time points with mutations, with a sample
size of 40 shuffled chunks. Each point in the boxplot represents a single sample. R is the
correlation coefficient.
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Figure B.2: Correlations of normalized CPD CT damage score with UV mutations within
100kb chunks. A) KDE plot of 0h damage with mutations, B) KDE plot of 48h damage with
mutations, C) Subsampling correlation of damage at various time points with mutations, with
a sample size of 40 shuffled chunks. Each point in the boxplot represents a single sample. R is
the correlation coefficient.
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Figure B.3: Correlations of normalized 6-4PP TT damage score with UV mutations within
100kb chunks. A) KDE plot of 0h damage with mutations, B) KDE plot of 48h damage with
mutations, C) Subsampling correlation of damage at various time points with mutations, with
a sample size of 40 shuffled chunks. Each point in the boxplot represents a single sample. R is
the correlation coefficient.
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Figure B.4: Correlations of normalized 6-4PP TC damage score with UV mutations within
100kb chunks. A) KDE plot of 0h damage with mutations, B) KDE plot of 48h damage with
mutations, C) Subsampling correlation of damage at various time points with mutations, with
a sample size of 40 shuffled chunks. Each point in the boxplot represents a single sample. R is
the correlation coefficient.
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B.2. Hidden states transition probabilities

Figure B.5: Transition probabilities between all hidden states from sticky HDP-HMM.

B.3. Reproducibility analyses

Stickiness Hidden states number (including disallowed)

1 28

2 27

3 27

Table B.3: Number (including the disallowed state) of hidden states generated by sticky HDP-
HMM at 100kb with differing stickiness parameters. Stickiness 1 (lowest) = kappa 100, 2 =
kappa 200, 3 (highest) = kappa=300.
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Figure B.6: Reproducibility analysis of hidden state partitionings and their re-clusterings at
100kb with differing stickiness parameters. Stickiness 1 (lowest): kappa=100, 2: kappa=200,
3 (highest): kappa=300.

Replicate Chunksize Hidden states number (including disallowed)

A_norm_1 100kb 26

B_norm_2 100kb 27

A_norm_1 1Mb 8

B_norm_2 1Mb 8

A_norm_1 10kb 28

B_norm_2 10kb 31

Table B.4: Number (including the disallowed state) of hidden states generated by sticky HDP-
HMM for the two data replicates. A and B are damage map replicates, 1 and 2 are repair map
replicates.

Figure B.7: Reproducibility analysis of hidden state partitionings and their re-clusterings at
100kb with the two replicates and the main run. A and B are damage map replicates, 1 and 2
are repair map replicates.
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Figure B.8: Reproducibility analysis of hidden state partitionings and their re-clusterings at
10kb with the two replicates and the main run. A and B are damage map replicates, 1 and 2
are repair map replicates.

Figure B.9: Reproducibility analysis of hidden state partitionings and their re-clusterings at
1Mb with the two replicates and the main run. A and B are damage map replicates, 1 and 2
are repair map replicates.
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B.4. Genomic features

Figure B.10: Percentage coverage of the human genome by repair states, on each chromosome,
in 100kb chunks.
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Figure B.11: TT-normalized score of snapshot repair at 1h across states for three cell lines:
XPC (TC-NER proficient) and CSB (global NER proficient) mutants, and NHF1 (proficient in
both NER pathways).
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