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1 Introduction and theoretical
concepts

1.1 Self-organization of active matter
To understand systems in thermodynamic equilibrium, a theoretical framework
was successfully developed during the twentieth century, namely equilibrium sta-
tistical mechanics. This discipline provided principles explaining the properties
of macroscopic systems, e.g. solid and liquid phases, in terms of their microscopic
constituents, e.g. phonons, magnetic spins, and gas molecules [1, 2]. Nonetheless,
systems out of thermodynamic equilibrium have still a large number of open ques-
tions [3–5]. Active matter refers to systems of agents in such non-equilibrium due
to local consumption of energy, allowing agents to perform directed motion [6].
Systems of interacting active agents have been found to self-organize leading to
spectacular collective behavior [7–10]. This has been observed at the macro-
scopic level in animals, e.g. in schools of fish [11], flocks of birds [12], herds of
sheep [13], and swarms of insects [14]. Moreover, they are also observed at the mi-
croscopic level in living organisms like bacteria [15], active biopolymers [16], and
spermatozoa [17]. The possibility to control systems of active agents has led to a
growing interest in artificially engineered systems with activated constituents, e.g.
light-activated colloidal suspensions [18–20], driven magnetic colloids [21–24], and
swarms of micro-robots [25–30]. Some of the most common types of collective be-
havior include flocking, vortex formation, and turbulent flows. See Fig. 1.1. All in
all, active matter is a multidisciplinary research field, and it lies in the intersection
of physics, chemistry, and biology [33, 34].

Biological agents perform actions according to information processing of sig-
nals they exchange among each other or perceive from the environment. They can
make decisions and adjust their behaviors in order to achieve a specific goal. For
this, biological agents require of sensing mechanism, allowing interactions that go
beyond pair physical forces exerted between the agents. For example, cells can

1



1 Introduction and theoretical concepts

(b)(a) (c)

Figure 1.1: Examples of collective behavior in active matter. (a) Starling murmuration
displaying flocking behavior. Taken from [31]. (b) Illustration of an ant
“death spiral”, an example of vortex formation. Taken from [32]. (c) Visual-
ization of turbulent fluid flow in the suspension of swimming bacteria Bacil-
lus subtilis by fluorescent tracer particles (false-color). Taken from [15].

regulate gene expressions based on input chemicals received from their surround-
ings, and animals can decide either to continue foraging or escape from threats
based on auditive and visual stimuli. Such biological information processing has
been found to play an essential role in the emergence of collective states, e.g. in
herds of sheep [13], and schools of fish [35]. In recent years, an effort has been
made to mimic systems of active agents that include internal degrees of freedom
to account for a type of information processing, propagating signals from the in-
dividual parts to the collective whole [36, 37]. This has led to the development
of programmable active matter [38], which aims to develop systems of active au-
tomatons with adaptable collective states. One task of this novel research subject
is to design self-organization strategies of model systems with local sensing and
actuation rules.

One interesting strategy is when an agent perceives the system’s local den-
sity and switches its motility after a given density threshold is surpassed. This
strategy has been termed quorum sensing, as it models the behavior observed
in certain populations of bacteria like Aliivibrio fischerei [39], which are capa-
ble of sensing surrounding chemical concentration and fluoresce altogether after
a chemical threshold is surpassed, as if they have reached some kind of quorum
decision [40]. Systems with quorum sensing have been found to aggregate into a
circular droplet, which can be either compact or dilute depending on the chemical
threshold. This has been experimentally verified in externally controlled colloidal
suspensions, where a narrow laser beam locally activates colloids according to
a computer assisted feedback mechanism accounting for the local density per-
ception [41]. See Fig. 1.2a-b. Another interesting type of perception, is when

2



1.1 Self-organization of active matter

(a) (b) (c)

Figure 1.2: Modes of perception in experiments of laser activated colloids. (a) Illus-
tration of an experimental setup of individually activated Janus colloids
self-propelling with speed v0 and direction p̂. Clustering formation in ex-
periments mimicking (b) quorum sensing, and (c) visual perception. Panels
in (b) correspond to systems with different chemical concentration thresh-
old. Figures taken from Refs. [41, 45].

agents sense their environment within a restricted cone of vision. Visual percep-
tion differs fundamentally from quorum sensing where the perception of agents
is isotropic. The reason is that here the interactions are non-reciprocal, i.e. a
particle A might sense a particle B, however particle B might not sense particles
A, in other words the action-reaction principle is broken. See Fig. 1.2b. This has
been found to lead to a zoo of collective behaviors, which would not be possible if
interactions were reciprocal. For example, active particles with visual perception
aligning their orientation based on the position of other neighbouring particles,
have shown to aggregate into clusters, polar filaments, and nematic bands [42,
43], as has been demonstrated in particle-based numerical simulations. In experi-
ments, visual perception has been employed to generate vortical structures when
imposing a local torque to light-activated colloids [44].

In this chapter we describe some of the most important state-of-the-art con-
cepts in active matter and non-equilibrium statistical mechanics [1, 2, 46–48]. We
start introducing Brownian motion, which govern the dynamics of micrometer-
sized colloids studied throughout this thesis. Then we explain a few paradigmatic
examples of collective behavior, including those that have been developed in re-
cent years, accounting for different modes of perception in active agents. Finally,
we show the coarse-graining procedure of the equations of motion for active par-
ticles via the Smoluchowski equation. This is a useful method, which we later
employ to derive analytic expressions explaining the overall behavior we observe
in our microscopic models. We finish the chapter giving an outline of this thesis.

3



1 Introduction and theoretical concepts

1.2 Brownian dynamics
The random motion of a small particle immerse in a fluid is called Brownian
motion. This phenomenon was first observed by Robert Brown in 1827 when he
was investigating pollen grains under the microscope [49]. He concluded these
random moving particles should be a type of “microscopic living particles". The
problem on Brownian motion captured the attention of physicist in 1905, when
Albert Einstein and Marian Smoluchowski gave a physical explanation to this
phenomena. They associated the random motion of the particles to microscopic
physical forces related to the temperature of the fluid [50, 51]. In 1908, their
formulation of Brownian motion was verified by the experimental work of Jean
Baptiste Perrin [52, 53]. On the same year, Paul Langevin described the micro-
scopic dynamics of a single particle subject to collisions with the molecules of
the fluid, by proposing an stochastic differential equation for the velocity of the
particle [54].

1.2.1 Langevin equation
The Langevin equation describes the dynamics of a Brownian particle immersed
in a surrounding medium, it contains the information of both frictional and fluc-
tuating forces [48], namely

mv̇ = −ζv + ξ, (1.1)
where m is the particle’s mass, v its velocity, and v̇ acceleration. The frictional
force or damping term given by −ζv is directly proportional to the velocity v
of the particle and to ζ the friction coefficient provided by the surrounding fluid.
The fluctuating force or noise term given by ξ is an additional term accounting for
the interactions with the surrounding medium or heat bath. Additional external
forces exerted on the Brownian particle can be included as extra terms on the
right hand side of the equation. For now we focus on the simple case without
additional forces, extra terms accounting for intrinsic forces are described next
in Sec. 1.2.3, and interaction forces in Sec. 1.3.

To fully characterize the motion of the particle, a more precise definition of the
noise term is required. The most common interpretation of ξ is that it is a force
coming from subsequent collisions between the particle under consideration and
the molecules of the surrounding medium. As the collision forces are isotropic on
the particle, we assume that the average noise term vanishes, therefore we take

⟨ξ(t)⟩ = 0, (1.2)

where ⟨. . .⟩ is an average over time. Furthermore, the force magnitude is supposed
to vary rapidly during an observation time, which is taken to be infinitesimally
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1.2 Brownian dynamics

small. Therefore the correlation between subsequent noise terms is given by

⟨ξ(t)ξ(t′)⟩ = 2Bδ(t− t′), (1.3)

where B is a measure of the fluctuating force strength. The delta term indicates
that subsequent impacts are decorrelated from time t to time t′, which is an
infinitesimal interval of time. The probability distribution satisfying the moments
of the noise term, Eq. (1.2) and Eq. (1.3), is a Gaussian probability distribution.
For this reason, the noise term should be sampled from

P [ξ(t)] = 1√
4πB

exp
[
−
w t

0
dτ

ξ(τ)2

4B

]
. (1.4)

Fluctuation-dissipation theorem

Integrating Eq. (1.1) over time and plugging Eq. (1.2) and Eq. (1.3) we obtain
the solution for the velocity

v(t) = e−ζt/mv(0) + 1
m

w t

0
dt′e−ζ(t−t′)/mξ(t′), (1.5)

where the first term is a damping of the initial velocity, and the second term comes
from noise. Since ξ(t) is not a smooth function, but rather an stochastic term, it
is not possible to analytically solve the integral in this equation. However, one is
interested in understanding averaged quantities. For example, the mean squared
velocity can be obtained by taking the square of Eq. (1.5) and integrating over
time, then to solve the integral over the noise we consider the correlation defined
in Eq. (1.3). We obtain

⟨v(t)2⟩ = e−2ζt/mv(0)2 + B

ζm
(1 − e−2ζt/m). (1.6)

In the long time limit, the terms with exponentials vanish, and the mean squared
velocity approaches the value

lim
t→∞

⟨v(t)2⟩ = B

ζm
, (1.7)

i.e. stronger fluctuations or smaller friction coefficients lead to larger deviations
of the velocity from the mean.

The most interesting result here, comes from connecting Eq. (1.7) with the
energy equipartition theorem, which tell us that a particle immersed in a sur-
rounding medium of temperature T has a kinetic energy proportional to dkBT/2,
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1 Introduction and theoretical concepts

where kB is the Boltzmann constant and d is the dimension of the system. In
other words, each spatial degree of freedom adds an extra kBT/2 to the total en-
ergy. Then, in two dimensions the theorem tell us that the mean squared velocity
in equilibrium is

lim
t→∞

⟨v(t)2⟩ = kBT

m
(1.8)

Therefore, comparing Eq. (1.7) and Eq. (1.8) we find that the fluctuating force
strength B and the thermal energy energy kBT follow the relation

B = ζkBT , (1.9)

which is called fluctuation-dissipation theorem [55, 56]. The theorem expresses
the balance between the frictional and fluctuating forces. While the friction tends
to lead the system to rest, the random force keeps the system in motion. This
balance occurs in thermal equilibrium at long times.

Mean squared displacement

Another important quantity to compute from the general solution of the Langevin
equation Eq. (1.5) is the mean squared displacement (MSD) of a Brownian par-
ticle. In order to obtain the MSD, first we consider the particle displacement
∆r ≡ r(t) − r(0), which we can obtain from the velocity as

∆r(t) =
w t

0
dt′v(t′). (1.10)

Note that this equation averages to zero, i.e. a Brownian particle does not per-
sistently displaces over time, but rather describes the trajectory of a random
walk. Now we square Eq. (1.10), average over the noise and plug the noise aver-
age Eq. (1.3). We obtain the mean squared displacement

⟨∆r2⟩ = 2kBT
ζ

[
t− m

ζ
+ m

ζ
e−ζt/m

]
. (1.11)

At short times the constant and linear terms cancel out with the expansion of the
exponential, and the MSD approximates to first order to

lim
t→0

⟨∆r2⟩ ≈ 2kBT
m

t2. (1.12)

At longer times, the exponential term vanishes, and the linear term dominates,
leading to

lim
t→∞

⟨∆r2⟩ ≈ 2kBT
ζ
t. (1.13)
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1.2 Brownian dynamics

Einstein diffusion

Consider the one-dimensional diffusion equation for the local particle concentra-
tion (i.e. the number of particles within an infinitesimally small length x + dx)
at time t,

∂tC(x, t) = D∂2
xC(x, t). (1.14)

Suppose that the test particle starts at x = 0. Then the concentration will change
from an initial delta function in x to a spread-out Gaussian function of x. Due
to symmetry, the mean displacement in this case is ⟨x⟩ = 0. The mean squared
displacement at time t is obtained by multiplying Eq. (1.14) by x2 and integrating
over x, one obtains

∂t⟨x2⟩ = 2D. (1.15)

Integrating this equation over time, one arrives to the well-known Einstein formula
for diffusion in one dimension

⟨x2⟩ = 2Dt. (1.16)

This coefficient is a quantitative measure of molecular diffusion, it defines the
length l ∼

√
Dt, which is the average distance a particle can travel during a time

t.
We can rewrite the fluctuation-dissipation theorem Eq. (1.9) in terms of the

diffusion coefficient,
D = kBT

ζ
. (1.17)

For a Brownian particle in a homogeneous and diluted three dimensional sys-
tem, the diffusion coefficient can be obtained in terms of the temperature T , the
viscosity of the fluid η, and the particle radius r,

D = kBT

6πηr , (1.18)

which is called the Stokes-Einstein equation [57].

1.2.2 Overdamped limit
The motion of an incompressible Newtonian fluid is governed by the Navier-Stokes
equation [58]

ρ[∂tv + (v · ∇)v] = −∇p+ µ∇2v + f , (1.19)

where v is the fluid’s velocity field, µ the dynamic viscosity, ρ density, p pressure,
and f corresponds to external forces. The condition of incompressibility is given
by ∇·v = 0, which needs to be solved together with Eq. (1.19) to fully determine

7



1 Introduction and theoretical concepts

the velocity field v. The term on the left-hand side of the Navier-Stokes equation
is a material derivative of the velocity field, defined as dv/dt ≡ ∂tv + (v · ∇)v,
describing the rate of change of flow field v for a material element (i.e. an infinites-
imal volume of fluid) moving with velocity v. The first term on the right-hand
side accounts for the forces induced by pressure gradients, and the second term
for diffusion of momentum. To non-dimensionalize the Navier-Stokes equation,
we choose a characteristic length scale l and velocity u, from which the character-
istic time scale follows τ = l/u. Choosing the non-dimensional variables ṽ = v/u,
t̃ = t/τ , p̃ = τp/µ, f̃ = l2f/µu and ∇̃ = l∇, we obtain

ρul

µ
Dtṽ = −∇̃p̃+ ∇̃2ṽ + f̃ . (1.20)

The prefactor in this equation defines the Reynolds number

Re = ρul

µ
. (1.21)

The numerator ρul is associated to inertial forces. When particles are suspended
at high Reynolds number, Re ≫ 1, the inertial forces acting on them are very
large compared to the viscous forces. The resulting fluid flow in this limit tends to
form eddy currents that lead to the formation of turbulent flows. In the opposite
limit, when Re ≪ 1, the left hand side of Eq. (1.20) vanishes, and the Navier-
Stokes equation reduces to the Stokes equation, i.e. a diffusion equation for the
fluid flow.

A colloid of length scale l = 1nm suspended in a fluid with relaxation time
scale τ = 10−14s, whereas the time scale of the colloidal motion is of 10−9s. In
this case the Reynolds number is also very small, and therefore the inertial forces
acting on the colloid are negligible. In the context of the Langevin equation this
is called the overdamped limit, which is effectively given by taking the left hand
side of Eq. (1.1) to be zero, then it reduces to the overdamped Langevin equation

ṙ = 1
ζ
ξ, (1.22)

where ṙ = v. Note that in this limit time-reversibility holds, i.e. the system
exhibits the same dynamics if t → −t. For this reason, swimming at low Reynolds
number requires of a specific mechanisms that is irreversible in time in order to
achieve net displacement [59]. The scallop theorem states that a swimmer that
performs reciprocal motion at low Reynolds number will only move back and
forth, retracing its trajectory without net displacement [60].

8



1.2 Brownian dynamics

1.2.3 Active Brownian particles
As we have shown above, a Brownian particle does not display directed motion.
However, when the particle is driven by an active force F , it can lead to a non-
vanishing average displacement. Such driving force could be produced by the
particle itself, in which case we say the colloid is able to self-propel. As opposed
to driven active matter where an external force is applied to particles to induce
motion, self-propelled particles require a mechanism that allow to locally pro-
duce gradients (e.g. of temperature, or chemical) that translate it into self-driven
motion. As introduced in Sec. 1.1, the Janus particle is a colloidal sphere with
two different sides, it is able to self-propel due to a local (temperature or chemi-
cal) gradient generated from different materials on each side that react with the
surroundings. Then, the local gradient generates a flow field around the colloid,
resulting in its overall finite displacement.

We define an active Brownian particle (ABP) as a particle which follows Eq. (1.22)
and additionally has an internal degree of freedom accounting for the self-propulsion
v0, and orientation vector e which is simultaneously subject to a random torque
η [61, 62]. Realistic examples of ABP’s are spherically symmetric, e.g. disks in
two dimensions and spheres in three dimensions. In those cases the particles un-
dergo free rotational diffusion with diffusion constant DR, even when no external
torques are acting on them. The equations of motion governing the dynamics of
an ABP are

ṙ = v0e + 1
ζ
ξ,

ϕ̇ = η,

(1.23)

where e = (cosϕ, sinϕ)T with ϕ the self-propulsion orientation angle, see Fig. 1.3a;
v0 is a constant self-propulsion velocity. Similar to the translation degrees of
freedom, here the rotational noise has zero mean ⟨η(t)⟩ = 0 and is delta correlated
⟨η(t)η(t′)⟩ = 2DRδ(t− t′) with rotational diffusion coefficient

DR = kBT

8πηr3 . (1.24)

Some examples of trajectories for various v0 are shown in Fig. 1.3b-e. As v0
increases, we obtain active trajectories that are characterized by directed motion
at short time scales. However, over long time scales the orientation and direction
of motion of the particle are randomized by its rotational diffusion.

To emphasize the difference between passive and active Brownian motion, it is
instructive to consider the average particle trajectory given by the initial position
and orientation fixed at time t = 0. In the case of passive Brownian motion, this

9



1 Introduction and theoretical concepts

Figure 1.3: Active Brownian particles in two dimensions.(a) An ABP displacing in two
dimensions with self-propulsion velocity v and orientation angle ϕ. The
particle still undergoes Brownian motion in both position and orientation.
The resulting t = 10s trajectories are shown for different velocities, (b) v =
0 (Brownian particle), (c) v = 1µm s−1, (d) v = 2µm s−1, and (e) v =
3µm s−1. With increasing values of v, the active particles move over longer
distances before their direction of motion is randomized. Figure was taken
from Ref. [8].

average vanishes by symmetry ⟨∆r⟩ = 0, see Eq. (1.10). For an ABP instead, the
average at short times is [8]

⟨∆r⟩ = v0

DR

[
1 − e−DRt

]
. (1.25)

The rotational diffusion allows to define a quantity related with the persistence
length, which is the average distance that a particle travels before changing its
orientation, namely

lp = lim
t→∞

⟨∆r⟩ = v0

DR

. (1.26)

The relative importance of directed motion versus diffusion for an ABP can be
characterized by its Péclet number

Pe = v0

σDR

. (1.27)

If Pe is small, diffusion is important, while if Pe is large, directed motion prevails.
We can also calculate the mean squared displacement of an ABP, giving [8]

⟨∆r2⟩ =
[
4DT + 2 v

2
0

DR

]
t+ 2 v

2
0

D2
R

[
e−DRt − 1

]
(1.28)

It has a ballistic regime at short times

lim
t/τR→0

⟨∆r2⟩ = 4DT t+ v2
0t

2, (1.29)
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1.3 Modelling collective behavior

and a diffusive regime at longer times

lim
t/τR→∞

⟨∆r2⟩ = 4(DT + 1
2v

2
0τR)t ≡ 4Defft, (1.30)

which shows that ABPs display an effective diffusion with coefficient Deff > DT

larger than the passive case.

1.3 Modelling collective behavior
When several active particles are moving together, interactions play an impor-
tant role. The aim of this section is to provide insight into the interplay between
activity and particle interactions, and how this interplay can lead to emergent
collective behavior. The examples presented are paradigmatic models of systems
with very simple interaction rules, where the systems self-organize into unex-
pected ordered structures. The simplicity of these models allows to understand
in detail the collective behavior observed in systems at various length scales, from
microscopic bacteria and colloidal suspensions, to macroscopic flocks of birds and
schools of fish. A system exhibiting collective motion is made of units that are
rather similar, moving with a nearly constant absolute velocity and are capable of
changing their direction. Furthermore, they interact within a specific interaction
range, e.g. by changing their direction of motion. The systems considered follow
overdamped Langevin dynamics, and are subject to delta correlated noise with a
given magnitude.

1.3.1 Motility-induced phase separation
We include short range steric interactions on the right hand side of Eq. (1.23),
where the force Fi = −∇iU({ri}) is obtained from a pair interaction potential

U({ri}) =
∑
j ̸=i

u(|rj − ri|). (1.31)

Volume exclusion can be modeled by different potential forces. The study of
this effects on the emergent macroscopic phenomena dates back to the work by
van der Waals [63], where short range interactions were considered to have both
an attractive and a repulsive part, like the Lennard-Jones potential, resulting in
liquid-vapor phase separation of the system [64].

In colloidal systems of Janus particles, no attractive interactions are involved,
but only soft or hard-core steric repulsions are present. Such steric repulsions
together with activity leads to the emergence of the so-called motility induced
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Figure 1.4: Self-trapping mechanism. (a) Sketch of the self-trapping mechanism: for
colloidal particles to become free, they have to wait for their orientations
to change due to rotational diffusion and point outwards. (b) Clustering
process. The snapshots show how the indicated particle towards the bottom
(left) leaves the cluster (center) and is replaced by another particle (right).
Figure taken from Ref. [66].

phase separation (MIPS). This phenomena has been heavily studied in the field
of active matter, as it is a generic behavior occurring for particles with activity
and volume exclusion [65–79]. Here ABPs serve as one particular example where
the system undergoes phase separation at intermediary packing fractions and
sufficiently large propulsion strengths. At first, phase separation in this case
might sound counter-intuitive, as there are no attractive interactions between
particles that could drive aggregation and lead the system to phase separate in
a similar way as a gas-liquid phase separation. However, the self-propulsion of
the particles acting together with the steric forces result in a mechanism of self-
trapping. Here, the active motion of the particles is directed on time scales of the
rotational diffusion τR = 1/DR. If two particles collide head on, they block each
other due to the volume exclusion. While this time is typically very short for the
collision of only two particles, the situation is different for three of them, as shown
in Fig. 1.4a. These particles can only move freely again when their orientation
has changed sufficiently via rotational diffusion. As these collisional time scales
are rather long compared to τR, other particles can in the meantime reach the
building cluster and thus further obstruct the motion of the already trapped
particles. This feedback-loop mechanism will lead to more and more particles to
aggregate in the cluster, see Fig. 1.4b, such that a fluctuation of density will lead
to the local density to further increase. In fact the effective speed of the particles
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in this case is v(ρ), depending on whether particles are in a crowded region or
not [68, 80].

MIPS is strikingly similar to the vapor-liquid spinodal decomposition observed
in many equilibrium systems [81, 82]. Thus, MIPS is a generic feature of systems
that are driven out of equilibrium by a persistent local energy input that breaks
detailed balance. Interestingly, hydrodynamic interactions between active colloids
have been shown to have major effects on their rotational dynamics, and the
local field inducing the particle’s propelling forces (pushers versus pullers) plays
a central role in MIPS [83, 84], e.g. either enhancing or diminishing clustering.

1.3.2 Vicsek model

The notion of flocking is used as a synonym of any kind of coherent motion
of individual units [85, 86]. Coherent or ordered motion is assumed to be a
counterpart of disordered, random motion. In the various models of flocking it
emerges through a transition (from disorder to order) as a function of the relevant
parameters of the models. Such type of transition was described for the first time
by Tamás Vicsek in 1995 [87] in a system of particles with velocity alignment.
Other flocking models were first proposed to mimic the behavior in schools of fish,
then in 1986 Craig Reynolds proposed the Boids model [88]. The Vicsek model
is also very similar to the Kuramoto model for synchronized oscillators [89–92],
or the XY model for the 2D Ising paramagnet [93]. However, the difference here
is that the particles are not fixed in space but rather they are free to move.

The Vicsek model is given by the equations

ṙ = v0e,

ϕ̇ = ⟨ϕ⟩rcut + η,
(1.32)

where the average ⟨·⟩rcut represents the average direction of neighbouring particles
of i, which are located within a cutoff range rcut. Here η is a random number
chosen with a uniform probability from the interval (−ξ/2, ξ/2). There are three
parameters for a given system size: the noise η, number density ρ = N/L2,
and velocity magnitude v0. By varying these parameters, one can observe the
transition between a gas-like motion, small moving groups, correlated random
motion, and coherent collective motion, see Fig. 1.5. This model exhibits a non-
equilibrium phase transitions leading to long-range order at sufficiently low noise
and high particle density.
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1 Introduction and theoretical concepts

Figure 1.5: Flocking transition. Velocities of the particles are displayed for varying
values of the density and noise. The actual velocity of a particle is indicated
by a small arrow, while their trajectory for the last 20 time steps is shown
by a short continuous curve. The number of particles is N = 300 in each
case. (a) L = 7, η = 2. (b) For small densities and noise the particles
tend to form groups moving coherently in random directions, here L = 25,
η = 0.1. (c) After some time at higher densities and noise, L = 7 and
η = 2, the particles move randomly with some correlation. (d) For higher
density and small noise, L = 5 and η = 0.2, the motion becomes ordered.
Figure taken from Ref. [7].

1.3.3 Quorum sensing
Coordinated motion in biological systems is often a consequence of complex com-
munication pathways among their individual units. Some bacterial colonies pro-
duce extracellular enzymes called auto-inducers, which regulate their gene expres-
sion and act as a means of communication among cells. For instance, Aliivibrio
fischeri produces luminescence after their local population surpasses a thresh-
old density [94]. The communication among the bacterial cells triggered by the
variation in local population density is called quorum-sensing [95–97]. This mech-
anism plays a vital role in the regulation of various physiological processes like
manoeuvring local population density, regulation of gene expression, communica-
tion among cells, and motility.

For active particles, density-dependent velocity has been modeled as a discon-
tinuous motility rule depending on the chemical concentration produced by the
particles [40, 41, 98–101]. The model equations are

ṙ = v(c)e + ξ,

ϕ̇ = η,
(1.33)

where the chemical concentration c is

c(r) = γ

4πDc

w
d2r′ρ(r − r′)e

−r′/λ

r′ , (1.34)
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Figure 1.6: Collective behavior of active particles with Quorum sensing. (a) Snap-
shot of a two-dimensional suspension of carbon-coated particles with size
σ = 4.4µm. Upon laser illumination, particles self-propel as a result of a lo-
cal demixing process in the binary solvent. (b) The colour code corresponds
to the chemical concentration c which is attributed to each particle. (c) Cor-
responding particle activity obtained by the concentration-dependent motil-
ity rule. (d) Concentration-dependent particle motility with self-propulsion
velocity v0 below the threshold cth and Brownian diffusion above. Figure
taken from Ref. [41].

which follows from the solution of the reaction-diffusion equation considering the
chemical concentration relaxation time is instantaneous [102]. This has been
found to lead to an phase separation of loose passive aggregates surrounded by
a diluted active gas, which unlike MIPS is still possible at low particle density,
see Fig. 1.6. Such behavior has been confirmed both by particle-based numerical
simulations [99], as well as in experiments of light-activated colloids [41].

1.4 Mean-field theory
Langevin equations allow to directly obtain expectation values, for example for the
velocity Eq. (1.6) and displacement Eq. (1.11), which can be analytically obtained
even when activity is included, see Eq. (1.28). However, when interactions are
taken into account, expectation values become much more difficult to obtain,
and in general the model becomes difficult to be analytically studied. A better
approach in this case, is to consider the probability density ψ of the system of
particles. Then, the differential equation accounting for the dynamics of this
distribution function is the Smoluchowski equation [47, 103], defined as

∂tψ(X, t) =
[
−∇Ddrift(X, t) + ∇2Ddiff(X, t)

]
ψ(X, t), (1.35)

where ψ = ψ(X, t) is the joint probability distribution of finding the system
in a state X at time t, and the coefficients Ddrift and Ddiff are the drift and
diffusion terms, respectively. Note that the state X can consist of an arbitrary
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number of degrees of freedom. For example, for a system of N particles where
each particle i has position ri and velocity vi, the state vector would include
X = (r1, . . . rN ;v1 . . .vN). In the following we identify the drift and diffusion
terms for a system of active Brownian particles in Sec. 1.4.1, then we take the
moment expansion in order to identify formulas for the continuum number density
and polarization, Sec. 1.4.2.

1.4.1 Smoluchowski equation
Here we show the general coarse-graining procedure to go from a set of n dif-
ferential equations describing the time-evolution of system variables defined by
a vector X, to a single differential equation describing the time-evolution of a
probability distribution ψ. We consider Itô stochastic differential equations [47]
defined by

dX(t) = A(X, t)dt+ B(X, t)dW (t), (1.36)
where A is a drift term, B a diffusion term, and W a random Wiener process.
Then, the corresponding Fokker-Planck equation is given by

∂tψ(X, t) = −
n∑
i=1

∂i
{
Ai(X, t)ψ

}
+ 1

2

n∑
j=1

n∑
i=1

∂i∂j
{[
B(X, t) ·B(X, t)

]
ij
ψ
}

(1.37)

Here, the main quantity of interest is the one-body probability distribution,
which is obtained from integrating the join probability distribution over the other
(N − 1) degrees of freedom

ψ1(X1, t) = N
w
dX2 . . . dXNψ({X}, t), (1.38)

where ψ1(X1, t)dX1 is the probability to find one particle inside the phase space
volume dX1. In order to obtain the Fokker-Planck equation for Eq. (1.38), we
should integrate Eq. (1.37) over the degrees of freedom (X2, . . . ,XN). In more
physical terms, the one-body state vector X1 corresponds to generalized coordi-
nate and conjugate momenta of a given particle X1 = (q1,p1). For the system of
active Brownian particles described by Eq. (1.23), it corresponds to the Cartesian
coordinates and the orientation vector of a given ABP, i.e. X1 = (r1, e1).

The N-body Smoluchowski equation for a system of ABPs is given by

∂tψ =
N∑
k=1

{−∇i · [(v0ei − D

kBT
Fi)ψ] +DT∇2

iψ +DR∂
2
ϕψ}. (1.39)

Integrating over N − 1 degrees of freedom this reduces to the 1-body equation

∂tψ1 = −∇ · [( DT

kBT
F + v0e −DT∇)ψ1] +DR∂

2
ϕψ1, (1.40)
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where
F (r, ϕ, t) =

w
dr′[−∇u(|r′ − r|)]ρ(r′, t)g(r, r′, ϕ, t), (1.41)

with g(r, r′, ϕ, t) a pair correlation function; the product ρ(r′, t)g(r, r′, ϕ, t) is the
conditional probability density to find a particle at position r′ given that there is
another particle at r with orientation ϕ at time t.

1.4.2 Moment expansion
Since ψ1(r, ϕ, t) is a periodic function in ϕ, it can be expanded into a Fourier
series

ψ1(r, ϕ, t) = 1
2π ψ̂0 + 1

π

∞∑
n=1

ψ̂n(r, t) cos(nϕ) + 1
π

∞∑
m=1

φ̂m(r, t) sin(m,ϕ), (1.42)

where the Fourier coefficients or moments of expansion are

ψ̂0(r, t) =
w 2π

0
dϕψ1(r, ϕ, t), (1.43a)

ψ̂n(r, t) =
w 2π

0
dϕψ1(r, ϕ, t) cos(nϕ), (1.43b)

φ̂m(r, t) =
w 2π

0
dϕψ1(r, ϕ, t) sin(mϕ). (1.43c)

The moments can be identified as familiar physical quantities. The local density
is simply given by

ρ(r, t) ≡ ψ̂0(r, t). (1.44)

The polarization vector components can be identified as px(r, t) ≡ ψ̂1(r, t) and
py(r, t) ≡ φ̂1(r, t), or in vectorial form

p(r, t) =
w π

−π
dϕe(r, ϕ, t)ψ1(r, ϕ, t). (1.45)

The nematic tensor components are Qxx = −Qyy = ψ̂2/2 and Qxy = Qxy = φ̂2,
or in tensor form

Q(r, t) =
w 2π

0
dϕ(e ⊗ e − 1

21)ψ1(r, ϕ, t). (1.46)

Higher order moments of expansion are associated to higher order vector mul-
tipoles similar to those in electrodynamics [104]. In order to obtain dynamic
equations for the continuum quantities Eq. (1.44), (1.45), (1.46), moments should
be taken over the 1-body Smoluchowski equation Eq. (1.40). With this procedure,
the dynamic equation for a given moment shows to depend on other higher order
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1 Introduction and theoretical concepts

moments, leading to an infinite hierarchy of coupled differential equations. In
order to truncate the hierarchy one needs to give a closure relation. In systems
of active Brownian particles it is reasonable to close the equations to first order,
as this type of active matter is polar and does not display nematic order, as can
be the case in, e.g. for self-propelled repulsive disks [80, 105, 106].

1.5 Abstract of this thesis
In this thesis we focus on two-dimensional systems of colloids governed by Brow-
nian dynamics that are able to sense their neighbors via a visual-type of percep-
tion, then they can switch their motility between passive and active depending
on a given perception parameter. Our setup corresponds to experiments per-
formed in Bechinger’s lab in Konstanz University, where they have considered
cases of quorum-sensing (isotropic perception) [41, 44] and visual-type of percep-
tion (anisotropic perception) [45, 107]. Here we study the case when the percep-
tion is both anisotropic and also misaligned with respect to the self-propulsion
orientation vector. The purpose of this thesis is to characterize the emergence of
collective behaviors in this model, as well as the dynamics and structural changes
of the system. We provide novel strategies where the interplay between perception
and motility of the agents allows them to self-organize into rotating aggregates
and directed swarms. Our study sheds light in the understanding of active au-
tomatons with adaptable collective states, and can be implemented for example
in macroscopic swarms of robots, or microscopic colloids activated by light.

In Ch. 2 we introduce the ingredients necessary to perform particle-based
numerical simulations, like the integration method, interaction forces, boundary
conditions, and optimization techniques. We also briefly comment on the organi-
zation and design of the Brownian dynamics code we developed to obtain results
shown in this thesis.

In Ch. 3, we consider systems of colloids with discontinuous motility and
misaligned visual perception. We explain how this type of interaction generically
leads to aggregation and rotation of cohesive structures. Then, we characterize
the resulting dynamics for different system parameters. In Ch. 4 we characterize
different types of circular structures that emerge in this model, as a function
of the perception threshold and misalignment angle. We also derive analytical
expressions from conservation equations corresponding to a solid-body rotation
of a continuum aggregate driven by activity at the interface. We find an agreement
between theory and numerical results for the density, size, and angular velocity
of the aggregates as a function of the system parameters.

In Ch. 5 we consider a binary mixture of particles with different misalign-
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ment angle. Under given conditions, we find the striking case where the system
aggregates, self-sorts into species subdomains which counter-rotate leading to a
self-propulsion of the overall system. We characterize this process by means of
dynamic parameters and their averages in steady state. We find cases where the
directed swarms can either dilute or remain robust, or where the aggregate is
species homogeneous and its center of mass describes random motion. We also
study the swarms shape and how it can change for varying misalignment angle.
In Ch. 6 we study cases when the mixture is non-equimolar. In this case the
system self-organizes into swarms describing helical trajectories. We also show
an example of an externally guided system, where we dynamically change the
misalignment angle of the particles, leading to a swarm performing run-and-turn
motion. We conclude the thesis with a summary and outlook.
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2 Simulation methods
Computer simulations have already largely shown to be a powerful tool to study
physical phenomena, from the microscopic details of a system to the macroscopic
properties of experimental interest. It can be difficult (if not impossible) to carry
out experiments under extreme conditions for the temperature and pressure, while
a computer simulation of the material in, say a high-temperature plasma or the
core of the earth, would be perfectly feasible. Furthermore, while the precise mon-
itoring of the speed of molecular events is itself an experimental difficulty, it is
straightforward to record in computer simulations. Performing efficient large-scale
particle-based numerical simulations can be a technically laborious task. This dif-
ficulty has led to a combined effort of the community of computer scientist to build
powerful collaborative software, which can be later employed with ease by other
scientist in more specialized research areas. In the context of particle-based nu-
merical simulations, some the largest collaborative projects that are still active are
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [108,
109], and GROMACS 1 [110]. While these can be powerful tools that require min-
imum understanding of the underlying algorithms and programming design of the
code, they still demand a good knowledge of the physics behind different mod-
ules, in order to correctly implement them in a physically reasonable numerical
simulation.

In this chapter we want to review the main ingredients of a Brownian dynam-
ics simulation code. In Sec. 2.1 we review an integration method employed to
solve the equations of motion of active Brownian particles. In Sec. 2.2 we show in
detail the force term we employ to account for soft- or hard-core steric repulsions
preventing particle overlap. In Sec. 2.3 we present the standard method to ac-
count for periodic boundary conditions. In Sec. 2.4 we introduce neighbour lists,
i.e. useful data structures to avoid unnecessary calculations thus significantly en-
hancing simulation performance. Finally, in Sec. 2.5 we comment on the software
developed to obtain numerical data in this thesis, as well as other software we
employed for the data analysis.

1Its name originally derived from GROningen MAchine for Chemical Simulations, although
currently GROMACS is not an abbreviation for anything, as little active development has
taken place in Groningen in recent decades.
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2.1 Numerical integration

Numerical integration comprises a broad family of algorithms that calculate the
numerical value of a definite integral. In other words, they help to find numerical
solutions of differential equations. For example, a Brownian dynamics (BD) sim-
ulation for a system of N interacting particles consists of solving the Langevin
equations of motion (1.1) iteratively [111, 112]. There are well known integration
algorithms that prescribe how to evolve the equations of motion of deterministic
molecular dynamics (MD). Some of the most commonly employed methods are
the Euler method, velocity Verlet, and the Runge-Kutta method [112]. How-
ever for Brownian dynamics one has to take into account a noise term coming
from thermal fluctuations, which is not considered in the formal derivation of the
deterministic numerical integration methods. Itô calculus has provided a useful
mathematical framework to develop algorithms that solve stochastic differential
equations (SDE) [113, 114]. The method we employ throughout this thesis is the
Euler-Maruyama method, which is an extension of the Euler method for ordinary
differential equations that also includes a noise term as found in stochastic dif-
ferential equations [115]. This is an approximate method of solution of an SDE,
which should include an advective and a diffusive term, see Eq. (1.36).

To obtain the Euler-Maruyama method corresponding to active Brownian par-
ticles, we identify the convective and diffusion terms in the equation of motion for
an ABP, see Eq. (1.23). We include those terms in the Itô version of the equation
of the form given by Eq. (1.36). Moreover, here we also include a conservative
force term Fi = −∇iU from an arbitrary potential U . Here we are interested in
including volume exclusion, thus we consider the force term from an steric repul-
sion pair potential, as defined in Eq. (1.31). In this case, we obtain that each
particle i follows the SDE

dri =
[
v0ei − DT

kBT
∇iU

]
∆t+

√
2DT∆tW T

i ,

dϕi =
√

2DR∆tWR
i

(2.1)

where v0 is the self-propulsion velocity magnitude, ei = (cosϕi, sinϕi)T is the
self-propulsion orientation vector; W T

i and WR
i are translational and rotational

Wiener processes, i.e. random numbers sampled from a Gaussian distribution,
with zero mean and unit variance; DT and DR are translational and rotational
diffusion coefficients, respectively. Then, the corresponding Euler-Maruyama in-
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tegration scheme is given by

ri(t+ ∆t) = ri(t) + v0ei∆t− DT

kBT
∇iU +

√
2DT∆tWT (t),

θi(t+ ∆t) = θi(t) +
√

2DR∆tWR(t),
(2.2)

The numerical precision of the algorithm is given by the time step ∆t, which can
be chosen to be as small as possible to achieve an arbitrary degree of precision.
However, choosing too small ∆t might also slow down the simulation, as the
evolver will require too many time steps to finish the simulation until a desired
final time tf . For this reason, it is necessary to choose an intermediate value that
allows to finish the simulation in a reasonable amount of time, while keeping good
numerical precision.

In computer simulations, it is common to express quantities in reduced units.
This simplifies equations significantly, and also allows to choose a unit system
where most quantities have near-unit values, which are better handled by most
computer architectures. For example, in Brownian dynamics simulations that
model microscopic sized colloids, measuring length scales in meters could lead
to numbers smaller than 10−9, which are not easy to handle by computer due
to numerical precision rounding errors. Choosing a unit system avoids this
and also facilitates comparisons with experiment results presented in different
units. We choose the unit of length to be the particle diameter l = σ, and
the unit of time to be the translational diffusion timescale σ2/DT . In order
to non-dimensionalize Eq. (2.2) we replace the terms r̃ = r/σ, t̃ = DT t/σ

2,
∆t̃ = DT∆t/σ2, ∇̃ = ∇/σ, and Ũ = U/kBT . We obtain

r̃i(t̃+ ∆t̃) = r̃i(t̃) + Peei∆t̃− ∇̃iU∆t̃+
√

2∆tW T
i ,

θi(t̃+ ∆t̃) = θ(t̃) +
√

2D∆t̃WR
i ,

(2.3)

where Pe = σv0/DT is the translational Péclet number, and D = DRσ
2/DT is the

ratio between rotational and translational diffusion timescales. In order to fully
specify the dynamics, we still need to give the form of U in this equation. We can
choose the form of this function, depending on the strength of excluded volume
we desire to have, either with an attractive part or purely repulsive.

2.2 Volume exclusion
Volume exclusion forces prevent particles from overlapping in numerical simula-
tions, i.e. they account for the actual physical size of the particles. Such forces
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need to be included in order to model physical systems where short-range inter-
actions are present. They are especially important in very dense systems (high
packing fraction) when particles jam in a crystal-like structure, which is a preva-
lent effect in active matter [116–121]. In those cases particles are mostly static
except in sites where disclinations and topological defects propagate [121–124].
To account for volume exclusion in Brownian dynamics, depending on the desired
model, one should choose a pair interaction potential, which typically depends on
parameters for the particle diameter σ, and an interaction energy ϵ.

Intermolecular interactions in nature are extremely complex. An N -body
problem consists in understanding the interplay of interactions between N bod-
ies at once that simultaneously influence one another. In molecular dynamics
considering N -body interactions is computationally impossible, as we want to
simulate systems with a large number of interacting particles. To solve this, we
approximate N -body interactions to 2-body interactions, better known as pair
interactions. The approximation consist in describing the non-bonded potential
interactions by splitting the potential into a superposition of k-body terms, with
k the number of particles involved in the interaction

U({r}) =
N∑
i=1

u(ri) + 1
2

N∑
i=1

N∑
j ̸=i

u(|ri − rj|) + O(3). (2.4)

Here the first term corresponds to externally applied potential fields, which only
depends of the position of a single particle i. The second term describes particle
interactions given by the pair potential u(|ri − rj|), which depends on the inter-
particle distance rij = |ri − rj|.

Pair interaction potentials can consist of two or more contributions, given for
example by a repulsive or attractive term, which typically are an inverse function
of the inter-particle distance. The most general short-range pair potential is given
by the Mie potential [125] defined as

u(r) = n

n−m

(
n

m

) n
n−m

ϵ
[(
σ

r

)n
−
(
σ

r

)m]
, (2.5)

where r is the inter-particle distance, n, m are positive integers, σ is the size
of the particle, and ϵ is the depth of the potential well, which corresponds to
the interaction strength. This potential is often called simply n − m potential.
The most extensively studied potential in literature is perhaps the Lennard-Jones
potential, it is considered an archetype model for simple yet realistic intermolec-
ular interactions, and has been extensively used to simulate phase transitions in
liquids [126, 127]. The Lennard-Jones potential corresponds to Eq. (2.5) with
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Figure 2.1: Short-range interaction potentials. Comparison between poten-
tials: Lennard-Jones (LJ), hard-core repulsive Weeks-Chanlder-Anderson
(WCA), and soft-core repulsion. Repulsive potentials are always positive,
whereas LJ has a negative minimum at r = 21/6σ corresponding to medium-
range attractions.

m = 12 and n = 6,

uLJ(r) = 4ϵ
[(
σ

r

)12
−
(
σ

r

)6
]
. (2.6)

This potential has a minimum at rmin = 21/6σ, where u(rmin) = −ϵ, see Fig. 2.1.
Negative values of u shown at intermediate radial distances correspond to attrac-
tions.

To model micrometer sized colloids, short-range repulsions need to be taken
into account. We discard attractions by shifting the Lennard-Jones potential and
truncate up to a cutoff radius of r = 21/6σ. This gives the repulsive Weeks-
Chandler-Anderson potential [128] defined as

uWCA =


4ϵ
[(
σ

r

)12
−
(
σ

r

)6
+ 1

4

]
r < 21/6σ

0 r > 21/6σ

, (2.7)

which is often taken with ϵ = 100kBT in order to account for hard-core repul-
sions [65, 76, 99]. Since for the WCA potential the amount of possible particle
overlap varies depending on the choice of ϵ, therefore neither σ nor the cutoff dis-
tance 21/6σ can be a reliable measure for the diameter. Nevertheless, an effective
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diameter can be determined through a mapping of a soft-core potential (which al-
lows the particle overlap) on hard disks via the Barker-Henderson diameter [129].
For the WCA potential, it can be calculated as

dBH =
w rcut

0
dr

[
1 − exp

(
−u(r)
kBT

)]
, (2.8)

giving dBH ≈ 1.10688σ for ϵ = 100kBT . Self-propelled particles with higher speeds
can, in principle, lead to larger particle overlaps. However, due to the strong
repulsiveness of the WCA potential with ϵ = 100kBT , we neglect corrections to
dBH arising from this.

Sometimes a much smaller interaction energy is chosen, for example ϵ =
kBT [79]. In those cases, a higher self-propulsion of the ABPs would distort
the particle diameter drastically. To make comparisons varying v0, it is therefore
more convenient to stick with a higher value of ϵ = 100kBT . In case a softer
potential is still desired, then one can consider a 6-3 potential instead [130, 131],
for example

uSoft =


4ϵ
[(
σ

r

)6
−
(
σ

r

)3
+ 1

4

]
r < 21/3σ

0 r > 21/3σ

, (2.9)

which has a larger cutoff radius rcut = 21/3σ, and the effective Barker-Henderson
diameter is dBH ≈ 0.22524σ. A comparison between soft- and hard-core potentials
is shown in Fig. 2.1.

2.3 Boundary conditions
In Brownian dynamics simulations boundary conditions are given in order to keep
the system confined. In some cases boundary conditions are somewhat unimpor-
tant, for example if we are interested in the properties of a small droplet with
cohesive forces between particles sufficient to hold the system together during
the course of the simulation. We will study this type of situation in Ch. 3 and
Ch. 4. Boundaries can be defined by an external wall potential, so particles can
be confined, e.g. within a circular wall, within a box, or within a channel. How-
ever, if one is interested in studying only bulk properties, where effects due to
wall interactions are not desirable, then it is useful to consider periodic boundary
conditions (PBC). For example, to study finite-size transitions, it is necessary
to include PBC to observe how the system percolates [132, 133]. Furthermore,
PBC are also relevant in scenarios where the particles are able to self-propel
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Lx

Ly

Figure 2.2: Periodic boundary conditions. A two-dimensional periodic system. Parti-
cles can enter and leave each box across each of the four edges.

with a large persistence length comparable to the box size, for example for a
self-propelled droplet like we study in Ch. 5 and Ch. 6.

Periodic boundary conditions are implemented by considering a square box
which is replicated throughout space to form an infinite lattice, see Fig. 2.2. It is
sometimes useful to picture the basic simulation box as being rolled up to form
the surface of a three-dimensional torus, where there is no need to consider an
infinite number of replicas of the system, nor any image particles. For PBC, in
the course of the simulation, the particles move in the original box, and their
periodic image in each of the neighbouring boxes move in exactly the same way.
Thus, as a particle leaves the central box, one of its images will enter through
the opposite side. There are no walls at the boundary of the central and image
boxes. The box simply forms a convenient frame of reference for measuring the
positions of the N particles. Note that only for the particles in the central box
need to be considered. When a particles leaves the box by crossing a boundary,
attention is then switched to the image just entering. Therefore, the position of
a particle i given in Cartesian coordinates ri = (xi, yi) should be shifted when it
leaves the box. For example, for the x coordinate

xi(t+ ∆t) =
{
xi(t+ ∆t) + Lx if xi(t) < −Lx/2
xi(t+ ∆t) − Lx if xi(t) > Lx/2

, (2.10)

and similarly for the y coordinate. In principle, a particle in the central box
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interacts with all particles from all boxes, which would be infinitely many con-
tributions. However, for short ranged pair interactions (i.e. shorter than the box
length), a particle i in the central box can only interact with the single closest real-
ization of a particle j (either real or image). This is the so called minimum image
convention, and in simulations it is typically applied for calculating inter-particle
distances necessary to calculate pair interactions.

2.4 Neighbour lists
In Brownian dynamics simulations, we iterate over all particles at a given time
step. On each iteration, the equations of motion of each particle i are solved [112,
134]. To calculate interaction forces acting on a particle i, we require to perform
a second (nested) iteration over particles j, in order to calculate, for example,
interparticle distances necessary to compute the interaction potential U({rij}).
If the inter-particle separation is greater than the potential cutoff rij > rcut, the
program skips the expensive calculation of U({r}), as in that case that term is
equally zero. In this procedure, the time to examine all particle pairs is propor-
tional to N2. Optimization methods allow us to integrate the equations of motion
faster than that, by avoiding unnecessary calculations of vanishing terms. One
simple yet useful tool is to maintain a list of nearest-neighbours of particle i. Such
list is updated at regular intervals, but preferably after several iterations of the
time loop. Between updates of the neighbour list, the program does not iterate
through all j particles only to calculate the interactions with i, instead it iterates
only over neighbours in the list. Therefore, the number of iterations over particle
pairs is significantly reduced, saving computation time in computing minimum
images, calculating rij, and checking against the cutoff radius. However, there
is no change in the computation time spent calculating forces that arise from
neighbours within the potential cutoff, i.e. neighbors satisfying rij < rcut.

The most widely employed and easier method to implement a neighbour list
is the so-called Verlet list [135, 136]. Here, the list includes all neighbours within
a cutoff radius of the interaction force around a particle i. Furthermore, the list
also include particles within a surrounding “skin”, giving a larger disk of radius
rl, as shown in Fig. 2.3a. At the first step in a simulation, the list is constructed
for all the neighbours of each particle, for which the pair separation is within rl.
Over the next few time steps, the list is used to evaluate interactions, discarding
all other particles not in the list. After some time steps, the displacement of the
particles is too large to ensure that all neighbours are properly accounted for,
such that the neighbour list is reconstructed, and the procedure is repeated. The
algorithm is successful when the layer around rc is chosen to be thick enough
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rcut

rl

(a) (b)

Figure 2.3: Neighbour lists. (a) Verlet list. (b) Cell list.

so that between reconstructions a particle j which is not on the list of i, cannot
penetrate through the skin into the more important region below the cutoff radius
rcut. The particles in the skin can move in and out of the Verlet disk, but since
they are on the list of particle i they are always considered regardless, until the list
is next updated. The cutoff radius rl is a parameter we are free to choose. As rl is
increased, the frequency of updates of the neighbour list will decrease. However,
for a list too large, the efficiency of the non-update steps will decrease. Therefore,
rl should be finely tuned to find the optimal that minimizes the simulation time.

An alternative method for keeping track of neighbours in larger systems is
the cell-linked list method [137]. The simulation box of size L is subdivided
into smaller square cells of size l larger than the cutoff distance of the forces
rcut < l < L, see Fig. 2.3b. To construct linked lists, the first step is to sort all
particles into their corresponding cells according to their positions. This is a rapid
process since it scales with N , and is performed at every simulation time step.
Two arrays are created during the sorting, the "head" and the "list" array. The
head array is of the same size as the number of cells, thus contains a single element
corresponding to one of the particles within each cell. The list array contains the
index of the next particle in that cell and (in general) in the 8 neighbouring cells,
see Fig. 2.3b. Then, a chain of particle indices is followed, starting from the head
array, then iterating over the corresponding list array, which links particles until a
zeroth element is reached corresponding to the end of the chain, i.e. there are no
more particles to consider in the cell. The algorithm repeats for the next element
in the head array, i.e. searching over neighbours in the next cell.
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2.5 Software employed
To perform particle based numerical simulations, we developed a C++ code from
scratch. We employed an object-oriented programming design of the code that al-
lowed us to modularize subroutines, thus easing the development and extensibility
of the code, see Fig. 2.4. Here, each particle is represented by an object of a tem-
plate class with variables according to the particle’s intrinsic properties like the
position, self-propulsion, and perception. There is also a system class including a
list of particles with each element being a particle object. The system class also
includes definitions for the boundary conditions and the neighbour lists. Then, a
system object serves as input for the evolver class, which sequentially computes
the perception, forces, torques, and also performs integration subroutines. The
evolver then updates the system after a simulation time step, and the process
repeats for a desired number of simulation steps.

To ease the use of our simulation code, we employed some useful external li-
braries. The Boost++ library with program_options feature was included to pro-
vide an interface to read variables from command line and configuration files [138].
Most of the computing intensive simulations were performed in the JURECA dc
partition provided by Forschungszentrum Jüelich [139]. To ease the compilation
of our code in different computing architectures, we included a CMake configura-
tion file, which autodetects the required compiler and libraries of the code [140].
In order to increase the simulation speed of our program, we included OpenMP

Particle

Position

Self-propulsion

Perception

Particle type

System

Boundary conditions

Neighbourlist

List of particles

Simulation

Reader

Evolver

Log

Forces compute

Torques compute

Perception compute

Integrators

Writer

Figure 2.4: Modules showing the object-oriented programming design of the Brownian
dynamics simulation code.
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multithreading in several subroutines looping over particles [141]. This allowed us
to make use of the full computing power of the dc partition nodes. We performed
a large number of simulations to explore large regions of the phase space of the
systems of interest. Finally, for the data analysis we developed several scripts in
Python [142], which heavily relied on libraries like Ovito [143] and Numpy [144].
Figures were generated using Matplotlib [145].

31





Part I

Rotating aggregates induced by
misaligned visual perception
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3 Aggregate’s cohesion and
rotation mechanism

Adaptive behavior is an essential feature of biological systems. It refers to the
capacity of agents to respond to stimulus sensed from their surroundings and
adjust their actions accordingly. In many cases, adaptive processes require activity
of the agents, e.g. in bacteria to navigate towards specific chemicals, or in animals
to escape from dangerous predators. In systems of Janus colloids, an adaptive-
type of mechanism has been recently implemented in experiments. This has been
done by employing an external feedback loop where the colloid’s positions are
determined by particle tracking. Then, an externally controlled narrow laser beam
switches the motility of the individual colloids depending on e.g. isotropic sensing
of surrounding chemical concentration [41], or sensing of neighbouring particles
within a restricted cone of vision [43–45, 107, 146]. These mechanisms successfully
shown to achieve phase separation, and cohesion of colloidal aggregates.

Inspired on this type of systems, here we also consider particles with a visual-
type of perception but in our case is misaligned with respect to the self-propulsion
direction. We find that a discontinuous self-propulsion motility rule depending
on the perception, is sufficient to induce formation of rotating cohesive aggre-
gates. To study this, we perform particle-based numerical simulations and obtain
perception radial profiles, showing that particles within the aggregate display
orientation-dependent motility exerting an effective attractive force and a net
torque on the system. Furthermore, we study the system dependence on the initial
configuration of the system, which is adjusted to achieve metastable but robust
crystal aggregates with an homogeneous activity distribution. Finally, we mea-
sure dynamical properties of the aggregates characterizing the size and rotational
order of the system. We find the range of parameters for which the system reaches
steady state during a characteristic collapse timescale. The mechanism studied
here is generic and simplifies previous methods for which an additional aligning
torque is required [42], demanding more control in experiments of light-activated
colloids [44, 107]. Therefore, our model is expected to serve as a minimal strategy
to be implemented in systems at different scales, including artificially engineered
colloidal suspensions, and macroscopic swarms of robots.
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3 Aggregate’s cohesion and rotation mechanism

3.1 Model
In this section we introduce the employed model, as well as the simulation param-
eters used, which corresponds to values similar to those employed in experiments
of light-activated colloids [44, 45, 107]. Then, we describe how the system of
particles self-organize from an homogeneously distributed diluted configuration
into a rotating cohesive aggregate. Finally, we explain the mechanism of collapse
and rotation by means of perception radial profiles, showing misaligned visual
perception of the particles translate to orientation-dependent motility.

We consider a system of N particles, each particle i with position ri, self-
propulsion speed vi depending on the particle perception Pi, and orientation ei ≡
(cosϕi, sinϕi)T , where ϕi is the angle enclosed between ei and the x-axis, as
illustrated in Fig. 3.1a. The dynamics of each particle i is governed by overdamped
Langevin equations

ṙi = vi(Pi)ei − ∇iU +
√

2Dtξi, (3.1a)

ϕ̇i =
√

2Drηi, (3.1b)

where, ξi and ηi correspond to translational and orientational zero-mean and
delta correlated white noise; Dt and Dr to translational and rotational diffusion
coefficients, respectively. The interaction potential U corresponds to short-range
steric interactions, here given by the Weeks-Chandler-Anderson potential. This
type of interactions prevent particles to overlap at short distances. Here we em-
ploy a potential strength of ϵ = 100kBT modeling hard disks type of interactions
with an effective diameter σeff = 1.106 88σ, which has been found to serve as a
good value to study for example phase separation in colloidal systems [65, 76, 99].

The perception of each particle i is given by

Pi =
N∑
j=1

1
2πrij

Θ(r̂ij · ci − cosα)Θ(rcut − rij), (3.2)

where, rij = |rj − ri| is the interparticle distance, r̂ij = (rj − ri)/|rj − ri| the
normalized interparticle distance vector, and ci ≡ [cos(ϕi + γ), sin(ϕi + γ)]T the
orientation vector of the vision cone axis of symmetry. The aperture angle of the
cone is α, and the misalignment angle is γ, which is measured from the symmetry
axis of the particle’s orientation vector ei to the symmetry axis of the vision cone,
see Fig. 3.1a. Θ(·) are Heaviside step functions, indicating that neighbouring par-
ticles are only perceived when they are located within a restricted cone of vision,
i.e. when neighbouring particles are located at radial distances rij < rcut and also
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3.1 Model

within the circular sector described by the aperture angle α of a vision cone with
orientation ci, the corresponding condition is r̂ij · ci < cosα. The perception Pi
is maximum when several neighbouring particles fill the vision cone of particle i
without leaving any empty gaps, i.e. in a close-packed configuration. On the
other hand, Pi vanishes when particle i perceives no neighbours, e.g. when ci is
pointing into and empty region. Note that the perception corresponds to a long-
range interaction Pi ∼ 1/rij, as long as the cutoff radius is chosen large enough.
Furthermore, it is an additive quantity, implying that the observer’s perception
due to a single neighbor at a distance r is equal to the perception of N neighbors
at a distance Nr. This type of perception has been employed in previous studies
of colloidal spheres and rods [45, 147]. An important aspect of a visual-type of
perception is that it corresponds to an anisotropic interaction, given that α < π.
This means that interactions are non-reciprocal, i.e. a particle i might perceive
another particle j, however particle j might not perceive particle i. See Fig. 3.1b.
Non-reciprocal interactions are important in systems of active particles because
they lead to novel and diverse collective behaviors not displayed by the most
common pairwise reciprocal interactions [148].

To finish determining our model, we consider that the particle’s motility
switches between active and passive according to

vi(Pi) =
{

0 Pi < P ∗

v0 Pi > P ∗ , (3.3)

which depends on the particle’s perception value Pi and fixed threshold P ∗; v0

x
φ

γ

α
(a)

i

j

(b)

P ∗ Pi

vi

v0

(c)

Figure 3.1: Misaligned perception-dependent motility. (a) A particle with self-
propulsion orientation angle ϕ, vision cone aperture α, and misalignment
angle γ. (b) Illustration of a non-reciprocal interaction. Particle i can
perceive particle j, however particle j does not perceive particle i. (c) Par-
ticle’s discontinuous motility vi depending on the particle’s perception Pi
and predefined perception threshold P ∗.

37



3 Aggregate’s cohesion and rotation mechanism

is a constant self-propulsion speed. See Fig. 3.1c. In the aligned case γ = 0,
this motility rule can be understood as an effective attraction, as particles per-
ceiving an accumulation of neighbours become active and therefore move towards
them [45, 147]. In the misaligned case with γ > 0, the activated particles can
also deviate their motion with respect to the neighbour accumulation, thus the
effective attraction is diminished, as we will next show.

We consider a system of N = 1000 particles homogeneously distributed within
circular region of radius R0 = 40σ at time t = 0. The corresponding initial
number density is therefore ρ0 = N/(πR2

0) ≈ 0.19σ−2, and the area fraction
ϕ0 = Nσ2

eff/(4R2
0) ≈ 0.15σ−2. In experiments of light-activated colloids described

in Ref. [45], the system parameters employed are: colloid’s diameter σ = 4.28 µm,
self-propulsion velocity v0 = 0.2 µm s−1, translational diffusion coefficient Dt =
2.3 × 10−2 µm2/s, and rotational diffusion coefficient Dr = 9.3 × 10−3 s−1. Other
experiments of light-activated colloids also performed in Bechinger’s lab employ
similar parameters [41, 44, 107]. In our simulations, all quantities are expressed
in dimensionless units. The unit of length we choose is the particle diameter
ℓ = σ as defined in the Weeks-Chandler-Anderson potential Eq. (2.7), and the
unit of time the translational diffusion timescale τ = σ2/Dt. Relevant dimension-
less parameters corresponding to those in experiments in Ref. [45] approximate
to: self-propulsion velocity v0 = 40, and rotational diffusion coefficient Dr = 8.
We summarize the correspondence of parameters between experiments and sim-
ulations in Table 3.1.

Experiments Simulations

Dr 9.3 × 10−3 s−1 8

Dt 2.3 × 10−2 µm2/s 1

v0 0.2 µm s−1 40

σ 4.28 µm 1

Table 3.1: Correspondence between experimental parameters taken from Ref. [45], and
the parameters employed in our particle-based numerical simulations.

We perform simulations by numerically integrating Eq. (3.1) using a time step
of ∆t = 1 × 10−5τ . By default we choose a cone of vision with fixed aperture
angle α = π/4, and rcut ≫ R0 such that all neighbouring particles j are perceived
by a particle i, as long as they remain within the circular sector described by the
vision cone of i. Following Ref. [45], the perception threshold is chosen to be the
perception of a particle located at the center of the initial circular distribution,
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P ∗ = P0, as given by the formula

P0 = α

π
ρ0R0 = αN

π2R0
. (3.4)

This is a fixed quantity for a given number of particles N , aperture angle α, and
initial radius R0. The derivation of this formula can be found in Ref. [45].

3.1.1 Swirling and collapse

We consider particles with misalignment angle γ = π/4. Snapshots of the system
at different times t/τB are shown in Fig. 3.2a. Here, τB = σ/v0 ≈ 2.5×10−2τ is the
ballistic timescale, i.e. the time it takes an active particle to travel the colloid’s
diameter σ. From Fig. 3.2a we observe that the initially diluted system collapses
into a single aggregate for the chosen parameters. Furthermore, the resulting
aggregate is found to be cohesive, i.e. all of the particles remain together over
time without diffusing out of the aggregate. While there is translational diffusion
due to the Brownian nature of the colloid’s dynamics, the activity induced after
surpassing the perception threshold leads to an effective attractive force which
prevents the particles from diffusing radially out of the aggregate. Note that this
is in clear contrast with clusters formed due to motility-induced phase separation
in systems of active Brownian particles—there clusters can dynamically break
and reform, and they only exist in coexistence with a surrounding gas [66, 70].
The system’s collapse can also be seen from particle trajectories, which show an
inwards spiraling motion towards the center of the configuration, see Fig. 3.2b.
The motility of a particle i switches according to its self-propulsion orientation ei.
It becomes active when ei points into the system’s center of mass, and changes to
passive when ei points out of the center, as observed by the example particles in
the figure inset. We also note that the perception distribution changes over time,
see Fig. 3.2c. The distribution at t = 0 shows a reasonable number of particles
that surpass the perception threshold P ∗ = P0, ensuring them to activate. The
perception distribution at long enough times (here t = 400τB) is broader, which
tell us that in the final state even more particles are above the threshold Pi > P0,
and only a smaller fraction of particles remain passive with Pi < P0. This behavior
is also observed in snapshots in Fig. 3.2a, where we find most of the particles in
the aggregate are active, with only a smaller number of passive particles in the
outer layer.
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Figure 3.2: Initial collapse, cohesion, and rotation of the aggregate. (a) Time evolution
snapshots at different times t/τB, where τB = σ/v0. Dashed lines indicate
the circle of radius R0 within which particles are homogeneously distributed
at time t = 0. Color code indicates particle’s motility. (b) Typical trajecto-
ries of the particles. Silver lines indicate 20 randomly selected trajectories.
Four of the trajectories are colored to aid visualization. Zoom-in shows the
motility switching, with example particle orientations shown by disks with
arrows. (c) Probability of finding a particle with perception Pi, at t = 0
and at t = 400τB. Vertical dotted line indicates the threshold P ∗ = P0.

3.1.2 Orientation-dependent motility

Cohesion and swirling behavior of the particles can be explained by means of
perception radial profiles. To calculate average perception profiles, we consider
an initial configuration of homogeneously distributed particles within a circle
of radius R0, and a test particle located at r = R0. The test particle is then
considered to vary its orientation depending on the angle ϕ̃, which is defined as
the angle between the particle unit vector −r̂ and its self-propulsion orientation e.
Note that both ϕ in Fig. 3.1a, and ϕ̃ defined here refer to the self-propulsion
orientation angle; being ϕ given in Cartesian coordinates, and ϕ̃ relative to the
center of mass position, see Fig. 3.3a. In other words

−r̂ · e = cos ϕ̃. (3.5)
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Here, −r̂ = −r/r is simply a unit vector pointing from the test particle’s center to
the system’s center of mass rcm, which is set to be the origin rcm = 0. In Fig. 3.3b,
test particles with different orientations ϕ̃ are shown. In-(Out-)oriented particles
have self-propulsion orientation e parallel(anti-parallel) to −r̂, thus in this case
ϕ̃ = 0(ϕ̃ = π). Co-oriented (Co) and anti-oriented (Ao) particles have e per-
pendicular to −r̂, with orientation angle ϕ̃ = −π/2(ϕ̃ = π/2). For comparison,
we also show here the cases with ϕ̃ = −π/4, π/4. We numerically calculate the
perception radial profiles P (r) for each of the test particles considered, by com-
puting Eq. (3.2) at several radial distances 0 < r < 2R0 while keeping fixed
orientation angle ϕ̃. In this calculation the system does not evolve, but consid-
ers only to the initial configuration at t = 0. To improve statistics, we average
over 60 independent initial configurations. The results are shown in Fig. 3.4.
The obtained P (r) show a non-monotonous dependence for In- and Co-oriented
particles, as well as for test particles with ϕ̃ = −π/4. In all those cases, P (r)
has a maximum at r = R0 where test particles perceive the largest number of
neighbors. Then, at r > R0 the perception decays monotonously due to its 1/rij
dependence, see Eq. (3.2). The test particle with ϕ̃ = −π/4 shows the largest
perception value possible Pi ≈ 1.8P0, as its cone of vision covers the largest area
of the circular region, see Fig. 3.3b. For Out- and Anti-oriented particles, P (r)
shows a monotonous decrease and vanishes at r ≥ R0. The perception radial
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Figure 3.3: Particle orientations. (a) Sketch showing showing the self-propulsion ori-
entation angle relative to the center of mass ϕ̃. (b) Test particles with
different orientations located at r = R0 with respect to the center of a
circular region containing N particles. The vision cone cutoff range rcut is
shortened for better visualization.
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Figure 3.4: Perception radial profiles P (r). P (r) for test particles located at r =
R0 with orientations (a) ϕ̃ = −π/4, 0(In), π/4, π(Out), and (b) ϕ̃ =
−π/2(Co),−π/4, π/4, π/2(Ao).

profile of the test particle with ϕ̃ = π/4 also shows a monotonous decrease, with
P (r) slightly larger than the perception of Out- and Anti-oriented particles. In
all those cases, at r = R0 the vision cone is oriented out of the circular region,
thus particles perceive no neighbors, see Fig. 3.3b. Note that P (r) was calculated
for t = 0, however its behavior at given ϕ̃ is expected to be the same at longer
times t > 0, as long as the aggregate remains circular.

For all particle orientations considered above, the perception is exactly P = P0
at the origin r = 0. Now, by choosing the perception threshold to be P ∗ = P0, we
guarantee that In-oriented particles become active at distances r < R0, because
there the perception threshold is surpassed P > P ∗. On the other hand, Out-
oriented particles remain passive at any radial distance, as there the perception
radial profiles show that P < P ∗ holds for r > 0. This ensures the collapse of the
system into a smaller cohesive aggregate for the chosen system parameters. The
only way particles might leave the aggregate is due to passive translational diffu-
sion. For example, Out-oriented particles passively diffuse out of the aggregate,
until they eventually reorient due to rotational diffusion and e points into the
aggregate, then they actively rejoin with speed v0. This is possible as here rota-
tional diffusion is a much faster process than the translational diffusion, as seen
from the timescale τr = 1/Dr ≈ 0.1τ . Similarly, Co-oriented particles are ensured
to become active, while Ao-particles remain passive. This imbalance induces the
swirling motion of the particles, as Co-particles self-propel tangential to the circu-
lar distribution. The rotation is in the counter-clockwise direction for the chosen
γ = π/4, see Fig. 3.2b. For negative misalignment angle γ = −π/4 the rotation
would be in the clock-wise direction. In a nutshell, we can say that the effect
of the vision cone misalignemnt is to select as active those particles that are In-
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and Co-oriented, and as passive those that are Out- and Anti-oriented, such that
particles display an orientation-dependent motility due to misaligned visual per-
ception. This translates into an effective attractive force and a net torque acting
on the system, ensuring the system’s cohesion and rotation in steady state.

3.2 Metastable crystal aggregates
The perception of a particle i is in general a dynamical quantity, Pi = Pi(t),
which depends both on the particle orientation ei and the system’s configuration
at time t. As the system collapses into a cohesive aggregate, the inter-particle
distances rij become smaller, therefore the perception Pi is expected to increase
in time, given that Pi ∼ 1/rij from definition Eq. (3.2). For the system’s prepa-
ration, one needs to choose an initial radius R0 within which the particles are
homogeneously distributed. Following Ref. [45], the perception threshold value is
set to P ∗ = P0, i.e. the perception of a particle located at the center of the initial
circular configuration, as defined in Eq. (3.4). Note that this value of the percep-
tion threshold is small for an initially large system, and large for a small system,
given that P0 ∼ R−1

0 . Therefore, on collapse, a system started with a large initial
radius R0 is expected to have a larger fraction of active particles, as the threshold
set to P0 is small enough in that case. Such behavior is shown in Fig. 3.2a,c.
Conversely, if the system is started with smaller R0, the system is expected to
have a smaller fraction of active particles, as P0 is larger in that case. Moreover,
the activity distribution can affect the aggregate’s internal structure. For this
reason, choosing the threshold to be P ∗ = P0 is not completely adequate if we
aim to achieve a given final configuration independent of the initial condition.

In this section, we characterize the aggregation mechanism by means of dy-
namic parameters accounting for the system’s hexatic order, activity, and per-
ception of the particles. Here we consider only the case γ = 0, as this parameter
does not have a strong effect on the aggregate’s activity distribution for a given
perception threshold P ∗, as we show in Sec. 3.3. We show the resulting aggre-
gate structure and activity distribution strongly depends on the initial conditions
when choosing P ∗ = P0. Then we define a different perception threshold P ∗ = Pc
which is independent of the initial configuration, corresponding to the formation
of a crystal aggregate with homogeneous activity distribution.

3.2.1 Dependence on the initial configuration
To illustrate this point, we performed simulations of N = 1000 particles with
γ = 0 homogeneously distributed within a circle of radius R0. Each simulation
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R0 = 55σ R0 = 45σ R0 = 35σ R0 = 25σ

passive active

Figure 3.5: Final configuration dependence on the initial circle radius R0. Snapshots of
the final configuration in steady state at t = 500τB for various values of R0.
Dashed line indicates R0. Zoom-in indicates hexagonal close packing.

was started with a different value of the initial radius, namely R0/σ = 25–60, at
fixed threshold P ∗ = P0. In Fig. 3.5a we see snapshots of the final configurations
at time t = 400τB, which corresponds to the stationary state. As discussed in the
previous section, choosing the threshold to be P ∗ = P0 guarantees particles to
become active when they are In-oriented and passive when they are Out-oriented.
Therefore, in all cases the system collapses into a single cohesive aggregate. The
collapse can be characterized by the radius of gyration

R2
g(t) = 1

N

N∑
i=1

|ri(t) − rcm(t)|2, (3.6)

which accounts for the time dependent spread of the particles around the center
of mass of the system rcm. In Fig. 3.6a-b, we observe that systems started with
larger R0 take a longer time to reach the stationary state. However, in all cases
tested here the system collapse into compact aggregates with Rg ≈ 13σ. 1.

The aggregates in steady state display an hexagonal close packing internal
structure, as can be seen in the inset of Fig. 3.5a. To quantify this, we calculate
the local hexatic order parameter

ψ6,i = 1
ni

ni∑
j=1

exp(i6θij), (3.7)

where the sum goes over the six nearest neighbors ni of a particle i, and the
angle θij corresponds to the polar angle described by the inter-particle particle

1Note that the radius of gyration is not the unique quantity to characterize the physical size of
the aggregate Rc, which can also be calculated from density radial profiles, as we introduce
in Chapter 4.
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Figure 3.6: Dynamic parameters dependence on the initial circle radius R0. Time evo-
lution and average in steady state of the dynamical quantities: (a,b) radius
of gyration Rg normalized by the particle diameter σ; (c,d) hexatic order
parameter Ψ6; (e,f) ratio between number of active particles Na and num-
ber of passive particles Np, and (g,h) perception function at the center of
the particle configuration P (t, r = 0), normalized by the perception at the
center of the initial circle P0. Shaded region in (a,c,e,g) indicate the sta-
tionary state time interval. Dashed lines in (b,d,f,h) correspond to a linear
fit of the data points. In (d) the fit is taken only for data points R0 ≤ 40σ.

distance rij. The local hexatic order is a complex number of modulus |ψ6,i| ≤ 1.
The average hexatic order parameter is then

Ψ6 =
∣∣∣∣∣ 1
N

N∑
i=1

ψ6,i

∣∣∣∣∣ . (3.8)
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3 Aggregate’s cohesion and rotation mechanism

This is a global quantity vanishing when the system is loose, and is maximum
with Ψ6 = 1 when the system display a perfect crystal structure with all particles
placed at the nodes of a triangular lattice, each of them therefore with six-fold
orientational order. For the system under study, Ψ6 never reaches the upper
bound, as there are particles in the outer layer, i.e. at the aggregate’s interface,
where the system is more fluid and particles are free to move. In Fig. 3.6c-d, we
observe that Ψ6(t) saturates in steady state at a value of ⟨Ψ6⟩ ≈ 0.75 for systems
started at R0 ≤ 45σ, and for initially larger systems ⟨Ψ6⟩ is found to become
smaller. The reason of this decrease is that the aggregate’s internal structure
is strongly affected by the activity distribution. In the snapshots in Fig. 3.5a,
we observe that for the initial configuration of radius R0 = 55σ the system is
composed mainly by active particles, whereas for the smaller initial radius, R0 =
25σ, the resulting aggregate only active particles in the center, and an active-
passive mixture in the outer layer.

Changes in activity are quantified by the ratio Na/Np, where Na is the number
of active particles and Np the number of passive particles at a given time t. The
ratio increases as the system collapses, see Fig. 3.6e. The corresponding steady
state values are shown in Fig. 3.6f, showing a linear growth with R0. In Fig. 3.6g
the time evolution of the perception at the aggregate’s center P0(t) = P (r = 0, t)
is shown, which is calculated from simulation data for the particle closest to rcm
at a given time t. The steady state values in Fig. 3.6g show a linear growth of
the normalized quantity P0(t)/P0 with R0. This dependence is evident as the
denominator P0 ∼ R0

−1 by definition, and therefore the numerator P0(t) should
be constant as R0 increases. This behavior can be understood because in steady
state the aggregate has reached a minimum size, thus the inter-particle distances
rij remain constant (except for small fluctuations in the outer layer where particles
can move freely), leading to a constant perception for a particle located at the
center r = 0.

3.2.2 Perception at the center of a crystal aggregate
A better approach to normalize the perception function is to employ a normaliza-
tion factor which does not depend on the initial condition. A suitable quantity for
this is the perception of a particle at the center of a crystal aggregate, i.e. an aggre-
gate of minimum size displaying hexagonal close packing, which we have found is
the type of structure obtained in steady state. Crystal structures have been found
to emerge in different systems of active particles due to various mechanisms, e.g.
it has been found in diffusiophoretic colloids [149, 150], and light-manipulated
colloids with delayed attractions [151], and swimming starfish embryo [152]. The
area covered by disks of diameter σ in an hexagonal unit cell, like the one shown
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3.2 Metastable crystal aggregates

in the inset of Fig. 3.5a, is exactly the area covered by three disks of area πσ2/4
each, and the area of the hexagonal unit cell itself corresponds to the area of six
equilateral triangles of side σ, i.e. six triangles of area

√
3σ2/4 each. Therefore,

the area fraction of a system in hexagonal close packing is

ϕhex = 3πσ2/4
6
√

3σ2/4
= π

2
√

3
≈ 0.9. (3.9)

The area fraction of a crystal aggregate of size Rc with perfect hexagonal close
packing is ϕhex = Nσ2/(4R2

c), and the corresponding number density given by ρc =
4ϕhex/(πσ2). Then we can calculate the perception of a particle located at the
center of a compact aggregate from the formula

Pc = α

π
ρcRc = 2α

π2σ

√
Nϕhex. (3.10)

We evaluate this formula at α = π/4, and for the disk diameter we need to
employ the effective particle diameter σeff ≈ 1.10688σ accounting for the highly
repulsive steric interactions in our simulations. The resulting threshold value is
Pc ≈ 4.2σ−1.

In Fig. 3.7a, the final configuration of a system of particles with perception
threshold set to P ∗ = Pc is shown. The resulting aggregate in steady state shows
an homogeneous activity distribution in the whole structure (both in the center
and the outer layer). This distribution is different compared to the distribution
in steady state obtained by setting P ∗ = P0, see Fig. 3.5a, which is found to
be homogeneous in activity only in the outer layer, while keeping a center of
active particles. Furthermore, in Fig. 3.7b we observe the internal structure of
the aggregate in steady state displays six-fold orientational order. In Fig. 3.7c are
shown the time evolution of dynamical parameters. The hexatic order parameter
increases and saturates at Ψ6 ≈ 0.75—whereas the internal structure displays
six-fold orientational order, the more fluid outer layer diminishes Ψ6. Similarly,
the active-to-passive number ratio also saturates at Na/Np ≈ 0.75. Note that
while the activity distribution is homogeneous, it is non-equimolar with Na > Np.
Furthermore, we verify the perception at the crystal aggregate center increases
and saturates at P0(t) = Pc. In Fig. 3.7d steady state quantities are shown,
which present an abrupt drop to zero at R0 > 35σ. The reason for this, is that
in those cases the system does not aggregate at all, instead the system remain
a passive gas with Ψ6 = 0, Na = 0 and P0(t) ≈ 0.4Pc. This is an indication of
the metastability of the crystal aggregates. Particles in an initially dilute system
with density ρ0 require to perceive a large density fluctuation δρ, i.e. a significant
accumulation of particles, in order to activate and initiate the system’s collapse
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Figure 3.7: Crystal aggregate at P ∗ = Pc. Snapshot of a final configuration color coded
by (a) motility, and (b) local hexatic order ψ6. Dashed line indicates the
initial radius R0 = 30σ. (c) Time evolution of dynamic parameters, namely
the average hexatic order Ψ6, the active-passive number ratio Na/Np, and
the perception at the aggregates’ center, P0(t), normalized by the percep-
tion of an compact aggregate with hexagonal close packing Pc. (d) Average
dynamical parameters in steady state for different values of the initial ra-
dius R0. Horizontal lines are shown as a guide to the eye.

2.Initially large systems are less likely to display a large δρ when P ∗ = Pc, as
Pc is a threshold too high to surpass in that case, then particles there remain
passive and do not accumulate but spread out due to thermal diffusion. On the
other hand, initially small systems start perceiving neighbors at closer distances,

2An instability criterion was derived in Ref. [45] showing a density perturbation δρ increases
if e · ∇δρ/δρ < 0, meaning particles tend to accumulate where they are typically oriented
opposite to density gradients, and aligned particles always move away from regions where
the density perturbations decreases.

48



3.3 Dynamical properties

as Pi ∼ 1/rij, δρ in that case does not need to be so large, perception threshold
is likely to be surpassed, so particles activate and initiate the system’s collapse.
In other words, a system can be either diluted or a crystal aggregate, depending
on the initial interparticle distances rij.

The previous discussion allow us to introduce a normalized perception thresh-
old independent of the initial conditions,

q∗ = P ∗

Pc
, (3.11)

which is employed in the rest of the thesis, and we refer to it simply as perception
threshold. A value of q∗ = 1 corresponds to the perception of a particle in the
center of an aggregate with an homogeneous activity distribution, besides it is
non-equimolar with Na = 0.75Np, and displays hexagonal close packing with
Ψ6 = 0.75, see Fig. 3.7. As Pc is a fixed quantity, varying q∗ corresponds to
varying P ∗ only.

3.3 Dynamical properties
In Ref. [45] particles with frontal perception γ = 0 were considered, see Fig. 3.8a.
They show that a group of particles initially distributed within a circle of ra-
dius R0 collapses into a small aggregate of size R < R0. Particles there perform
directed motion towards the center of mass when they are active, and random
Brownian motion when they are passive. So far, we have considered the case
when visual perception is misaligned with γ/π = 0.25 (see Fig. 3.8b), showing in
this case particles aggregate by performing swirling motion towards the center of
mass until the system forms a single compact and rotating structure. Due to the
swirling motion, particles with γ ̸= 0 display longer trajectories during collapse,
and we expect the time to reach steady state to increase with γ. In this section
we investigate such dynamical collapse, as well as the rotation process for vary-
ing values of the misalignment angle γ/π ∈ (0, 0.5), where the case γ/π = 0.5
corresponds to lateral visual perception, see Fig. 3.8c. We also investigate the
characteristic collapse time, giving a measure of how long it takes for the system
to reach stationary state.

3.3.1 Collapse process
To investigate the aggregation process at given γ, we obtain the radius of gyra-
tion Rg as defined in Eq. (3.6), for a system of N = 1000 started as an homo-
geneous density distribution within a circle of radius R0 = 30σ. The perception
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3 Aggregate’s cohesion and rotation mechanism

threshold is set to q∗ = 1. Other simulation parameters are as those in Table 3.1.
In Fig. 3.9a, we observe that for values of the misalignment angle 0 ≤ γ/π ≤ 0.46,
the radius of gyration Rg(t) monotonically decreases from its initial value Rg(0).
At longer times Rg(t) saturates, corresponding to the steady state where the sys-
tem is an aggregate of size R < R0 which depends on γ. For larger values of the
misalignment angle γ/π > 0.46, Rg(t) grows in time without saturating. In this
case, particles do not aggregate but radially diffuse due to translational Brownian
motion such that the system does not reach stationary state due to the lack of

γ/π = 0 γ/π = 0.25 γ/π = 0.5

(lateral)(frontal)

(a) (b) (c)

Figure 3.8: Particles with different misalignment angles γ. Sketches of particles with
(a) frontal perception γ = 0, (b) misaligned perception γ/π = 0.25, and
(c) lateral perception γ/π = 0.25.
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Figure 3.9: Dynamics of the aggregate’s collapse. (a) Time evolution of the ra-
dius of gyration Rg. Shaded region t/τB > 1 × 103 corresponds to a
time window where cohesive aggregates are in steady state, i.e. systems
with Rg(t) < Rg(0). Hashed region Rg(t) > Rg(0) corresponds to non-
collapsed systems. (b) Time-averaged radius of gyration Rg in steady state.
Error bars indicate standard deviation. Solid line corresponds to a fit of
the data points using Eq. (3.12).
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boundaries in our setup.
We obtain the time-averaged radius of gyration Rg in the steady state, calcu-

lated by averaging over a time window of ∆t/τB = 1×103–2×103 when aggregates
are in steady state. In Fig. 3.9b we observe that Rg remains reasonably constant
for 0 < γ/π < 0.25, with Rg ≈ 0.62Rg(0). For 0.25 < γ/π ≤ 0.45, we observe Rg

increases, with values still below Rg(0), meaning the system is collapsed in those
cases. We fit the obtained data with the phenomenological function

Rg(γ) = Rmin
g +Rg(0)

[
1

1 − 2γ/π − 1
]
b, (3.12)

where Rmin
g ≈ 0.62Rg(0) corresponds to the radius of gyration of a compact

aggregate, and b ≈ 0.01 is a fit parameter. The form of this formula satisfies
the limits: (i) γ = 0, the term within brackets vanishes, giving Rg = Rmin

g ; (ii)
γ = π/2, the term within brackets diverges.

Particles with near lateral perception γ/π > 0.46 have a vision cone which
is almost perpendicular to the self-propulsion direction of motion. Thus, they
activate only when oriented tangential to the system’s center, with a co-oriented
cone of vision so they perceive enough neighbors and surpass the threshold q∗. In
this case there is no special preference for In- or Out-oriented particles to become
active, and therefore there is no net attractive force to keep the system cohesive.
The divergence at γ = π/2 corresponds to cases when the system is non-collapsed
and does not reach steady state.

The radius of gyration needs a certain time to reach stationary state. This
characteristic collapse timescale τc can be obtained from the middle point between
the saturated Rg and initial value Rg(0). We employ

Rg(τc) = 1
2
[
Rg(0) −Rg

]
, (3.13)

which is positively defined for collapsed systems. Then the collapse time is ob-
tained by inverting this equation as τc = τc(Rg). In Fig. 3.9 we see a monotonous
increase of τc with γ. For frontal perception γ = 0 the steady state is reached the
fastest giving the minimum collapse time τmin

c ≈ 40τB, whereas for near lateral
perception γ/π ≈ 0.46 the collapse takes much longer, approaching large values
of τc ≈ 1 × 103τB. Our numerical data approximates the function

τc(γ) = τmin
c + τmin

c tan(γ), (3.14)

which diverges at γ = π/2 and for frontal perception γc(0) = τmin
c . We observe

that for misalignment angles between 0 < γ/π < 0.375, the steady state is reached
sooner, so the collapse time is small with τc/τB < 1 × 102 but larger than the
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Figure 3.10: Collapse timescale τc. Dots correspond to data obtained using Eq. (3.13),
and solid line corresponds to Eq. (3.14).

minimum value τmin
c . For 0.375 < γ/π < 0.5, reaching the steady state takes

much longer, showing collapse times within the range 100 < τc/τB < 600. We
conclude that a system at q∗ = 1 and given γ will be found in steady state at
t > 600τB as long as the system collapses, which is the case for most values of γ.

3.3.2 Rotational order
Particles’ trajectories display swirling motion when γ ̸= 0. This is observed during
the transient collapse, then in stationary state once the system has become a com-
pact aggregate, trajectories show a circular motion as they do not displace much
in the radial direction. We quantify this behavior by computing the rotational
order parameter, defined as

OR(t) = 1
N

N∑
i=1

r̂i × v̂i, (3.15)

where the unit position vector r̂i is measured from the aggregate’s center of
mass rcm, and v̂i = vi/|vi| is the normalized velocity vector. Here, velocity
vi = ∆ri/∆t is computed for a displacement given by ∆ri = r(t + ∆t) − r(t)
during a small time interval ∆t = 2τB. Note that typically vi is different from the
self-propulsion velocity v0ei. In general, the orientation vector field e is isotropic,
as the dynamics of the rotational degree of freedom ϕ is governed only by rota-
tional diffusion, see Eq. (3.1). Conversely, the normalized velocity vector field v̂
of a rotating compact aggregate shows a clear rotational order. See Fig. 3.11. The
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Figure 3.11: Orientation e and normalized velocity v̂. Vector field snapshots corre-
sponding to a steady state compact aggregate at q∗ = 1 and γ/π = 0.25.
(a) Orientation vector field e. (b) Normalized velocity vector field v̂.

order parameter OR accounts for the overall rotation of the system. It vanishes
when the system does not rotate, and |OR| = 1 when all of the particles simultane-
ously rotate. OR is positive for counter-clockwise rotations (which is the case for
misalignment γ > 0), and negative for clockwise rotations. Intermediate values
correspond to a fraction of the system rotating in a given direction. In Fig. 3.12a
we observe the time evolution of OR grows from an initial value OR ≈ 0, and
saturates in steady state for collapsed cases with 0 < γ/π < 0.48. The maximum
value observed is OR ≈ 0.8. The upper bound OR = 1 is never reached, as there
exist a fraction of passive particles with isotropic velocity vi at the outer layer of
the aggregate, where particles are free to diffuse. In chapter 4 we discuss in more
detail the activity distribution of the aggregate, and how this affects the overall
rotation.

In Fig. 3.12b time-averages OR in steady state for different values of γ are
shown. Note that for the smaller misalignment angle values tested γ/π = 0, 0.05
the standard deviation of OR is very large. There, the normalized tangential
velocity r̂i × vi/|vi| fluctuates strongly, as the motion of particles are on average
directed towards the center of mass, without a strong bias to tangentially drive
the system. We find our data fits the phenomenological function

OR(γ) = OR(π/4) −OR(π/4)
[
1 − 4

π
γ
]4
, (3.16)

which is chosen to be symmetric around γ = π/4, and to vanish both at γ = 0
and γ = π/2. Thus, OR displays a non-monotonous behavior, with maximum
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Figure 3.12: Rotational order of the normalized velocity field v̂. (a) Time evolution of
the rotational order parameter OR. (b) Time-averaged rotational order
parameter OR in steady state. Black solid line in (d) shows a fit of the
data points using Eq. (3.16).

value at γ = π/4. Interestingly, the rotational order plateau over a wide range
of values around the maximum, namely 0.125 < γ/π < 0.375. This behavior is
closely related to short-range steric interactions. As in those cases the system
is compact, the particles within the aggregate will perform a coherent rotation.
Even when the activity distribution is homogeneous there, passive particles are
still dragged by active ones.

3.4 Summary
We described a model that generically leads a system of particles to self-organize
into rotating cohesive aggregates. The cohesion and rotation mechanism was
explained by means of perception radial profiles. We found misalignment has the
effect of selecting as active those particles with a cone of vision that is either in- or
co-oriented with the aggregate’s center, where the largest particle accumulation is
found. This effect translates into an effective attractive force keeping the particles
together, as well as a net torque driving the system to rotate.

We found that choosing a perception threshold to be the perception of a
particle at the center of a compact aggregate, i.e. a configuration in hexagonal
close-packing, leads to the formation of compact aggregates with homogeneous
activity distribution. Such configurations are only possible when the system is
started as homogeneously distributed particles within a small circular radius R0,
close to the minimum aggregate size. The structures there correspond to rotating
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3.4 Summary

crystal aggregates. The dynamics of the collapse and rotation of the aggregates
were studied by means of the radius of gyration Rg as well as the rotational
order parameter OR. We found that the steady state values of Rg grow with γ,
diverging for lateral perception γ = π/2 where cohesion of the aggregates is lost.
The rotational order parameter OR was found to be non-monotonous, showing
maximum rotational order for intermediate values of γ.
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4 Control of the aggregate’s
structural properties

In the previous chapter we have described a system of colloids interacting via
steric repulsion and misaligned perception-dependent motility. We found that this
system generically aggregates into a single structure that remains cohesive due to
the anisotropic perception interaction, and furthermore the aggregates rotate due
to the symmetry-breaking of the cone of vision orientation with respect to the self-
propulsion direction. We also found that after collapse, the system reaches steady
state, where the aggregates remain with a fixed size and rotational order, except
for cases where the perception is near lateral with misalignment angle γ = π/2.

In this chapter, we systematically study the structural properties of such
steady state aggregates by considering control parameters like the misalignment
angle γ, the perception threshold q∗, or the Péclet number Pe. We find that
tuning these parameters sets an interplay between perception, local activity, and
steric interactions, resulting in aggregates of different activity distribution, size,
density, interface width, and angular velocity. To quantify this, we fit radial pro-
files for the density and angular velocity, which allow us to extract size and bulk
quantities of the aggregate. Furthermore, we derive analytic expressions for such
quantities, obtained by considering an steady state continuum description of the
aggregate together with conservation equations and boundary conditions for the
perception. Predicted size and bulk properties show good agreement with our
numerical results. Finally, we study the interface width of the aggregates, which
we find grows with increasing γ and decreasing Péclet number Pe, while remaining
unaffected by q∗. This study demonstrates that our model, besides being minimal
and generic to obtain rotation of cohesive aggregates, it also serves as a flexible
strategy to change the aggregate’s structure.
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4 Control of the aggregate’s structural properties

4.1 Measurement of structural properties
To provide a quantitative characterization of the aggregates structure, we obtain
steady-state radial profiles of the local number density ρ, the radial and tangen-
tial polarization components pr and pt, respectively, and the angular velocity ω.
Radial profiles are calculated at time t by subdividing the space into n concentric
rings with origin set to the system center of mass rcm. Each concentric ring k is
defined by a major radius rk and minor radius rk−1. Then we average within each
ring as follows

ρ(rk) =
〈

1
Ak

∑
j∈Ak

1
〉
, (4.1a)

ω(rk) =
〈

1
Ak

∑
j∈Ak

1
rj
r̂j × vj

〉
, (4.1b)

pr(rk) =
〈

1
Ak

∑
j∈Ak

r̂j · ej
〉
, (4.1c)

pt(rk) =
〈

1
Ak

∑
j∈Ak

r̂j × ej

〉
, (4.1d)

where k = 1, . . . , n identifies the k-th ring, Ak = π(r2
k−r2

k−1) is the concentric ring
area, and ⟨· · ·⟩ denotes time average in steady state. The sum is performed over
particles j located within each concentric ring area Ak. The velocity vector vj
in Eq. (4.1b) corresponds to the physical velocity, i.e. obtained from the particle
displacement ∆r computed over a small time interval ∆t = 2τB = 0.05τ . Note
that, in fact, the radial profiles for the polarization components pr(r) and pt(r),
as well as for the angular velocity ω(r) are weighted by the local density, i.e. we
sum over j particles within the k-th concentric ring and divide over its area Ak.
This weighting diminishes fluctuations in bins where the number of particles is
small. To gain better statistics, the average ⟨· · ·⟩ is taken over a steady state time
window ∆t/∆τB = 2 × 103–3 × 103.

For the results shown in this section, we performed particle based numerical
simulations of N = 1000 particles by numerically solving equations Eq. (3.1),
employing parameters in Table 3.1. Particles were started within a circle of radius
R0 = 25σ. Furthermore, we decompose profiles by motility, i.e. we calculate
profiles separately considering all particles, actives only, or passives only. For the
sake of simplicity, in the following we drop the subscript k denoting the index of
the concentric ring radius rk, and we refer to it simply as the radial distance r.
The normalization factors employed are: bulk density of a compact aggregate
ρc, angular velocity of an active particle in the outside boundary of a crystal

58



4.1 Measurement of structural properties

aggregate ωc = v0/Rc. Several of the radial profiles we show below behave like
a step function with a smooth decay: they plateau within the aggregate (with a
constant bulk value), then monotonously decay to zero outside of the aggregate
where no particles are left. We say this type of radial profile displays a “step-like”
behavior.

4.1.1 Density and rotation speed dependence on γ

First we consider the case with perception threshold set to q∗ = 1, in order to
identify the role of the misalignment angle γ. Snapshots of cohesive aggregates
in steady state obtained for different values γ are shown in Fig. 4.1a. We observe
that at smaller γ the aggregates are compact, while for larger values they become
slightly diluted. This is quantified by the density radial profiles ρ(r). In all three
cases: considering all particles, actives only, or passives only; ρ(r) displays a
step-like behavior, see Fig. 4.1b. When considering all particles the bulk value is
ρ ≈ ρc, for actives only ρ ≲ 0.5ρc, and for passives only ρ ≳ 0.5ρc. This shows
that the system’s activity distribution is homogeneous, while containing slightly
less active particles than passive ones. Furthermore, from ρ(r) we find that the
aggregate’s interface is centered at r ≈ Rc, and its interface width broadens for
larger values of γ.

The angular velocity profile ω(r) is zero for aligned visual perception γ = 0,
and display a step-like behavior for non-vanishing values of γ, see Fig. 4.1c. The
step-like behavior of ω(r) indicates a solid-body rotation of the aggregate. The
bulk angular velocity for γ/π = 0.25 is ω ≈ 0.2ωc, and it increases for larger
γ. For the larger misalignment angle shown here, γ/π = 0.375, we find that the
profile’s interface is very broad, and the maximum value of ω occurs at the center,
approximately ωb ≈ 0.6ωc. Active and passive contributions to ω(r) also show an
increase with γ. The bulk values ωb considering only actives or only passives are
correlated to the corresponding bulk density values ρb, i.e. ωb is larger for passives
than for actives, as there is a larger number of passives than actives in the bulk.
Increasing γ increases the average tangential orientation of the active particles eat ,
and consequently the overall angular velocity ω. We investigate the role of the
particle orientations by means of polarization profiles, which correspond to local
orientation averages, as defined in Eq. (4.1c), (4.1d). In Fig. 4.1d profiles pr(r)
are shown to vanish when considering all particles. When only active particles
are taken into account, we have pr < 0, as on average In-oriented particles with
r̂j · eaj < 0 perceive a large number of neighbors, thus become active. On the
other hand, for passives pr > 0, as Out-oriented particles perceive less neighbors.
For actives only, as well as for passives only, the magnitude |pr| in the bulk is
larger for γ = 0, and becomes small for γ > 0. The reason of this, is that with
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Figure 4.1: Radial profiles of the aggregate’s properties at perception threshold q∗ = 1.
(a) Snapshots of the collapsed aggregate in steady state for different values
of γ. Radial profiles for the aggregate’s: (b) number density ρ, (c) angular
velocity ω, (d) radial polarization pr, and (e) tangential polarization pt.
Normalization factors correspond to the density ρc, size Rc.
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4.1 Measurement of structural properties

positive misalignment, it is more likely that Co-oriented particles have a preference
to become active, and anti-oriented ones to remain passive. However, a non-
vanishing polarization of the active particles |par | is required to ensure cohesion,
as those are the ones that tend to compress the cluster. For this reason, the
decrease of |par | with γ is correlated to the increase of the interface width found in
ρ(r) and ω(r). Last but not least, in Fig. 4.1e the tangential polarization radial
profiles pt(r) are shown, which vanish when considering all of the particles, but
display a maximum(minimum) when considering only the actives(passives). This
indicates that active particles tend to tangentially drive the system, giving rise
to the aggregate’s rotation, which is coupled to the observed increase in angular
velocity. For the aligned case γ = 0, the component pt remains zero.

4.1.2 Fast rotation of fluid aggregates near γ = π/2
By construction we know that aggregates become more dilute with increasing
γ, and become non-cohesive for lateral visual perception γ = π/2. However,
slightly below γ = π/2 it is still possible that aggregates are still non-cohesive,
as we have found for γ/π = 0.48 in Sec. 3.3, although the structure of the
aggregates is somewhat different for particles with almost lateral perception.
In Fig. 4.2a we observe snapshots of aggregates in steady state for systems with
γ/π = 0.40625, 0.44, 0.45. To verify that the aggregates are indeed in steady state,
we obtain the radius of gyration Rg(t) and check this quantity remains constant
at longer times t > 1 × 103 τB, see Fig. 4.2b. We find steady state is reached for
γ/π ≤ 0.45, conversely for larger values Rg grows in time and therefore systems
are non-cohesive. From density radial profiles ρ(r), see Fig. 4.2c, we observe that
the system is diluted with values below the compact case, ρ < ρc, and with an in-
terface as large as the aggregate’s size. The angular velocity ω(r) in Fig. 4.2 shows
the interface is very large in all cases, for γ/π = 0.40625 the profile monotonously
decreases from a maximum at the center; whereas for γ/π = 0.44, 0.45 the pro-
file shows a non-monotonous dependence with a slower center. This is coupled
to the activity distribution, as it is found to be mostly homogeneous, except for
the center which is found to be passive for γ/π = 0.44, 0.45. For aggregates of
size R > Rc the interparticle distances are larger, and therefore the perception of
particles near the center become smaller than q∗ = 1 (recall that qi ∼ 1/rij). We
have found the aggregate of particles with γ/π ≈ 0.4 shows the fastest rotation
at the center. Particles there rotate even faster than the case with γ/π = 0.375
shown in Fig. 4.1c. The reason for such an increase in angular velocity is that
for looser aggregates the velocity of the active particles is much less diminished
by steric interactions with neighbouring particles, contrary to the case when the
system is compact, where particles movement is limited by close-packing.
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Figure 4.2: Aggregates with near lateral perception γ ≲ π/2. (a) Configuration snap-
shots for systems in steady state with for γ/π = 0.40625, 0.44, 0.45.
(b) Time evolution of the radius of gyration Rg. Shaded region t/τB >
1 × 103 corresponds to the steady state for the collapse cases. (c) Density
radial profiles. (d) Angular velocity radial profiles.

4.1.3 Activity distribution dependence on perception
threshold q∗

Now we describe behaviors obtained for different values of q∗ at fixed misalign-
ment angle γ = π/4. Snapshots of collapsed aggregates in steady state are
shown in Fig. 4.3a. We observe that the activity distribution changes significantly
with q∗. Such behaviors are quantified by density radial profiles, see Fig. 4.3b.
For q∗ = 0.3 the system is less compact and composed mainly of active particles
with passives only in the outer layer. Here, ρ(r) shows step-like behavior with a
bulk density of ρ ≈ 1.5ρ0, which drops at the interface starting from r = 15σ and
vanishing at r = 25σ. When considering only the distribution of active particles,
ρ(r) is also step-like, and for the passives it is non-monotonous with a maximum
around r ≈ 17σ and vanishing both at r = 0 and r > 25σ. For q∗ = 0.7, the
activity distribution is similar as for q∗ = 0.3, however in this case the aggregate is
compact instead of dilute, with bulk density near ρ ≈ 2ρ0. For q∗ = 1 we observe
the aggregate is compact with an homogeneous activity distribution, as already
discussed for γ = π/4 in Fig. 4.1a-b; for comparison, same data is shown again
in Fig. 4.3. For q∗ = 1.2, the aggregate is also compact, but the activity distri-
bution is inhomogeneous, mainly composed by passive particles with actives only
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Figure 4.3: Radial profiles of the aggregate’s properties with misalignment an-
gle γ = π/4. (a) Snapshots aggregates in steady state for different values
of q∗. (b-e) Radial profiles for the aggregate’s properties.

in the outer layer. Again, this is reflected in the form of ρ(r), which is step-like
with bulk density ρ ≈ 2ρ0 when considering all particles, it is non-monotonous
for active particles, and decreasing for passives.

Furthermore, we find that the motility distribution, as modified via the per-
ception threshold, has a significant impact on the aggregate’s angular velocity, as
observed in Fig. 4.3c. We observe that the form of ω(r) depends on the perception
threshold q∗. The diluted aggregate found at q∗ = 0.3 display rotations only in
the outer layer at r = 15σ with ω ≈ 0.3ωc. The center of this aggregate does not
rotate, as there particles are all active and move isotropically. In the center, at any
orientation ei a particle i perceives enough neighbours to become active, such that
misalignment does not play a role and no-average motion is induced. This can be
seen from perception radial profiles q(r) = P (r)/Pc (see Eq. (3.2) and Sec. 3.10)
for particles within an aggregate of size Rc, see Fig. 4.4a. We observe that for all
orientations ϕ̃ = −π/2,−π/4, π/4, π/2 particles at r/Rc < 0.8 surpass q∗ = 0.3
and thus they are active. At r/Rc > 0.8 Anti-oriented particles, with ϕ̃ = π/2,
have perception q < 0.3 and thus are passive. Therefore, there is an imbalance of
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Figure 4.4: Activity distribution according to perception. Perception radial profiles of
a steady state cohesive aggregate of size Rc with shaded regions indicating
active (Act), passive (Pas), and homogeneous (Hom) motility distributions.
Perception threshold is set to (a) q∗ = 0.3, and (b) q∗ = 1.2.

passive anti-oriented particles, against active Co-oriented ones rotating around in
the outer layer. Considering all particles for larger values q∗ ≥ 0.7, ω(r) shows
that rotations occur homogeneously in the whole cluster, i.e. the cluster displays
a rigid-body rotation. The form of ω(r) for actives and passives is coupled to the
behaviors of ρ(r), e.g. for q∗ = 0.7, 1.2 profiles ω(r) are non-monotonous, only
because ρ(r) is also non-monotonous. For the larger perception threshold value
q∗ = 1.2 the cluster displays a rigid-body rotation with a significant angular ve-
locity value in the bulk, ω ≈ 0.6ωc, despite the smaller amount of actives driving
the cluster in the outer layer. See Fig. 4.4b. The observed rigid-body rotation
is a consequence of steric interactions, since in close-packing the active particles
in the outer layer are able to drag the passive ones to move along with them,
resulting in a constant angular velocity in the bulk of the aggregate, decaying
towards the boundary. The effect of the misalignment angle of selecting In- and
Co-oriented particles as actives, and Out- and Anti-oriented ones as passives is
still present when we change the threshold q∗. This behavior is reflected in radial
profiles for the polarization components similar to those in Fig. 4.1d-e.

4.1.4 Aggregate properties with varying Péclet number Pe

Now we study the effect in the aggregate’s structural properties when changing
the rotational Péclet number

Pe = v0

σDr

, (4.2)
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4.1 Measurement of structural properties

where v0 is the self-propulsion velocity and Dr the rotational diffusion coefficient.
For this purpose, we keep fixed q∗ = 1, γ = π/4 and v0 = 40σ2/Dt, and vary
the rotational diffusion coefficient. The rotational Péclet number is an important
quantity, as the motility of particles is highly dependent on the self-propulsion
orientation e, which also change the orientation of the vision cone. Therefore,
we expect the dynamics to be different with changing rotational diffusion Dr.
We find that in steady state, the aggregates are more compact for smaller Péclet
numbers Pe, whereas they are more dilute for larger Pe , see Fig. 4.5a-b. This
behavior is due to the longer persistence length of active particles with higher Pe.
As observed in Fig. 4.5c-d, particles at low Pe display a more activity intermittent
trajectory, constantly switching motility between active and passive. On the other
hand, particles with high Pe display trajectories which remain more time as either
passive or active. When they are passive they have more time to diffuse out, and
when they are active they can deviate their direction away from the accumulation
of particles, as long as they still perceive enough neighbors.

This behavior is quantified by radial profiles for the density ρ(r), see Fig. 4.6a-
b. Here we observe that systems at lower Pe show an aggregate with a sharper
interface, compared to the broader one shown in systems at higher Pe. In all
cases the activity distribution remains homogeneous, and the number of passives
slightly increases with higher Pe. In the center the density reaches values of
ρ ≈ 2ρ0. The increase of the interface size with higher Pe is somewhat unexpected
if one compares with motility-induced phase separation, which is known to display
more clustering with increasing values of the Péclet number. Instead, here we have
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Figure 4.5: Systems at low and high Péclet numbers Pe. Typical trajectories of particles
at (a) Pe = 4, and (b) Pe = 81. Silver lines show 20 randomly selected
trajectories. Color coded trajectories indicate motility.
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Figure 4.6: Cohesion enhanced by decreasing Péclet number. A system of particles with
low Pe = 1 (a), and high Pe = 160 (b). Density profiles ρ(r) for various
values of Pe. The corresponding angular velocity profiles ω(r) are shown
as dashed lines with values given by the right-axis.

that a more compact cluster is obtained for smaller values of Pe. Furthermore,
we also obtain angular velocity radial profiles ω(r). We observe that in the bulk,
the angular velocity increases with Pe, see Fig. 4.6c. Furthermore, the interface
of ω(r) also increases with Pe. A rigid body rotation is only observed near the
center where the system remains in close-packing.

4.2 Continuum description of steady state rotating
aggregates

In this section we consider a continuum description of the system and employ
conservation equations to derive analytical expressions for the aggregate’s prop-
erties in steady-state, like the bulk density ρb, radius R, and polarization p. We
consider coarsed-grained spatial coordinates, i.e. the system is subdivided into
small finite square cells of length l larger than the particle size but much smaller
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4.2 Continuum description of steady state rotating aggregates

than the box length, σ < l ≪ L, then coordinates rk in this case refer to the po-
sition of the center of the k-th cell, which in general can contain none or several
particles. For example, we can define a local number density ρM(rk, t) = M/l2,
where M ≤ N refers to the number of particles found within the k-th cell at
position rk at time t. The continuum limit then corresponds to the case where
the coarsed-grained cells and particles are infinitesimally small, i.e. l/L → 0 and
σ/l → 0.

As already introduced in Sec. 3.1, self-propelled particles have two degrees
of freedom, the position r and the angle ϕ parametrizing the orientation vector
as e(ϕ) = (cosϕ, sinϕ)T , see Fig. 4.7a. We define the 1-body probability density
ψ(ϕ, r, t) as the probability of finding one particle within the parameter space
volume element drdϕ at time t. The local number density can be obtained from
ψ(ϕ, r, t) by integrating over ϕ, i.e. averaging over particle orientations located
at position r at time t

ρ(r, t) =
w π

−π
dϕψ(ϕ, r, t). (4.3)

Local polarization is given by the average orientation field, p(r, t) = ⟨e(r, t)⟩,
where the average ⟨· · ·⟩ corresponds to an integral over the angle ϕ, written ex-
plicitly

p(r, t) =
w π

−π
dϕe(ϕ, r, t)ψ(ϕ, r, t), (4.4)

where e(ϕ, r, t) = cosϕx̂ + sinϕŷ is the local orientation vector field. Knowing
the probability density ψ(ϕ, r, t) would give us the full dynamics of the continuum
properties by plugging it in definitions Eq. (4.3) and Eq. (4.4) and performing
the integrals. However, ψ(ϕ, r, t) is not known, and in general it is a complicated
expression for a system of interacting particles. Since we are interested in steady
state properties, we can directly obtain expressions for ρ(r) and p(r) by employ-
ing known steady state conservation equations together with adequate boundary
conditions.

4.2.1 Polarization of the active particles
As we have found in particle-based numerical simulations, systems of Brownian
particles with switching motility and misaligned visual perception aggregate into
compact cohesive structures with well-defined bulk density ρb and radius R. Here
the system is homogeneous within the bulk, and isotropic in orientations e (dy-
namics of ϕ is given only by rotational diffusion with coefficient Dr). In this case,
from integral Eq. (4.3) we have that the steady state probability density for r < R
is constant

ψ(ϕ, r, t) = ρb
2πΘ

(
1 − r

R

)
, (4.5)
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Figure 4.7: Transformation of the orientation angle ϕ. Particle with self-propulsion
orientation e and vision cone misalignment angle γ located at r = R. The
orientation vector e is parametrized by: (a) angle ϕ between vectors x̂
and e, and (b) angle ϕ̃ between vectors r̂ and e. The vision cone angle
β = γ + ϕ̃ − π corresponds to the angle between −r̂ and the vision cone
orientation c = [cos(ϕ̃+ γ), sin(ϕ̃+ γ)]T which defines the vision cone axis
of symmetry.

where Θ(·) is the Heaviside step function. Furthermore, due to isotropic orienta-
tions e, the integral in Eq. (4.4) vanishes and the polarization is p = 0 everywhere.
However, the quantity of interest is not the global polarization but how this is
distributed between active and passive particles, both in the radial and tangential
components of the polarization field, i.e. pr = r̂ · p and pt = t̂ · p, where r̂ and
t̂ refer to radial and tangential unitary vectors, see Fig. 4.7b. The polarization
vector field can then be linearly decomposed as

p = pa + pp =
(
par r̂ + pat t̂

)
+
(
pprr̂ + ppt t̂

)
, (4.6)

where the superscripts a and p refer to the active and passive contributions,
respectively. At the interface r = R, the polarization components of the active
particles can be calculated by plugging Eq. (4.5) in definition (4.4), giving

par |r=R = −
w π

−π
dϕr̂ · êa(ϕ) ρb2π , (4.7a)

pat |r=R =
w π

−π
dϕt̂ · êa(ϕ) ρb2π . (4.7b)

The orientation field ea as a function of the orientation angle ϕ is not known,
therefore we cannot directly perform the integrals in Eqs. (4.7). To find a more
suitable expression, first we change variables to parametrize ea as a function of
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the transformed angle ϕ̃, defined earlier in Eq. (3.5) as the angle between e and
the radial vector r̂, see Fig. 4.7b. We consider a second change of variables, from ϕ̃
to an angle β defined as the angle between −r̂ and the vision cone orientation
vector c = [cos(ϕ̃+ γ), sin(ϕ̃+ γ)]T , see Fig. 4.7b. Angle β is given by

β = ϕ̃+ γ − π. (4.8)

In this representation we have that a particle is active when its orientation β
is within range −β∗ < β < β∗, see Fig. 4.8a. Conversely, a particle is passive
when β > β∗ or β < −β∗, see Fig. 4.8b. The perception angular profile q(β) is
bell shaped, see Fig. 4.8c, ensuring that only particles with β within the range
(−β∗, β∗) perceive a larger number of neighbors, so the perception threshold q∗ is
surpassed. In other words, the angular threshold β∗ is a monotonously decreas-
ing function of the perception threshold β∗(q∗). Therefore, a given threshold q∗
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Figure 4.8: Angle threshold β∗. A particle located at r = R from the aggregate’s center
rcm, and oriented with vision cone angle β. A particle with orientation
(a) β < β∗ is active, whereas with (b) β > β∗ is passive. (c) Percep-
tion angular profile q(β). Horizontal dashed line indicates the threshold
value q∗ = 1. Positive and negative values of β∗ are indicated with vertical
dashed lines. (d) Positive branch of the angle threshold β∗, obtained by in-
verting q(β). Dashed line is a linear approximation valid for a broad range
of q∗.

69



4 Control of the aggregate’s structural properties

uniquely determines the range (−β∗, β∗). Fig. 4.8d shows that for a large range
of q∗ ∈ (0.2, 1.2), the linear approximation β∗(q∗) ≈ −0.41q∗ + 0.65 is a very
reasonable estimation.

Employing transformations Eq. (3.5) and Eq. (4.8), the polarization compo-
nents in Eqs.(4.7) are easily computed

par |r=R = −
w β∗

−β∗
dβ cos(π + β − γ) ρb2π = ρb

π
sin β∗ cos γ, (4.9a)

pat |r=R =
w β∗

−β∗
dβ sin(π + β − γ) ρb2π = −ρb

π
sin β∗ sin γ. (4.9b)

4.2.2 Conservation equations
Now we derive expressions for the aggregate’s bulk density ρb and radius R from
steady state conservation equations. The transport of particles for the cohesive
aggregates considered here is given only by thermal diffusion Dt and particle self-
propulsion v0, then the particle current is J = Dt∇ρ− v0p. In steady state, the
radial flux r̂ · J at the interface r = R is conserved, therefore[

Dt∂rρ− v0p
a
r

]
r=R

= 0. (4.10)

This conservation equation shows that the flux of particles leaving the cluster
due to thermal diffusion (first term of the equation), is balanced out by the flux
of particles that actively join the aggregate (second term of the equation). To
compute the first term above, we employ a step function for the density radial
profile

ρ(r) = ρbΘ
(

1 − r

R

)
, (4.11)

which follows from plugging Eq. (4.5) in Eq. (4.3). It is a reasonable approxima-
tion for our numerical results in steady state, as we have seen from density radial
profiles in Fig. 4.1 and in Fig. 4.3. Plugging this expression for the density into
the no-flux condition Eq. (4.10), we obtain

ρb
R

= v0

Dt

par , (4.12)

where we have used that ∂xΘ(x) = δ(x).
Another steady state conserved quantity is given by the number density con-

servation
r
d2rρ(r) = ρ0A where A is the area covered by the particles in the
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initial configuration. For the step function Eq. (4.11), this conservation equation
yields

ρbR
2 = ρ0R

2
0. (4.13)

Eq. (4.13) can be solved together with Eq. (4.9) and Eq. (4.12), giving expressions
for the aggregate’s bulk density ρb and radius R as functions of the misalignment
angle γ,

R(γ) = Dt

v0

π

sin β∗
1

cos γ . (4.14)

4.3 Aggregate size R and bulk density ρb

As studied in Sec. 4.1, the density radial profiles ρ(r) of circular aggregates dis-
play a step-like behavior with constant bulk density ρb, and a soft decay at the
aggregate’s boundary r = R. Such behavior can be approximated by the function

ρ(r) = ρb
2 + ρb

2 tanh
(
R − r

ξ

)
(4.15)

where δ corresponds to the width of the aggregate’s interface. Employing this
function we fit density radial profiles in steady sate, from which we obtain the
coefficients R, ρb and ξ for various values of the perception threshold q∗ and
misalignment angle γ. The results for R and ρb are shown in Fig. 4.9. Normal-
ization parameters employed are the density ρc ≈ 0.9σ−2, and size Rc ≈ 18.5σ
corresponding to a compact aggregate, i.e. the size and density of an aggre-
gate in hexagonal close-packing. In Fig. 4.9a, we observe that at fixed q∗ = 1
and increasing γ, the aggregate’s remains reasonably compact with R ≈ Rc, and
density ρb ≈ ρc. The most significant change in this case, is an increase in the
interface width δ, which we discuss in more depth in Sec. 4.4. In Fig. 4.9b, we
observe that at fixed γ/π = 0.25 aggregates are more dilute for smaller q∗ and
compact for larger values. Measured numerical data for ρ(r) nicely fit Eq. (4.15).
The extracted parameters R and ρb are shown in Fig. 4.9c-d for various values of
q∗ and γ. Data points approaching γ ≈ π/2, where R > 1.5Rc are not shown,
as we find in those cases the system is non-cohesive and therefore does not reach
steady state, see Sec. 3.3. In Fig. 4.9c-d we observe that R decreases with q∗

and monotonously increases with γ, diverging at γ = π/2. For the bulk density,
we observe a clear behavior ρb ∼ R−1, which is in perfect agreement with the
density conservation Eq. (4.13). At q∗ = 1 and γ < π/4, the minimum size and
maximum bulk density are obtained, corresponding to that of a closed-packed
configuration, and therefore R and ρb display a plateau in that limit. To compare
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Figure 4.9: Behavior of aggregates in steady state at given γ and q∗. Density radial
profiles (a) at fixed q∗ = 1, and (b) at fixed γ = π/4. Solid lines correspond
to the fitting function Eq. (4.15). Extracted fit parameters, namely (c) ag-
gregate’s size R, and (d) bulk density ρb. Solid lines correspond to analytic
expression Eq. (4.16) with the effective diffusion Deff as a fit parameter.
Inset shows obtained values of Deff .

our numerical results for R and ρb with analytical expressions derived in previous
section, we rewrite Eq. (4.14) as

R(γ) = Deff

v0

π

sin β∗

[
1

cos γ − 1
]

+Rc (4.16)

such that the term within angular brackets vanishes at γ = 0, and R(0) = Rc. We
impose this boundary condition as the expression derived for R in Eq. (4.14) does
not take into account steric interactions, giving non-physical small aggregates
(where particles would overlap) at smaller values of γ. Furthermore, we have
introduced the effective diffusion Deff , which replaces Dt in Eq. (4.11). This serves
as a fit parameter accounting for the active diffusivity found at lower values of
q∗. In fact, Deff does not depend on the misalignment angle γ as the aggregate’s
activity distribution is only affected by q∗, see Sec. 4.1. The calculated effective
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4.4 Interface width ξ

diffusivity is shown in the inset of Fig. 4.9d, for which we find theory curves
nicely agreeing with our numerical data as shown in Fig. 4.9c-d. We observe Deff
monotonously decays with q∗, from Deff ≈ 102Dt at q∗ = 0.2, to Deff ≈ Dt at
q∗ = 1 where there is no activity in the center of the aggregates, instead there is
only thermal diffusivity occurring for passive particles in the outer layer.

4.4 Interface width ξ

Apart from bulk properties, the interface width was found to change signifi-
cantly with the misalignment angle γ. By fitting the data shown in Fig. 4.9a,b
with Eq. (4.15), besides the fit parameters ρb and R, we also obtain the interface
width ξ for each radial profile. To better visualize the behavior of ξ in the density
radial profiles, we normalize ρ(r) by using the measured bulk density ρb, and shift
the center by using the measured aggregate size R. Such that ρ(r)/ρb = 1 in
the bulk, and r − R = 0 is the new origin. Rescaled density profiles are shown
in Fig. 4.10a-b. For q∗ = 1 and varying γ, we observe that the center of all curves
lie at r = R, the curves decrease from a maximum at ρ = ρb, vanishing at large r.
In this representation, it is clear that increasing γ broadens the interface width ξ.
On the other hand, at γ/π = 0.25 and varying q∗, see Fig. 4.10c, we observe that
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Figure 4.10: Interface width of the aggregates. Rescaled density radial profiles (a) at
fixed q∗ = 1, and (b) at fixed γ = π/4. (c) Interface width ξ as a function
of the misalignment angle γ at perception threshold q∗. Solid line corre-
sponds to Eq. (4.17).
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4 Control of the aggregate’s structural properties

data for all q∗ collapse into the same curve, showing that the interface width ξ
is unaffected by the perception threshold. Values of ξ for different γ and q∗ are
shown in Fig. 4.10c. We observe a divergent growth of ξ with increasing mis-
alignment angle γ, starting from a minimum at γ = 0 with value ξ(0) ≈ 0.1Rc

and blowing up at γ = π/2. Moreover, we observe all the data points collapse
into a single curve, independent of q∗. Taking into account such behavior and
boundary conditions, we propose the phenomenological function

ξ(γ) = ξ(0) + tan(γ), (4.17)

which we find nicely fits our numerical data.
We know the effect of varying q∗ is to change the activity distribution of the

aggregate. The change in activity occurs in the aggregate’s center, however we
have found that the outer layer remains homogeneous in all cases. This suggests
that the interface width is independent of changes of activity distribution in the
center. The effect of the misalignment angle γ on the aggregate can be understood
as imposing an effective attractive force between the particles and the aggregate’s
center, which should be given by the active velocity vr ∼ v0p

a
r . Furthermore,

an effective tangential driving force (a torque) is also imposed, which should be
given by vt ∼ v0p

a
t . From Eqs. 4.9, we have that at the interface the ratio vr/vt ∼

tan γ which is the second term in Eq. (4.17), this indicates that indeed at the
interface effective attraction diminishes with γ, whereas net torque increases.
This translates into broader interface width ξ with increasing γ as we observe in
our numerical results.

4.5 Bulk angular velocity ωb

Rigid-body rotations display step-like angular velocity radial profiles ω(r). In
those cases, similar to what we did for ρ(r), we can fit the measured steady state
angular velocity with a function similar to Eq. (4.15) which now reads

ω(r) = ωb
2 + ωb

2 tanh
(
R′ − r

ξ′

)
, (4.18)

where ωb is the bulk angular velocity, R′ the profile’s size, and ξ′ the profile’s in-
terface width 1. Fitting curves at q∗ = 1 and γ/π ≤ 0.375 are shown in Fig. 4.11a.
In those cases, the aggregate performs a rigid-body rotation and therefore ω(r)
is step-like and our data nicely fits Eq. (4.18). This holds for a large range of

1In general, R′ and ξ′ do not necessarily correspond to R and ξ measured for ρ(r), which are
the actual aggregate’s size and interface width.
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Figure 4.11: Steady state angular velocity. Angular velocity radial profiles (a) at q∗ = 1
and γ/π ≤ 0.375, (b) at q∗ = 1 and γ ≥ 0.4, and (c) at fixed γ = π/4
and q∗ = 0.2–1.2. Bulk angular velocity ωb (d) at fixed γ, (e) at fixed q∗

in linear scale, and (f) at fixed q∗ in logarithmic scale. Solid line in (d-e)
corresponds to the theory prediction for q∗ = 1 in Eq. (4.20).

parameters namely for not too large misalignment angle or too small perception
threshold. In the totally aligned case γ = 0, the aggregate does not rotate. In-
creasing γ we observe the bulk angular velocity ωb also increases. Cases with
very large γ, i.e. near lateral misalignment γ ≲ π/2 are shown in Fig. 4.11b.
There, profiles ω(r) show a very broad interface, which eventually become non-
monotonous. To account for such behavior when fitting Eq. (4.18), we consider
only data points with r > rmax, where rmax is the radial distance for which we
find the maximum value of the angular velocity ωmax. In this way, we obtain
that the maximum angular velocity ωmax = ωb decreases as the misalignment
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4 Control of the aggregate’s structural properties

angle approaches γ = π/2. Aggregates with large γ/π ≲ 0.5 correspond to fast
rotating aggregates which are loose but still cohesive, as discussed in Sec. 4.1.2.
Non-monotonous behavior of ω(r) is also found at small values of q∗, see the
profiles for q∗ = 0.2, 0.3 shown in Fig. 4.11c. There, ω(r) is maximum near the
aggregate’s outer-layer. As discussed in Sec. 4.1.3, small q∗ leads to aggregates
with an active center which does not rotate but has an isotropic displacement
field, therefore ω(r) vanishes close to the center. At q∗ = 1 where the activity
distribution is known to be homogeneous, then ω(r) is found to be step-like. At
q∗ = 1.2, ω(r) is also step-like but the value in the bulk diminishes, as in those
cases the activity distribution is dominated by passives with a few active particles
in the outer layer only.

Obtained values of the bulk angular velocity ωb for varying q∗ and γ are shown
in Fig. 4.11d. We observe ωb shows a clear non-monotonous behavior with q∗,
which is due to the aggregates structure transitioning from rotating outer-layer, to
homogeneous-activity rigid-body rotation, to passive-center rigid-body rotation.
The effect is most dramatic for γ/π = 0.375 shown here. The dependence with γ
is shown in Fig. 4.11e-f. To provide an analytic understanding of this result, we
employ the following expression for the bulk angular velocity

ωb = v0
pat
R
. (4.19)

The terms pat and R correspond to those obtained in Eq. (4.16) and Eq. (4.9),
which are valid only for aggregates displaying rigid-body rotations. For this rea-
son, we do not expect Eq. (4.19) to work in the cases where we have rotations
only in the outer layer, which is the case for small q∗. Furthermore, Eq. (4.19) is
not expected to work either for cases with almost lateral perception γ/π ≲ 0.5,
where the radial profiles show a very broad interface and are non-monotonous.
Note that Eq. (4.19) does not contain any information about the activity distri-
bution of the system. The derived expression for the tangential polarization pat
considered only particles at r = R, such that the product v0p

a
t accounts for the

tangential velocity exerted by particles at the interface. This value is the same
for all particles of an aggregate displaying rigid-body rotation, but for differ-
ent structures the tangential velocity is not expected to be the same. For this
reason, the validity of Eq. (4.19) is restricted to q∗ ≈ 1 and small values of γ.
Plugging Eq. (4.9) into Eq. (4.19) we obtain

ωb(γ) = v0
ρb
R

sin β∗

π
sin γ, (4.20)

which is found to be in good agreement between with the data within its range
of validity, see Fig. 4.11e. This can be seen in more detail in the logarithmic
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representation Fig. 4.11f. Moreover, we find that for small misalignment angle a
linear growth ωb ∼ γ holds for other values of q∗ as well, emphasizing that the
aggregates rotation is driven with velocity v0p

a
t ∼ γ by the tangentially co-oriented

active particles.

4.6 Summary
The aggregate’s structural properties were studied by means of radial profiles for
the density ρ(r) and angular velocity ω(r), which were found to behave as step-like
or non-monotonous functions of r for different values of the control parameters.
At q∗ = 1 increasing the misalignment angle γ, we found that the aggregates
interface becomes broad while keeping an almost constant size R and bulk den-
sity ρb. For values near lateral perception γ/π ≲ 0.5, we found the interesting
case of fast rotating aggregates, which have a broad interface, and they are diluted
while still cohesive. These structures showed the largest bulk angular velocity ωb
found, however they also showed a slowly rotating center. At fixed γ = π/4 in-
creasing the perception threshold q∗, we found a dramatic change in the activity
distribution of the aggregates. We found smaller values of q∗ lead to aggregates
composed mainly of active particles with passives only in the outer layer. Such
activity distribution translates into more fluid structures that rotate only in the
outer layer, as a result of an imbalance in orientation-dependent activity where
co-oriented particles are active while anti-oriented ones remain passive. Homo-
geneous activity distribution is found only for q∗ = 1, where the aggregates are
compact—with a crystalline internal structure—and display rigid-body rotations.
Moreover, for values slightly above q∗ = 1, the aggregate becomes mainly passive
with only a few active particles in the outer layer. In this case the aggregates
were found to be compact but slow-rotating.

Furthermore, we derived analytic expressions from a continuum description
of the aggregate corresponding to a rotating disk of density ρb and size R. We
obtained a system of equations, which were solved by finding an expression for
the polarization of the active particles, which served as a closure in conservation
equations for the particle flux and number density. This led to formulas for the
size and bulk density at given γ and q∗. Resulting analytic expressions were found
to be in good agreement with our numerical results, given fitting parameters ac-
counting for the steric interactions and the activity distribution (not considered
in the derivation). Finally, we analyzed the interface width. We found it grows
with increasing γ and, unlike clustering in MIPS, we found it grows with decreas-
ing Péclet number Pe. Surprisingly, the perception threshold q∗ does not affect
the interface, which we found is coupled to the homogeneous activity distribution
occurring in the outer later at any value of q∗.
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Part II

Mixtures of particles with
misaligned visual perception
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5 Emergence of directed swarms

To design novel strategies that lead to motility-induced emergent collective be-
havior is one of the current challenges in active matter [4]. One striking case of
emergence, is when a system of identical active agents form cohesive macroscopic
structures that are able to swarm altogether performing directed motion. Such
behavior has been found, e.g. in systems of self-propelled rods [40, 153, 154], and
more recently in systems of attractive active Brownian particles [155]. There,
particles cooperate to move in sync in a given direction, while penalizing mo-
tion in opposite directions. In binary mixtures, collective behavior emerges from
cooperation given the different intrinsic properties of each species, e.g. active-
passive particles [156–164], colloids with different short-attractive long-repulsive
(SALR) potentials [165], with different chiralities [166–172], and with different dif-
fusivities [173]. In recent years, mixtures of particles displaying motility-induced
self-organization into directed swarms have been described, e.g. for mixtures of
colloids with non-reciprocal phoretic interactions[174], and also for light-activated
colloids with aligning interactions [107].

In this chapter we study a binary mixture of particles with misaligned vi-
sual perception that self-organizes into a species-separated bean-shaped directed
swarm. We quantify dynamical features of the swarms by means of parameters
such as the largest cluster size, species separation, fraction of actives, center of
mass speed, and mean-squared displacement. For different values of the percep-
tion threshold q∗, we find that the system can be either cohesive, dissolve over time
leaving a trail of particles, or it can also remain loose non-separated and non-self-
propelling. We analyze the shape of the swarms, showing that the misalignment
angle γ can be used to control the bean’s aperture angle and swarm elongation.
To obtain a phase diagram, we systematically vary the parameters (q∗, γ), and
also identify the values for which directed swarms are robust and self-propel with
maximum speed.
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5 Emergence of directed swarms

5.1 Formation of directed swarms
Here we study a similar model as in chapters 3 and 4, although in this case not
all particles are identical but instead a binary mixture is considered. Dynam-
ics are governed by overdamped Langevin equations of motion (3.1). Particles
here perceive neighbors within a restricted cone of vision, see Eq. (3.2), and af-
ter surpassing certain perception threshold q∗, they activate with self-propulsion
velocity v0, or remain passive otherwise, see Eq. (3.3). The mixture has N1 parti-
cles with a visual perception that is misaligned with respect to the self-propulsion
direction by an angle γ1, and N2 particles with γ2 = −γ1. See Fig. 5.1. In
this chapter we consider that the mixture is equimolar N1 = N2. Other system
parameters corresponds to those in Table 3.1.

We perform particle-based numerical simulations of N1 = N2 = 500 particles
which initially are homogeneously distributed within a circle of radius R0 = 25σ.
The cutoff radius of the vision cone is set to rcut = 100σ and the simulation box
is considered to be unbounded. Here, each particle posses a perception threshold
of q∗ = 1 and misalignment angles γ1 = −γ2 = π/4. The vision cone aperture
angle is set to α = π/4.

We find that at shorter times t/τ̃ < 0.4 where τ̃ = 104τB and τB = σ/v0
is the ballistic time, the binary mixture collapses into a single compact aggre-
gate, see Fig. 5.2a. Cohesion is ensured due to orientation-dependent motility,
where particles that are in-oriented perceive a larger number of neighbors in
the bulk and become active, whereas out-oriented ones do not perceive enough

γ2

α

γ1

α

Figure 5.1: Particle species in the binary mixture. Species 1 has misalignment angle
γ1 = π/4, and species 2 has γ2 = −π/4. Both with α = π/4. The vision
cone range is shortened for the sake of clarity.
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5.1 Formation of directed swarms

neighbors and therefore remain passive. This mechanism translates into effec-
tive attractions between particles, thus keeping the system cohesive and com-
pact, see Sec. 3.1.1. After collapse, a transient self-sorting process occurs during
the time interval t/τ̃ = 0.4–0.8. There, the aggregate’s center of mass starts to
slowly move. The initial trajectory of a single particle is shown in the zoom-in
in Fig. 5.2b, it describes a circling motion occurring during self-sorting. Once the
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Figure 5.2: Emergence of a species-separated directed swarm for γ = π/4 and q∗ = 1.
(a) Particle configuration snapshots showing the system’s time evolution.
Time is normalized by τ̃ = 104τB where τB = σ/v0 is the ballistic timescale.
Dashed circles indicate the size of the initial circular configuration. For clar-
ity, particles outside of this circle are not shown. Snapshots are centered
at the center of mass rcm. (b) Trajectories in the lab frame of 10 repre-
sentative particles, each color-coded by time. Numbers indicate the center
of mass positions corresponding to the snapshots in (a). Zoom-in indicates
single particle trajectories at t/τ̃ < 0.8. (c) Particle configuration at time
t/τ̃ = 1.4. (d-e) Time-averaged coarsed-grained local density (colorized by
species) and velocity field (arrows) calculated both in (d) the lab frame,
and (e) body frame.
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5 Emergence of directed swarms

system is reasonably separated at later times t/τ̃ = 0.8–1.4, particle trajectories
describe directed straight motion. In this case, as the aggregate persistently self-
propels at t/τ̃ > 1, it also dissolves leaving a trail of particles behind, see Fig. 5.2c.

To visualize the dynamical behavior as the swarm self-propels, we coarse-grain
both the particle density and the velocity field. For this we subdivide the space
into square cells of length l = 3σ each. Within each of them, we calculate the local
particle density, as well as the average particle velocity, where the velocity of each
particle i is calculated from the particle displacements vi = [ri(t+∆t)−ri(t)]/∆t
with the time step set to ∆t/τ̃ = 0.002. Here ∆t is chosen small enough to account
only for the instantaneous velocity of the particles, although it is still larger
than the ballistic time ∆t = 20τB to disregard isotropic displacements due to
Brownian diffusion. To gain better statistics, we also perform a time-average over
configurations in steady-state during a time interval of ∆τ/τ̃ = 0.02. In Fig. 5.2d-
e, the resulting time-averaged coarsed-grained local density and velocity fields are
shown, both in the lab and body frames of reference. We observe the swarm has
a bean shape consisting of two lobes, each one corresponding mostly to a single
species subdomain. In the lab frame the velocity field shows to be polarized
indicating that the swarm propagates in a given direction. In the body frame
the velocity field describes two counter-rotating vortices, corresponding to the
counter-rotation of each of the species subdomains.

The self-sorting mechanism can be explained as follows: (i) initially the system
forms a species homogeneous compact structure, where particles at the boundaries
flow freely either counter- or clockwise depending on the sign of their perception
misalignment angle γi, see Fig. 5.3a-b, (ii) particles flowing in opposite directions

(a)

γ1 = π/4

Self-sorting

(b)

γ2 = −π/4

(c)

γ1 = π/4

Self-propulsion

(d)

γ2 = −π/4

Figure 5.3: Velocity fields during self-sorting and self-propulsion. Time-averaged
coarsed-grained velocity field during (a-b) self-sorting at 0.02 < tτ̃ < 0.32,
and (c-d) self-propulsion at 0.9 < t/τ̃ < 1.2. Gray color code indicates
local number density. The velocity field is obtained in the body frame, and
decomposed into species contributions, such that in (c,d) only species 1 are
considered, and (b,d) only species 2.
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5.2 Dissolving directed swarm

block each other due steric interactions, leading to species accumulations at the
boundaries, (iii) the process continues until particles in the bulk also flow to the
boundaries where they accumulate, eventually the system fully separates into
counter-rotating species subdomains, see Fig. 5.3c-d.

5.2 Dissolving directed swarm
With the parameters q∗ = 1 and γ = π/4, we have found that the emergent
directed swarm leaves a trail of particles thus dissolving over long enough time. To
see how the system dissolves, we perform a long simulation with total time t/τ̃ =
4. Particle trajectories show that the swarm performs directed motion followed
by spiraling before fully dissolving into a gas, see Fig. 5.4. Particles left behind in

−200

0

200

y
/
σ

(a)

0 200 400 600 800 1000
x/σ

−200

0

200

y
/
σ

t6

t5

t4

t3

t2
t1

(b)

0 4t/τ̃

Figure 5.4: Dissolving directed swarm. (a) 10 representative particle trajectories color
coded by time. Zoom-in shows the trajectory of a particle that is left behind
in the trail. (b) Superimposed snapshots of i = 6 particle configurations at
ti/τ̃ = 0.2, 1, 1.4, 1.8, 2.3, 4. Zoom-ins show particle configurations of the
aggregate’s bulk at times t2 and t6.
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the trail do not perceive enough neighbors and are therefore passive displaying a
random walk behavior at longer times, see the zoom-in in Fig. 5.5a. Eventually,
the swarm loses cohesion so its compact structure fluidizes becoming a dissolved
passive gas, see zoom-ins in Fig. 5.5b. Accordingly, we observe three different
time-evolution regimes where the system: (i) self-sorts at t/τ̃ ≲ 1, (ii) self-propels
while leaving a trail of particles at 1 ≲ t/τ̃ ≲ 3, and (iii) dissolves at t/τ̃ ≳ 3.

5.2.1 Separation and self-propulsion
To better understand the self-sorting process, we introduce the species separation
parameter defined as

bs(t) = 1
N

N∑
i=1

ni,s(t) − ni,o(t)
ni(t)

, (5.1)

where ni is the number of neighbors of particle i, ni,s the number of neighbors of
the same type as i, and ni,o to the number of neighbors of opposite type from i. A
particle j is considered to be neighbor of i if the interparticle distance is smaller
than a given cutoff radius, rij < rcut. The separation parameter is minimum with
bs = 0 for an homogeneous distribution of neighbors or when the system is diluted,
and it is maximum with bs = 1 if the system is completely separated in different
domains. Intermediate values 0 < bs < 1 account for partially separated domains.
In our results, bs always remains smaller than 1 due to the presence of the interface
between sub-domains, as well as the boundaries with empty space. In Fig. 5.5a-b
two particle configurations are shown at times t1/τ̃ = 0.5 and t2/τ̃ = 1.25, corre-
sponding to cases with bs ≈ 0.1 when the cluster is mostly species homogeneous,
and bs ≈ 0.6 when the particles in the cluster are almost perfectly separated into
two well-defined adjacent domains. The time evolution of the parameter bs(t) is
shown in Fig. 5.5c. For the dissolving swarm under consideration, we observe a
non-monotonous behavior of bs(t). The separation parameter vanishes both at
t = 0 an in the long-time limit, in the former case the system is homogeneously
distributed in species, and in the later the system is diluted. The separation
parameter monotonously increases from bs = 0 during the self-sorting process at
t/τ̃ < 1, reaching a maximum value of bs ≈ 0.7. As the swarm dissolves during
self-propulsion, bs decreases monotonously until t/τ̃ ≈ 3.5 where bs = 0 again.

To quantify the coupling between species separation and swarm’s self-propulsion,
we also calculate the center of mass normalized velocity, defined as

uc(t) = 1
v0

nc∑
i=1

|ri(t+ ∆t) − ri(t)|
∆t , (5.2)

where the position displacement is measured during the time interval ∆t = 10τB =
0.001τ̃ . This is a reasonable choice of ∆t as it is smaller than the timescale τ̃
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Figure 5.5: Self-sorting and self-propulsion of a dissolving directed swarm. Snapshots
of particle configurations at times (a) t/τ̃ = 0.5, and (b) t/τ̃ = 1.125.
(c) Time evolution of the species separation parameter bs (left axis), and
of the center of mass normalized velocity uc (right axis). Shaded regions
indicate time windows of three dynamical regimes: (I) self-sorting, (II) self-
propulsion and dissolution, and (III) dissolution.

during which the system self-sorts, while still larger than the Brownian diffu-
sion timescale 1/Dt so displacements due to thermal diffusion do not contribute
to the calculation of uc. To account only for the bulk of the swarm, and dis-
regard particles left behind in the trail, the sum in (5.2) goes over particles in
the largest cluster of size nc (how we perform the cluster analysis is described
below). The time evolution uc(t) is shown in Fig. 5.5c. This parameter behaves
very similar to bs: it monotonously increases from uc = 0 during the self-sorting
process, reaches a maximum value of uc = 0.1, then monotonously decreases as
the system dissolves at longer times, which clearly indicates that self-sorting and
self-propulsion are related phenomena.

5.2.2 Dissolution and activity
To quantify the swarm’s dissolution, we identify the largest cluster by performing
a cluster analysis as follows: particles i and j are considered to be neighbours if
their interparticle distance is rij < rcut, then the largest collection of neighbours
is considered to form the largest cluster. We set the cutoff radius to rcut = 1.5σeff .
This cutoff is small enough to account only for the swarm and not the trail
of particles left behind, besides it is slightly larger than the effective particle
diameter σeff to also account for some of the particles in the swarm’s outer-layer
which are not in hexagonal close-packing but still belong to the largest cluster.
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5 Emergence of directed swarms

We define then the largest cluster size as

nc = Nc

N
, (5.3)

where Nc is the number of particles identified to be in the largest cluster, and N
the total number of particles in the system. nc is larger when the system forms a
single compact aggregate, and it is very small when the system is diluted. Typical
snapshots of these limiting cases are shown in Fig. 5.6a,c. To see how the swarm
dissolves over time, we obtain the time evolution nc(t), see Fig. 5.6e. This quantity
shows a clear constant behavior with nc = 1 during the self-sorting process,
indicating there the system remains cohesive. Then, during self-propulsion, nc
linearly decays as particles are left behind in the trail. At longer times, before fully
dissolving at t/τ̃ ≈ 3, we find the cluster has shrunk up, giving nc ≈ 0.4. Then,
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Figure 5.6: Dissolution of the swarm in the long-time limit. Snapshots of the particle
configuration at time (a-b) t/τ̃ = 3, and (c-d) t/τ̃ = 3.725. In (a,c) color
code indicates particles in the largest cluster, and in (b,d) indicates activity.
Time evolution of (e) nc the fraction of particles in the largest cluster, and
(f) na the fraction of active particles in the largest cluster. Black lines
in (e,f) are a guide to the eye indicating linear decrease of the parameters
during dissolution. Vertical discontinuous lines indicate times t1 and t2 of
snapshots in (a-d).
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5.2 Dissolving directed swarm

at t/τ̃ > 3.5, the system is dissolved and species are homogeneously distributed
with bs = 0, as well as non-motile with uc = 0.

We find nc abruptly drops to zero during the dissolving regime, meaning cohe-
sion is completely lost, so interparticle distances increase above rij > rcut. Such
abrupt drop is related to particles’ activity, as active particles in the outer layer
are the ones holding the aggregate together. To quantify this, we calculate the
fraction of particles that are active

na = Na

N
, (5.4)

where N is the total number of particles, and Na the total number of actives.
Here we consider the entire system, not only particles in the largest cluster, such
that passives in the trail also contribute to the ratio. The activity distribution
of particles in the swarm changes over time. Before dissolution, it is mostly
passive with only a few actives in the outer layer, then it is only passives when
the system is fully dissolved, see Fig. 5.6b,d. The obtained time evolution na(t) is
shown in Fig. 5.6f. We find that initially the fraction of actives is na ≈ 0.35. After
separation, the system starts to lose particles and the amount of actives linearly
decays over time. At t/τ̃ ≈ 3.5 the amount of active particles has dropped to
zero, meaning that there are no active forces left to keep the system cohesive such
that the system dissolves, showing the behavior of a passive gas.

5.2.3 Spiraling motion
Another interesting behavior we observe for the system under consideration is
the spiraling trajectory described by the swarm before complete dissolution at
longer times. We observe that the spiraling direction is in that case counter-
clockwise, as can be seen in Fig. 5.4. To better understand this behavior, we
consider the swarm’s trajectory during the interval 1.8 < t/τ̃ < 4, see Fig. 5.7a.
Here we observe that the system configuration is separated in species subdomains
where particles with γ1/π = 0.25 display a counter-clockwise rotation (the same
direction as the swarm’s spiraling trajectory), whereas particles with γ/π = −0.25
rotate in the clockwise direction, as can be seen from the figure insets. The
spiraling motion is consequence of fluctuations in the species distribution. As the
swarm propagates and leaves a trail of particles behind, the species concentration
can vary over time and change the dynamics of the swarm by modifying the
velocity field.

To quantify this, we calculate the time evolution of the swarm’s species frac-
tion, namely

ni(t) = Nc,i(t)
N

, (5.5)
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Figure 5.7: Spiraling motion of the dissolving directed swarm. (a) Swarm’s trajectory
at 1.8 < t/τ̃ < 4. Configuration snapshots are shown at times ti/τ̃ =
1.8, 2, 2.3, 3. For better visualization, only particles in the largest cluster
are shown. Arrows in the insets correspond to the time-averaged coarsed
grained velocity field in the body frame, calculated during an interval of
time of ∆t/τ̃ = 0.04. (b) Time evolution of ni the fraction of particles of
species i = 1, 2 in the largest cluster. Inset indicates time evolution of the
molarity δ = |n1 − n2|.

where Nc,i is the number of particles of species i = 1, 2 in the largest cluster.
Results are shown in Fig. 5.7b. We observe that both n1 and n2 stay reasonably
constant with n1 = n2 = 1 during the self-sorting process up to t/τ̃ = 1. During
self-propulsion, species fractions monotonously decrease and saturate at t/τ̃ > 3,
reaching values of n1 ≈ 0.2 and n2 ≈ 0.25 such that n2 > n1. Finally, at t/τ̃ ≈ 3.5,
we observe that n1 and n2 abruptly drop to zero as the largest cluster loses
cohesion and dissolves. The parameter

δ = |n1 − n2| (5.6)

quantifies the species molarity of the system; it is δ = 0 when the system
is equimolar and δ = 1 when it contains only a single species. In the inset
in Fig. 5.7b, we observe an increase in δ, emphasizing that the swarm becomes
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5.2 Dissolving directed swarm

non-equimolar over time during self-propulsion. For the simulation considered,
we observe that the spiraling direction of the dissolving swarm is dictated by the
species with smaller concentration in the largest cluster, in this case species 1
with γ1/π = 0.25 which produces rotations in the counter-clockwise direction.
Note that the dominance of one species over the other, either n1 > n2 or n2 < n1
results from spontaneous symmetry breaking as the swarm dynamically changes
its species molarity δ, therefore the trajectory can also spontaneously spiral either
counter- or clockwise. More detailed analysis of the dynamics of non-equimolar
swarms are studied in Ch. 6.

5.2.4 System realizations
To test the types of trajectories that can be described by the dissolving swarm
due to symmetry breaking, we perform 24 independent realizations of a binary
mixture with fixed parameters q∗ = 1 and γ = π/4. Results of simulations run
until t/τ̃ = 10 are shown in Fig. 5.8a. The center of mass for all realizations
here start at the origin, then they describe directed outwards motion. When the
swarm is smaller at longer times, its center of mass motion shows to be localized,
as indicated by the figure inset. We observe that for different realizations the
center of mass propagates isotropically in different directions. We obtain the
swarm’s distance from the origin at t/τ̃ = 10 and average over the 24 realizations,
giving Rav = 780σ which corresponds to 31 cluster diameters (the size of the
swarm is roughly the same as the initial circular configuration R0 = 25σ, see
snapshots in Fig. 5.2a).

To quantify the average time at which the system completely dissolves, we
first compute the largest cluster size nc for each system realization. Results are
shown in Fig. 5.8b. In all cases the system starts as a single cluster containing
all particles, giving nc = 1. Then, the system separates and self-propels while
leaving a trail of particles behind, leading to a decrease of the largest cluster
size until it reaches a minimum of nc ≈ 0.45. Next, the swarm loses cohesion
and it fully dissolves, showing an abrupt drop to nc = 0. However, from the 24
realizations, only 22 of them fully dissolve, while 2 of them remain of minimum
size nmin

c = 0.45. Considering the 22 realizations where the system dissolves, we
calculate the characteristic dissolving time τd from

nc(τd) = nmin
c , (5.7)

where nmin
c ≈ 0.45. We obtain that τd/τ̃ ≈ 3.2. Moreover, 22 of the realizations

show a decrease of the fraction of actives from na ≈ 0.4 to zero at longer times, and
only the 2 realizations that do not fully dissolve and show to saturate with a very
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Figure 5.8: Dynamical behavior of dissolving directed swarms at q∗ = 1 and γ = π/4.
Results for a total of 24 independent realizations. (a) Center of mass trajec-
tories. Dashed circle indicates the average center of mass distance from the
origin Rav at t/τ̃ = 10. Dynamic parameters defined in Eqs. (5.1) to (5.4),
namely (b) largest cluster size nc, (c) fraction of actives na, (d) species
separation bs, and (e) center of mass normalized velocity uc. Highlighted
lines correspond to data of a single realization where the system does not
fully dissolve during the simulation time. Vertical dotted lines indicate the
dissolution time τd, and dashed line in (a) indicates the minimum cluster
size nmin

c reached before the swarm loses cohesion.

small value of na ≈ 0.1, see Fig. 5.8c. In those two cases, it is that small population
of actives that keep the largest cluster cohesive. Nevertheless, all 24 realizations
show a non-monotonous behavior for both the species separation parameter bs
and the swarm’s velocity uc, showing a maximum of bs ≈ 0.7 and uc ≈ 0.1 at
time t/τ̃ ≈ 1, see Fig. 5.8d-e. This indicates that for all realizations the steady-
state is non-separated and non-self-propelling. To understand why in some cases
the system does not fully dissolve, note that full dissolution depends on the passive
dilution of the trail of particles: when the swarm is surrounded by a passive trail,
it can still reabsorb particles to remain cohesive; the swarm loses cohesion only
when the trail has diluted enough, and active particles in the outer layer cannot
keep the swarm cohesive anymore. Therefore, for very long simulations, we expect
that any dissolving swarm should eventually lose cohesion.
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5.3 Non-separating loose aggregate

5.3 Non-separating loose aggregate
The directed swarm obtained for q∗ = 1 dissolves as a consequence of particles
being left behind at a reasonable distance from the swarm’s bulk, such that they
are not able to rejoin. Due to the inverse distance dependence of the perception
function employed, particles that are far from a reasonably large cluster—the
swarm—are guaranteed to be passive. To address this issue, we simply lower the
value of the perception threshold q∗, which allows particles to reactivate and rejoin
before they are left behind in the trail. However, as we have studied in Ch. 4, q∗

has an important impact in the activity distribution, so the formation of species-
separated compact swarms is not always guaranteed.

To test this, we perform simulations employing the same system preparation
and parameters as in Sec. 5.1, however here we set the perception threshold to q∗ =
0.3 and run very long simulations, up to t/τ̃ = 10. Snapshots in Fig. 5.9 show that
the system remains cohesive as a single loose aggregate which shows to be species
homogeneous, i.e. it does not self-sort into definite sub-domains as in the case
with q∗ = 1. Furthermore, the resulting aggregate is mainly active with only a few
passives in the outer layer. As we learned in Ch. 4, a low threshold value q∗ = 0.3
induces particles in the bulk to be active regardless of their orientation, whereas
only particles in the outer layer can be passive when their cone of vision points out
of the aggregate where they perceive no neighbors. This behavior is independent
of the misalignment angle γ and explains why the system here is loose, as more
activity in the bulk leads to a loose center as well.
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Figure 5.9: Snapshots of a non-separating loose aggregate at q∗ = 0.3. Particle config-
urations color coded by (a) particle type, and (b) particle activity.
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Figure 5.10: Dynamical behavior of non-separating loose aggregates at q∗ = 0.3. Results
for 24 independent realizations. (a) Center of mass trajectories. Dashed
circle indicates the average center of mass distance at t/τ̃ = 10 which
is Rav ≈ 58σ. (b-e) Dynamic parameters defined in Eqs. (5.1) to (5.4).
Data corresponding to a single realization is highlighted in each panel for
better visualization.

To test the stability of this configuration, we perform 24 independent real-
izations of the system at q∗ = 0.3 and γ = π/4. Center of mass trajectories
are shown in Fig. 5.10a. We observe that the aggregates in this case do not dis-
play persistent directed motion, but rather their trajectories describe a random
walk type of motion. We obtain the average over 24 realizations of the aggre-
gates distance from the origin, giving Rav ≈ 58σ which is much smaller than for
dissolving swarms with q∗ = 1. We also obtain dynamic parameters as defined
in Eqs. (5.1) to (5.4). Results in Fig. 5.10b-e show dynamic parameters remain
constant for all 24 realizations during the entire simulation, proving the stability
of the steady state. The species separation parameter remains bs = 0 during the
entire simulation, so the system never self-sorts into subdomains. The center of
mass normalized velocity remains very small with uc ≈ 0.02 showing the aggre-
gate does not self-propel. The largest cluster size is nc ≈ 1, indicating the system
forms a single cluster that remains cohesive. na ≈ 0.8 shows that the aggregate is
dominated by actives during the entire simulation, as also shown by the snapshots
in Fig. 5.9b.
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5.4 Robust directed swarm

5.4 Robust directed swarm
For an intermediate value of the perception threshold, namely q∗ = 0.7, we ob-
serve swarms that remain cohesive, separate into well-defined species subdomains
and perform overall directed motion. We say such swarms are robust, i.e. they
do not dissolve over time as we have found for swarms at q∗ = 1. Center of
mass trajectories show how the swarms travel long distances during the simula-
tion time of t/τ̃ = 10, see Fig. 5.11, giving an average center of mass distance
from the origin of Rav ≈ 5808σ which is much larger than cases at q∗ = 0.3
and q∗ = 1. Corresponding dynamic parameters are shown in Fig. 5.11b-e. We
observe that the largest cluster size remains constant over time with nc = 1 for
all 24 system realizations, indicating the swarms are cohesive in all cases. This
also shows that the swarms remain equimolar as no particles are lost over time,
so the species molarity gives δ = 0. The fraction of actives na we obtained also
show to be constant over time with na = 0.6, indicating the swarms are dom-
inated by actives. Both the separation parameter bs and swarm’s normalized
velocity uc show a monotonous increase in time saturating at t/τ̃ ≈ 1 with val-
ues of bs = 0.7 and uc = 0.1, respectively. This behavior implies that species
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Figure 5.11: Dynamical behavior of robust directed swarms at q∗ = 0.7. Results for 24
independent realizations. (a) Center of mas trajectories. Dashed circle
indicates the average center of mass distance at t/τ̃ = 10 which is Rav ≈
5808σ. (b-e) Dynamic parameters defined in Eqs. (5.1) to (5.4). Data
corresponding to a single realization is highlighted in each panel for better
visualization.
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5 Emergence of directed swarms

separation and self-propulsion of the swarms are coupled processes also in this
case, thus swarms propagate with maximum speed once they have reached full
separation. In contrast to the case q∗ = 1, here bs and uc saturate with positive
values at longer times, showing that swarms remain species-separated and keep
self-propelling with significant constant speed of uc = 0.1, i.e. 10 times smaller
than a colloid’s active velocity v0.

Now we aim to characterize the peculiar bean shape of the directed swarms
described above. In particular, we want to quantify how the shape changes with
the misalignment angle γ. We focus on the behaviors obtained from particle-based
numerical simulations as described in Sec. 5.1 with a perception threshold of q∗ =
0.6 and intermediate values of the misalignment angle around γ/π = 0.2 − 0.35.
We choose these parameters as in those cases we have found that a robust self-
propelled swarm is formed. For values below γ/π = 0.2, the swarm is almost
circular and does not significantly self-propel, and for values above γ/π = 0.35
the swarm dissolves over time and eventually becomes a gas. To describe the
shape, we will use two related parameters: the cluster’s elongation λ, and the
aperture angle β. We calculate λ by performing a time-average in steady state of
the coarsed grained local density, see Fig. 5.12a-b. We consider a reference axis

(a) (b)

(c) (d)

Figure 5.12: Measurement of the swarm’s shape. Time-averaged coarsed-grained local
density ρ for γ = 0.2π (a) and γ = 0.35π (b). Local density profiles
ρ(x) at y = −15σ for γ = 0.2π (c) and γ = 0.35π (d). The reference
point 1 corresponds to the center of mass, whereas 2 and 3 correspond to
the local density maxima obtained from the profiles ρ(x). The distance
between density maxima is indicated by λ, and the swarm’s aperture angle
indicated by β.
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5.4 Robust directed swarm

in the body-frame, such that the shape of the local density displays a reflexive
symmetry ρ(x) = ρ(−x). Next, we obtain the density profiles ρ(x) at a distance
y = −15σ from the cluster’s center of mass (x1, y1) = (0, 0). We choose y = −15σ
as there the density profiles ρ(x) are bimodal due to the distinctive lobes of the
bean shaped cluster, with two maxima measured at (x2, y2) = (−xmax,−15σ),
and (x3, y3) = (xmax,−15σ), see Fig. 5.12c-d. We define the elongation as the
separation between the two density maxima,

λ = 2xmax. (5.8)

The aperture angle β is defined as the angle between the segments l12 and l23,
where l12 is defined as the segment between the points (x1, y1) and (x2, y2), and l13
as the segment between the points (x1, y1) and (x3, y3), see Fig. 5.12a-b. From the
law of cosines we have that λ2 = l212+l213−2l12l13 cos β. As the swarm’s bean shape
is symmetrical, the segments equality l13 = l23 holds, then cos β = 1 − λ2/2l213.
The segment between points 1 and 3 in terms of the elongation λ and the vertical
distance y1 = −15σ is given by l213 = (15σ)2 + λ2/4. It follows that the aperture
angle is

β = arccos
{

1 − ( λ
30σ )2

1 + ( λ
30σ )2

}
. (5.9)

With increasing misalignment angle γ, we observe a linear increase of the
swarm’s elongation, and also of the aperture angle β, see Fig. 5.13a-b. We verify
the relation between λ and β is given by Eq. (5.9), see Fig. 5.13c.
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Figure 5.13: Swarm shape parameters. Parameters obtained from the measurement
of the cluster shape as shown in Fig. 5.12. (a) Aperture angle β and
(b) elongation λ as a function of the misalignment angle γ. Dashed lines
correspond to a linear fit. (c) Relation between λ and β, solid line corre-
sponds to Eq. (5.9).
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5 Emergence of directed swarms

5.5 Comparison of dynamical behaviors
Now we quantitatively compare dynamical behaviors of the different types of
swarms we have found so far, namely non-separating cases with q∗ = 0.3, robust
with q∗ = 0.7, and dissolving with q∗ = 1. To characterize the different types of
transport processes, we calculate the mean-squared displacement

MSD(t) = 1
N

N∑
i=1

|ri(t) − ri(0)|2, (5.10)

which is a measure of the deviation of the particles positions with respect to their
own initial positions. We average over the 24 independent realizations obtained
at each given q∗. Results are shown in Fig. 5.14a. We compare the mean-squared
displacement with MSD(t) ∼ tm during the steady state where our results show to
follow a power law behavior. Transport is considered to be ballistic when m = 2,
diffusive when m = 1, and sub-diffusive when m < 1. In all cases the MSD shows
a monotonous increase during the initial collapse (see figure inset) followed by a
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Figure 5.14: Comparison of averaged dynamic parameters at fixed γ = π/4 varying q∗.
Results correspond to data averaged over 24 independent realizations.
Time evolution of (a) mean-squared displacement, (b) largest cluster
size nc, (c) fraction of actives na, (d) separation parameter bs, and
(e) swarm’s normalized velocity uc. Shaded region corresponds to the
steady state t/τ̃ > 4. Dashed lines in (a) are a guide to the eye showing
different scaling behaviors of the mean-squared displacement MSD ∼ tm,
where m = 0 corresponds to a sub-diffusive transport, m = 1 diffusive,
and m = 2 ballistic. Inset shows data at short times t/τ̃ < 1 × 10−1

corresponding to the initial collapse.
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plateau around t/τ̃ = 1 × 10−1 when the system is a single compact aggregate
and the self-sorting phase starts. At t/τ̃ > 1×10−1 for non-separating aggregates
with q∗ = 0.3, we observe that the MSD increases again and reaches steady state
at t/τ̃ ≈ 4 displaying approximate diffusive transport MSD ∼ t. This corre-
sponds to the Brownian type of motion we observe for non-separating aggregates,
see Fig. 5.9. For robust directed swarms obtained at q∗ = 0.7, the transport
seems to be super-ballistic during the transient with m > 2, as a result of the
system self-sorting then self-propelling, going from an almost static position to
perform ballistic directed motion in steady state with MSD ∼ t2. From trajec-
tories in Fig. 5.11 we observe that indeed the swarms center of mass describe
almost straight motion, however sometimes it can also perform sharp turns and
continue straight in a different direction. Therefore, for much longer simulations
where trajectories are able to cover larger areas, it is expected that the transport
becomes diffusive. For dissolving directed swarms at q∗ = 1, the transport is also
super-ballistic during the transient, then sub-diffusive with MSD ∼ 1 in steady
state when the center of mass of the system does not displace significantly for the
time considered.

To complete the picture, we also show the average over 24 realizations for the
dynamic parameters in Figs. 5.8 to 5.11. Results are shown in Fig. 5.14b-e. We
observe that before reaching steady state, some of the dynamic parameters vary
during the transient process, which was discussed in detail in Secs. 5.2 to 5.4.
From values in steady state it is clear that at q∗ = 0.3 the system is cohesive
giving nc = 1, it is mainly active with na = 0.8, non-separated bs = 0, and
its center of mass slowly moves with uc = 0.02. At q∗ = 0.7 the system is
cohesive nc = 1, it is mostly active with na = 0.6, separated with nc ≈ 0.75, and
propagates with velocity uc = 0.1. At q∗ = 1 the system dissolves into a passive
gas leading to nc = 0 and na = 0, the gas is also species homogeneous bs = 0
and its center of mass does not propagate uc = 0, emphasizing the sub-diffusive
transport of the swarm shown in Fig. 5.14a.

5.6 Exploration of the parameter space

To determine the range of parameters (q∗, γ) over which the system either dissolves
or remains as a robust directed swarm and complete the picture provided in
previous sections, we perform several additional simulations with q∗ ∈ (0.2, 1.3)
and γ/π ∈ (0, 0.5). We run long simulations up to a time of t/τ̃ = 10.
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5 Emergence of directed swarms

5.6.1 Steady state properties for varying q∗

We compute the dynamic parameters defined in Sec. 5.1 for the case γ/π = 0.25
and varying q∗. We test 12 values of q∗, and divide our results into low thresh-
old q∗ ∈ (0.2, 0.4), medium q∗ ∈ (0.5, 0.7), and high q∗ ∈ (0.8, 1.3), see Fig. 5.15.
At very low perception threshold, for q∗ = 0.2 the largest cluster size displays a
constant value of nc ≈ 0.7 over time, but also displays strong fluctuations around
the mean. As the system here is mostly active with na ≈ 0.8, the particle spatial
distribution can rapidly rearrange giving strong fluctuations of the interparticle
distances rij, hence it is more probable to have particle pairs with rij > rcut,
where rcut = 1.5σeff is the cutoff radius employed in the cluster analysis. Thus
explaining the fluctuating behavior of nc in this case. For q∗ = 0.3, 0.4 we also
observe that the system remains cohesive with nc = 1 without showing signif-
icantly large fluctuations. Fraction of actives na are also constant in time, we
observe decreasing values from na ≈ 0.8 for q∗ = 0.2 to na ≈ 0.7 for q∗ = 0.5,
which agrees with the fact that particles are less likely to become active when
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Figure 5.15: Dynamic parameters at fixed γ = π/4 and varying q∗. Time evolution
of the largest cluster size nc, fraction of actives na, species separation bs,
and normalized center of mass velocity uc. Columns correspond to (a) low
(b) medium, and (c) high values of the perception threshold q∗. Shaded
region indicates the steady state t/τ̃ > 9.
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5.6 Exploration of the parameter space

the perception threshold becomes larger. For all q∗ = 0.2, 0.3, 0.4 we observe the
system does not separate nor self-propel, giving bs = 0 and uc ≈ 0.02. Therefore,
we identify cases with low perception threshold to correspond to non-separating
loose aggregates as described in Sec. 5.3.

For intermediate values of the perception threshold, namely q∗ = 0.5, 0.6, 0.7,
the largest cluster size is nc ≈ 1, and it is constant over time, indicating in all
cases the system remains cohesive. Again, we observe the fraction of actives
remains constant over time, showing a slight decrease from na ≈ 0.7 for q∗ =
0.5 to na ≈ 0.5 for q∗ = 0.7. Both the species separation parameter and the
swarm’s speed show a monotonous increase at short times, then saturate for most
of the simulation indicating the system remains stable. We conclude that systems
with q∗ = 0.5, 0.6, 0.7 shown here correspond to robust directed swarms, as studied
in Sec. 5.4, with steady state separation parameter of bs ≈ 0.4, 0.6, 0.7, and swarm
speed uc ≈ 0.07, 0.09, 0.1.

For perception threshold q∗ = 0.8, nc(t) shows a very slow decrease and sat-
urate in steady state with a low value of nc ≈ 0.4. The fraction of actives also
decrease and saturate with an almost vanishing value of na ≈ 0.05. The species
separation parameter and swarm speed both show a non-monotonous behavior
with bs = uc = 0 in steady state. Therefore, we identify this case to be a dis-
solving swarm where, at longer times, a small aggregate coexist with a trail of
particles. Some of the particles in the trail can reactivate and rejoin the aggre-
gate thus keeping it cohesive, however cohesion can still be lost at even longer
times due to a density fluctuation in the trail—which we do not see in this case.
For q∗ = 0.9 − 1.2 we observe the behavior of dissolving directed swarms as stud-
ied in Sec. 5.2, namely: nc(t) and na(t) decrease over time then abruptly drop to
zero indicating lost cohesion, whereas bs(t) and uc(t) show a non-monotonous be-
havior indicating the system self-sorts and self-propels initially but the emergent
swarms here leave a trail of particles behind and eventually dissolve. For q∗ = 1.2
we observe a second peak appearing for bs(t) and uc(t) around t/τ̃ ≈ 4, corre-
sponding to a cluster that is formed again from the trail of particles, which can
occur due to sufficiently large density fluctuation in the trail. However, as the
trail keep passively diffusing, the reformed cluster quickly loses cohesion, lead-
ing again to vanishing values of bs0 and uc again. For q∗ = 1.3 we observe all
dynamic parameters vanish during the entire simulation, indicating that cohe-
sion is lost immediately, particles remain passive and the system never separates,
nor self-propels. In this case the perception threshold is so high that the initial
configuration simply diffuses as a passive gas from the beginning.

We quantify parameters in steady state by averaging data shown in Fig. 5.15
over the time window 9 < t/τ̃ < 10. Results are shown in Fig. 5.16. In steady
state, we observe that the largest cluster size nc reaches a plateau of nc ≈ 1 over
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Figure 5.16: Steady state parameters at fixed γ = π/4 and varying q∗. Steady state
parameters obtained by averaging data shown in Fig. 5.15 over the time
window 9 < t/τ̃ < 10. Dashed lines corresponds to a linear fit of the
steady state values at q∗

c = 0.4 − 0.7. Vertical dotted lines indicate the
critical perception threshold value q∗ ≈ 0.75. Dashed dotted silver line
in (d) corresponds to the swarm speed value of uc ≈ 0.02.

a range of values of the perception threshold, namely for q∗ = 0.3 − 0.7, then it
decreases and drops to zero for higher values q∗ = 0.8 − 1.3. A transition from
cohesive to non-cohesive is found to occur around the critical value q∗

c ≈ 0.75. The
fraction of actives na show a linear decrease for q∗ = 0.2 − 0.7, then it abruptly
drops to zero for q∗ larger than the critical threshold. Both the species separation
parameter bs and swarm speed uc show a non-monotonous behavior with q∗.
At q∗ = 0.5 − 0.7, these parameters show a linear increase until they reach a
maximum of bs ≈ 0.7 and uc ≈ 0.1 at q∗ = 0.7. Therefore, we identify a transition
of the system from non-separated to separated self-propelled around q∗ ≈ 0.45.
Note that non-separating loose aggregates occurring at q∗ ≤ 0.4 show a very small
yet non-vanishing velocity of uc = 0.01, corresponding to a random walk motion
as seen in Fig. 5.10.

5.6.2 Steady state properties for varying γ

The misalignment angle γ, taken to be of same magnitude for both species
(i.e. γ1 = −γ2 = γ), plays a crucial role in the dynamics of the binary mixture. In
the totally aligned case γ = 0, the system corresponds not to a mixture but to a
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5.6 Exploration of the parameter space

system containing a single species of particles, which we know self-organizes into
a cohesive non-separating and non-motile compact aggregate, as we previously
studied in chapters 3 and 4. For lateral visual perception γ = π/2, i.e. when the
cone of vision is perpendicular to the direction of self-propulsion of the particles,
the system is expected to be non-cohesive, given that in this case there is no
special preference for particles to actively move towards or away of the aggregate.
Therefore, emerging directed swarms are expected to occur only for intermedi-
ate values of the misalignment angle within the open interval γ/π ∈ (0, 0.5). To
characterize behaviors within this range of values, we perform particle-based nu-
merical simulations employing the same parameters as in Sec. 5.1, for a total time
of t/τ̃ = 10. In this case, we fix the perception threshold to q∗ = 0.7 and test
several values of the misalignment angle γ.

We separate our results for low values of the misalignment angle γ/π = 0−0.15,
medium values γ/π = 0.175 − 0.275, and high γ/π = 0.3 − 0.5. From results
shown in Fig. 5.17, we can identify that systems with low misalignment angle γ
correspond to non-separating loose aggregates, as parameters nc = 1, bs ≈ 0,
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Figure 5.17: Dynamic parameters at fixed q∗ = 0.7 and varying γ. Time evolution
of the largest cluster size nc, fraction of actives na, species separation bs,
and normalized center of mass velocity uc. Columns correspond to (a) low
(b) medium, and (c) high values of γ. Shaded region indicates the steady
state t/τ̃ > 9.
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5 Emergence of directed swarms

and uc ≈ 0.02 remain constant over the entire simulation. The fraction of ac-
tives na ≈ 0.6 remains constant in all cases, showing this parameter does not de-
pend on γ. Medium values of γ correspond to robust directed swarms; cohesion is
observed from constant nc = 1 over the entire simulation, as well as monotonously
increasing species separation bs(t) and swarm speed uc(t) parameters which sat-
urate at longer times. Again, here na ≈ 0.6, emphasizing this parameter depends
only on the perception threshold q∗ but not γ. High values of γ shown here cor-
respond to dissolving directed swarms. For γ/π = 0.3, 0.375, 0.425 we observe
systems that do not lose cohesion at longer times but remain with finite largest
cluster size nc ≈ 0.4. In those cases also na ≈ 0.1, indicating there is a non-
vanishing population of actives keeping the largest cluster cohesive. bs(t) shows
to decrease and vanish at longer times. uc(t) also decreases and fluctuates around
an average very small value uc ≈ 0.02 corresponding to random walk motion.

We obtain steady state parameters by averaging data from dynamic parame-
ters during 9 < t/τ̃ < 10 which we regard as the steady state. Results are shown
in Fig. 5.18. In steady state, the largest cluster size shows a plateau of nc = 1
for γ/π < 0.29. For larger misalignment angle, 0.29 < γ/π < 0.5, nc shows to
be significantly smaller yet non-vanishing. This behavior corresponds to clusters
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Figure 5.18: Steady state parameters at fixed q∗ = 0.7 and varying γ. Averages in
steady state of the dynamical parameters. Vertical dotted lines indicate
the critical misalignment angle value γc ≈ 0.29. Dashed lines in (a,b) fit
plateau regions at γ < γc. Dashed lines in (c,d) correspond to linear fitting
of the data for γ/π = 0.1 − 0.275. Dashed dotted line in (d) corresponds
to uc ≈ 0.02.
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5.6 Exploration of the parameter space

that do not lose cohesion but coexist with a trail of particles during the simu-
lation time considered, but as we argued before this system is metastable and a
density fluctuation in the trail would end the cohesion of the aggregate. We iden-
tify a transition occurring at a critical misalignment angle of γc/π = 0.29, where
the system changes from being a single cohesive aggregate at γ < γc to a small
metastable aggregate at γ > γc. The fraction of actives shows a similar transition
from na ≈ 0.6 at γ < γc to smaller values between 0 < na < 0.2, corresponding
to active particles in the outer layer of the metastable aggregate. Parameters bs
and uc both show a similar qualitative behavior in the steady state values. This
emphasizes both separation into species sub-domains and swarm self-propulsion
are coupled effects. We observe that emergent directed swarms occur only for
γ/π = 0.175 − 0.3, which show a linear increase in the species separation and
swarm speed with maximum values of bs ≈ 0.7 and uc ≈ 0.1 at γ/π = 0.3.

5.6.3 Phase diagram
To finish characterizing the parameter space, now we aim to gather all our results
into a phase diagram (γ, q∗) for which we perform some additional simulations
with parameters q∗ = 0.3 − 1.3 and γ/π = 0 − 0.5 run until t/τ̃ = 10. We run
single realizations for each pair (γ, q∗) and consider the steady state to be t/τ̃ >
9. Results for the steady state largest cluster size nc and species separation
parameter bs are shown in Fig. 5.19. To establish a criteria to differentiate
between different phases, we regard systems with nc < 0.8 to be diluted, and
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Figure 5.19: Steady state averages for varying γ and fixed q∗. (a) Largest cluster size nc,
and (b) species separation parameter bs. Vertical dotted lines correspond
to the critical misalignment angle γc/π = 0.29 found for q∗ = 0.7. Dashed
line in (a) corresponds to nc = 1, and in (b) to a linear fit of the data
for γ/π = 0.1 − 0.275 at q∗ = 0.7.
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5 Emergence of directed swarms

systems with bs > 0.4 to be separated. We observe that for q∗ < 1.3 and γ < γc
most systems remain cohesive with nc > 0.8, such that those cases are considered
as non-diluted. For γ > γc we observe intermediate values 0 < nc < 0.8, which
correspond to metastable cohesive aggregates—aggregates in coexistence with a
diluted trail. Moreover, all those cases are non-separated as they show bs ≈ 0,
meaning that while metastable aggregates remain cohesive at longer times they
do not separate, hence do not self-propel. Separated cases are observed only for
intermediate values of the misalignment angle γ/π = 0.1 − 0.275. Note also that
for q∗ = 1.3 systems are always diluted and non-separated.

Our results are better visualized in the phase diagram shown in Fig. 5.20.
The criteria to identify each phase is as follows: (I) non-diluted (cohesive) and
non-separated aggregates correspond to cases with nc > 0.8, and bs < 0.4; (II)
cohesive species separated directed swarms have nc > 0.8, and bs > 0.4; (III)
Diluted non-separated systems have nc < 0.8 and bs < 0.4. Here we observe that
smaller values of (γ, q∗) correspond to species homogeneous loose aggregates, and
larger values to species homogeneous diluted systems. Robust directed swarms
exist only for intermediate values of (γ, q∗).
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Figure 5.20: Phase diagram γ-q∗. Phase diagram showing regions of systems with be-
haviors: (I) non-separating loose aggregates, (II) robust directed swarms,
and (III) species homogeneous diluted systems—including cases where dis-
solving directed swarms initially emerge.
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5.7 Summary
We have described a simple yet interesting self-organization strategy of an equimo-
lar mixture of particles with opposite misaligned visual perception and discontin-
uous motility that leads to particle aggregation, separation into counter-rotating
species subdomains, and subsequent self-propulsion of the directed swarms. For
misalignment angle γ/π = 0.25 and perception threshold q∗ = 0.7 we found
such emergent directed swarms remain robust over time and show super-diffusive
transport. For a larger threshold value q∗ = 1, we found swarms leaving a trail of
particles as they propagate, thus dissolving over time. At longer times they be-
come non-equimolar as they leave particles behind that can be either of species 1
or 2, this translates into a spiraling motion of the swarm, which can be either
counter- or clock-wise due to spontaneous symmetry breaking. For lower thresh-
old q∗ = 0.3 we found that the system forms species homogeneous cohesive loose
aggregates that are mainly active, display strong fluctuations of the particle dis-
tribution, and Brownian-like motion of the center of mass.

We studied how varying misalignment angle influences the bean shape of the
swarms, which we quantified by means of the bean aperture angle β and elonga-
tion λ. We found the two parameters to linearly increase with γ. To characterize
the dynamics of the system, we computed dynamic parameters like the largest
cluster size nc, species separation bs, swarm’s speed uc, and the fraction of actives
in the largest cluster nc. We found the swarm’s speed and species separation
parameter to be highly correlated in time, showing a maximum of bs = 0.7 and
uc = 0.1 for robust directed swarms with γ = π/4 and q∗ = 0.7. Finally, we
obtained steady state time averages of the dynamic parameters, which served to
identify the different phases for different particle parameters allowing us to obtain
a phase diagram (γ, q∗).
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6 Swarms with guided trajectories

The design of new strategies to control the dynamics of groups of self-propelled
particles is one of the important challenges of the actual research in active mat-
ter systems. Until now we have shown how particles with perception-dependent
motility can change from a dilute non-cohesive group to a cohesive static cluster,
cohesive rotating, and also to a cohesive group with intrinsic self-propulsion. To
find simple procedures that allow to guide the swarm is the goal of this chap-
ter. External manipulation of the dynamics of active colloids have been achieved
before by several methods, e.g. by employing external magnetic fields [23, 175–
178], light fields [176, 177, 179, 180], and acoustics [176, 181]. Understanding
what system parameters lead to self-organized swarms that navigate with specific
types of trajectories can be useful to develop future technological applications,
for example to perform targeted drug delivery [29, 182–184].

We now want to study cases where the emerging swarms describe different
types of trajectories, which allow to guide their overall motion. We approach this
in two different ways. In Sec. 6.1, we study the case when the swarm is non-
equimolar while remaining cohesive over time. We perform particle-based nu-
merical simulations by considering parameters corresponding to a robust directed
swarm, i.e. perception threshold q∗ = 0.7 and misalignment angle γ = π/4. We
show how species-separated swarms emerge at given values of the species number
ratio determined by N1 and N2, or in other words at given molarity δ. We find
the resulting swarms display either a straight, helical, or a random walk type of
motion. We characterize the center of mass trajectories for each case, as well
as the swarm’s speed uc, mean-squared displacement (MSD) and velocity auto-
correlation Cvv. In Sec. 6.2, we investigate how to externally guide the motion
of the swarms to achieve trajectories describing specific patterns. In this case,
we propose a simple strategy that consists in dynamically switching the misalign-
ment angles of the particles between γ1 = −γ2 and γ1 = γ2, leading the swarm
trajectories to describe a straight pattern followed by a brief rotation or turn, we
therefore refer to these as run-and-turn swarms. We also characterize the time it
takes a species-separated swarm to demix when choosing γ1 = γ2, which is useful
to tune the specific dynamics.
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6 Swarms with guided trajectories

6.1 Non-equimolar mixtures
For binary mixtures of particles with perception-dependent motility and mis-
aligned vision, we found a case where a dissolving directed swarm emerges given
parameters γ = π/4 and q∗ = 1. The trajectory of the swarm showed first a
straight trajectory followed by a helical motion and dissolution of the swarm into
a passive gas. We associated the helical motion to the molarity variation of the
swarm, that occurred as the swarm leaves a trail of particles over time. Here we
study in more detail the impact on the swarm dynamics produced by changing
the system’s molarity. For this, we perform particle-based numerical simulations,
where we consider parameters corresponding to the emergence of a robust directed
swarm, i.e. a system with γ = π/4 and q∗ = 0.7, see Sec. 5.4. We initialize parti-
cles with an homogeneous spatial distribution within a circle of radius R0 = 25σ,
with species distribution homogeneous as well. Then, the dynamics of the re-
sulting aggregate depends on the molarity parameter δ = |n1 − n2|, which we
defined in Eq. (5.6)—the fraction of particles of species i = 1, 2 is ni = Ni/N ,
with Ni the number of particles of species i, and N = N1 +N2 the total number
of particles. From definition, δ = 0 corresponds to an equimolar system n1 = n2
like the robust aggregate studied in Ch. 5, and δ = 1 to a system containing a
single species of particles, like the one studied in Ch. 3 and Ch. 4. Intermediate
values 0 < δ < 1 correspond to cases where the system is non-equimolar. Here
we focus on systems with N1 > N2.

6.1.1 Helical trajectories
We perform simulations of total run-time t/τ̃ = 10 for systems with molari-
ties δ = 0, 0.2, 0.4, 0.6, 0.8, 1, final snapshots are shown in Fig. 6.1. We observe
that in all cases the systems remain cohesive and compact. For the smaller values
tested, δ = 0, 0.2, 0.4 (namely percentage ratios of 50:50, 60:40, and 70:30) the
system separates into species subdomains, where each subdomain rotates in a
definite direction, as dictated by the misalignment angles γ1 and γ2. For δ = 0.4
(ratio 70:30) the system is still able to separate, leaving a small subdomain of par-
ticles with γ2/π = −0.25. However, for δ = 0.6, 0.8 (ratios 80:20 and 90:10) the
system does not separate anymore, but remains homogeneous in species, showing
a rigid-body rotation in the counter-clockwise direction. Such non-separation of
the system is due to the very small amount of particles with γ1/π = −0.25 that
are homogeneously distributed within the bulk of the aggregate. In the bulk par-
ticles cannot freely move as they are bounded in a closed-packing configuration of
neighbours dominated by species with γ2/π = 0.25. Therefore, these particles are
only dragged to rotate in the same direction of motion of the overall aggregate,
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Figure 6.1: Particle configurations of steady-state mixtures with molarity δ. Molarity
values for (a-f) correspond to δ = 0, 0.2, 0.4, 0.6, 0.8, 1, respectively, with
corresponding fraction of particles shown in the labels. Arrows indicate
local displacement vector field.

i.e. in the counter-clockwise rotation as dictated by the dominant species. Par-
ticles in the outer-layer can move freely, switching their motion from passive to
active depending on their orientation. Nonetheless, there are not enough particles
with γ1 to counter-balance the rotation of particles with γ2.

Center of mass trajectories of cases with δ = 0, 0.2, 0.4, 0.6, 0.8, 1 are shown
in Fig. 6.2. We observe that, for the equimolar case δ = 0 the trajectory is clearly
drifting in a given direction (in this case towards the upper right corner of the
box). This behavior corresponds to the robust directed swarms studied in Ch. 5.
Although with a large persistence, it should be noted that this is not a guided
motion, and that the direction is given by spontaneous breakdown of the system’s
symmetry, which is therefore random. Interestingly, for δ = 0.2, 0.4 trajectories
display a circling motion; for δ = 0.2 the circling motion is coupled to a drifting
of the center of mass thus describing a helical trajectory, whereas for δ = 0.4 the
center of mass does not drift a significant amount. Trajectories for larger values of
the molarity δ = 0.6, 0.8, 1 display a random-walk type of motion, showing larger
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Figure 6.2: Center of mass trajectories of mixtures with molarity δ. Trajectories in (a-f)
correspond to mixture of particles with molarity δ = 0, 0.2, 0.4, 0.6, 0.8, 1,
respectively. Color code corresponds to time evolution. Note the box scale
is the same in all of the panels, so the zoom-in in (b-f) allow to see the
details of smaller scale trajectories.

displacements for the case δ = 0.6, and smaller displacements for δ = 0.8, 1, i.e.
the effective diffusion decreases with δ.

6.1.2 Dynamic parameters
To better characterize the different types of motion of the swarms, first we quan-
tify the swarm’s transport properties. For this we calculate the mean-squared
displacement as defined in Eq. (5.10). Results for cases δ = 0, 0.2, 1 are shown
in Fig. 6.3a. In all cases, the MSD shows a monotonous increase during the initial
collapse followed by a plateau around t/τ̃ = 1 × 10−1 when the system forms a
single compact aggregate and the self-sorting phase starts. At t/τ̃ > 1 × 10−1 for
the single-species case δ = 1, the MSD shows to remain constant at longer times,
indicating that the aggregate is non-self-propelling and also its center of mass re-
mains almost static, showing sub-diffusive transport. This behavior results from
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Figure 6.3: Mean-squared displacement and normalized velocity auto-correlation of a
mixture with molarity δ. Time evolution of the (a) mean-squared displace-
ment (MSD), and (b-d) normalized velocity auto-correlation Cvv. For ref-
erence, cases corresponding to an equimolar mixture with δ = 0, as well as
a single-species system with δ = 1 are shown. Inset shows data at short
times t/τ̃ < 1 × 10−1 corresponding to the initial collapse.

a combination of effective attractions induced by orientation-dependent motility,
and steric interactions preventing particles to overlap. Switching motility from
passive to active, prevents particles in the aggregate’s outer layer to diffuse out,
but instead they rejoin when they reorient, as studied in Ch. 3. For the equimolar
case δ = 0, the MSD shows the swarm’s motion is ballistic with MSD ∼ t2 in
the long-time limit here considered. However, note that for much longer sim-
ulations, when the trajectory is able to explore a larger area, the behavior can
become diffusive again. For the intermediate case δ = 0.2, where the swarm de-
scribes a helical trajectory, the mean-squared displacement in the long-time limit
is MSD ∼ t indicating diffusive transport. In this case, we observe oscillations of
the MSD due to the circling motion of the swarm, which is superimposed to the
drifting motion leading the MSD to increase over time.

To better characterize the swarm’s circling motion we calculate the normalized
velocity auto-correlation, defined as

Cvv(t) = 1
N

N∑
i=1

v̂i(t) · v̂i(0) (6.1)

where v̂i = vi/|vi| is the normalized physical velocity of particle i calculated from
displacements as v(t) = [r(t+∆t)−r(t)]/∆t during a time interval of ∆t/τ̃ = 0.1.
This time interval should be large enough to reflect the behavior of the center of
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6 Swarms with guided trajectories

mass trajectory, and disregard fluctuations given by small displacements due to
random motion of individual passive particles, which occur mainly in the outer-
layer. The velocity auto-correlation is Cvv = 1 when the velocity vectors point in
the same direction as in the initial time, Cvv = −1 when they point in opposite
directions, and Cvv = 0 when they are perpendicular or randomized on aver-
age. We observe that for δ = 0, Cvv shows a non-periodic fluctuating behavior,
corresponding to the trajectory in Fig. 6.2a. For example, note that the mini-
mum occurring at t/(104τB) ≈ 3.5 corresponds to the center of mass turning its
direction of motion at that time. On the other hand, for δ = 1, the velocity auto-
correlation shows small amplitude fast fluctuations around Cvv = 0, showing that
the particle velocities decorrelate during the measurement interval ∆t/τ̃ = 0.1.
For δ = 0.2, Cvv shows an almost perfect periodic behavior indicating that the
trajectory performs a circular motion. Furthermore, from the peak-to-peak dis-
tance of the curve, we obtain that the average periodicity of the swarm’s circling
motion, which in this case happens to be τc ≈ τ̃ .

To investigate the transition from species-separated to non-species-separated
with increasing δ, we calculate the center of mass normalized velocity uc or swarm
speed as defined in Eq. (5.2), which is calculated from center of mass displacements
during a small time step of ∆t/τ̃ = 0.001 and normalized by the particle’s self-
propulsion v0. We know that when the system is non-separated the center of
mass performs localized random-walk thus displacing a small amount and giving
a small uc. On the other hand, for separated cases the center of mass displaces over
larger areas giving a larger uc. Time evolution for some values of the molarity δ
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0.1

u
c
(t

)

(a)

δ
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0.0 0.2 0.4 0.6 0.8 1.0
δ

(b)

uc

Figure 6.4: Swarm speed uc of mixtures with molarity δ. (a) Time-evolution of the
center of mass normalized velocity uc(t) (the swarm speed). Shaded region
indicates steady-state. (b) Time-averaged steady-state swarm speed uc for
several values of δ. Dashed and dashed-dotted horizontal lines are a guide
to the eye indicating values at uc = 0.1 and uc = 0.01, respectively. Dotted
vertical line indicates the approximate critical value δc = 0.45.
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6.2 Run-and-turn guided swarms

are shown in Fig. 6.4a. We observe that for δ = 0, 0.2, the swarm speed increases
and saturates at longer times with value uc ≈ 0.1. We observe a similar behavior
for δ = 0.4, but here the saturation occurs at smaller values uc ≈ 0.07. Time-
averaged values in steady state, which we calculate at longer times t/τ̃ > 7, are
shown in Fig. 6.4b. We observe that there is a smooth transition from motile
with uc ≈ 0.1 to non-motile with uc ≈ 0.01, which is obtained with increasing
molarity δ. The critical value of the transition is δc ≈ 0.45. The smaller values of
the swarm speed we observe uc ≈ 0.01 correspond to an aggregate that performs
random walk motion, as shown in Fig. 6.2d-f.

6.2 Run-and-turn guided swarms
We have so far seen that different types of trajectories can be achieved within
our system, i.e. either persistent straight trajectories, helical ones, or random
walks, all of which depend on the molarity δ together with the other system
parameters. This varied behavior can be useful to guide the swarm by externally
manipulating the particle properties at a given instant of time t, then leaving the
system to evolve and self-organize. This method does not require of any additional
external force directly modifying the particle dynamics. Accordingly, various
strategies can be designed to guide the swarm motion. One is to dynamically
modify the particles species distribution to change their molarity δ depending on
the type of trajectory we aim to achieve. For example, we can switch from a
directed trajectory of an equimolar swarm with δ = 0, to a helical trajectory of a
swarm with δ = 0.2. Changing the species distribution introduces an additional
sorting step, which delays the dynamics. Once the system has separated, the
direction of motion of the resulting separated swarm cannot be controlled in this
case, as it comes from spontaneous symmetry breaking. A simpler strategy is to
keep the species distribution over time, and only switch the misalignment angles
between γ1 = −γ2 to γ1 = γ2, which corresponds to switching the collective
behavior between directed swarms and rotating aggregates.

6.2.1 Mixing time
When misalignment angles are set to γ1 = γ2, the species-separated subdomains
of the swarm remixes leading to an species-homogeneous aggregate. To test the
time it takes the system to remix, we first consider a species-separated swarm
which was formed after a simulation of an equimolar mixture δ = 0 is completed.
Here we take the configuration shown in Fig. 6.1a to be the starting point. Then,
we set misalignment angles to be γ1 = γ2 = π/4 corresponding to a single-species
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system, however we keep the particle type identifiers in order to see how the
aggregate’s species subdomains behave. We evolve the system during a time
of t/τ̃ = 20. To quantify the mixing process, we calculate the time evolution
of the species separation parameter bs(t) as defined in Eq. (5.1). Results are
shown in Fig. 6.5. We observe the system performs a solid-body rotation in the
counter-clockwise direction, as the aggregate rotates its shape changes from being
slightly elongated at short times t/τ̃ = 1 × 10−2 with bs ≈ 0.7 (see Fig. 6.5a) with
the species still separated, to circular and center separated while homogeneous
in the outer-layer at t/τ̃ = 1 × 10−1 with bs ≈ 0.3 (see Fig. 6.5b). At even
longer times, t/τ̃ = 2 × 101, the system finally becomes species-homogeneous
with bs ≈ 0 (see Fig. 6.5c). The behavior of bs(t) in Fig. 6.5d shows that the
system remixes very fast initially at t/τ̃ < 0.1, then bs decreases slowly following
an approximate power law decay bs ∼ t−0.25 which we obtained by fitting data
in the time window 0.1 < t/τ̃ < 10. At longer times t/τ̃ > 10, bs drops to

t1(a) t2(b) t3(c)

10−3 10−2 10−1 100 101

t/τ̃

0.1

1

b s
(t

)

bs ∼ t−0.25

t1 t2 t3(d)

Figure 6.5: Species mixing of a rotating aggregate. (a-c) Snapshots showing the species
mixing process. Snapshots are taken at times ti/τ̃ = 0.01, 0.1, 20. Arrows
indicate local velocity field. (d) Time evolution of the species separation
parameter bs. Vertical dotted lines indicate times of snapshots in (a).
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small values below bs = 0.1 indicating the system is fully mixed. The initial
fast mixing process corresponds to particles in the outer-layer freely moving and
rearranging their positions due to their circular motion when they are active,
together with pure Brownian diffusion when they are passive. The slower mixing
process corresponds to particles in the bulk being blocked from moving by others,
due to the aggregate’s internal crystalline structure, then it takes a significantly
long time until particles in the bulk are able to move closer to the outer-layer.

6.2.2 Run-and-turn trajectories
One simple strategy to guide the swarm with precision is to keep the mixture
equimolar while tuning only the species misalignment angles γ1 and γ2. We first
consider system parameters q∗ = 0.7 and γ1 = −γ2 = π/4. After the species-
separated directed swarm has emerged, we change the misalignment of the par-
ticles to γ1 = γ2. When misalignment angles are set to γ1 = γ2, the system is
not a mixture anymore since both species are now described by the same particle
properties (same perception threshold q∗ and misalignment angle γ). In this case,
we know the system does not perform a directed motion anymore, but a solid-
body rotation, as studied in Ch. 3 and Ch. 4. However, we can still keep track of
individual particle types, such that each particle i still holds an identifier either
1 or 2. Next, we can switch back the particles misalignment angles to γ1 = −γ2,
so the system again corresponds to an equimolar mixture performing directed
motion. We say this procedure corresponds to a run-and-turn type of dynamics;
run during some time τr when it has γ1 = −γ2, and turn for some time τr when
it has γ1 = γ2. Note that this is related to a run-and-tumble motion [62], with
the important difference that in our case we have control over the turn step, as
we can choose the rotation direction to be either counter- or clockwise depending
on the sign of the misalignment angle γ1 = γ2, and how large it will be turning τt

Snapshots of the system configuration during subsequent run and turn steps
are shown in Fig. 6.6, illustrating how the system is able to reverse its direction of
motion after one turn step. The turn duration here is τt/τ̃ = 0.03, which is a very
short time step such that the system does not remix into an species-homogeneous
aggregate, as discussed in previous section. For the swarm to describe a signif-
icantly large straight trajectory, we need to choose the run step duration τr to
be much larger than the turn duration τt. In this case we choose the run du-
ration to be τr/τ̃ = 0.4. Then, the run-and-turn procedure is repeated several
times. Resulting center of mass trajectories of the swarm are shown in Fig. 6.7a.
This trajectory shows that the motion of the swarm is confined due to the almost
bouncing-back motion. By reducing the turn duration to a half, i.e. τt/τ̃ = 0.015,
the aggregate does not perform a half-rotation, but instead it deviates the direc-
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γ1 = −γ2

(a)
γ1 = γ2

(b)
γ1 = γ2
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γ1 = γ2
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γ1 = −γ2
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t
Mixture Single species Mixture

Run Turn Run
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Figure 6.6: Reversal of the direction of motion of a swarm. Sequence of snapshots
of a guided swarm configuration with (a) γ1 = −γ2, corresponding to
a mixture phase where the swarm performs a run, i.e. directed motion;
(b,c,d) γ1 = γ2, corresponding to a single-species phase, where the aggre-
gate rotates in the counter-clockwise direction, corresponding to a turn of
the swarm; then (e) γ = −γ2 again. Small arrows indicate time-averaged
coarsed-grained velocities. Large arrows are a guide to the eye to see the
system’s counter-clockwise rotation during the turning phase. Particles are
color-coded by their type during the mixing phases.
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Figure 6.7: Externally guided swarm trajectories. Center of mass trajectories of a
guided swarm with run step duration of τr/τ̃ = 0.4, and turn step du-
ration of (a) τt/τ̃ = 0.03, and (b) τt/τ̃ = 0.015. Labels ti/τr ≈ 1, 2, 3, 4
indicate the instants after a run step τr, which is then followed by a short
turn step τt.
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tion of the swarm almost by approximately a 90 deg angle, leading to a trajectory
that approximates a square shape, see Fig. 6.7b.

6.3 Summary
In this chapter we have explored two different strategies to guide a swarm of
colloids with perception-dependent motility. First, we studied a non-equimolar
mixture of particles consisting of N1 particles with misalignment angle γ1 = π/4,
and N2 particles with γ2 = −π/4. We focused on the case with perception
threshold q∗ = 0.7, which leads to the emergence of a robust directed swarm for
an equimolar mixture case N1 = N2. We found that the system separates into
species subdomains for systems with molarities δ = 0, 0.2, 0.4 (corresponding to
species percentage ratios 50:50, 60:40, and 70:30, respectively). For δ = 0.2, 0.4
we found that the center of mass of the non-equimolar swarm described helical
trajectories, whereas for δ = 0 the trajectory drifted in a given direction without
helical motion. For larger molarity δ > 0.4, trajectories describe a random walk.
In fact, we found a smooth transition from motile to non-motile swarm, which
we quantified by means of the normalized swarm velocity uc; where we found the
directed swarm speed was uc ≈ 0.1 in steady state, whereas non-motile swarms
showed uc ≈ 0.01 corresponding to random walk motion. The critical molarity at
which the transition takes place was determined to be approximately at δc = 0.45.
Furthermore, for δ = 0.2 we found the swarm displays diffusive transport for
the simulation time considered. We also characterized the helical motion of the
center of mass of this case, by computing the velocity auto-correlation, showing
an oscillating behavior of period τc ≈ τ̃ .

We also investigated a strategy that corresponds to externally guided mo-
tion obtained by dynamically tuning species misalignment angles γ1 and γ2. We
achieved a run-and-turn type of dynamics for the directed swarm, by consid-
ering a long run step during which the system is equimolar, and a short turn
step during which the misalignment angles was set to γ1 = γ2. We quantified
the species remix during the turn step by means of the species separation pa-
rameter bs. From here, we determined that the mixing time until the system
becomes species-homogeneous is significantly long compared to the time it takes
the aggregate to perform a single solid-body rotation. We only considered the
case when the misalignment angle is positive during the turn step, thus we only
observed rotating aggregates turning in the counter-clockwise direction, which
introduced a bias in the direction of the swarm. Furthermore, by tuning duration
of the tumbling step, we found that the trajectory can describe different types of
patterns.
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7 Conclusions and outlook
Different types of collective behaviors emerging in two dimensional systems of col-
loids with perception-dependent motility are here investigated mainly by means of
particle-based numerical simulations. We consider colloids governed by Brownian
dynamics with short-range repulsion accounting for volume exclusion. Further-
more, colloids are considered to perceive neighbours within a cone of vision of
aperture half-angle α = π/4. Then, the perception parameter was taken to be
the inverse function of the interparticle distances qi ∼ ∑

j(1/rij), and the motil-
ity v(qi) = v0Θ(qi−q∗) with Θ(·) the Heaviside step function and q∗ the perception
threshold. We also consider the cone of vision to be misaligned an angle γ with
respect to the self-propulsion direction of motion e. Colloidal suspensions de-
scribed by this simple model display a rich variety of dynamical and structural
properties for different system parameters.

In Ch. 3, we considered single-species systems of colloids at fixed γ and q∗.
Starting from a homogeneously distributed and diluted circular configuration,
the colloids aggregate into a single cohesive and rotating circular cluster. We
explained this behavior by means of perception radial profiles, which showed that
colloids display an orientation-dependent motility translating into an effective
attractive force and net torque exerted on the aggregate. For the circular ag-
gregate, particle density increases towards the center of mass, such that when a
particle’s vision cone points towards the aggregate’s center it perceives a large
number of neighbors and becomes active, remaining passive otherwise. Cohesion
was then found to emerge from the motility imbalance between active in-oriented
particles, i.e particles with r̂ · e = −1, and passive out-oriented ones, i.e. par-
ticles with r̂ · e = 1. On the other hand, rotation was found to emerge from
the vision cone misalignment, as tangentially oriented colloids with a vision cone
co-oriented with the aggregate’s center of mass were found to drive the system to
rotate, whereas anti-oriented ones were found to remain passive and dragged by
actives when located within the bulk. Furthermore, we obtained a value of the
perception threshold leading to the formation of compact aggregates that showed
an hexagonal close-packed internal structure, as well as an homogeneous activ-
ity distribution. This value of the perception threshold was later employed as a
normalization factor, such that q∗ = 1 and γ = π/4 were considered to be the
standard parameters. For systems of N = 1000 particles at q∗ = 1 and γ = π/4,
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we found the radius of gyration of compact aggregates to be Rg ≈ 13σ with σ the
particle diameter, and the average hexatic order Ψ6 ≈ 0.75 (smaller than unity due
to the presence of the outer-layer). Finally, we characterized the system dynamics
for parameters q∗ = 1 and varying γ by means of the radius of gyration Rg(t),
and the rotational order OR(t) obtained from the velocity field v—calculated
from particle displacements, not from self-propulsion v0e which is isotropic due
to rotational diffusion. We obtained that Rg diverges for systems of particles with
lateral visual perception γ = π/2, and it is minimum with Rg ≈ 13σ for γ = 0.
The rotational order OR showed a non-monotonous behavior with maximum value
of OR ≈ 0.8 at γ = π/4 and vanishing both at γ = 0 and γ = π/2.

In Ch. 4 we focused on the structural properties of the aggregates. For this
we obtained radial profiles for the density ρ(r), angular velocity ω(r), and polar-
ization components both in the radial pr(r) and tangential pt(r) directions with
respect to the center of mass rcm. At q∗ = 1 and 0 < γ/π ≤ 0.375, we found ρ(r)
plateau near the origin, then shows a soft decay towards the outer-layer vanishing
at larger radial distances r where no particles are found. From ρ(r) we extracted
the aggregate’s size R, bulk density ρb, and interface width δ. With increas-
ing γ, we obtained constant values of ρb ≈ ρc and R ≈ Rc, where ρc ≈ 0.63σ−2

and Rc ≈ 22.37σ correspond to the bulk density and size of a compact aggregate.
The interface width δ showed to monotonously increase with γ from δ ≈ 1.5Rc

at γ/π = 0, to δ ≈ 0.3 at γ/π = 0.375. We also obtained the active and passive
contributions to the radial profiles, showing that the system’s activity distribution
remains homogeneous in this case. Both the radial polarization of the passives
ppr(r) and tangential polarization of the actives pat (r) showed to be always positive,
whereas par(r) and ppt (r) showed only negative values. Such polarization imbal-
ance was determined to be a consequence of the orientation-dependent motility
behavior explained in Ch. 3. Profiles ω(r) showed to plateau giving a bulk angular
velocity ωb that significantly increased with γ; showing a minimum of ωb = 0 at
γ/π = 0 and a maximum of ωb ≈ 0.6 at γ/π = 0.375. At q∗ = 1 and near lateral
perception 0.4 < γ/π < 0.5, the density radial profile ρ(r) showed a much broader
interface without a plateau to extract ρb, instead a maximum near the center
with ρ(0) ≈ ρc appear then a monotonous decay with increasing radial distances.
For values very close to γ/π = 0.5, namely for γ/π = 0.46, 0.47, we found that the
system is not cohesive anymore, as in those cases the motility imbalance between
in- and out-oriented particles does not hold, i.e. either in- or out-oriented particles
can activate with almost same probability. In this case, ω(r) showed again a very
broad interface, with a maximum that decreases from ω(0) ≈ 0.7ωc at γ/π ≈ 0.4,
to ω(0.2Rc) ≈ 0.4ωc at γ/π = 0.45. Furthermore, at fixed γ we found that the
activity distribution dramatically changes with varying q∗. For γ = π/4 and a
low value of the perception threshold q∗ = 0.3, we found an aggregate that was
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mainly active with only a few passives in the outer layer. The radial profile ρ(r)
showed a more dilute bulk density of ρb ≈ 0.75ρc compared to the compact case
with ρb ≈ ρc, while its size remained almost the same giving R ≈ Rc. Profile ω(r)
showed a non-monotonous behavior with maximum value ω(Rc) ≈ 0.2ωc at the
interface r = Rc, and vanishing both at the origin and larger distances r. This
demonstrated that the dilute aggregate emerging at q∗ = 0.3 rotates only in the
outer layer where both actives and passives coexist. We explained this behavior
by means of perception radial profiles q(r) showing that within the bulk particles
are active regardless of their orientation, while in the outer layer only in- and co-
oriented ones can activate. For q∗ = 0.7, the system was also found to be mostly
active, however the aggregate was found to be compact as here passives in the
outer layer exist in a broader range of radial distances 0.1 < r/Rc < 1. In this
case, the bulk angular velocity was found to be ωb ≈ 0.3ωc. For q∗ = 1.2 we found
the system again forms a compact aggregate, but here it was mostly passive with
only a few actives driving aggregate’s rotation with ωb ≈ 0.2ωc while keeping it
compact with ρb ≈ ρc and R ≈ Rc. In conclusion, the bulk’s angular velocity was
found to be a non-monotonous function of the perception threshold q∗, which was
found to modify the activity distribution. Finally, we derived analytical expres-
sions from conservation equations for the density and particle flux. For this, we
considered a continuum description corresponding to a solid-body rotation driven
by activity at the interface. We found a satisfactory agreement between theory
and numerical results for the bulk density ρb, size R, and bulk angular velocity ωb
of the aggregates as a function of the parameters γ and q∗. Mismatch between
theory and simulations was found for ωb at larger values of γ, where ρ(r) does not
plateau near the origin. Besides, to consider changes in motility distribution, we
employed a fit parameter Deff accounting for an effective diffusion that increases
with increasing number of actives within the bulk.

In Ch. 5, we considered a binary mixture of particles with misalignment an-
gle γ1 = −γ2. For standard parameters q∗ = 1 and γ1 = −γ2 = π/4, we found
that the system self-organizes into a single species-separated directed swarm. The
system’s dynamical behavior is characterized by means of the largest cluster
size nc, species separation bs, fraction of active particles na, and swarm’s nor-
malized velocity uc. At short times t/τ̃ < 1, where τ̃ = 104τB with τB the
particle’s ballistic time, we found that the system first aggregates into a cohesive
species-homogeneous cluster which later self-sorts into two well-defined species
subdomains showing an increase of both bs(t) and uc(t) until a time t/τ̃ = 1 when
they reach a maximum of bs ≈ 0.7 and uc ≈ 0.1, respectively. During this regime
the largest cluster size remains constant with nc ≈ 1 as the system is cohesive,
besides the fraction of actives remains na ≈ 0.35. At longer times t/τ̃ > 1 the
system starts leaving a trail of particles behind, thus dissolving over time and
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showing a monotonous decrease of all dynamic parameters that eventually vanish
at t/τ̃ > 3.5. For a lower value of the perception threshold, namely q∗ = 0.7,
we found that the system forms a robust directed swarm, which remains cohesive
over time showing steady-state values nc ≈ 1, na ≈ 0.5, bs ≈ 0.7, and uc ≈ 0.1.
In this case, particles at the outer layer far from the center are not left behind
in a trail, as with smaller threshold value q∗ they easily reactivate and quickly
rejoin the swarm. We characterized the bean shape of the swarm for systems
with q∗ = 0.7 and varying values of the misalignment angle γ/π ∈ (0.15, 0.35),
showing the swarm’s asphericity λ and bean aperture angle β to linearly increase
with γ. For q∗ = 0.3 and γ = π/4, we found the system forms a loose and non-
separated aggregate that does not self-propel. Dynamic parameters in this case
remain constant, giving nc ≈ 1, na ≈ 0.75, bs = 0, and uc = 0, the particles
are active in the center regardless of their orientation, which prevents particles
to be dragged and kept together in close packing, nor they are able to separate
into species subdomains. To complete the picture, we performed simulations for
different values of q∗ and γ and obtained a phase diagram showing regions where
the system is either cohesive separated, cohesive non-separated, or non-cohesive
non-separated.

In Ch. 6, we studied cases when the mixture is non-equimolar, which we found
can lead to cohesive species-separated swarms that describe helical trajectories.
We found a transition between motile and non-motile swarm with increasing mo-
larity δ, showing a maximum of uc ≈ 0.1 in the equimolar case δ = 0 and vanishing
in the single-species case δ = 1; the transition was found to occur approximately
at δ = 0.45. We also characterized the dynamical behavior of non-equimolar
swarms, for which we calculated the mean-squared displacement (MSD) and ve-
locity autocorrelation function Cvv. The MSD showed non-equimolar swarms
perform diffusive transport in the long-time limit, while describing a helical tra-
jectory with circling period of τh/τ̃ ≈ 1. Finally, we showed a simple strategy
to externally guide a swarm, which we obtained by switching the misalignment
angles between γ1 = γ2 and γ1 = −γ2. We found this simple rule translates
into consecutive run-and-turn motions of the swarm, allowing to describe differ-
ent types of guided trajectories. The exact path followed by the trajectories was
found to be dependent on the turn step τt, such that smaller values of τt determine
the swarm’s turning angle θt between two consecutive straight motions. To im-
plement this strategy more accurately, one could quantify the dependence θt(τt)
which would allow us to choose the appropriate duration of the time step corre-
sponding to a specific trajectory.

The model investigated in this thesis can be easily implemented in experi-
ments of light activated colloids employing an external feedback loop to account
for anisotropic interactions [41, 45, 180]. Rotating aggregates and directed swarms
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have been recently achieved in these type of experiments [44, 107]. However, they
require an involved alignment interaction mechanism demanding a high degree
of control in the experiments. One advantage of our model is that it does not
consider local torques on each colloid, so the only ingredient required in exper-
iments is a mechanism to account for the anisotropic interactions together with
individual activation of the colloids. Throughout the thesis, we have employed
systems of N = 1000 particles, which can be a somewhat large number to control
in experiments. While smaller N could affect the structural properties of the
emergent collective behaviors, we know orientation-dependent motility inducing
rotations and species-separation are generic mechanisms and therefore smaller
systems should still display collective behaviors explored in this thesis. System
parameters that could be also further studied is the effect of the Péclet number,
for example by considering particles that switch their motility between fast and
slow; the effect of the vision cone aperture angle α, and the softness of the re-
pulsive potential. One interesting direction to study employing our model is to
consider the effect of confinement, which is known to have a significant impact on
the collective behavior of systems of active particles [8, 185–192]. For example,
we could add a motility rule that account for swarm avoidance of walls, in this
way we could further guide the overall motion. Another interesting ingredient to
consider is the effect of hydrodynamic interactions, which can modify the cohesion
and structure of colloidal aggregates [84, 193, 194]. In the case of a single-species
system of colloids with misaligned perception-dependent motility, this can also
strongly affect the aggregate’s rotation speed. For binary mixtures, we have pro-
posed one straightforward strategy to control the center of mass trajectory of
directed swarms by dynamically tuning particle parameters. In recent years, sev-
eral examples of self-organization and collective goal-achievement strategies have
been studied in systems of active particles by employing reinforcement learning
techniques [195–201]. Such methodology could be included in our model, for ex-
ample by considering colloids that learn how to tune the misalignment angle γ
in order to achieve desired types of collective behaviors and self-guide its overall
motion.
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