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Abstract. The most often used distribution in statistical modeling follows Gaussian 

distribution. But many real-life time series data do not follow normal distribution and 

assumptions; therefore, inference from such a model could be misleading. Thus, a re-

parameterized non-Gaussian Autoregressive (NGAR) model that has the capabilities 

of handling non-Gaussian time series was proposed, while Anderson Darling statistics 

was used to identify the distribution embedded in the time series. In order to 

determine the performance of the proposed model, the Nigerian monthly exchange 

rate (Dollar-Naira Selling Rate) was analyzed using proposed and classical 

autoregressive models. The proposed model was used to determine the joint 

distribution of the observed series by separating the marginal distribution from the 

serial dependence. The maximum Likelihood (MLE) estimation method was used to 

obtain an optimal solution in estimating the generalized gamma distribution of the 

proposed model. The selection criteria used in this study were Akaike Information 

Criterion (AIC). The result revealed through the value of the Anderson Darling 

statistics that the data set were not normally distributed. The best model was selected 

using the minimum values of AIC value. The study concluded that the proposed 

model clearly shows that the non-Gaussian Autoregressive model is a very good 

alternative for analyzing time series data that deviate from the assumptions of 

normality and, in particular, for the estimation of its parameters. 

 

Keywords: Non-Gaussian, Autoregressive model, Generalized Gamma, Anderson Darling 

 

1. Introduction 

Modelling plays a vital role in various areas of research. It provides a way to learn from a given set of 

data.  It is important that an appropriate model is applied in fitting a given set of data having observed 

so that promising results can be obtained, [1-3] mentioned how the choice of model applies to 

stochastic process.  

According to [4], a time series consists of statistical observation made sequentially and usually in an 

equal space of time. One of the main goals of time series data analysis is to identify a model within a 

given class of flexible models which can express a time structured relationship of the process that 

generates the data.  Therefore, a time series model for the observed data  tx  is a joint distribution of 

a sequence of random variables  tX  of realization  tx .  

Time series data can be Gaussian and non-Gaussian (N-G) in nature.  Non-Gaussian time series data 

were observed in the field of physical and social sciences, counts, or non-negative observations. 
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Diverse models have been proposed in modeling time series data that are non-Gaussian.  As 

mentioned by [5], Gaussian distribution is a popular probability distribution in statistics; because the 

distribution has a well-defined probability density function, and analysis can easily be assessed. 

However, not all the data that are modeled are Gaussian distributed in nature [6].  

While the Gaussian process has remarkable advantages in modeling, the assumption of a Gaussian 

distribution is questionable for truly non-Gaussian time series data [7]. This problem can be solved by 

transforming the non-Gaussian data with an elementary transformation and assuming that the 

transformed data were observations from an underlying Gaussian process [8]. However, this 

technique has its downsides because an elementary transformation will only lessen the skewness 

and/or kurtosis without altering the marginal distribution to be Gaussian-shaped [7]. An alternative to 

the transformation method is to specify the joint distribution of the non-Gaussian process directly; 

however, unlike Gaussian process models, the specification of a non-Gaussian process’s joint 

distribution goes well beyond specifying a mean vector and covariance matrix (if they exist). Hence, 

this study seeks to find a method that preserves useful modeling techniques developed for traditional 

Gaussian process models and effectively captures the non-Gaussian distribution. 

Various methods have been proposed and adopted in the literature for solving the problem of non-

Gaussian time series data. This method includes the transformation method, transition method, and 

Generalized Linear Mixed Models (GLMMs) among others [9-11]. But these methods all have their 

various drawbacks. Therefore, this study seeks to use the reparameterization method to bridge the gap 

of non-flexibility of model and their estimation problem. This study aims to develop a re-

parameterized Autoregressive model that appropriately analyzes time series data that follows non-

normal distribution [2]. 

Bishop carried out a comparative study of Gaussian and non-Gaussian distributions in time series 

analysis, and the outcome of the study is that the Gaussian distribution can easily be applied to data 

because its likelihood is non-tractable and analysis based on it can be derived in an explicit form [5]. 

However, [6] opined that all data could not necessarily be modeled with Gaussian distribution because 

of the nature inherent in such datasets. The Gaussian distribution has an unbounded support, whereas 

some data are semi-bounded or bounded support. Studies by [10]; [12] mentioned that non-Gaussian 

statistical models would be appreciated to model data that is not normally distributed.  

The literature's techniques for modeling non-Gaussian time series data fall into four main categories 

[13]. The frequently used method is the empirical transformations, including the log transformation, 

the square root transformation, and many more. The Box-Cox transformation function is commonly 

applied with the log transformation as a special case [14]. Rasmussen [15] provided a systematic 

review of the Box-Cox transformation and extended the Box-Cox transformation to handle the 

responses with incomplete observations using an MLE method. Lipsitz, Ibrahim, and Molenberghs 

[16] extended the Box-Cox transformation to the linear mixed model, discussing the impact of choice 

in the transformation parameter on the estimated coefficients and their standard errors. They pointed 

out that an adjustment is needed to correct the bias in the variance of the estimated coefficients 

induced by using the estimated transformation parameter. Gurka, Edwards, Muller,  Kupper, and 

Lawrence [17] presented univariate and multivariate time series models for processes with non-

Gaussian marginal distributions. These models include bivariate autoregressive models for processes 

with bivariate exponential marginal. Examples of applications to real data sets were given for some of 

the models discussed. When applicable, the theory of positive dependence is used to establish the 

association of the processes.  

Block, Langberg, and Stoffer [18] studied the statistical properties of the daily North Atlantic 

Oscillation (NAO) index. It was discovered that previous NAO modeling efforts simply considered 

Gaussian noise, which can be termed inconsistent in relation to the complexity of the system. They 

went ahead to establish an autoregressive model with non-Gaussian noise, and from their results, the 

established model gave a better fit to the time series for the four seasons separately. Also, the 

usefulness of the suggested model was also appraised by means of an investigation of its forecast 

skill. The remaining part of this paper is sectionalized as follows; section 2 is materials and method, 



ICORTAR 2021
Journal of Physics: Conference Series 2199 (2022) 012031

IOP Publishing
doi:10.1088/1742-6596/2199/1/012031

3

section 3 is results obtained, and section 4 is the summary and conclusion, while section 5 is the 

recommendations.  

 

2. Material and Methods 

2.1 Transformed or Generalized Gamma Distribution 

The probability density function (pdf) provides the numerical distribution features of random 

variables and is a crucial foundation for understanding the non-Gaussian traits of the autoregressive 

model. 

Let  ,  , , G x k   be the cdf  of Generalized Gamma (GG) distribution given by  

         
 

,

  ,  , , 
Γ k

t
k

G t k






 

  
  
                                        (1) 

where    1

0

0,  0,  0,  ,  

x

kk k x e d           is the incomplete gamma function and  Γ   is the 

gamma function. 

Is the distribution below the pdf for the above CDF? 
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 

1
11
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Γ

k
t t t t

f t exp k k
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
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        (2) 

Here,  1 ,    is the incomplete gamma ratio function denoted and defined by    1 , /Γ ,k x k
 
 that is 

the cdf  of the standard gamma distribution with parameter  k . 

  is the scale parameter, and the other parameters ,     k and   are the shape parameters 

If   1, the GG distribution reduces to  
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where   is the scale parameter, and the other parameters ,   and  k   are the shape parameters. The 

expected value and the variance are given as follows: 
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The maximum likelihood (ML) estimates of the parameters are as follows: 
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                             (6) 

 

2.2 Wold’s Representation 

 

An  1AR  process, is given as 

         1t t tX X U                            (7)   

where the inhomogeneous part defined by tU   contains a constant term   and a pure random 

process ut . Generalizing (7), this gives the   2AR  and it is written as 

          1 1 2 2t t t tX X X u                                                                                                           (8) 

where tu  denote a pure random process having a variance 2 , and 2 0  . 

         
1 1 2 2t t t p t p tX X X X                                                  (9) 

Equation (9) denote the  AR p  process which is described with the stochastic difference equation, 

with 0p  , where t   is again a pure random process. By means of the lag operator, this can be 

written as: 

          2

1 21  p

p t tL L L X                             (10) 

 AR p  process in (9) is stationary, then it gives 

         
1 2

1 2  p p p

p                 (11) 

         
2

1 21 0 p

pL L L           (12) 

If the stability conditions are satisfied,  AR p  becomes  

         1

1 2

  
1

t t j

j op

X


 
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





 
  
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2.3 Generalized Gamma Autoregressive model (GGMA) 

From (4), resolve 
 

 

Γ 1/

Γ

k

k


 using Stirling’s formula, 

              
 

 

1
Γ 1/

   
Γ

k
k

k




                              (14)       

Therefore, 

               
1

 E X ak                      (15) 

Equating (11) and (14) gives, 
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1

1 21 p

ak 

  


   
      (16) 

              
1/

1 21 p ak             (17) 

              
1/

1

1           1, 2,  
p

i

i

ak i p 


      (18) 

Recall equation (7) where, 

            1 1t t tX X    

Substitute for equation ( 1  8 ) 

          1/

11   t t tX ak X                         (19) 

          1/

1 1t t t tX X ak X         (20) 

 

2.4  Data Description 

In order to apply the underlying models in solving the problem, data of daily exchange rate of Nigeria 

Naira was obtained from the central bank of Nigeria official website 

https://www.cbn.gov.ng/rates/exchratebycurrency.asp, between March 27, 1981, to November 30, 

2017. The return was obtained and tabulated in Table 1, following the transformation in the equation: 

            1  log log   t t tr P P                       (21) 

where, tP  is the exchange rate (Dollar-Naira) during the time t , and 1tP  is exchange rate during the 

time  –1 t . 

The descriptive analysis is used to summarize the characteristics of the variables considered in this 

research with the aim of showing the important features of each of the variables through the use of a 

time plot.  

 

3. Results 

Table 1: Descriptive statistics of logarithmic returns 

Currency Mean  Median Minimum Maximum St Dev Skewness  Kurtosis 

USD -0.0007  -0.00022  0.03723  0.02668  0.00722 0.88692 7.52121 

 

Table 1 shows the descriptive statistics of the logarithmic returns of the USD exchange price against 

NGN. The result showed that the mean of the variable is negative at -0.0007. In the case of skewness, 

the variable is positively skewed with a value of 0.88692. It has a kurtosis value of 7.52121 which 

means that the kurtosis is leptokurtic in nature; its value is greater than 3. The results showed that the 

USD deviates from the Gaussian distribution.  
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Figure 1: Probability Plot of Exchange Rate 

 

 

 

The time plot of the USD-NGN Exchange Rate (1981-2017) is presented in the Figures below. 

The Anderson - Darling test shows that the exchange rate of NGN-USD for the period observed was 

not normally distributed at (p<0.05). This may be due to the presence of extreme values inherent in 

the data. This is further shown in Figures 1 and Figure 2, respectively.  

 

 

Figure 2:  Time Plot of Exchange Rate 

 

 

 

From Figure 2, the autocorrelation coefficient, partial autocorrelation coefficient, the result shows 

positive at lag 1 (AC = 0.1, p<0.005), and it concluded that USD returns may be considered 

independent in time.  See Figure 3 for the Correlation plot of the exchange rate. 
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3.1 Generalized Gamma Autoregressive model (GGAR) 

Table 2: Anderson-Darling Statistics for Exchange Rate 

Real data Gamma Poisson Chi-Square Geometric Exponential Normal 

Exchange Rate 0.793 0.498 0.743 0.543 0.478 0.877 

 

From Table 2, the Anderson Darling statistics for the data are presented as follows. For the exchange 

rate, the Anderson Darling statistics were obtained for the following non-Gaussian distributions; 

Gamma, Chi-square, Geometric, Exponential, and Anderson Darling statistics for Normal distribution. 

The AD statistics obtained are 0.973, 0.498, 0.543, 0.478 and 0.877 for Gamma, Chi-square, 

Geometric, Exponential, and normal distributions respectively. It is discovered that the exchange rate 

data follows an Exponential distribution; this is so because it has the least Anderson Darling statistics. 

 

Table 3: Parameters of Fitted Distributions 

 Distribution Parameters Estimate 

Exchange Rate Exponential Shape 10.41 

Rate - 
 

Table 3 summarizes the parameters of the fitted distributions. It can be deduced that the distribution 

fitted is an exponential distribution with an estimated parameter for the exchange rate. 

Thus, from a pool of models, the model with the least AIC obtained is Exponential  1AR ; this 

invariably means that  1EAR  is the best model for the dataset. This model can be written as: 

Table 4: EAR Model Estimation for Exchange Rate 

 Coefficient Std. Error Z p-value   

Const 0.926162 0.0695078 13.3246 <0.0001 *** 

phi_1 0.089453 0.0316722 0.9676 0.3332   

Mean dependent (MD) var  0.960552   S.D. dependent var  0.985980 

Mean of innovations  0.000000   S.D. of innovations  0.986501 

Log-likelihood −1402.440   Akaike criterion  0.407663 

Schwarz criterion   0.561784   Hannan-Quinn  0.504762 

 

In the modelling of the exchange rate data (see Table 4),  1EAR  is the selected model with the 

corresponding AIC value of 0.407663. the model is given as  

 10.0894534t t tX X     

From the proposed model, 
1/

1 1t t t tX X k X      

Recall that 
1/

11 1 0.0894534 0.9105466k        

thus becoming, 1 10.9105466t t t tX X X      

This indicates that the slope coefficient is considerably different from zero (0), indicating that the lag 

one (1) variable is a useful predictor 

. 
4.   Summary and Conclusion 

This research centers on modelling non-Gaussian time-correlated data. One major contribution of this 

research is to develop a class of model that is capable of capturing a large group of non-Gaussian time 

series or longitudinal data rather than restricting the method to a specific type of non-Gaussian 
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distributed data. Predominantly, the study allows the non-Gaussian time series or longitudinal data to 

be arbitrarily shaped.  For instance, skewed, heavy-tailed, or multi-modal): the very loose assumptions 

on the model permit it to outperform its Gaussian competitors in model fitting and prediction when 

analyzing truly non-Gaussian time-correlated data. 

The NGAR model proposed is a non-linear time series model. This is particularly interesting as many 

real-life phenomena are normally non-linear in either parameter or even non-stationary. The results 

clearly showed that it is a good alternative for fitting time-series data, and estimation of its parameters 

shows promising results. The results obtained in this study partly agree with the work of [19], who 

developed a hierarchical Gaussian process model for inference and forecasting of functional time 

series data. In a similar vein, the work of [1], [2], and [18] agreed with the results of this research that 

non-Gaussian autoregressive models and their parametric estimation methods are better and most 

efficient techniques to discuss time-series data that deviate from the assumptions of normality.  

5.  Recommendations 

Due to the ever-changing situation in our immediate environments, this has caused a lot of changes in 

the distributional pattern of time series data over the years, making it often non-Gaussian in nature. 

Therefore, analyzing this requires the construction of efficient and better statistical analysis methods, 

which will give room for proper and correct statistical inference that leads to a valid decision and 

conclusion. Based on the results obtained from this study, the following are recommended: 

i. That Empirical Distribution Function (EDF) should be applied before the parameters of 

autoregressive models are estimated. 

ii. Generalized Gamma distribution based on exponential distribution should be employed in 

fitting non-Gaussian time series data as it shows promising results relative to other models.  

iii. Gaussian and non-Gaussian autoregressive models should be applied to other phenomena like 

elections, electricity consumption, to mention but a few. 
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