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With the exponential surge in the number of internet-connected devices, the attack surface 

for potential cyber threats has correspondingly expanded. Such a landscape necessitates 

the evolution of intrusion detection systems to counter the increasingly sophisticated 

mechanisms employed by cyber attackers. Traditional machine learning methods, coupled 

with existing deep learning implementations, are observed to exhibit limited proficiency 

due to their reliance on outdated datasets. Their performance is further compromised by 

elevated false positive rates, decreased detection rates, and an inability to efficiently detect 

novel attacks. In an attempt to address these challenges, this study proposes a deep 

learning-based system specifically designed for the detection of malicious network traffic. 

Three distinct deep learning models were employed: Deep Neural Networks (DNN), Long 

Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). These models were 

trained using two contemporary benchmark intrusion detection datasets: the CICIDS 2017 

and the Coburg Intrusion Detection Data Sets (CIDDS). A robust preprocessing procedure 

was conducted to merge these datasets based on common and essential features, creating 

a comprehensive dataset for model training. Two separate experimental setups were 

utilized to configure these models. Among the three models, the LSTM displayed superior 

performance in both experimental configurations. It achieved an accuracy of 98.09%, a 

precision of 98.14%, an F1-Score of 98.09%, a True Positive Rate (TPR) of 98.05%, a 

True Negative Rate (TNR) of 99.69%, a False Positive Rate (FPR) of 0.31%, and a False 

Negative Rate (FNR) of 1.95%. 
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1. INTRODUCTION

The pervasive incorporation of Digital Communication 

Technology (DCT) into human society and organizational 

structures, both in the private and governmental sectors, has 

become a fundamental driver of economic growth and 

infrastructure development [1]. The global spread of internet 

access and the ready availability of myriad devices to facilitate 

this connectivity have catalyzed the transformative role of 

DCT. By 2023, it is predicted that 5.3 billion individuals 

worldwide, equating to 66% of the global population, will be 

internet users, an increase from 3.9 billion in 2018, as 

indicated by the global IT and networking systems brand, 

Cisco [2-4]. 

However, this digital expansion has concurrently led to an 

alarming escalation in cyber-attacks targeting computer 

networks, systems, and critical infrastructure. Such attacks can 

result in significant disruptions to business operations, theft of 

confidential information and intellectual property, corruption 

of classified data, and considerable financial loss [5]. The 

complexity and diversity of these threats are evolving, with 

cybercriminals continuously adapting to changes in 

cybersecurity protection measures, leading to a wide range of 

attacks, often culminating in the total shutdown of crucial 

technology systems [6]. Malware, an umbrella term for any 

software designed to steal, conceal, or gain unauthorized 

access to organizational data or systems, is one of the primary 

tools employed in these attacks. Other forms of attacks include 

phishing, denial of service (DoS) and distributed DoS, identity 

theft, and botnets, as identified in ref. [6]. The escalating 

prevalence and complexity of these threats necessitate the 

implementation of robust and reliable intrusion detection 

systems [7]. 

An intrusion detection system (IDS) forms a critical 

component of any security architecture. It functions to 

proactively monitor, identify, and classify intrusions and 

attacks on networks and network nodes [7]. Unlike many 

security solutions such as firewalls, data encryption, and user 

authentication, IDSs can distinguish between normal and 

malicious traffic by performing a detailed analysis of network 
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traffic [8]. IDSs can be deployed across individual computers 

in a network, a network, or multiple network segments to scan 

network packets and alert network administrators of detected 

malicious traffic [9]. 

Machine learning, a subset of artificial intelligence that 

employs computational and mathematical methods to learn 

from and make sense of empirical data, has found significant 

application in cybersecurity, particularly within the realm of 

intrusion detection. As the volume of data worldwide is 

expected to grow exponentially, reaching a staggering 175 

zettabytes by 2025 (up from 33 zettabytes in 2018), machine 

learning models hold the potential to learn patterns from this 

data and make intelligent predictions [10, 11]. 

Over the past two decades, the integration of machine 

learning in enhancing the detection of exploits on computer 

networks has received considerable research attention [12]. 

With the increasing sophistication of network attacks, machine 

learning-based IDSs can yield satisfactory detection of 

anomalous network traffic when trained with high-quality and 

updated IDS datasets [11]. 

However, as threats and attacks become increasingly 

sophisticated, the need for reliable mechanisms to detect 

malicious traffic has never been more urgent. While several 

works have utilized deep learning methods to detect network 

attacks, the reliance of these models on outdated datasets 

compromises their efficiency in dealing with emerging threats 

[12]. 

Hence, the development of detection systems using recent 

datasets is imperative. Moreover, the integration of multiple 

datasets would enrich the IDS model with more features, 

further enhancing its effectiveness. This study, therefore, 

focuses on the development of a deep learning-based intrusion 

detection system trained using two contemporary and popular 

datasets – CICIDS2017 and the Coburg Intrusion Detection 

Dataset (CIDDS). 

The primary contribution of this research lies in the curation 

of multiple intrusion detection datasets for the development of 

a deep learning-based intrusion detection system. The 

implications of these findings are significant, offering 

practical applications for the development of more effective 

intrusion detection systems using deep learning techniques. 

The remainder of the paper is organized as follows: Section 

1 outlines the classification of IDSs and the IDS datasets. 

Section 2 discusses related works. The methodology 

implemented and the experimental setups are discussed in 

Section 3. The research results are presented and discussed in 

Section 4. The paper concludes with Section 5. 

 

1.1 Classification of intrusion detection systems 
 

The landscape of computer security research has yielded a 

variety of classification methods for Intrusion Detection 

Systems (IDS). As depicted in Figure 1, these categorization 

techniques bifurcate into two primary groups: data-source 

based techniques and detection-based techniques [13]. 

Data-source-based techniques are further subdivided into 

two categories: host-based IDS and network-based IDS. Host-

based IDS provide protection to individual computer systems 

by monitoring all in-system activities and both inbound and 

outbound traffic [14]. This type of IDS scrutinizes system-

specific files, such as operating system logs and registers, to 

identify potential intrusion events and malicious activity. The 

direct access to system processes and data files grants host-

based IDS visibility into the intended outcome of an attempted 

attack on the system [14]. 

Network-based IDS, on the other hand, analyze network 

packets to detect intrusion attempts within the network. This 

type of IDS is designed to monitor network traffic affecting 

multiple endpoints within a network segment, thereby 

providing a holistic view of network activity [15]. 

Detection-based techniques are further classified into 

signature-based detection and anomaly detection methods. 

Signature-based detection represents attack behaviors as 

patterns or signatures stored in a database. The method 

involves the comparison of incoming traffic patterns with the 

stored signatures in the database. If a match is found, the 

corresponding traffic is flagged as an intrusion. One of the 

primary advantages of signature-based detection is its low 

false-positive rate, attributed to its high detection accuracy for 

known attacks. Furthermore, it offers detailed reporting of 

attack types and potential causes. However, the method 

requires regular updates of the signature database and may not 

be fully effective against novel, or zero-day, exploits [14]. 

 

 
 

Figure 1. Intrusion detection systems categorization [13] 
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In contrast, anomaly-based detection identifies unusual 

activity by comparing it against a baseline of normal behavior. 

This method necessitates a detailed understanding of typical 

network traffic patterns, with any deviation from the norm 

flagged as a potential intrusion. Anomaly-based IDS entails 

two main stages: training and testing. During training, the 

system learns the normal traffic patterns, and in the testing 

phase, the trained system is exposed to a new dataset for 

evaluation [16]. The strength of anomaly-based detection lies 

in its ability to detect zero-day exploits and its resistance to 

evasion. However, it may result in a higher percentage of false 

alarms due to its tendency to flag any unrecognized traffic as 

potentially malicious [16]. 

 

1.2 Intrusion detection datasets 
 

In the research and development of Intrusion Detection 

System (IDS) models, the use of benchmark datasets is pivotal. 

These datasets serve as the foundation for training models and 

evaluating their efficacy [12]. Given the data-dependent nature 

of these models, the quality and comprehensiveness of the 

datasets significantly impact model performance. For the 

detection of malicious network traffic, datasets mirroring the 

behavior of such traffic are imperative for training IDS [11]. 

This section provides a detailed overview of well-established, 

as well as recently developed, IDS datasets that are publicly 

accessible for deep learning model training. 

One of the earliest datasets, the DARPA Dataset, was 

generated in 1998 at the MT Lincoln Laboratory. The dataset, 

which comprises network-based attacks spanning a seven-

week training period and a two-week testing period, is 

classified into five network traffic categories: Normal, Probe, 

User to Root attacks, Remote to Local attacks, and DoS attacks 

[11, 13]. 

Building upon the DARPA dataset, the KDD99 dataset was 

developed and has since become the most widely utilized 

benchmark for IDS. It mirrors the class labels of the DARPA 

dataset and consists of various property types including basic, 

content, host-based statistical, and time-based statistical 

properties. However, redundant and duplicate records present 

in the KDD99 dataset have been known to cause variation in 

the results obtained by researchers [11, 17]. 

Addressing the redundancy issues of the KDD99 dataset, 

the NSL-KDD dataset was created. By selectively including 

records from the KDD99 dataset and ensuring balanced 

classes, the NSL-KDD dataset enables researchers to obtain 

consistent and comparable results [11, 14]. 

The UNSW-NB15 dataset, generated by researchers at the 

University of South Wales, comprises network traffic captured 

from three virtual servers. The dataset, which was created 

using four tools-IXIA Perfect-Storm, Tcpdump, Argus, and 

Bro-IDS-contains a larger array of attacks than the NSL-KDD, 

including Reconnaissance, Shellcode, Generic, and Worms. It 

encompasses nearly 2,000,000 vectors and 540,044 features 

[17]. 

The Coburg Intrusion Detection Data Set (CIDDS) was 

developed within an emulated business environment, 

comprising multiple clients, web servers, and email servers. 

Intended to serve as a benchmark for anomaly intrusion 

detection, the CIDDS dataset, like the CICIDS2017 dataset, is 

flow-based and was generated in an OpenStack virtual 

environment. It comprises two datasets: CIDDS-001 and 

CIDDS-002. CIDDS-001 contains unidirectional network 

traffic collected over a four-week period, featuring DoS 

attacks, secure shell brute force attacks, and port scan attacks. 

Conversely, CIDDS-002 is a flow-based dataset solely 

containing port scan attacks [18]. 

The CICIDS2017 dataset, proposed by Sharafaldin et al. 

[19], is often employed for developing anomaly-based IDS. 

Captured over five days in July 2017, it comprises 80 network 

features extracted from network traffic using the 

CICFlowMeter Tool. The dataset includes various attacks: 

Brute Force SSH and FTP, Denial-of-Service, Heartbleed, 

Web Attack, Infiltration, Botnet, and Distributed Denial-of-

Service [20]. 

The CSE-CIC-IDS-2018 dataset [21], developed through 

collaboration between the Communications Security 

Establishment (CSE) and the Canadian Institute for 

Cybersecurity (CIC), includes seven types of attacks: 

Heartbleed, Denial-of-Service, Distributed Denial-of-Service, 

Web Attacks, Brute-force, Botnet, and Infiltration. The dataset 

was generated from an attack scenario setup comprising fifty 

machines within an organization that includes four-hundred-

and-twenty PCs and thirty servers across five departments. 

Network parameters were obtained from the captured traffic 

using the CICFlowMeter application [17]. 

The CIC-DDoS2019 dataset [22] includes various forms of 

Distributed DoS attacks executed using OSI application layer 

protocols such as TCP and UDP. The dataset was generated on 

two distinct days in 2019, January 12 (training data) and 

March 11 (test data), and includes twelve types of Distributed 

Denial-of-Service attacks for training and seven types for 

testing: SYN, MSSQL, LDAP, UDP, UDP-Lag, PortScan, and 

NetBIOS [14]. 

Finally, the LITNET-2020 dataset contains 12 network 

attacks sourced from servers in four locations within the 

Lithuanian-wide network. The attacks include Smurf, UDP-

Flood, ICMP-Flood, HTTP Flood, TCP SYN-flood, LAND 

Attack, Blaster Worm, Code Red Worm, Reaper Worm, Spam 

Bot Detection, Scanning/Spread, and Packet Fragmentation. 

The dataset was gathered over a ten-month period [14, 23]. 

 

 

2. RELATED WORKS 

 

Tang et al. [24] employed a Deep Neural Network (DNN) 

trained on the NSL-KDD dataset to constitute an IDS for 

SDNs. Their DNN model was designed with a six-dimensional 

input layer, three hidden layers consisting of 12, 6, and 3 

neurons respectively, and a two-dimensional output layer. 

Through two-class classification, the system attained an 

accuracy of 75.75% with a batch size of 10 and an epoch value 

of 100.  

In a different context, Kang and Kang [25] formulated an 

IDS for vehicular networks, specifically controller area 

networks (CAN), using a DNN. The model, trained using 

unsupervised deep belief network (DBN) pre-training, 

differentiated normal and malicious packets by learning the 

statistical properties of network packet data. The system 

achieved an impressive detection performance average of 98% 

with a false positive rate of less than one to two percent, 

demonstrating its efficacy in providing real-time responses to 

attacks. 

Feng et al. [26] developed a plug-and-play device that uses 

deep learning to detect privacy and DoS attacks in ad hoc 

networks. The system captures traffic data and sends 

notifications when attacks are detected. Three deep learning 

models, DNN, CNN, and LSTM, were used to detect XSS and 

SQL attacks, with the DNN detecting DoS attacks. The system 

achieved an accuracy of 98.5%, and the DNN and CNN had 
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detection accuracies of 57% and 78% respectively for XSS 

attacks, using the KDD CUP 99 dataset. 

Kim et al. [27] proposed a DNN trained on the KDD 1999 

dataset for detecting constantly evolving network exploits. 

The model incorporated four hidden layers and 100 hidden 

units. The Rectified Linear Unit (ReLU) was utilized as the 

activation function during the model's training, with the 

stochastic optimization technique. The model demonstrated an 

accuracy of ninety-nine percent. 

For binary and multiclass classification, Yin et al. [28] 

proposed an IDS using a Recurrent Neural Network (RNN). 

The system's performance was evaluated at different learning 

rates and varying numbers of neurons. With a learning rate 

value of 0.1 and 80 hidden nodes, the binary classification 

(anomaly detection) performance was reported to be more 

accurate. Meanwhile, a learning rate of 0.5 and 80 hidden 

nodes resulted in more accurate multi-class attack detection 

performance. Comparisons with other machine learning 

models, such as naive Bayes, RF, and SVM, indicated the 

superiority of the proposed system. 

In the realm of SDNs, Tang et al. [29] proposed an IDS that 

implements a combination of Gated Recurrent Unit (GRU) 

and RNN. Using the NSL-KDD dataset for training, the GRU-

RNN IDS achieved an accuracy performance of 89% without 

deteriorating network performance. 

Similarly, Jiang et al. [30] proposed a multi-channel IDS 

that uses Long Short-Term Memory (LSTM) and RNN. The 

performance of this attack detection system was evaluated 

using the NSL-KDD dataset, with the LSTM-RNN IDS 

achieving a detection rate of 99.23%, a false positive value of 

9.86%, and an accuracy value of 98.94%. 

In a different approach, Sharafaldin [31] used flow-based 

features from the CIC-DDoS2019 dataset. An RNN was used 

to alleviate the data information loss caused by sequential 

traffic, achieving an average AUC of 0.988 in the majority of 

the tests. However, the study also noted that the strategy might 

not be suitable in situations where the network data has a high 

dependence on time due to the limitations of RNNs. 

Nasr et al. [32] designed DeepCorr, a system that uses a 

Convolutional Neural Network (CNN) to perform flow 

correlation on Tor traffic, outperforming existing solutions 

with higher accuracy. The CNN architecture of DeepCorr 

consists of two convolution layers and three fully connected 

neural network layers. The model was trained with the 

UMASS dataset generated in 2018 and achieved a false 

positive rate of 0.1% and a true positive rate of 80% with a 

learning rate value of 0.0001. 

To further enhance network security, Hu et al. [33] and 

Okokpujie et al. [34] developed an IDS that combines the 

ADASYN algorithm and an improved CNN. The ADASYN 

algorithm was used to balance the distribution of minority data 

samples to prevent model bias. The improved CNN increased 

feature diversity and reduced the effect of interchannel 

information redundancy on model training. When the 

improved CNN model was trained with the NSIn the current 

literature, various research efforts have been dedicated to the 

development of Intrusion Detection Systems (IDS) utilizing 

deep learning techniques. These systems play a critical role in 

fortifying the security of diverse network types, ranging from 

Software-Defined Networks (SDNs) to vehicular and ad hoc 

networks. 

 

 

3. METHODOLOGY 

 

The conceptual research framework for developing a 

malicious network traffic detection system is shown in Figure 

2. The conceptual framework follows a standard research 

pipeline based on the knowledge acquired from the 

examination of research literature on deep learning model 

utilization. 

Problem formulation. The first stage in the proposed 

framework is problem formulation. This describes the aim of 

the proposed system, which is to develop a network malicious 

detection system. The objective intended to be examined is the 

possibility of developing a malicious traffic detection system 

by utilizing two datasets for the model training process and 

examining the performance of the trained model. As 

discovered from reviewed works of literature, previously 

developed network intrusion detection systems are based on 

old attacks in popular datasets [14]. This greatly reduces the 

performance of such systems against an ever-growing threat 

landscape. In addition, because the publicly available datasets 

are limited in the number of attacks traffic captured, this 

research seeks to combine two recent datasets with various 

attacks captured, to have a system that is resilient to a wider 

range of attacks. 

Data collection. To develop a deep learning model, relevant 

and quality data is required. The two datasets that were used 

in this research work are the CICIDS2017 dataset and the 

CIDDS dataset. They are both flow-based and generated in 

emulated environments. CICIDS2017 contains the following 

attacks: Botnet, DoS, DDos, Heartbleed, Infiltraion, Brute 

force, Port Scan, and Web Attack; while CIDDS, which have 

two sets of datasets generated by the same authors (CIDDS) 

contains the following attacks: DoS, Port Scan, Brute Force, 

Scan attacks.  

 

 
 

Figure 2. Proposed research conceptual framework 

590



Table 1. Summary of the combined dataset 

 
S/N Traffic Label Heading 3 

1 Normal traffic 14,485,522 

2 DoS 2,002,167 

3 Scan 568,730 

4 Port Scan 424,842 

5 DdoS 128,027 

6 Brute Force 18,827 

7 Bot 1,966 

 

Table 2. Features of the combined dataset 

 
S/N Feature Name 

1 Duration 

2 Source Port 

3 Destination Port 

4 Protocol (TCP, UDP, ICMP, IGMP) 

5 Packets 

6 Bytes 

7 Urgent Flag 

8 Acknowledge Flag 

9 Push Flag 

10 Reset Flag 

11 Finish Flag 

12 Attack Label 

 

Table 3. Model parameters 

 
S/N Parameters Value 

1 Number of Features 14 

2 Drop out 0.1 

3 Optimizer ‘adam’ 

4 Loss Function 
Categorical cross-

entropy 

5 Number of Hidden Layers 3 

6 Layer Configuration 
(256, 128,128), 

(128, 64, 64) 

7 Metrics 

Accuracy, AUC, 

Precision, True 

Positives False 

Positives, True 

Negatives, False 

Negatives 

8 Batch Size 256, 512 

9 Epochs 30 

10 Output Layer Activation Function Softmax 

11 
Hidden Layers Activation 

Function 
ReLU 

 

Data pre-processing and feature extraction. The 

following specific set of activities were carried out during this 

stage: data cleaning, one-hot encoding of categorical values, 

and data normalization. In the data cleaning stage, we dropped 

rows with empty values; represented the feature in the 

appropriate formats; selected the relevant columns; dropped 

attacks (Heartbleed, infiltration, web attack- bruteforce, cross-

site scripting and SQL Injection) with very little number of 

samples to eliminate the effect of data imbalance; and merged 

the two datasets along the appropriate axis (summary of 

merged data is shown in Table 1). The summary of the data 

features is contained in the Table 2. In next stage, one-hot 

encoding was carried out on the protocol and attack label 

column. The protocol column has four unique categorical 

values (TCP, UDP, ICMP, and IGMP), while the attack label 

column has seven unique categorical values. However, to 

prevent high correlation among the protocols, the generated 

column for ICMP was dropped. Finally, in last stage, data 

normalization was done to place every numerical value with 

the internal of 0 and 1, using min-max normalization. After 

pre-processing the dataset, it was then split into training, 

validation, and testing sets with ration of 70:20:10 respectively. 

Model selection, configuration, training, and validation. 

Three deep learning models were used in this research because 

of performance and popularity in previous works, which are 

Deep Neural Network (DNN), Long Short-Term Memory 

(LSTM), and Gate Recurrent Unit (GRU). The parameters 

used for the configuration of the models are detailed in Table 

3. Two experimental setups are utilized for training, validating, 

and testing the models. The configurations implemented are 

detailed in Table 4. After configuring the models, the training 

set as well as validation set were used to carryout training and 

validation of the three deep learning models. The models were 

trained with two batch sizes (512 and 256) with a Dropout 

value of 0.1 after the first and second hidden layer for 30 

epochs. 

 

Table 4. Experimental setups 

 

S/N 
Experimental 

Setup One 
 

Experimental 

Setup Two 
 

1 Parameter Value Parameter Value 

2 Input Layer 14 Input layer 14 

3 

Hidden Layer 1 

(Neurons & 

activation 

function) 

256 

(ReLU) 

Hidden Layer 1 

(Neurons & 

activation 

function) 

128 

(ReLU) 

4 Dropout 0.1 Dropout 0.1 

5 

Hidden Layer 2 

(Neurons & 

activation 

function) 

128 

(ReLU) 

Hidden Layer 2 

(Neurons & 

activation 

function) 

64 (ReLU) 

6 Dropout 0.1 Dropout 0.1 

7 

Hidden Layer 3 

(Neurons & 

activation 

function) 

128 

(ReLU) 

Hidden Layer 3 

(Neurons & 

activation 

function) 

64 (ReLU) 

8 Output 
7 

(Softmax) 
Output 7 (Softmax) 

9 Batch size 512 Batch size 256 

10 Epochs 30 Epochs 30 

 

 

4. RESULTS AND DISCUSSION 

 

After carrying out model training and validation, we 

evaluate the performance of the model using standard 

performance metrics such as accuracy, precision, recall, and 

F1-score (using Eqs. (1)-(4)) [35, 36]. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝑇𝑁
 (1) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (3) 

 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 

 

where, TP – True Positive; TN – True Negative; FP – False 

Positive; FN – False Negative.  

The result of the training process of the three models is 
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contained in the Table 5, and it shows that, across the three 

models for the two experimental setups, LSTM achieve the 

best performance, particularly in experimental setup one, with 

an accuracy of 98.09%, precision of 98.14%, F1-score of 

98.09%, and recall of 98.05%.  

 

Table 5. Model performance result 

 

Experimental 

Setup One 

Metrics DNN LSTM GRU 

Accuracy 97.68% 98.09% 97.91% 

Precision 97.81% 98.14% 97.96% 

F1-Score 97.70% 98.09% 97.91% 

Recall 97.60% 98.05% 97.87% 

Experimental 

Setup Two 

Accuracy 97.54% 97.97% 97.80% 

Precision 97.69% 98.01% 97.86% 

F1-Score 97.55% 97.97% 97.80% 

Recall 97.42% 97.93% 97.74% 

 

 
 

Figure 3. Confusion matrix of DNN (DNN) 

 

After the models were trained and validated, the test dataset 

(10%) was used to test the developed models. The 

classification reports obtained (for the experimental setups) 

are presented in Table 6 and Table 7. The outcome of the test 

shows that, across the three models, the weighted average 

value for the precision, recall, and F1-score are generally 

higher (DNN1 and DNN2 - 0.97; LSTM 1 and LSTM 2 - 0.98; 

GRU 1 and GRU 2 - 0.98 and 0.97 respectively) than the 

macro average for the three models. The results obtained for 

the macro average of the three models in the two experimental 

setups are satisfactory. This is because, while the weighted 

average is computed by factoring the percentage of every class 

label in the dataset, which does not favor the minority class; 

the macro average is computed without taking into 

consideration the percentage of each class, thus giving a true 

picture of the model performance across all the classes. 

The confusion matrixes for the testing of the models are 

depicted in Figures 3-5, which show the classification result. 

However, it can be observed from the three confusion matrixes 

that a significant number of portscan attack was classified as 

scan attack and vice versa. Other classes however achieved a 

higher detection rate. 

Comparing the outcome of this research with some other 

works from literature indicates that the LSTM model 

configured and trained using experimental setup one achieved 

a better performance as presented in the Table 8. 

 

 
Figure 4. Confusion matrix of LSTM 

 

 
 

Figure 5. Confusion matrix of GRU  

 

Table 6. Classification report of the testing of the models (setup one) 

 
  DNN   LSTM   GRU   

 Precision Recall f1-Score Precision Recall f1-Score Precision Recall f1-Score Support 

Normal 0.99 0.98 0.98 0.99 0.99 0.99 0.99 0.99 0.99 1448553 

DoS 0.95 0.95 0.95 0.95 0.96 0.96 0.96 0.96 0.96 200217 

Scan 0.76 0.87 0.81 0.95 0.94 0.94 0.93 0.94 0.93 56873 

Portscan 0.70 0.82 0.76 0.89 0.86 0.88 0.85 0.86 0.85 42484 

DDoS 0.83 0.91 0.86 0.90 0.89 0.90 0.90 0.89 0.89 12803 

Bruteforce 0.82 0.76 0.79 0.88 0.85 0.87 0.86 0.94 0.90 1883 

Bot 0.88 0.93 0.90 0.79 0.97 0.87 0.68 0.98 0.80 196 

Macro Average 0.85 0.89 0.87 0.91 0.92 0.91 0.88 0.94 0.90  

Weighted Average 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98  

Total Support          1763009 

592



 

Table 7. Classification report of the testing of the models (setup two) 

 
  DNN   LSTM   GRU   

 Precision Recall f1-Score Precision Recall f1-Score Precision Recall f1-Score Support 

Normal 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1448553 

DoS 0.95 0.95 0.95 0.95 0.96 0.96 0.95 0.95 0.95 200217 

Scan 0.87 0.87 0.87 0.92 0.91 0.92 0.86 0.79 0.82 56873 

Portscan 0.77 0.78 0.77 0.81 0.86 0.83 0.69 0.74 0.71 42484 

DDoS 0.81 0.93 0.87 0.86 0.91 0.88 0.86 0.85 0.85 12803 

Bruteforce 0.90 0.70 0.79 0.61 0.69 0.65 0.80 0.80 0.80 1883 

Bot 0.73 0.99 0.84 0.84 0.92 0.88 0.75 0.39 0.52 196 

Macro 

Average 
0.86 0.89 0.87 0.86 0.89 0.87 0.84 0.79 0.81  

Weighted 

Average 
0.98 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.97  

Total 

Support 
         1763009 

 

Table 8. Comparison of obtained result with results of earlier literature 

 
S/N Ref. Deep Learning Model Number of Dataset Used Dataset Results 

1 
This 

work 
LSTM 3 

CIDDS-001, CIDDS-002, 

CICIDS 2017 

Precision: 98.14% 

Accuracy: 98.09% 

F1-Score: 98.09% 

TPR: 98.05%; TNR: 99.69%; 

FPR: 0.31%; FNR: 1.95% 

2 [37] LSTM 1 CIDDS-001 

Accuracy: 99.91 % 

Precision: 98.37 % 

TPR: 71.40 % 

F1-Score: 74.23 % 

3 [38] DNN 1 CICIDS 2017 Accuracy: 97.73 % 

4 [39] LSTM 1 CIDDS-001 

Accuracy: 84.83 % 

Precision: 85.14 % 

Recall: 88.34 % 

FPR: 17.22 % 

 

 

5. CONCLUSION 

 

In this research work, a deep learning-based intrusion 

detection system was developed. The chosen deep learning 

models were trained using two recent benchmark datasets 

(CICIDS 2017 and Coburg Intrusion Detection Data Sets 

(CIDDS)) for intrusion detection. The two datasets were 

preprocessed and merged on common and essential features. 

The combined dataset was then used to train the deep-learning 

models. The deep learning models were configured using two 

sets of experimental setups. The LSTM trained using three 

hidden layers with 256, 128, and 128 neurons in Layers 1, 2 

and 3, respectively, and with a batch size of 512, achieved the 

best performance in all the metrics, with an accuracy of 

98.09% and precision of 98.14 %. The implications of creating 

a deep-learning-based intrusion detection system with two or 

more datasets include a more comprehensive and robust 

training process. The system can learn to detect different types 

of intrusions and attacks using multiple datasets, resulting in a 

more accurate and reliable detection system. Combining 

datasets with common features can also improve the system's 

ability to detect patterns and behaviors associated with attacks, 

resulting in a better understanding of security threats while 

also resulting in a more generalized model that can be applied 

to a variety of scenarios. Ultimately, using multiple datasets 

can improve system performance, effectiveness, and 

adaptability to various security applications. 

The major challenge experienced, however, was data 

imbalance. The CICIDS 2017 dataset had some attack samples 

with less than fifty samples (i.e., eleven, twenty-one, and 

thirty-six samples for Heartbleed, web attack – SQL Injection, 

and Infiltration), while some were less than one thousand 

samples (i.e., six hundred and fifty-two samples for web attack 

– Cross Site Scripting attack). These insufficient attack 

samples were removed in order to eliminate the impact of the 

data imbalance since these data are not enough for deep 

learning experimentation. Therefore, as possible in future 

work, data augmentation techniques can be applied to address 

the imbalance of some attack samples in the dataset. This can 

take the form of creating more attacks from the ones available 

or by creating more samples by simulating more of such 

attacks. 
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