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Abstract

Chlamydia trachomatis (C. trachomatis) related sexually transmitted infections are
amajor global public health concern. C. trachomatis afflict millions of men, women,
and children worldwide and frequently result in serious medical diseases. In this
thesis, mathematical modeling is applied in order to comprehend the dynamics
of Chlamydia pathogens within host, their interactions with the immune systems,
behavior in the presence of other pathogens, transmission dynamics in a human
population, and the efficacy of control measures.

The thesis begins with a brief introduction of the bacteria Chlamydia in Chapter
1. In Chapter 2, we give a brief detail of the mathematical modeling of infectious
diseases, and its specific application to study the pathogen.

In Chapter 3, a linear delay differential compartmental model is developed, and its
special application is shown for a laboratory experiment conducted to study the
intracellular development cycle of Chlamydia. The delay accounts for the time
spent by bacteria in their various forms and for the time taken to go through the
replication cycle. The mathematical model tracks the number of Chlamydia in-
fected cells at each stage of the cell division cycle. Moreover, the formula for the
final size of each compartment is derived. With initial conditions taken from the
experiment, the model is fitted to results from the laboratory data. This simple
linear model is capable of reflecting the outcomes of the laboratory experiment.

In Chapter 4, at a population level, a novel mathematical model is introduced to
study the dynamics of the co-infection between C. trachomatis, and herpes sim-
plex virus (HSV). The concept of the model is based on the observation that in an
individual simultaneously infected with both pathogens, the presence of HSV will
make the Chlamydia persistent. In its persistent phase, Chlamydia is not replicat-
ing and is non-infectious. Important threshold parameters are obtained for the per-
sistence of both infections. We prove global stability results for the disease-free
and the boundary equilibria by applying the theory of asymptotically autonomous
systems. Further, the model is calibrated to disease parameters to determine
the population prevalence of both diseases and compare it with epidemiological
findings.

In Chapter 5, a compartmental maturity structured model is developed to investi-
gate an optimal control problem for the treatment of chronic Chlamydia infection.
The model takes into account the interaction of the pathogens with the immune
system and its effects on the formation of persistent Chlamydia particles. As the
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system takes the form of a mixed ODE-PDE system, the results of the conven-
tional form of Pontryagin’s maximal principle for ordinary differential equations
are not suitable. For our purpose, we construct an optimal control problem for a
general maturity compartmental model, and hence it consists of ordinary and par-
tial differential equations, moreover, the boundary conditions are also nonlinear.
For a fixed control, we verify the existence, uniqueness, and boundedness of the
solutions. The system is numerically simulated for a variety of cost functions in or-
der to calculate the optimal treatment for curing Chlamyida infection. We believe
that since our findings were validated for a general model with maturity structure,
they may be applied to any specific compartmental model that is compatible with
the established system.
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1 Introduction
Sexually transmitted infections (STIs) are persistently accountable for causing
health crises of epic proportions. Millions of men, women, and infants are globally
affected by STIs which can often lead to severe medical conditions including long-
term disability and death, additionally instigating psychological repercussions [1].
The World Health Organization (WHO) in 2012 estimated the loss of 100 million
disability-adjusted life years (DALYs) as a consequence of STIs. The WHO also
reported alarming statistics of 340 million annual cases of curable STIs occurring
worldwide. Chlamydia trachomatis (C. trachomatis) is the most common notifi-
able STI caused due to bacteria and is among the most significant contributors
to disease burden due to STIs. A report on the global incidence and prevalence
of selected curable STIs in the year 2008 reported 105.7 million cases of C. tra-
chomatis [1]. The Centers for Disease Control and Prevention (CDC) reports that
there are 4 million new instances of C. trachomatis infections in the United States
each year. Moreover, it is overtly distressing that young people between 15-24 are
primarily affected, marking up to 50% of new STIs occurring each year. Among
the C.trachomatis infection report received by CDC, 74% cases were recorded to
occur in persons aged 15–24 [2]. A more recent study conducted in 2018 made
a similar assertion, 2.6 million incident Chlamydia infections occurred in the age
group 15-24 representing 66.5% of the total cases [3]. The European Centre for
Disease Prevention and Control (ECDC), recently reported that the highest no-
tification rates were among women aged 15-24 years (1305 cases per 100,000
population) and men aged 15-29 years (672 cases per 100,000 population) [4]. In
Hungary, the notification rate for Chlamydia in men was 141 cases per 100,000
population, while in women, it was 173 cases per 100,000 population. This rela-
tively high male-to-female ratio in Hungary was noted, especially when compared
to other European countries with lower notification rates [4]. These statistics repre-
sent a startling fact about the epidemic stature that STIs have reached worldwide.

1.1 Epidemiological Background

Chlamydia is a genus of pathogenic gram-negative bacteria which are obligate in-
tracellular parasites. It is responsible for causing epizootic outbreaks in mammals,
potentially targeting domesticated poultry, cattle, pigs, sheep, and horses, as well
as feral birds and human beings [5]. The bacterial family Chlamydiaceae is in-
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clusive of several disease-causing pathogens in humans including, C. pneumoni-
ae, C. psittaci, and C. trachomatis whereas C. muridarum, C. suis are animal
pathogens, infecting mice and swine respectively [6]. Among the species, C.trach-
omatis typically affects humans and is reportedly the most common STI worldwide.
It causes diseases in humans by infecting the genital tract and ocular epithelium
[7]. C. trachomatis infections primarily do not show any symptoms, and conse-
quently are left undetected and untreated. With the rate of asymptomatic Chlamy-
dia infection ranging between 70-75% in women and 40% in men, it is frequently
attributed as the ‘silent epidemic’ [8–10]. Untreated Chlamydia infections are ca-
pable of establishing latency which may lead to long-lasting chronic infections,
further increasing the risk of acquiring and transmitting other infectious diseases,
such as HIV [11]. Untreated Chlamydia infection can manifest in serious seque-
lae in both men and women. It leads to more serious complications in women
as they develop health issues such as chronic pelvic pain, tubal factor infertility
(TFI), pelvic inflammatory disease (PID), and ectopic pregnancy, which is often
life-threatening [12].

C. trachomatis is classified into two biovars, the trachoma biovar and the Lym-
phogranuloma Venereum (LGV) biovar, which are further separated into several
serovars based on cell surface antigens. There are four LGV-causing serovars
which are designated as serovars L1, L2, L3, and L2b, serovars A-C cause tra-
choma, the leading source of preventable blindness worldwide. It is estimated
that serovars A-C infects approximately 162 million people with ocular infection
while rendering 6 million people with total blindness [6]. Although Trachoma still
prevails in some countries, it has been mostly eradicated from the rest of the world
[13]. C. trachomatis serovars D-K causes urethritis or cervicitis and represents the
world’s most prevalent bacterial STD agent. A very high percentage (85-90%) of
Chlamydia infections are chronic and asymptomatic which facilitates the bacteria
to establish long-term inflammation and tissue scarring of the genital tract. The
silent attribute of infections due to Chlamydia eventually results in more damage
sustained by the host and is the principal reason for the excessive burden of the
disease.

1.2 Biological Background
1.2.1 Life Cycle of Chlamydia

Chlamydia’s unique biphasic intracellular developmental cycle differs from other
bacterial parasites (Fig. 1.1). They manifest in two morphologically distinct forms
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within the host: the elementary bodies (EBs) and the reticulate bodies (RBs). The
EBs are the extracellularly viable, but metabolically inert forms, responsible for
spreading the infection by attaching and invading susceptible epithelial human
cells. RBs are metabolically active non-infectious forms that can replicate inside
human cells. The life cycle of Chlamydia is initiated when the EBs attach them-
selves to the surface of the host epithelial cell; followed by the internalization into
an intracytoplasmatic parasitophorous vacuole called inclusion, whereby they un-
dergo morphological changes and differentiate into the replicative form RBs. The
RBs then multiply by undergoing repeated cycles of binary fission (200-500 fold
[11]). Matured RBs then differentiate back to EBs and are eventually released at
the end of the cycle with the lysis of the infected host cell [14].

1.2.2 Persistence in Chlamydia

As it stands, the fact that Chlamydia’s developmental forms exclusively alternate
between EB andRB has been oversimplified. Chlamydia can enter a non-infectious
yet viable stage known as persistence, when under stress, despite being efficiently
treatable. Persistence in Chlamydia is a reversible phase that is characterized by
an anomalous development cycle where the bacteria is capable of establishing
latent infections and can persist asymptomatically in many individuals [15]. Unre-
solvedChlamydia infections leading to the persistence of the bacteria are believed
to be a principal reason behind recurrent Chlamydia diseases.

Weiss observed in 1950 that exposure to the antibiotic penicillin caused C. muri-
darum andC.felis to exhibit an expanded, aberrant shape [16]. According to Hurst
et al., [17], Tamura and Manire [18], and Matsumoto and Manire [19], C. trachoma-
tis LGV and C. psittaci, which were at the time known as lymphogranuloma and
meningopneumonitis viruses respectively, both experienced similar outcomes.

The mechanism that induces Chlamydia into persistence is still obscure, however,
laboratory experiments have substantiated their occurrence in vivo, even prevail-
ing for several years [6]. Persistence induction offers a crucial experimental tool
for examining these fascinating creatures in the absence of a tractable genetic sys-
tem. Several studies have concluded the existence of numerous factors that can
trigger the manifestation ofC. trachomatis into the persistent phase, such as expo-
sure to unfavorable physiological conditions, presence of growth inhibitors such
as IFN-γ, iron deficiency, nutrient deprivation, or treatment with some antibiotics
[20]. However, this process is reversed once the growth inhibitors or other hin-
drances are removed, and the persistent C. trachomatis differentiates back into
it’s infectious forms [20–22]. To date, the IFN-γ induced persistence has been
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best specified and is characterized by the induction of Chlamydia persistence by
allowing tryptophan inadequacy, an essential amino acid that is required for the
natural development of Chlamydia [23].

Various additional experiments (recently summarized in [24, 25]) have extensively
demonstrated that growing Chlamydiae can detour from the productive develop-
mental cycle when they encounter particular stimuli. With regard to Chlamydia,
persistence is referred to as a developmental stage in which the Chlamydiae are
alive but not contagious. This usage can be a little perplexing becausemost micro-
biologists use the word ”persistence” to describe an infection that lasts a long time
inside of a host. Chlamydial metabolism slows down during persistence and RB
division and differentiation into EB stop. This lowers the production of infectious
particles and promotes aberrant RB (AB) development.

Persistence seems to be a technique by which Chlamydiae can ”ride out” adverse
circumstances and sustain a protracted infection within a host cell. It is significant
to emphasize that persistentChlamydiae, which are alive but not contagious, have
mostly been researched in culture. The in vivo findings demonstrate that Chlamy-
diae persist, these investigations do not, however, provide solid evidence that the
Chlamydiae persist in a modified form [24, 25].

Figure 1.1: Graphical representation of the Chlamydia development cycle in the
presence of persistence. Arrows indicate the transition from one stage to another.
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Figure 1.2: The persistence phenomenon.

1.2.3 Therapy and Therapeutic Failure

Despite the fact that Chlamydia infections do not contribute to mortality and are
easily treatable, its pervasiveness and a high proportion of people who are asymp-
tomatically infected represent a threat to general health. Chlamydia infection can
be efficiently treated and cured with antibiotics if effectively diagnosed. The most
common treatment regimen is a single 1g oral dose of azithromycin or 7 days of
doxycycline [26]. The effects of these antimicrobial agents are purely bacterio-
static, meaning they can only inhibit the growth of bacteria [27]. Depending on
the choice of drug administered, the success of treatment may vary from 90% to
100% [28]. Regardless of these high recovery rates, there are reports of recurrent,
exacerbating infections. Survey has determined that the rates of persistent or re-
current infection range from 5% to 38% in adolescents and young women treated
for Chlamydia infection [29].

Recurrent Chlamydia infection of the genital tract is a frequent and well-known
condition. The etiology behind such a common occurrence of repeat infection
appears to be a composite of several aspects including antimicrobial resistance,
misdiagnosis, treatment non-adherence, repeat exposure to infection, frequent
screening, and limited immune system protection [26, 30].

Regardless of a few published case studies ([30–33]) pointing to resistance as the
root of clinical therapeutic pitfalls, the hypothesis surrounding C. trachomatis be-
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ing able to develop antimicrobial resistance has received no significant study. ”Ho-
motypic resistance” for  C. suis strains against tetracycline have been observed
in pigs [34], nevertheless, there are no examples of antibiotic resistance originat-
ing in human-pathogenic chlamydiae [35]. It is significant to note that there are
extreme challenges to studying antibiotic resistance among Chlamydia species,
including lack of a consistent in vitro test, and deficiency in comprehension of the
connection between outcomes of existing clinical results following therapy and in
vitro studies [36]. Current evidence suggests it seems improbable that antimicro-
bial resistance poses any threat to the resolution of Chlamydial infection. It is
considered advantageous that incidences of C. trachomatis resistance is uncom-
mon where in this age, antimicrobial resistance has become an issue of increasing
concern [36].

According to an in vitro research conducted to evaluate the effect of β- lactam an-
tibiotics on Chlamydia persistence, all penicillins studied caused the production of
ABs with Chlamydia’s infectivity reduced by 95% [37]. In comparison, persistent
Chlamydial are more resistant to azithromycin (AZM) in culture than normally de-
veloping organisms [38, 39], whereas C. trachomatis exposure to IFN-γ increases
resistance to doxycycline treatment [40]. Samples from treated individuals have
shown to have persistent Chlamydial forms [33], additionally, antimicrobial resis-
tance has grown among persistent Chlamydiae in culture [39–41]. Consequently,
some researchers have suggested that persistent Chlamydiae may exacerbate
chronic diseases by eluding antibiotic treatment.

The high frequency of recurring infection rates may also be influenced by Chlamy-
dia testing and treatment. AsChlamydia is primarily asymptomatic, regular screen-
ing of priority populations is seen as a crucial public health control strategy. How-
ever, the possible drawbacks of a ”screen and treat” strategy are still up for de-
bate. It was suggested that increased rates of reinfection might be caused by
the early removal of pathogens from genital tissue following antibiotic treatment,
which might have a negative impact on the growth of naturally acquired protective
immunity. Results from a murine model with early antibiotic administration demon-
strate that, despite being extremely successful in removing chlamydiae from gen-
ital tissue and averting upper genital tract infection, mediation with doxycycline
severely reduces the growth of protective immunity [42]. It remains challenging
to answer this question in a natural infection. A study reported spontaneous reso-
lution of Chlamydia infection in women who had not received antibiotic treatment,
on the basis of which they concluded that host defense mechanisms may mediate
Chlamydial clearance [43]. If outcomes from the animal model are an appropriate
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prediction of what happens in humans, there is a greater risk of reinfection or re-
current Chlamydial infection in women who receive early treatment in the course
of the infection [42, 44]. To sum up, it is abundantly evident that it would be bene-
ficial to understand the cause behind such a common occurrence of recurrent C.
trachomatis infection.

There is presently no vaccine for Chlamydia, and the solely available treatment is
antibiotics, however, considering the high rate of reinfection, there is a growing de-
mand to provide a vaccine. Large-scale field studies in Saudi Arabia, Taiwan, The
Gambia, India, and Ethiopia were conducted in the 1960s to assess the effective-
ness ofC. trachomatis vaccines against ocular infection. These studies concluded
that whole organism vaccines could promote short-term immunity to ocular infec-
tion and lower the incidence of inflammatory trachoma. At the time, extensive
research on non-human primates revealed that vaccination could cause inflam-
matory illness to worsen when challenged later, however, the evidence pointing
towards the same conclusion in humans is questionable [45].

Vast research for non C. trachomatis vaccine has been carried out with animal
models and has had greater success. The majority of these studies for vaccina-
tion trials were conducted using mouse models as hosts, the earliest of which was
developed to specifically target C. muridarum [46], that shares the majority of the
genes with the human strains of C. trachomatis [47]. These trials indicate that
whole cell antigenic targets trigger an effective response, shielding from illness
and decreasing shedding rates. There are a number of noteworthy distinctions
between C. trachomatis and C. muridarum that may have an impact on the im-
munobiology of infection, regardless, these models appear to be helpful for exam-
ining C. trachomatis immunity [22, 48].

So far, only two Chlamydial vaccines, targeting C. felis in cats and C. abortus in
sheep have been marketed, of which  C. felis was ultimately discontinued in 1992,
as it seemed to lose some of its potency [49]. A methodical research program
is being dedicated to the development of C. pecorum for koalas. The earliest
immunization trial on koalas evaluated the neutralizing ability of plasma against
C. pecorum, consequently offering an alternative to the use of antibiotics and/or
a three-dose vaccination schedule which was standard for earlier vaccine trials
[50].

Replicating mouse vaccine trial results in other host species, particularly non-
human primates, is one of the most challenging components of chlamydia vaccine
research. There have been efforts in recent years to reproduce murine model trial
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outcomes in non-human primates, the earliest of which used whole cell antigenic
targets, and documented little to no post-challenge protection [51–53]. Themouse
models provide great insight into the challenges involved in developing an effica-
cious vaccine that will provide protection against infection and disease sequelae.
Although live vaccines and Major Outer Membrane Protein (MOMP)-based vac-
cines have had some success, these outcomes have not been replicated in non-
human primate models, probably due to variations in chlamydial species genetics
and host immunity responses. Nevertheless, recent vaccine trials using the whole
cell antigen method have shown encouraging outcomes [54, 55].

A recent study concluded that the majority (85%) of vaccine studies have been
conducted in substitute hosts and have mostly focused on creating vaccines for
humans [46]. According to the survey, despite more than 70 years of research, as-
sisted with considerable technological breakthroughs, and increased understand-
ing of the target species, no transparent method of vaccine administration has
been established.

8 Biomathematics of Chlamydia



2 Mathematical Modeling of
Infectious Diseases

2.1 Historical Background

The history of communicable diseases, although very ruthless, has been a sig-
nificant part of humanity. Since the beginning of time, epidemics have invaded
populations, frequently killing a large number of people before vanishing, possi-
bly reoccurring years later, and probably becoming less severe as populations
build up some immunity. Examples include the ”Spanish” flu Pandemic of 1918–
19, which resulted in more than 50,000,000 deaths globally [56], and the annual
influenza seasonal epidemics, which can result in an average of up to 389,000 fa-
talities globally [57]. The outbreak of the novel coronavirus, first emerging in late
2019 quickly spread worldwide, leading to a significant global health crisis with
far-reaching social, economic, and public health impacts. The disease referred to
as COVID-19 (coronavirus disease), is a viral respiratory illness caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is proclaimed
the deadliest kind since the 1918 H1N1 influenza pandemic [58].

In the fourteenth century, beginning in 1346, the Black Deaths (perhaps the bubonic
plague) moved from Asia to Europe in numerous waves, killing up to one-third of
the continent’s population by 1350 [59]. For more than 300 years, the illness re-
curred frequently in different regions of Europe, most memorably as the Great
Plague of London in 1665–1666. Then it began to progressively leave Europe.

There are other illnesses that are endemic (constantly prevalent) in some com-
munities and result in a lot of fatalities. Particularly prevalent in underdeveloped
nations with subpar healthcare services. Measles, lung infections, diarrhea, and
other conditions that are easily treatable and not regarded as dangerous in the
Western world cause millions of deaths each year. Many regions of the world are
plagued by endemic illnesses such as malaria, typhus, cholera, schistosomiasis,
and sleeping sickness. The work of John Graunt (1620–1674), published in his
book ”Natural and Political Observations Made upon the Bills of Mortality” in 1662,
marked the beginning of the analysis of data related to infectious diseases [60].
The Bills of Mortality were weekly lists of the fatalities that occurred in the parishes
of London. The data used by Graunt came from the records, which were started in
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1592 and kept up to date starting in 1603. He provided the first approach to a the-
ory of competing risks by analyzing the numerous causes of death and outlining
a mechanism for calculating the relative chances of passing away from various
illnesses.

The earliest application of mathematics to study infectious diseases can be traced
back to the 18th century. During the period when smallpox was still rampant, treat-
ment and eradication of the disease was a subject of grave importance. Although
it was believed that immunity could be achieved through vaccination against small-
pox, with particles from its lesion, it was highly controversial because of the po-
tential threat and fatality linked with it. It was a matter of dispute whether the
benefits of mass inoculation counterbalanced the associated risk. In 1760, Daniel
Bernoulli, one of the most renowned scientists of the time, in his attempt to boost
global immunization against smallpox, conducted a mathematical investigation of
the fatality caused due to smallpox, with variolation and without. His approach to
the issue of competing hazards resulted in the 1760 publishing of a concise sum-
mary [61]. This was followed by a more exhaustive analysis which he presented to
the Royal Academy of Science in Paris the same year and subsequently published
in 1766 [62]. Bernoulli through his evaluation justified the claim that the merits of
variolation far surpassed the dangers of the disease and mortality caused due to it.
His studies provide a comprehensive understanding of the historically significant
disease of smallpox.

The contribution by John Snow, a medical professional from England who pio-
neered the creation of anesthesia and medical hygiene, is quite significant and
is thought to have been the beginning of the science of epidemiology. Based on
research into the temporal and geographic distribution of cholera cases during the
London outbreak of 1855, he successfully located the Broad Street water pump as
the infection source [63]. William Budd was successful in gaining a comparable
comprehension of the typhoid epidemic in 1873 [64].

Regardless of Bernoulli’s established account, a substantial length of time would
pass before the vast application of mathematical modeling in the scope of infec-
tious diseases. The works of P. D. En’ko and Ronald Ross are considered critical
in the advancement of this field. En’ko is recognized for his contribution to the the-
oretical analysis of the measles epidemic [65]. In 1889, he developed a discrete-
time model which he successfully correlated with the real measles epidemic in
educational institutions of St. Petersburg, which he surveyed in an enclosed en-
vironment. His work is the basis of the famous ‘Reed-Frost models’ proposed by
Lowell Reed and Wade Hampton Frost. Although the mathematical model was
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published only later in 1950, it was presented by Frost in a lecture in 1928. Ronald
Ross, a British medical doctor, one of the greatest in the field, is distinguished
for his remarkable contribution in the understanding of malaria disease through
mathematical modeling. His pioneering works laid the foundation for quantitative
analysis of the transmission of mosquito-borne diseases and their epidemiology.
Ross’s contribution to engineering the groundwork that laid the foundation for the
conceptual awareness of infection dynamics earns him high regard as a histori-
cal figure. Additionally, Ross is also credited for introducing a significant notion
in epidemiology (a similar concept to the reproduction number, R0). Along with
identifying anopheles mosquitoes as vectors responsible for transmitting malaria,
his analysis of the mathematical model showed that malaria could be eliminated
so long as the number of humans per mosquito was beneath a certain ”thresh-
old” value [66]. Ross’s original work which consists of two separate mathemat-
ical models greatly influenced a generation of successors in the field including
George Macdonald, which led to the development of the Ross-Macdonald theory
of mosquito-borne disease transmission [67, 68]. With the ”threshold” concept
already existing in epidemiology, Macdonald also later established its link with de-
mographics and the approach to the formulation of reproduction number (using
the expression z0).

Ross’s earliest models gave rise to several other modified versions including the
Ross-Waite-LotkaModel [69], the Ross-LotkaModel [70], the Sharpe-LotkaModel
[71]. A detailed analysis of the historical evolution inclusive of more recent ad-
vancements can be found in [72]. Ross remains significant not only for his key
role in exploring mosquito-borne disease transmission but also for his fundamen-
tal part in the scientific developments in the field of mathematical studies of infec-
tious diseases.

Ross’s other major impact in the field would be his association with Anderson Gray
McKendrick, a Scottish military physician, who pioneered the use of compartmen-
tal modeling in the mathematical study of infectious diseases. McKendrick widely
acknowledges Ross for his work in epidemiology. The year 1927 is regarded as a
benchmark for the mathematical modeling of infectious diseases with the introduc-
tion of the famous Susceptible-Infected-Recovered (SIR)model by AndersonGray
McKendrick andWilliamOgilvy Kermack [73]. The model which segregates a pop-
ulation into different compartments describes the movement of individuals through
successive compartments by considering progression rates of various stages of
infection. The model assumes that an individual attains lifelong immunity upon re-
covery from an infection. Adhering to Ross’ footsteps, Kermack and McKendrick
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went on to broaden the theory of ”threshold” in communicable diseases by extend-
ing the SIR model and presenting through subsequent publications [74, 75]. The
1905 Mumbai plague epidemic is such a case study considered by them.

Roy Anderson and Robert May in their much-esteemed book titled ”Infectious
Diseases of Humans”, further developed the SIR model and applied it to analyze
the spread of communicable diseases such as measles, malaria, river blindness,
schistosomiasis, sleeping sickness, and AIDS. Their distinctive work is aimed at
providing a comprehensive characterization for reviewing public health strategies
toward the annihilation or control of infectious diseases. This book stands out
for its demonstration of the far-reaching potential of mathematical modeling in the
field of epidemiology [76]. The due credit for finally adopting the expression ”basic
reproduction rate” (resumingMacdonald’s terminology), along with the notationR0

instead of z0 (representation is due to Lotka [77]) goes to Anderson and May [78],
as well as associating R0 to the following definition:

” Basic Reproduction Number, Epidemiological Definition. The
number of secondary infections resulting from a single primary
infection into an otherwise susceptible population.”

Furthermore, Anderson andMay proposed and analyzed the Susceptible-Infected-
Susceptible (SIS) form of compartmentalizing an infectious disease. This simpli-
fied version of the SIR model yielded high suitability for the formulation of STIs,
and its application has been far-reaching in recent years.

These mathematical models have been utilized extensively in order to gain insight
into the dynamics of infectious diseases, as a tool for analyzing epidemic risk, for
devising vaccination strategies, to study the effect of biodiversity on a disease
spread, and many more. R0 can be used as a forecasting tool to measure and
prevent epidemic outbreaks, using the well-established fact that vaccination of a
population fraction larger than 1 − 1/R0 will establish herd immunity leading the
disease to eventually die out.

2.2 Compartmental Modeling at an In-host Level:
Understanding the Infection

Compartmental modeling is a very efficient modeling technique in mathematics
and has been extensively applied to demonstrate the evolution of biological sys-
tems over time. Its applicability is largely reflected in structures that can be sep-
arated into compartments that display certain distinctive features. The flow of
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the particles along successive compartments is specified by probable input and
output factors that closely reflect the changes occurring in the system [79]. The
particles flowing through compartments can be various biological entities, such as
populations of cells, bacteria, viruses, other organisms, human populations, birds,
or animals. They are capable of reproducing and performing other biological func-
tions. Detailed discussions of multi-compartmental models used as mathematical
descriptions of biological systems can be found in various books on mathematical
models [79–81].

The SIR epidemic model introduced by Kermack and McKendrick is a major land-
mark that popularized the use of compartmental modeling for the dynamic rep-
resentation of communicable diseases. In a simplified version of the original
Kermack-McKendrick equation, themodel divides the population into susceptibles
(S), infectives (I), and recovered (R). The dynamics of the disease transmission
are then defined by the following system of ordinary differential equations (ODEs)

dS

dt
= −βSI,

dI

dt
= βSI − γI,

dR

dt
= γI,

where β is the transmission rate and denotes the efficiency of the disease process,
and γ is the rate of recovery for infected individuals. This elementary approach
forms the premise for mathematical modeling of important infectious diseases and
many variations have been considered to study infection dynamics by partitioning
the population contingent upon disease status.

The SIR model is conveniently designed to model the spread of infection within a
population of human beings separated into healthy and infected individuals, but
an equal concept can be applied to describe the dynamics of infection within a
host. Various important aspects of infection can be studied and understood using
such tools, as has been proven with the research carried out in the domain of
viral infections, most notably for the human immunodeficiency virus (HIV) [82–
85]. The far-reaching insight that is gained through the analysis described in the
aforementioned works, including establishing and quantifying the interconnection
between infection parameters validate the relevance of mathematical models in
the characterization of such dynamics.

ODEs have been predominantly used to describe the basic equations used to

Biomathematics of Chlamydia 13



model in-host dynamics as the time taken for movement of particles between com-
partments is considered negligible [86, 87]. However, as specified in several liter-
atures, for most biological systems, the transit time for particle movement cannot
be taken as zero [88–93]. A relevant example of such a structure is one where
compartments are linked with each other by pipes. The time required for the flow
of materials along the pipes may be associated with, for e.g. the dimension of
these pipes, and hence are significant. Such pipe-compartment models are appli-
cation specific and can be found in abundance in bio-mathematical literature [94,
95]. In such models, the delay caused by the length of pipes is mathematically
described by differential equations with retarded arguments [88, 96, 97]. For clas-
sical compartmental models, the system of ODEs takes on explicit forms relative
to the biological and physical phenomenon [86]. Accordingly, for the mathemati-
cal characterization of systems with time delay, delay differential equations of the
specific structure are taken into account [93].

2.3 In-host Level Modeling of Chlamydia

Mathematical modeling has the potential to significantly advance numerous fields
of Chlamydia research. Dynamical equations can be applied as a guiding frame-
work for investigating a variety of Chlamydia infections and pathology-related is-
sues. Owing to the unique life cycle displayed by the bacterium Chlamydia, which
is significantly alike to the life process of viruses, ‘viral dynamics’ equations have
been conveniently applied to study its dynamics at an in-host level. The similar
life cycle Chlamydia (explained in Chapter 1, Section 1.2.1, Fig. 1.1) shares with
viruses assure successful application of viral dynamics equations to Chlamydia.
Relatively simple to more advanced models have been incorporated for within-
host Chlamydia infection and calibrated to experimental data to gain meaning-
ful insights about immunity, including crucial information about the development
of vaccines. However, regardless of the critical insights in-host viral dynamics
modeling can provide in the area of research in virus dynamics, its application to
Chlamydia has been minuscule. With the valuable information that mathematical
modeling as a tool has provided for other STDs such as HIV, gonorrhea, or Herpes
Simplex Virus, it is unquestionable that dynamical study can uncover previously
unexplored insight into the intricate process of Chlamydia growth cycle.

A fundamental component of in-host modeling comprises of in-depth investigation
of the intricate Chlamydia growth process that involves the inclusion of EBs into
epithelial cells, the replication of RBs, and their transition back to EBs. Such a
study was first attempted by Wilson in [11], where a viral dynamics model consist-
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ing of a mixed ODE-PDE system was considered in order to predict the possible
effects of increasing the efficacy of the Th1 immune response. However, consid-
ering that the system of equations takes the form of PDE to represent change
over both time and replication stages, are substantially more complex compared
to usual viral dynamics equations. Several other extensions have been consid-
ered to the mathematical description in order to better facilitate predictions about
Chlamydial pathogenesis. By considering the populations of Chlamydia particles,
susceptible mucosal epithelial cells, and Chlamydia-infected epithelial at certain
times, Wilson models the interactive processes of the ”species” involved. These
mathematical within-host modeling of Chlamydia considered by Wilson using viral
dynamics equations are summarized in [11]. Wilson and McElwain in [98], mod-
els the effects of humoral immunity against neutralizing Chlamydia by tracking
the antibody and host cell receptor aggregation over Chlamydial EB surfaces. An-
other paper by Wilson correctly predicted the reduction in pathology following the
reduction in inclusion-forming unit (IFU) levels using a mathematical model that
connected pathology to the area under the IFU time course curve (experiment per-
formed and achieved in guinea pigs by use of a chlamydiaphage) [99]. Another
model was formulated to facilitate the hypothesis that attachment of RBs to the
inclusion membrane is modulated via a type III secretion (TTS) system, and the
loss of these projections aids the translation of RBs back to EBs, subsequently
leading to detachment from the inclusion membrane [100].

Burns et al. using a delay differential equations model estimated the parameters
related to the intracellular developmental cycle ofC. trachomatis [101]. Sharomi et
al. consider a multistage model for the intracellular growth of Chlamydia, with and
without the effect of humoral and cell-mediated immune responses. The math-
ematical model considered takes the form of ODEs, with the variables denoting
separate compartments for various stages of cell infection [102].

Other significant mentions on in-host modeling ofChlamydia are works of Mallet et
al. Their approach involves developing a spatial dynamical model using a cellular
automata model [103], a PDE model [104], and a combination of both [105]. The
shortcomings of the models are associated with the challenges of procuring data
from in vivo cell infections that are spatially explicit. It has been suggested that
image processing techniques (e.g., [106]) may come to be advantageous in this
view.

Wan and Enciso developed a two-form deterministic model for the population of
EBs and RBs, formulated as a constraint maximization problem that optimizes the
number of EBs at the end of the development cycle [107]. Themodel is built on the
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Darwinian theory of natural selection and hypothesizes that boosting the number
of EB after the host cell lysis would be the feedback by the bacteria against odds
from species competition. Enciso et al. and Lee et al. considered an identical
problem in a stochastic context [108, 109].

One of the most recent applications of compartmental modeling was to investi-
gate the effects of various treatment combinations for chronic genital Chlamydial
infections within-host. Pontryagin’s Maximum Principle is used to find the drug-
treatment combination that defines the optimal control strategy. Their numerical
findings suggest that a combination therapy consisting of antibiotics that has a
bacteriostatic effect, supplemented with tryptophan that will assist in reversing
persistent Chlamydial particles is the best way for stopping the progression of a
persistent Chlamydial infection, and ultimate clearance [8].

2.4 Population Level Modeling of Chlamydia

As in the case of in-host modeling, the application of mathematics to study the pop-
ulation transmission dynamics of Chlamydia is less than significant compared to
other STDs. Owing to its asymptomatic nature, intervention strategies for Chlamy-
dia are centered mostly on screening for symptoms of infection prevalent in young,
sexually active women, with variable emphasis to screen women for reinfection.
Consequently, a major portion of articles related to population-level Chlamydia
modeling is affiliated with studies of screening.

An important highlight in this regard is the Stochastic Network model adopted in
the works of Kretzschmar et el. in order to study the spread of gonorrhea and
genital infection with C.trachomatis [110]. Three of their earlier articles designed
to study the epidemic spread of STDs discuss in detail the model approaches
[111–113]. The individual-based model considers an age-structured heterosex-
ual population and assumes that individuals can have both steady and casual
partnerships, but there is a core group with sexually more active members. Indi-
viduals in this core group have particularly more sexual partners compared to the
non-core group and can have a single steady partner simultaneously with other
casual relationships. The authors examine the effectiveness of various prevention
strategies such as contract tracing, screening, and the use of condoms. The re-
sults obtained via a Monte Carlo simulation conclude that contact tracing is a very
effective measure of prevention, whereas screening of women in the age class
15-24 years resulted in a more successful application when combined with the
treatment of symptomatic infection. Moreover, regular use of condoms can highly
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reduce the prevalence of STDs. However, the comparison showed that screening
as a prevention strategy was more effective in case of reducing the prevalence of
gonorrhea than Chlamydia.

With the high frequency of reinfection cases in Chlamydia, it forms an integral
part of the investigation and is considered a major part of research activities re-
lated to Chlamydia infection. The arrested immunity hypothesis has been closely
associated with reinfection cases and is suggested to be a key component of the
Chlamydia transmission dynamics [114]. The hypothesis suggests that the normal
development of protective immunity is subjugated as a result of rapid treatment
with antibiotics. This phenomenon first came to prominence after a control strat-
egy was adopted to curbC.trachomatis infection in British Columbia, Canada. The
program had an unusual outcome where it was observed that Chlamydia cases
dropped from 216 to 104 per 100,000 population in 1991-1997, but subsequently
increased to exceed previously recorded case counts [115]. Evidence shows that
the rate of reinfection in women is decreased following the natural resolution of
infection in the interim of a positive Chlamydia screening test and treatment [116].
Brunham et al. considers a dynamic mathematical model for C.trachomatis trans-
mission that incorporates multiple reinfections throughout an individual’s sexually
active life. The study outcome corroborates with the hypothesis that antimicrobial
based treatment of Chlamydia infection may paradoxically increase population
susceptibility, further suggesting the importance of the development of an effec-
tive vaccine in order to halt the spread of C.trachomatis infection [115].

Vickers et el. makes use of the deterministic compartmental model to test the
speculation that early treatment hinders the feedback from the immune response,
which further escalates susceptibility as the population is reintroduced into the
same system of sexual risk connections. The mathematical model formulated
in the framework of susceptible-infected-treated-removed-susceptible (or SITRS)
was calibrated to fit the historic trend of notification data for Saskatchewan, Canada
[117]. The outcome of the investigation was however inconclusive concerning the
assumption that arrested immunity could influence epidemiological trends.

Regan et al. make use of an ODE compartmental model to investigate Chlamy-
dia transmission dynamics in a heterosexual population in Australia. The model
assumes that treatment is administered upon positive detection through screen-
ing. Individuals in the age group of 20–24 years old are found to be the most
effective target group. The study predicts a rapid reduction in cases of Chlamydia
infection in 10 years with systematic annual screening, with a larger than 50%
achieved within the 4 years if 40% of people undergo screening annually in the
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target group. Sensitivity analysis also highlights key biological and behavioral
parameters strongly associated with Chlamydia transmission [118].

Mathematical modeling had also been applied for estimating the significance of
vaccine efficacy on disease prevalence. de la Maza and de la Maza consider
a computer model formed in the mathematical framework of a Markov model to
study discrete-time systems. They conducted simulations to analyze the impact
of vaccine efficacious on the population for periods of 10, 20, and 40 years with
vaccine efficacies ranging between 50% to 100%. Their simulation determines
that by vaccinating 10 years olds for 11 steady years with an ’optimal vaccine’
that is 100% efficacious for a duration of 40 years, a reduction in the prevalence
of disease for the entire population could be achieved. A similar outcome could
be achieved with 15 years of continuous vaccination with a vaccine that is 50%
efficacious for 10 years [119].

The model developed by Brunham et el. to study potential causes for Chlamy-
dia re-emergence was also used to investigate the effects of the vaccine. The
model outcome predicts the imperative presence of an effective vaccine to pre-
vent Chlamydia prevalence at a population level in the absence of careful plan-
ning to reconstruct the sexual network. Their simulation showed that it is possible
to achieve total eradication of Chlamydia following extensive vaccination where
80% of the population are vaccinated with 100% efficacious vaccine [115].

One modeling study examined the important aspects of Chlamydia vaccines by
taking into account measurable biological phenomena that are critical for design-
ing vaccines, in addition to potential vaccine outcomes for the population. The
individual-based model developed by Gray et al. was used to test the effect of
vaccines with varying levels of efficacious at a population level, at the same time
taking into account the progression of infection at an individual level. The model
keeps track of the bacterial load in each individual and their ensuing infectious-
ness, with the vaccine aimed at decreasing Chlamydia load in infected individuals
and increasing the “critical load” in susceptible individuals, the threshold value re-
quired to successfully infect a susceptible individual. The model predicts that a
fully adequate vaccine could hypothetically eradicate Chlamydia epidemic in 20
years given that young people are vaccinated at the onset of their sexual debut
[120].

An in-depth analysis of Chlamydia models for screening programs has been car-
ried out by contrasting different transmission models. Their research demon-
strates that a screening program’s impact increases with a prolonged asymp-
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tomatic period. Moreover, there is an indication of the possibility to reduce trans-
mission in the wider population with a periodic and targeted screening of a partic-
ular segment of the population. The results from the sensitivity analysis demon-
strate how disease-specific factors can significantly affect a screening program’s
effectiveness [121, 122].

J. Viana et al. present a composite discrete-event (DES) and system dynamics
(SD) simulation approach to investigate how the operational level choices made in
the hospital outpatient department are impacted (and are impacted by) Chlamydia
on a community level [123].

Much more recently, an ODE model was used to evaluate the effects of Chlamy-
dia vaccines, where Pontryagin’s Maximum Principle was applied to find the best
prevention and treatment measures for Chlamydia infection [124].

Although the application of mathematical modeling is considered in infancy, avail-
able research articles have proven that mathematical modeling can be very helpful
at different levels, in improving our understanding of the pathogen. A search in the
database for mathematical modeling ofChlamydia, both at an in-host and at a pop-
ulation level will bring many more results for scientific articles based on Chlamydia
than has been currently cited, which is an indication to the fact that mathematical
modeling has been successfully applied to study Chlamydia dynamics.
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3 Delay Linear Chains in
Mathematical Biology: An
Insight into the Intracellular
Chlamydia Infection

3.1 Introduction

There is a long history of the application of ODEs and partial differential equa-
tions (PDEs) to model diversified systems including biological, ecological, physi-
cal, and chemical systems. Although these mathematical models have been in-
ordinately helpful in getting meaningful insights into such complex processes, it
is indisputable that a model that incorporates some of its past history would give
a more realistic reflection of the system. The reason is that many natural as well
as artificial systems have time delays that must be taken into account. A model
that has an initial dependence on its past is called functional differential equations
(FDEs) or delay differential equations (DDEs) [125]. The use of DDEs gives us
many advantages over the models that use larger systems of ODEs and PDEs to
overcome the pitfalls associated with simpler systems. While expanding simple
ode or pde systems into models that involve more equations can help us in more
accurate representations of the behavior of the phenomenon under study, we are
at a disadvantage of having to deal with multiple parameters, the significance of
which cannot often be determined qualitatively.

A classic example of a differential equation with time delay is the delayed logistic
equation, where the lag time emphasizes the indirect adverse impacts high pop-
ulation density can have on the environment by influencing birth rates later in life
due to delay in growth and maturity [126]. The mathematical modeling of forest
regeneration after harvest is another example of a natural system that involves
time delay, as it is apparent that a forest after disturbance, will require a minimum
of 20 years to arrive at any level of maturity. Consequently, in accordance with the
system under consideration, the delays may represent latency period, gestation
time, transition delay, or can simply account for the time taken to execute com-
plex processes. The simplest differential equation with a dependence on it’s past
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history is of the form:

x′(t) = f(x(t), x(t− r)),

where r > 0 is the delay. For compartmental systems, the structure of the dif-
ferential equations is specific to the biological and physical aspects. The model
variables are assigned to compartments to express the number of particles that
behave homogeneously. The transition from one compartment to another takes
place when the particles undergo some physical or biological transformation or
change their spatial location [127]. In our case, we construct a model with a finite
number of compartments where the rates of inflow and outflow are governed by
physical and biological mechanisms.

We develop a linear system of delay differential equations that is applicable to the
mathematical representation of some compartmental models in biology and ecol-
ogy. This model is suitable for studying ecological phenomena such as seasonal
bird migration, which describes the movement of the bird population during a full
cycle of migration. An example of biological application is to study stem cell mat-
uration. It also is largely applicable for modeling the evolution of disease-causing
pathogens such as viruses or bacteria.

3.2 The Model Description

Consider a delayed linear chain as shown in Fig. 3.1, illustrating particles moving
through a number of successive compartments before reaching a final stage. The
multiplicative rates represent growth between the compartments. All the compart-
ments have inflow and outflow terms except the first and the last: the first com-
partment has only outflow and the last compartment has only inflow. Time delay
signifies the time needed to complete the transition of particles between succes-
sive compartments.
Let the number of particles in the ith compartment at time t be yi(t) (i = 0, 1, . . . , n).

Figure 3.1: Schematic diagram of a linear chain.

The rate at which the particles are moving out of the ith compartment is denoted
by ai for i = 0, 1, . . . , n−1 and bi−1 is the rate at which the particles are entering the
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ith compartment for i = 1, 2, . . . , n. Also, we assume that the particles are arriving
with a time delay τi−1 into the ith compartment for i = 1, 2, . . . , n. We describe
such a process by a system of delay differential equations as follows:

y′0(t) = −a0y0(t),

y′i(t) = bi−1yi−1(t− τi−1)− aiyi(t), i = 1, 2, . . . , n− 1,

y′n(t) = bn−1yn−1(t− τn−1),

(3.1)

where ai > 0, bi > 0 and τi ≥ 0 for all i. The natural phase space for our system
is C([−τ, 0],Rn+1), where τ = max{τ0, . . . , τn−1}. Initial conditions for this system
are given by

yi(θ) = φi(θ) for θ ∈ [−τ, 0], i = 0, . . . , n (3.2)

where φ := (φ0, . . . , φn) ∈ C([−τ, 0],Rn+1
+ ).

It is well known that the initial value problem (3.1)-(3.2) is well posed. Non-negativity
of the initial data is a natural requirement for the biological systems we consider,
and from the non-negativity of the rates it follows that solutions remain non-negative
for all future time.

For the biological problems we consider later, it is paramount to predict the even-
tual state of the system. This is addressed in the following proposition, giving an
explicit expression for the limit of each compartment.

Proposition 3.2.1. Solutions of problem (3.1) has the following limits:

lim
t→∞

yi(t) = 0 for i = 0, 1, 2, . . . , n− 1

and

lim
t→∞

yn(t) =
b0 . . . bn−1

a0 . . . an−1

φ0(0) +
b1 . . . bn−1

a1 . . . an−1

φ1(0) + · · ·+ bn−1

an−1

φn−1(0)

+ φn(0) +
b0 . . . bn−1

a1 . . . an−1

∫ 0

−τ0

φ0(s)ds+
b1 . . . bn−1

a2 . . . an−1

∫ 0

−τ1

φ1(s)ds

+ · · ·+ bn−2bn−1

an−1

∫ 0

−τn−2

φn−2(s)ds+ bn−1

∫ 0

−τn−1

φn−1(s)ds.

Proof. Solving the first equation gives us y0(t) = φ0(0)e
−a0t. Thus, limt→∞ y0(t) =

0. Next, we assume that limt→∞ yk(t) = 0 for some k. Since for k + 1 we have
y′k+1(t) = bkyk(t − τk) − ak+1yk+1(t), the assumption that limt→∞ yk(t) = 0 implies
limt→∞ yk+1(t) = 0. By induction, we find that for i = 0, 1, . . . , n− 1, each compart-
ment has limit zero.
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Now, for k = 0, 1, . . . , n, we define Ik :=
∫∞
0

yk(t)dt and Jk :=
∫ 0

−τk
φk(s)ds. Inte-

grating the first equation from zero to infinity, since limt→∞ y0(t) = 0, we have,

−a0I0 =

∫ ∞

0

−a0y0(t)dt =

∫ ∞

0

y′0(t)dt = −y0(0) = −φ0(0).

Hence, I0 = 1
a0
φ0(0).

Integrating the kth equation of the system (3.1) from zero to infinity for k = 1, . . . , n−
1, and using limt→∞ yk(t) = 0, we have

−yk(0) =

∫ ∞

0

[bk−1yk−1(t− τk−1)− akyk(t)]dt

= bk−1

[∫ 0

−τk−1

φk−1(s)ds+

∫ ∞

0

yk−1(s)ds

]
− ak

∫ ∞

0

yk(t)dt

= bk−1Jk−1 + bk−1Ik−1 − akIk.

Rearranging the terms, for Ik we find the recursive relation

Ik =
bk−1

ak
Ik−1 +

bk−1

ak
Jk−1 +

1

ak
φk(0) for k = 1, 2, . . . , n− 1.

Substituting k = 1 in the above relation, we have,

I1 =
b0
a1

I0 +
b0
a1

J0 +
1

a1
φ1(0)

=
b0

a0a1
φ0(0) +

b0
a1

∫ 0

−τ0

φ0(s)ds+
1

a1
φ1(0).

Iteratively, from the above relation, substituting k = n− 1, we have,

In−1 =
b0 . . . bn−2

a0 . . . an−1

φ0(0) +
b1 . . . bn−2

a1 . . . an−1

φ1(0) + · · ·+ 1

an−1

φn−1(0)

+
b0 . . . bn−2

a1 . . . an−1

∫ 0

−τ0

φ0(s)ds+
b1 . . . bn−2

a2 . . . an−1

∫ 0

−τ1

φ1(s)ds+ . . .

+
bn−2

an−1

∫ 0

−τn−2

φn−2(s)ds.

Finally, integrating the last equation of the system (3.1) from zero to infinity, we
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have

lim
t→∞

yn(t) =

∫ ∞

0

bn−1yn−1(t− τn−1)dt+ yn(0)

= bn−1

[∫ 0

−τn−1

φn−1(s)ds+

∫ ∞

0

yn−1(s)ds

]
+ φn(0)

= bn−1Jn−1 + bn−1In−1 + φn(0).

Substituting the value of In−1 and replacing Jn−1 by the integral, we have the limit
as

lim
t→∞

yn(t) =
b0 . . . bn−1

a0 . . . an−1

φ0(0) +
b1 . . . bn−1

a1 . . . an−1

φ1(0) + . . .+
bn−1

an−1

φn−1(0)

+ φn(0) +
b0 . . . bn−1

a1 . . . an−1

∫ 0

−τ0

φ0(s)ds+
b1 . . . bn−1

a2 . . . an−1

∫ 0

−τ1

φ1(s)ds

+ . . .+
bn−2bn−1

an−1

∫ 0

−τn−2

φn−2(s)ds+ bn−1

∫ 0

−τn−1

φn−1(s)ds.

3.3 Mathematical Formulation of the Intracelluler
Chlamydia Development Cycle

In this section, we construct a mathematical model for a laboratory experiment
conducted to investigate the intracellular growth of Chlamydia bacteria [128]. The
intracellular development of Chlamydia is governed by a very distinct life cycle,
the mechanism of which has been explained in Chapter 1, Section 1.2.1, Fig. 1.1.
However, in the absence of the persistent form, it alternates between EB and RB
forms (Figure 3.2). The life cycle starts with the EBs attaching and infecting the
susceptible cells. The EBs then transform into RBs, which replicate by undergoing
repeated cycles of binary fission within an intracytoplasmatic parasitophorous vac-
uole called inclusion. After the secondary transformation of the RBs back to EBs,
the host cell lyses releasing a large number of new EBs that infect neighboring
cells [14].

Microbiological investigation of the intracellular development of Chlamydia is an
extensive field of research [129]. Recently, a number of dynamic models of dis-
ease transmission as well as intracellular growth have been developed [130].
Here, we present a model for a laboratory experiment of Chlamydia infecting hu-
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man cells [128].

Figure 3.2: Graphical representation of the Chlamydia development cycle

in the absence of the persistent phase

The basic model for the intracellular development of the Chlamydia cells in vivo
is formulated as follows. Let y0(t) denote the number EBs outside human cells at
time t, y1(t) denotes the EBs attached to the human cells at time t. Upon infection
of the healthy human cells, the intracellular EBs transform into RBs upon which
the RBs undergo repeated cycles of division. Hence, we will denote by y2(t) EBs
that have transformed to RBs, and yi(t) will denote the number of RBs after the
ith cycle of replication for i = 3, 4, . . . , n− 1. The RBs then reorganize back to the
EBs, following which the host cell lyses releasing the newly formed EBs. The yn(t)

will denote the number of RBs converting back to EBs. We impose time delays to
account for the time needed for transforming between RBs and EBs, as well as
for completing cell division.

Furthermore, the rate at which the EBs enter human cells is denoted by a0. EBs
are assumed to differentiate to RBs at a rate a1 inside the human cells. Parameter
ai−1 is the rate at which the RBs enter the ith cycle of replication for i = 3, 4, . . . , n−
1, and the RBs will convert back to the EBs with the rate an−1.

According to these assumptions and interactions, the population dynamics of EBs
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and RBs can be described in mathematical terms as follows:

y′0(t) = −a0y0(t),

y′1(t) = a0y0(t− τ0)− a1y1(t),

y′2(t) = a1y1(t− τ1)− a2y2(t),

y′i(t) = 2ai−1yi−1(t− τi−1)− aiyi(t), i = 3, 4, .., n− 1

y′n(t) = an−1yn−1(t− τn−1).

(3.3)

In consistency with the laboratory experiment [128], we have the initial conditions

y0(0) = 100,

y0(t) = 0, for t < 0,

yi(t) = 0, for t ⩽ 0, where i = 1, 2, . . . , n.

(3.4)

As in the previous two cases, we can have equations for the number of cells un-
dergoing transformation or differentiation, but since the equations decouple from
the rest, we ignore them in this case too.

Proposition 3.3.1. The compartments of the system (3.3) with initial condition
(3.4) have the following limits:

lim
t→∞

yi(t) = 0 for i = 0, 1, . . . , n− 1

and

lim
t→∞

yn(t) = 100× 2n−3.

Proof. The system of equations (3.3) is a special case of the system (3.1) with
ai = bi for i = 0, 1, bj = 2aj for i = 1, 2, . . . , n − 2, and an−1 = bn−1, with τ0 = 0

and initial conditions y0(0) = 100, y0(t) = 0 for t < 0 and yi(0) = 0 for t ≤ 0,
i = 1, 2, . . . , n. Making these substitutions in Proposition 2.1, we have that

lim
t→∞

yn(t) =
a0a12a2 . . . 2an−2an−1

a0a1a2 . . . an−1

100

= 100× 2n−3

and
lim
t→∞

yi(t) = 0 for i = 0, 1, . . . , n− 1.
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Figure 3.3: Model-based curves after parameter fitting. The colored dots are
taken from laboratory measurements. It shows the growth cycle of two differ-
ent strains of Chlamydia bacteria, the fast-replicating C. trachomatis and slow-
replicating C. pneumoniae as reflected in the figure.

The result of the proposition simply states that there are n − 3 replication cycles.
However, the model can accurately reproduce the empirical findings of the lab-
oratory experiments, in particular, it can predict the number of EBs at any given
time. Figure 3.3 shows that, after fitting our model parameters, we could generate
time curves that match the laboratory measurements [128]. The fitting was done
in Mathematica using the least square method, the codes for which can be found
in the supplementary file available in our public GitHub repository [131]. As the
plotting is done on a logarithmic scale, for the purpose of fitting we take the log-
arithm of the solution and fit the solution to the logarithm of the data values with
respect to the parameters.
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4 A Mathematical Model of Herpes
and Chlamydia Co-Infection In
Humans

4.1 Introduction

Simultaneous infection of pathogens is a very common occurrence and is highly
prevalent in nature [132, 133]. The co-infection may involve pathogens belonging
to different species like viruses, bacteria, protozoa, fungal parasites, helminths,
etc. There are several instances involving the human immunodeficiency virus
(HIV) (for example, co-infection of HIV with TB [134], or Hepatitis B [135], or Hep-
atitis C [136], or malaria [137]). Other co-infections may occur with numerous
strains or serotypes of the same organism [138] (for example, co-infection with
multiple strains of influenza [139], or HIV [140]).

The interaction between the co-infecting pathogens may greatly influence the dy-
namics of the infection, as compared to the infection involving a single pathogen.
Depending on the interaction between the coexisting pathogens which may be
direct or via the human host’s immune system or other resources, it may have sig-
nificant effects on the consequences of the infection. Themost frequently reported
outcome of mixed infection is enhanced pathogen abundance and worsened host
health conditions [133]. Further, co-infections have been directly identified with
increasing morbidity and mortality rates [141]. Co-infection involving HIV is the
most typical example of such an instance, the presence of which increases the
possibility of consecutive infections by causing immunosuppression [142]. How-
ever, there are a number of simultaneous infection cases where the presence
of a pathogen during an ongoing infection inhibits the growth of the other [133].
Co-infection involving two or more strains of influenza is among the best-known ex-
amples of such an event; infection with one strain imparts cross-immunity against
other strains, a phenomenon also referred to as concomitant immunity [143]. The
co-infection occurring between C. trachomatis bacteria and HSV, where the pres-
ence of active HSV has been indicated to induce C.trachomatis into a state where
it is non-infectious[144–147] is an instance of such a co-infection.

Experimental studies have demonstrated the occurrence of C. trachomatis and
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herpes simplex virus type 2 (HSV-2) co-infections in vivo, and data from cell culture
indicate certain types of HSV such as HSV-2 and HHV6 as inducers of chlamydial
persistence. The occurrence of co-infection between the two pathogens in hu-
mans has been well documented in many literatures [148–151]. Serologic investi-
gations have indicated that there is a high probability of HSV-2 infected individuals
being C. trachomatis infected as well [152]. Furthermore, direct examination of
cervical biopsy specimens by PCR has implied the occurrence of C. trachomatis,
HSV, and Human Papilloma Virus simultaneously in comparatively 10% of women
[148].

Herpes Simplex Virus Types 1 and 2 (HSV-1 and HSV-2) are two members of the
viral family, Herpesviridae and are the most significant human pathogens. HSV-2
is the major cause of genital herpes and is predominantly sexually transmitted.
HSV-1 primarily causes oral infections; however, it contributes to a sizeable pro-
portion of genital HSV infections [153]. According to estimates on a yearly basis,
200, 000 − 500, 000 cases of primary genital HSV occur which is an indication of
that, the alarming burden of viral STIs [145]. HSV has the ability to establish la-
tent infection in the neurons of the ganglia and the autonomic nervous system.
Once latency has been established, the virus persists and cannot be destroyed.
A number of internal as well as external stimuli such as psychological or physical
stress, or immune suppression can induce the virus to recover its active phase
[154]. A unique biological characteristic exhibited by both C. trachomatis and
HSV is their capability to establish latent infections, are frequently attributed as
hidden epidemics [155, 156].

In vitromodel investigations of HSV-2/C. trachomatis co-infections have indicated
that the presence of HSV-2 alters the Chlamydia development. The number of
cells infected with chlamydiae was also less accounted for when HeLa cells were
co-infected with HSV-2/C. trachomatis serovar D [157]. Findings from a tissue cul-
ture model of HSV-2 and C. trachomatis have documented a decreased produc-
tion of infectious chlamydial progeny indicating that viral co-infection can induce
persistence into developing chlamydiae [145]. A number of mechanisms have
been stated that might be responsible for inducing C. trachomatis persistence,
such as HSV-2-induced cell death resulting in the termination of chlamydial de-
velopmental cycle, [145] or amino acid starvation of the C. trachomatis due to the
competing presence of HSV-2, which is a well investigated inducer of chlamydial
persistence [158]. Another in vitro experiment has demonstrated that the devel-
opmental cycle of C. trachomatis is interfered with when co-infected with human
herpes virus 6 (HHV6). It was established that the presence of HHV6 causes im-
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balanced oxidative stress, inducing a fully reversible persistence in C. trachoma-
tis, influencing its infectivity substantially. Similar experiments showed that co-
infection with HSV 1 also induces chlamydial persistence by a similar mechanism.
However, contrary to the persistence caused by antibiotics, once the virus is re-
moved from the culture, the bacteria is able to retain its productive developmental
cycle, recovering from the virus-induced persistence [159].

Mathematical models studying such mixed infections can greatly reflect the dy-
namics of co-infections and can be found in abundance in literature. K. Okosun et
al. [160], in their article consider cholera-schistosomiasis co-infection, analyzing
the local asymptotic stability of the disease free equilibrium (DFE) for the sub-
models and the full model, also showing the existence of endemic equilibrium
and investigating the possibility of bifurcation. In addition, an optimal control prob-
lem is formulated. A Chikungunya-dengue co-infection model is considered by
Musa et al. [161], where the local asymptotic stability of the DFE is shown for the
sub-models and the full model, and numerical analysis is performed to exhibit the
phenomenon of backward bifurcation for the sub-models. There are numerous
mathematical articles studying the dynamics of HIV-TB co-infection, [162–166].
In [162], the TB and HIV sub-models are locally analyzed, the DFE of the entire
system is shown to be globally asymptotically stable (GAS), and a co-infection
equilibrium point is shown to exist only under some restrictions on the parame-
ters. Gakkhar et al. [163] in their HIV and TB co-infection model studies global
analysis of the disease-free, HIV-free, and TB-free equilibrium points using Lya-
punov stability theorem under certain conditions on the reproduction numbers.
Further, the endemic equilibrium point is shown to be unstable whenever it exists.
Naresh et al. [164] consider a non-linear model for HIV-TB co-infection where
they study the local asymptotic stability of the disease-free, HIV-free, and TB-free
equilibrium points, the endemic equilibrium point is shown to be global asymp-
totic stability whenever it exists under some assumptions using Lyapunov theory.
Pinto et al. [165] considers the integer order and the fractional order of the HIV-
TB co-infection model where they study the stability of the DFE for the integer
order model along with some bifurcation diagram illustrations, and simulate the
fractional order model numerically. Bhunu et al. [166] considers HIV/AIDS-TB
co-infection models with and without treatment. The TB-only model is shown to
exhibit backward bifurcation and the glocal asymptotic stability of the DFE in the
HIV/AIDS-only model is analyzed. Further, the HIV/AIDS-TB co-infection model
is shown to have a LAS disease free equilibrium.

The aforementioned papers study co-infection of a synergistic nature, implying
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that being infected with type one enhances the susceptibility to type two, alongwith
the possibility that the two co-infecting pathogens are simultaneously transmitted.
However, to our knowledge, no mathematical model has been developed to study
Chlamydia-HSV co-infection. Moreover, the co-infection considered in this article
is unique pertaining to its uncooperative attribute; the emergence of one hindrance
to the growth of the other.

The structure of this Chapter is organized as follows: In the second section, a non-
linear mathematical model is proposed to describe the C. trachomatis-HSV co-
infection in a population. In Sections 3 and 4 respectively, the C. trachomatis and
HSV subsystems are studied, where we compute equilibrium points and analyze
their stability. Building on these results, we investigate the co-infection system in
Section 5. In Section 6, we consider a limiting system of the original co-infection
model, analyze its dynamics, and determine the conditions for the existence of
an endemic equilibrium. Then we extend the results on the limiting system to the
original system. In Section 7, we show under which conditions will both diseases
persist in the population. Section 8 contains numerical simulations to illustrate the
analytical results. In Section 9, we calibrate the model, estimate the prevalence of
both diseases in the population, and compare it with epidemiological observations.
The Chapter is concluded with a discussion in the last section.

4.2 Model Formulation

A six-dimensional deterministic non-linear mathematical model is proposed in this
section to analyze the transmission dynamics of C. trachomatis and herpes co-
infection in human beings. Let N(t) denote the total number of population at time
t. The human population is subdivided into six compartments. S(t) denotes the
class of population susceptible to both diseases, the bacteria C. trachomatis C(t),
and herpes virus H(t). The class of population infected with C. trachomatis but
having latent herpes is denoted by ILC(t), while IHP (t) will denote the number of
populations with active herpes but having persistent C. trachomatis. L(t) is the
class of population with latent herpes. Hence

N(t) = S(t) + C(t) +H(t) + ILC(t) + IHP (t) + L(t). (4.1)

In order to formulate the model, the following assumptions have been made:

A 1. C. trachomatis infection may occur upon the susceptibles acquiring it by
effectively coming in contact with an infected and infective individual from either
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the class of C(t) or ILC(t) at the rate β.

A 2. Susceptibles acquire HSV infection due to effective contact with individuals
from class H(t) or IHP (t) at the rate β̂.

A 3. Susceptible individuals cannot acquire C. trachomatis and HSV simultane-
ously, which means, they cannot move directly into the co-infection classes, ILC(t)
or IHP (t).

A 4. Co-infection of C. trachomatis-HSV may occur when C. trachomatis (C(t))
infected individuals get infected with HSV, or HSV (H(t)) infected individuals get
infected with C. trachomatis, in both cases, effectively putting C. trachomatis bac-
teria into it’s persistent phase (IHP ).

A 5. The class of active C. trachomatis-latent HSV (ILC) co-infected population
is generated as a consequence of individuals from the class of latent HSV (L(t))
acquiring C. trachomatis.

A 6. In the case of the class of co-infected populations, the transition between the
classes ILC and IHP occurs when the active herpes goes to latency at the rate ρ

rendering C. trachomatis it’s persistent phase, or when the latent herpes retains
its active status at the rate σ, putting C. trachomatis into persistency.

A 7. C. trachomatis infected individuals will recover upon antibiotic treatment at a
rate r and move back to S(t), whereas, the individuals from the class ILC will be
added to the class of latent herpes L(t) upon recovery from C. trachomatis.

A 8. The movement between the classes H(t) and L(t) occurs as HSV infected
individuals go into latency or individuals with latent HSV relapse to their active
phases, at the rates ρ and σ respectively.

A 9. Finally, for simplicity, we have the following assumption for the total popula-
tion N(t),

N(t) = S(t) + C(t) +H(t) + ILC(t) + IHP (t) + L(t) = Constant.

Accordingly, we denote by µ the recruitment rate of newly sexually active suscep-
tible individuals into the class of susceptibles (S), and µ is the rate of demographic
turnover for our population. We normalize the constant population to unity (N = 1).
It is important to note here that with this normalization, the bilinear incidence βSI

is mathematically equivalent to the standard incidence βSI/N for constant popu-
lation size.
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Figure 4.1: Schematic diagram for the C. trachomatis-HSV co-infection model.

From these assumptions, the description of variables and parameters given in Ta-
ble 4.1 and the above-mentioned facts, themathematical model can be formulated
with the help of the schematic diagram given in Figure 4.1. In summary, the co-
infection model consists of the following system of nonlinear ordinary differential
equations:

S ′ = µ− βSC − β̂SH − βSILC − β̂SIHP − µS + rC,

C ′ = βSC + βSILC − β̂CH − β̂CIHP − rC − µC,

H ′ = β̂SH + β̂SIHP − βHC − βHILC − ρH + σL− µH,

I ′LC = ρIHP + βLC + βLILC − rcILC − µILC − σILC ,

I ′HP = β̂CH + βHC + β̂CIHP + βHILC − ρIHP − µIHP + σILC ,

L′ = ρH + rcILC − σL− βLC − βLILC − µL,

(4.2)

where ′ denotes time-derivative, with non-negative initial conditions

P0 = (S(0), C(0), H(0), ILC(0), IHP (0), L(0)) ∈ D, (4.3)
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where

D = {(S,C,H, ILC , IHP , L) ∈ R6
+ | S + C +H + ILC + IHP + L = 1} (4.4)

is the natural state space, and is clearly positive invariant to the system (4.2).

Parameters Descriptions
β transmission rate for C. trachomatis
β̂ transmission rate for HSV
ρ rate at which active HSV goes into latency
σ rate at which latent HSV is activated
µ natural death rate
r recovery rate for C. trachomatis

Table 4.1: Parameters and their Descriptions

4.3 The Chlamydia Subsystem

We consider the HSV free subspace defined by

DC = {(S,C,H, ILC , IHP , L) ∈ D | S + C = 1},

which is clearly invariant. The dynamics in this space is governed by the following
system of equations,

S ′ = µ− βSC − µS + rC,

C ′ = βSC − rC − µC.
(4.5)

4.3.1 Equilibria, Basic Reproduction Number and Global
Stability

The equilibria of the Chlamydia subsystem are easily obtained by solving the al-
gebraic system of equations

0 = µ− βSC − µS + rC,

0 = βSC − rC − µC,

resulting in the two possible equilibria

E0 = (S0, C0) = (1, 0), EC = (SC , CC) =

(
r + µ

β
,
β − r − µ

β

)
, (4.6)
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whereE0 is theChlamydia-free equilibrium point. It is clear that the components of
the Chlamydia present equilibrium point, Ec, are positive only when β−(r−µ) > 0,
i.e when β/(r + µ) > 1, where

RC =
β

r + µ
(4.7)

is the basic reproduction number for Chlamydia infection. Putting S = 1 − C into
the equation (4.5), we have

C ′ = (β − r − µ)C

(
1− β

β − r − µ
C

)
.

This is the logistic equation forC, with carrying capacity β/(β−r−µ), when β > r+

µ. Hence, we can apply the standard results for a logistic equation: when the basic
reproduction number RC > 1, then the equilibrium EC is globally asymptotically
stable, and when RC ≤ 1, then the equilibrium E0 is globally asymptotically stable.

4.4 The HSV Subsystem

We consider the Chlamydia free subspace defined by

DH = {(S,C,H, ILC , IHP , L) ∈ D | S +H + L = 1},

which is clearly invariant. The dynamics in this space is governed by the following
system of equations

S ′ = µ− β̂SH − µS,

H ′ = β̂SH − ρH + σL− µH,

L′ = ρH − σL− µL.

(4.8)

4.4.1 Equilibria, Basic Reproduction Number and Global
Stability

Some algebraic calculations show that there are two possible equilibria. The HSV
free equilibrium point is given by

E∗ = (S∗, H∗, L∗) = (1, 0, 0),

and the HSV present equilibrium point is given by
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EH = (SH , HH , LH) =

(
µ(µ+ ρ+ σ)

β̂(µ+ σ)
,
µ

β̂

(
β̂(µ+ σ)

µ(µ+ ρ+ σ)
− 1

)
,

µρ

β̂(µ+ σ)

(
β̂(µ+ σ)

µ(µ+ ρ+ σ)
− 1

))
. (4.9)

Following the next generation matrix approach established in [167, 168], we com-
pute analytically the basic reproduction number RH of (4.8). The infected com-
partments are H and L. Linearizing at the equilibrium E∗, the transmission and
transition matrices F1 and V1 are

F1 =

[
β̂ 0

0 0

]
, V1 =

[
µ+ ρ −σ

−ρ µ+ σ

]
,

giving

F1V
−1
1 =

[
β̂(µ+σ)

µ(µ+ρ+σ)
β̂σ

µ(µ+ρ+σ)

0 0

]
.

Thus, we have the reproduction number as ϱ(F1V
−1
1 ), where ϱ represents the

spectral radius, given by the formula

RH =
β̂(µ+ σ)

µ(µ+ ρ+ σ)
. (4.10)

It is clear that all the components of EH > 0 i.e., the HSV present equilibrium point
exists iff

(
RH = β̂(µ+σ)

µ(µ+ρ+σ)

)
> 1.

In the following section, we prove the global asymptotic stability of the two equilib-
ria corresponding to two cases of the reproduction number being smaller or larger
than one using Lyapunov theory.

Theorem 4.4.1. IfRH ≤ 1, then the disease free steady stateE∗ is globally asymp-
totically stable in DH .

Proof. The system of equations (4.8) is mathematically equivalent to the model
considered in [169], while their biological interpretations are different. Analogous
to Theorem 1 in [169], we can define V : DH → R+ by

V (S,H,L) =
µ+ σ

2S∗
(S − S∗)

2 + (µ+ σ)H + σL. (4.11)

It is clear that at E∗, the function V (S,H,L) reaches its global minimum in DH .
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The derivative of (4.11) with respect to t along solution curves of (4.8) is given by,

V ′(S,H,L) =
µ+ σ

S∗
(S − S∗)

dS

dt
+ (µ+ σ)

dH

dt
+ σ

dL

dt

=
µ+ σ

S∗
(S − S∗)(µ− β̂SH − µS)

+ (µ+ σ)(β̂SH − (ρ+ µ)H + σL) + σ(ρH − (σ + µ)L)

=
µ+ σ

S∗
(S − S∗)(µS∗ − β̂SH − µS) + (µ+ σ)β̂SH

− µ(ρ+ µ+ σ)H.

= −µ+ σ

S∗
µ(S − S∗)

2 − µ+ σ

S∗
β̂SH(S − S∗) + (µ+ σ)β̂SH

− µ(ρ+ µ+ σ)H.

Making use of the expression

β̂SH
S − S∗

S∗
= β̂H

(S − S∗)
2

S∗
+ β̂H(S − S∗),

we obtain

V ′(S,H,L) = −µ+ σ

S∗
(µ+ β̂H)(S − S∗)

2

+ µ(ρ+ µ+ σ)H

(
β̂S∗(µ+ σ)

µ(ρ+ µ+ σ)
− 1

)
= −µ+ σ

S∗
(µ+ β̂H)(S − S∗)

2 − µ(ρ+ µ+ σ)H(1− R2).

Therefore, whenRH ≤ 1, V ′(S,H,L) ≤ 0 for all (S,H,L) ∈ DH , and that V ′(S∗, 0, 0) =

0. Hence V is a Lyapunov function, and the steady state E∗ is globally asymptoti-
cally stable in DH .

Theorem 4.4.2. If RH > 1, then the endemic equilibrium EH is globally asymptot-
ically stable in the interior of DH .

Proof. Similarly as in the previous theorem, now following Theorem 2 of [169], we
define J : {(S,H,L) ∈ DH | S,H,L > 0} → R+ by

J(S,H,L) =
(S − SH)

2

2SH

+ (H −HH −HH ln H

HH

)

+
σLH

ρHH

(L− LH − LH ln L

LH

).

(4.12)

This function is continuously differentiable and bounded from below. Since (Sh, Hh, Lh)
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is an endemic equilibrium point of the system (4.8), we have

µ = β̂ShHh + µSh, (ρ+ µ) = β̂Sh +
σLh

Hh

, (σ + µ) =
ρHh

Lh

. (4.13)

Computing the derivative of (4.12) along the solutions of system (4.8), we obtain

J ′(S,H,L) =
S − Sh

Sh

dS

dt
+

H −Hh

H

dH

dt
+

σLh

ρHh

(1− Lh

L
)
dL

dt

=
S − Sh

Sh

(µ− β̂SH − µS) + (H −Hh)(β̂S − ρ− µ+
σL

H
)

+
σLh

ρHh

(1− Lh

L
)(ρH − (σ + µ)L).

Using the relation (4.13), we obtain,

J ′(S,H,L) =
S − Sh

Sh

(µ(S − Sh) + β̂(SH − ShHh)) + (H −Hh)
(
β̂(S − Sh)

+ σ(
L

Hh

− Lh

H
)
)
+

σLh

ρHh

(1− Lh

L
)(ρH − σHh

Lh

L
).

Since SH − ShHh = Sh(H −Hh) +H(S − Sh). Thus,

J ′(S,H,L) = −S − Sh

Sh

(µ(S − Sh) + β̂(Sh(H −Hh) +H(S − Sh)))

+ β̂(H −Hh)(S − Sh) + σLh(
L

Lh

− H

Hh

− HhL

HLh

+ 1)

+ σLh(
H

Hh

− L

Lh

− LhH

LHh

+ 1)

= −(µ+ β̂H)
(S − Sh)

2

Sh

+ σLh(2−
HhL

HLh

− HLh

HhL
)

= −(µ+ β̂H)
(S − Sh)

2

Sh

− σLh

[√
HhL

HLh

−
√

HLh

HhL

]2
.

Therefore, J ′(S,H,L) ≤ 0 whenever J is defined, and J ′(S,H,L) = 0 holds when
S = SH and HLH = HHL. It is easy to see that the set {(S,H,L) ∈ DH |S,H,L >

0 and J ′(S,H,L) = 0} contains only the endemic equilibrium EH . Hence, by the
LaSalle’s invariance principle [170], the steady state EH is globally asymptotically
stable in the interior of DH .

Note that the global asymptotic stability of EH can be easily extended to the set
DH \ {E∗}.
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4.5 Mathematical Analysis of the Co-infection
Model

4.5.1 Equilibria, Reproduction Numbers

System (4.2) may have 4 different equilibrium points. We denote the disease
free equilibrium point by ES which always exists, and corresponds to the situation
where all the infected compartments equal to 0, thus given by

ES = (S,C,H, ILC , IHP , L) = (1, 0, 0, 0, 0, 0). (4.14)

The second equilibrium point denoted by EC corresponds to the situation where
only Chlamydia infection is present and is given by

EC = (S = SC , C = CC , H = 0, ILC = 0, IHP = 0, L = 0), (4.15)

where SC , CC are as in (4.6). The third equilibrium denoted by EH corresponds to
the situation where only HSV infection is present and is given by

EH = (S = SH , C = 0, H = HH , ILC = 0, IHP = 0, L = LH), (4.16)

where SH , HH , LH are as in (4.9). There is a possibility of existence of a fourth
equilibrium point which is the endemic equilibrium point, when all compartments
are positive. We denote this equilibrium point by ECH , and the conditions for it’s
existence will be discussed later.

Various reproduction numbers can be calculated by introducing a single Chlamy-
dia (infected and infectious) individual or a single HSV (infected and infectious)
individual into a completely susceptible population (ES). The infected compart-
ments are C, H, IHP , ILC and L. Using the next generation matrix approach, let
us introduce the notations F2 and V2 for the transmission and transition matrices.
Linearizing at the equilibrium ES, we have

F2 =


β 0 β 0 0

0 β̂ 0 β̂ 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


,

V2 =


r + µ 0 0 0 0

0 µ+ ρ 0 0 −σ

0 0 r + µ+ σ −ρ 0

0 0 −σ µ+ ρ 0

0 −ρ −r 0 µ+ σ


.

We obtain the expression for the basic reproduction number of the co-infection
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model as
R0 = ϱ̂(F2V

−1
2 ) = max{RC ,RH},

where

RC =
β

r + µ
and RH =

β̂(µ+ σ)

µ(µ+ ρ+ σ)
,

are the reproduction numbers for chlamydia and herpes respectively, and are con-
sistent with the reproduction numbers obtained in the respective subsystems. It
is obvious that the equilibrium points EC and EH exist if and only if RC > 1 and
RH > 1 respectively.

The next reproduction number is obtained by calculating the expected number of
secondary infections caused by the introduction of aH-individual into a population
existing in the equilibrium EC . In this situation, the infected compartments are H,
IHP , ILC and L. By introducing the notations F3 and V3 for the transmission and
transition matrices, and linearizing at the equilibrium EC , we have

F3 =


β̂(r+µ)

β
0 β̂(r+µ)

β
0

0 0 0 0
β̂(β−r−µ)

β
0 β̂(β−r−µ)

β
0

0 0 0 0


and

V3 =


β − r + ρ 0 0 −σ

0 r + µ+ σ 0 r − β + µ

r − β + µ −σ µ+ ρ 0

−ρ −r 0 β − r + σ


.

We obtain the spectral radius as ϱ̂(F3V
−1
3 ) = β̂(µ+σ)

µ(µ+ρ+σ)
. Thus, we obtain exactly

the same reproduction number RH as the transmission rate from H-individuals is
the same for the S and C compartments.

To calculate the last reproduction number, we introduce a C-individual into a pop-
ulation existing at the equilibrium EH , and follow the next generation matrix ap-
proach. Splitting the system into vectors X =

(
C, ILC , IHP

)
, composed of infec-

tious compartments, and Y =
(
S,H,L

)
, composed of non-infectious compart-

ments (with respect to chlamydia), the system can be expressed as

X ′
i = Fi(X ,Y)− Vi(X ,Y), i = 1, 2, 3,

Y ′
j = gj(X ,Y), j = 1, 2, 3,

where Fi represents the new infections due to Chlamydia and Vi contains the
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transitions between infected compartments, and are given as follows:

Fi =

 βSC + βSILC

βLC + βLILC

βHC + βHILC

 (4.17)

and

Vi =

 β̂CH + β̂CIHP + rC + µC

−ρIHP + rILC + µILC + σILC

−β̂CH − β̂CIHP + ρIHP + µIHP − σILC


.

(4.18)

By means of linearization at the HSV free equilibrium EH , we obtain the equation

X ′ = AX

where A is the Jacobian matrix. Next, we take the decomposition

A = F4 − V4,

where

(F4)i,j =

[
∂Fi

∂Xj

(EH)
]
,

(V4)i,j =

[
∂Vi

∂Xj

(EH)
]
.

In the present scenario, the non-negative matrices of transmission terms corre-
sponding to the new infections generated due to Chlamydia, and the remaining
transfer terms respectively take the form

F4 =


βµ(µ+ρ+σ)

β̂(µ+σ)

βµ(µ+ρ+σ)

β̂(µ+σ)
0

βρµ

β̂(µ+σ)

( β̂(µ+σ)
µ(µ+ρ+σ) − 1

)
βρµ

β̂(µ+σ)

( β̂(µ+σ)
µ(µ+ρ+σ) − 1

)
0

βµ

β̂

( β̂(µ+σ)
µ(µ+ρ+σ) − 1

)
βµ

β̂

( β̂(µ+σ)
µ(µ+ρ+σ) − 1

)
0


and

V4 =


r + β̂(µ+σ)

µ(µ+ρ+σ) 0 0

0 r + µ+ σ −ρ

µ− β̂(µ+σ)
β̂(µ+σ)

µ(µ+ρ+σ)

−σ µ+ ρ


.

The reproduction number associated with the equilibrium point EH , denoted by
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RCH , is given by ϱ̂(F4V
−1
4 ), where ϱ̂ is the spectral radius, and is obtained as

RCH =
∆11

∆12

, (4.19)

where

∆11 = [β(µ5 + 3µ4(ρ+ σ) + β̂2ρσ(ρ+ σ) + β̂2ρµ(ρ+ 3σ) + r(ρ+ σ + µ)

× (µ4 + 2β̂ρµ+ µ2(ρ+ σ) + β̂ρ(ρ+ σ)) + µ3(−β̂ρ+ 3(ρ+ σ)2) + µ2

× (2β̂2ρ− β̂ρ(ρ+ σ) + (ρ+ σ)2))],

and

∆12 =
[
β̂(ρ+ σ + µ)((r + µ)(ρ+ µ) + σµ)(β̂(σ + µ) + r(ρ+ σ + µ))

]
.

The details of the algebraic calculations leading to∆11 and∆12 can be found in the
supplementary file available in our public GitHub repository, Section 5.1 of [171].

4.5.2 Relation between RC and RCH

In this section, we establish the relation between the two reproduction numbers
associated with Chlamydia RC and RCH , calculated at the equilibrium points ES
and EH respectively.

Lemma 4.5.1. Whenever RCH is defined (i.e. if RH > 1), then RCH < RC .

Proof. We begin with the assumption that the herpes reproduction number RH is
greater than 1, which implies that

β̂(µ+ σ)− µ(µ+ ρ+ σ) > 0.

We set θ =− µ(β̂(µ2 + 2µσ + σ(ρ+ σ)) + µ(µ+ ρ+ σ)2 + r2(µ+ ρ+ σ)

+ r(β̂(µ+ σ) + 2µ2 + 3µ× (ρ+ σ) + (ρ+ σ)2)).

It is clear that θ < 0 for positive parameter values. Hence for RH > 1,(
β̂(µ+ σ)− µ(µ+ ρ+ σ)

)
θ < 0.

With some algebraic manipulation, the left hand side of the above inequality turns
out to be (r + µ)∆11 − β∆12, where ∆11 and ∆12 are the numerators and denomi-
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nators of RCH respectively. Hence,

∆11

∆12

− β

r + µ
< 0,

which implies that RCH − RC < 0. We can therefore conclude that RCH < RC

whenever RH > 1. The algebraic calculations carried out using Wolfram Mathe-
matica are available in our public GitHub repository, Section 5.2 of the notebook
[171].

This means that for Chlamydia it is more difficult to invade a population where
HSV is established than a population without HSV.

4.5.3 Local Asymptotic Stability of the Disease Free
Equilibrium ES

Theorem 4.5.2. The equilibrium ES is locally asymptotically stable if RC < 1 and
RH < 1 and unstable if RC > 1 or RH > 1.

Proof. We compute the eigenvalues of the Jacobian of the linearized equation
around the equilibrium ES:

λ1 = −µ,

λ2 = β − r − µ,

λ3,4 =
1

2

(
β̂ − 2µ− ρ− σ ±

√
(ρ− β̂)2 + 2ρσ + 2β̂σ + σ2

)
,

λ5,6 =
1

2

(
− r − 2µ− ρ− σ ±

√
(ρ− r)2 + 2ρσ + 2rσ + σ2

)
.

Clearly, λ1 is negative, and λ2 is negative for RC < 1. As for conjugate pairs of
eigenvalues λ3 and λ4, since all the parameters are positive the terms under the
square roots are non-negative and hence both the eigenvalues are reals. Their
product is obtained as µ(µ+ ρ+ σ)− β̂(µ+ σ) which is greater then zero, as from
RH < 1 we have µ(µ + ρ + σ) > β̂(µ + σ). Moreover, their sum is β̂ − 2µ + ρ + σ

which is always negative forRH < 1. From this, it follows that λ3 and λ4 are always
negative for RH < 1. Similarly, it can be shown that λ5 < 0 and λ6 < 0. Hence, all
the eigenvalues are negative if RC < 1 and RH < 1 and the disease free steady
state ES is locally asymptotically stable.
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4.5.4 Local Asymptotic Stability of the Chlamydia Present
Equilibrium EC

Theorem 4.5.3. Let RC > 1. The equilibrium point EC for the model system (4.2)
is locally asymptotically stable if RH < 1 and unstable if RH > 1.

Proof. The eigenvalues of the Jacobian of the linearized equation around the equi-
librium ES are given by

λ1 = −µ,

λ2 = β − r − µ,

λ3,4 =
1

2

(
β̂ − 2µ− ρ− σ ±

√
(ρ− β̂)2 + 2ρσ + 2β̂σ + σ2

)
,

λ5,6 =
1

2

(
r − 2β − ρ− σ ±

√
(ρ− r)2 + 2ρσ + 2rσ + σ2

)
.

Clearly, λ1 is negative, and λ2 is negative for RC > 1. Also, since all the parame-
ters are positive, the terms under the square roots for eigenvalues λ5 and λ6 are
non-negative. Hence, they are both reals. The sum of the conjugate pair of eigen-
values λ5 and λ6 is (β− r)(β+ σ)+ βρ which is greater then zero, as from RC > 1

we have β > r + µ. Moreover, their sum is 2(r − 2β − ρ − σ) which is always
negative for RC > 1. From this, it follows that λ5 and λ6 are always negative for
RC > 1. Also, λ3 and λ4 are the same as the corresponding eigenvalues in the
previous section, and have been shown to be negative for RH < 1. Hence, all the
eigenvalues are negative if RC > 1 and RH < 1. Thus, the equilibrium point EC is
locally asymptotically stable in this case.

4.5.5 Global Asymptotic Stability of the Disease Free
Equilibrium (ES) and the Chlamydia Present Equilibrium
(EC)

Theorem 4.5.4. Assume that RH ≤ 1. If RC ≤ 1, then the equilibrium point ES
is globally asymptotically stable, and if RC > 1, then EC is globally asymptotically
stable .

Proof. Consider the auxiliary function q1 : D → R+,

q1 =
σ(L+ ILC) + (µ+ σ)(H + IHP )

µ(µ+ ρ+ σ)
, (4.20)
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which is continuously differentiable, and bounded from below. The derivative of
(4.20) with respect to t along solution curves of (4.2) is given by,

q′1 =
(I ′LC + L′)σ + (H ′ + I ′HP )(µ+ σ)

µ(µ+ ρ+ σ)

= (H + IHP )

[
−1 + (C + S)

β̂(µ+ σ)

µ(µ+ ρ+ σ)

]
= (H + IHP ) [(C + S)RH − 1] .

The following two cases arise corresponding to the initial point P0.

The first case is when P0 ̸∈ DC . In this case, since RH ≤ 1, and S + C ≤ 1, we
have q′1 ≤ 0, thus LaSalle’s Invariance Principle implies

ω(P0) ⊆ {(S,C,H, ILC , IHP , L) ∈ D | q′1 = 0} = {(S,C, 0, ILC , 0, L) ∈ D}.

Inside ω(P0), the dynamics is described by the following system,

S ′ = µ− βSC − βSILC − µS + rC,

C ′ = βSC + βSILC − rC − µC,

I ′LC = βLC + βLILC − rILC − µILC − σILC ,

L′ = rILC − σL− βLC − βLILC − µL.

For this system, we have (ILC(t)+L(t))′ = −(µ+σ)(ILC +L). Applying LaSalle’s
Invariance Principle once more, we obtain

ω(P0) ⊆ Ω := {(S,C, 0, 0, 0, 0) ∈ R6
+ | S + C = 1}. (4.21)

The other case is when P0 ∈ DC . In this case, due to the invariant property of DC ,
the omega limit set of the initial point P0 will be as in (4.21). Thus, in either case,
the omega limit set is described by (4.21). Now, there are two cases with respect
to the reproduction number for Chlamydia, RC .

Let us consider the case RC ≤ 1. The only whole trajectory inside ω in this case
is the set containing only the disease free equilibrium ES. By the properties of
the ω-limit sets, ω(P0) = {ES}, the solutions converge to ES, since P0 is arbitrary.
Since we know that ES is LAS when RC < 1, the convergence implies that ES is
globally asymptotically stable.

Secondly, consider the case RC > 1. Inside ω, the dynamics is described by
the Chlamydia subsystem, let us denote this dynamical system by Θ. The first
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two equations for S(t) and C(t) of the system (4.2) can be considered as a non-
autonomous system of differential equations that generate the non-autonomous
dynamical system Φ. Since H(t), ILC(t), IHP (t), L(t) → 0 as t → ∞, Φ is asymp-
totically equivalent to Θ. As D is a compact invariant set, the forward orbits are
pre-compact. Let e1 = ES, e2 = EC and X1 = W S

Φ (e1), the invariant set containing
the disease free equilibrium ES. Let X2 = D \ X1. X1 is closed by definition and
X2 is open in D. Solutions starting in X1 will converge to e1 as this is the only
equilibrium point. For RC > 1, EC is GAS in Θ, hence solutions starting in X2 will
converge to e2. e1 is GAS for restriction of Θ to X1. X2 is invariant, hence every ϕ

orbit starting in X2 will converge to e2 and cannot converge to e1. Hence, e1 is a
weak repeller. Thus every pre-compact forward ϕ orbit starting in X2 converges
to e2. Hence, all the conditions of Theorem 2.5 of [172] are satisfied. Hence, ap-
plying the theorem, if P0 ∈ X1, then the solution starting from P0 converges to
ES, else it converges to EC . Since we know that EC is LAS when RC > 1, the
convergence implies that the EC is globally asymptotically stable.

4.5.6 Local Asymptotic Stability of the Herpes Present
Equilibrium point EH

In this section, using Theorem 2 of van den Driessche & Watmough (2002), [168],
we establish the local asymptotic stability of the equilibrium point EH .

Theorem 4.5.5. The equilibrium point EH for the model system (4.2) is locally
asymptotically stable if RCH < 1 and unstable if RCH > 1.

Proof. We consider the case when the system is existing at the herpes present
equilibrium point EH . It is presumed that the new infection terms are only related
to the infections caused by Chlamydia. Clearly, the assumptions (A1)-(A4) of
Theorem 2, [168] are obviously satisfied, we verify condition (A5) in the following
part.

Setting the new infection terms of the system (4.2) to zero, i.e setting Fi in (4.17)
to zero, we obtain the Jacobian calculated at EH . Denoting

ζ = µ(RH − 1),

the matrix is obtained as follows:

46 Biomathematics of Chlamydia





−µ− ζ r − β
RH

− β̂
RH

− β
RH

− β̂
RH

0

0 −r − µ− ζ 0 0 0 0

ζ −ζ −µ+ ζ − ρ −βζ

β̂

β̂
RH

σ

0 ζ 0 σ −µ− ρ 0

0 0 0 −r − µ− σ ρ 0

0 − βρζ

β̂(µ+σ)
ρ r − βρζ

β̂(µ+σ)
0 −µ− σ


.

The eigenvalues corresponding to this Jacobian matrix are as follows:

λ1 = −µ, λ2 = −r − RH , λ3 =
1

2
(−q1 −

√
q2),

λ4 =
1

2
(−q1 +

√
q2), λ5 = −

q3 +
√
q4

2D
, λ6 = −

q3 −
√
q4

2D
,

where

q1 = r + 2µ+ ρ+ σ,

q2 = (ρ− r)2 + 2ρσ + 2(r + σ)σ + σ2,

q3 = β̂(µ+ σ)2 + σ(µ+ ρ+ σ)2,

q4 = β̂2(µ+ σ)4 − 2β̂(µ+ σ)2(2µ+ σ)(µ+ ρ+ σ)2

+(µ+ ρ+ σ)3(4µ3 + 8µ2σ + (5µ+ ρ)σ2 + σ3),

andD = (µ+σ)(µ+ρ+σ). All the parameters are positive, and clearly λ1 < 0 and
λ2 < 0. For the conjugate pair of eigenvalues λ3 and λ4, the term under the square
root is positive, hence both are reals. Their product is given by (r+µ)(µ+ρ)+µσ,
which is positive, and their sum is −r − 2µ − ρ − σ, which is negative implying
that both eigenvalues are negative. As for λ5 and λ6, by taking the difference
of the squares of the first resp. the second term of the nominator, we obtain
4(µ+ σ)2(µ+ ρ+ σ)2(β̂(µ+ σ)− µ(µ+ ρ+ σ)) which is greater then zero, as from
RH > 1, we have β̂(µ+ σ)−µ(µ+ ρ+ σ). From this follows that λ5 and λ6 always
have negative real parts for RH > 1. Thus, we can conclude that the equilibrium
point EH is LAS when the reproduction number RCH < 1.
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4.6 The Limiting System

Introducing x = S +C, y = H + IHP and z = L+ ILC , the system (4.2) reduces to

x′ = µ− β̂xy − µx,

y′ = β̂xy − ρy + σz − µy, (4.22)

z′ = ρy − σz − µz.

The system (4.22) is completely analogous to the HSV subsystem given by the
system (4.8). The two equilibria are given by,

Ê = (x̂, ŷ, ẑ) = E∗, and E∗ = (x∗, y∗, z∗) = EH . (4.23)

Here E∗ and EH correspond to the disease free equilibrium and the herpes equi-
librium respectively and are obtained from equation (4.9). Henceforth, all our anal-
ysis is subject to the condition that the reproduction number for herpes RH given
by (4.10) is larger than 1. From the analysis of the HSV subsystem (Section 4.4),
it is clear that if RH ≤ 1, then the equilibrium Ê is GAS. On the other hand, as
t → ∞, since the total population is 1, x → x∗, y → y∗, and z → z∗ when RH > 1.
Thus, we have the convergence

S + C → x∗, H + IHP → y∗, L+ ILC → 1− x∗ − y∗. (4.24)

The system of equations C, ILC and IHP can be considered as a non-autonomous
system of differential equations, where the non-autonomous terms S(t), H(t), L(t)

are generated by solutions of the dynamical system (4.2). As we have the conver-
gence (4.24), this system is asymptotically autonomous with the following equali-
ties,

S = x∗ − C, H = y∗ − IHP , L = 1− x∗ − y∗ − ILC . (4.25)

Consequently, the limiting system has the form

C ′ = β(x∗ − C)C + β(x∗ − C)ILC − β̂y∗C − rC − µC,

I ′LC = ρIHP + β(1− x∗ − y∗)C + β(1− x∗ − y∗)ILC − βILCC − βI2LC

− rILC − µILC − σILC ,

I ′HP = β̂y∗C + β(y∗ − IHP )C + β(y∗ − IHP )ILC + σILC − ρIHP − µIHP ,

(4.26)
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with phase space

DL = {(C, ILC , IHP ) ∈ R3
+ | C ≤ x∗, ILC ≤ y∗, IHP ≤ 1− x∗ − y∗}. (4.27)

4.6.1 The Basic Reproduction Number in the Limiting Case

For the limiting system (4.26), the zero equilibrium point E0 = (0, 0, 0) is equivalent
to the original system (4.2) being at the herpes equilibrium and there’s no Chlamy-
dia infection in the system. In this section, we calculate the reproduction number,
RL, as the expected number of secondary cases caused by introducing a single
Chlamydia infected individual into the system, assuming that the system is at the
herpes equilibrium, which is E0 = (0, 0, 0) for the limiting case. For that purpose,
we first establish the system (4.26) in the form of

I′ = F̃(I)− Ṽ(I), where I = (C, ILC , IHP )
T .

Here, F̃ = (F̃1, F̃2, F̃3) represents the new infections due to C. trachomatis, while
Ṽ = (Ṽ1, Ṽ2, Ṽ3, ) contains the transitions between infected compartments. We
linearize (4.26) at the zero equilibrium E0 = (0, 0, 0) to obtain the equation

I′ = ÃI,

where Ã is the Jacobian matrix. Next, we take the decomposition Ã = F̃ − Ṽ ,
where

F̃ =

[
∂F̃i

∂Ij
(E0)

]
,

Ṽ =

[
∂Ṽi

∂Ij
(E0)

]
.

For the limiting system (4.26), we have

F̃ =

βx∗ βx∗ 0

β β 0

βy∗ βy∗ 0


and

Ṽ =

r + β̂y∗ + µ 0 0

βx∗ + βy∗ r + βx∗ + βy∗ + µ+ σ −ρ

−β̂y∗ −σ µ+ ρ


.
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The dominant eigenvalue of F̃ Ṽ −1 is,

ϱ̂(F̃ Ṽ −1) =
[
(r + β̂y∗ + µ)((r + β(x∗ + y∗) + µ)(µ+ ρ) + µσ)

]
/
[
β(r(1 + x∗)µ) + β̂y∗µ+ r(1 + x∗ + y∗)ρ+ β̂y∗2ρ

+ y∗(β̂ + β̂x∗ + µ)ρ+ (1 + x∗)µ(µ+ ρ+ x∗µσ)
]
.

At the equilibrium E0 = (0, 0, 0), we have S = x∗, H = y∗, L = 1 − x∗ − y∗. Substi-
tuting

x∗ =
µ(µ+ ρ+ σ)

β̂(µ+ σ)
, and y∗ =

µ

β̂

(
β̂(µ+ σ)

µ(µ+ ρ+ σ)
− 1

)
, (4.28)

from (4.9), we have

RL = ϱ̂(F̃ Ṽ −1) =
∆21

∆22

, (4.29)

where

∆21 = β
(
(µ+ σ)

(
β̂2(µ+ σ)

(
µ2 + µ(3ρ+ σ) + ρ(ρ+ 2σ)

)
+ β̂µρ2(µ+ ρ

+ σ) + µ2(µ+ ρ+ σ)3
)
+ rC(µ+ ρ+ σ)

(
β̂(µ+ σ)

(
µ2 + µ(3ρ+ σ) + ρ

× (ρ+ 2σ)
)
+ µ
(
µ3 + 2µ2(ρ+ σ) + µ

(
2ρ2 + 2ρσ + σ2

)
+ ρ2(ρ+ σ)

)))
,

and

∆22 = (β̂(µ+ σ) + r(µ+ ρ+ σ))
(
β(µ+ ρ)

(
β̂(µ+ σ)2 + µρ(µ+ ρ+ σ)

)
+ β̂µ(µ+ σ)(µ+ ρ+ σ)2 + β̂r(µ+ ρ)(µ+ σ)(µ+ ρ+ σ)

)
.

4.6.2 Relation between the Reproduction Numbers RL and
RCH

In this section, we establish that relation between the reproduction numbers as-
sociated with Chlamydia, RCH and RL, obtained by introducing a Chlamydia in-
fected individual into a population existing in a herpes equilibrium, with respect to
the original system (4.2), and the limiting system (4.26).

Lemma 4.6.1. The reproduction numbers RL and RCH share the same threshold,
that is they are both smaller than one, or both larger than one.

Proof. By subtracting 1 from both the reproduction numbers we have the following
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equalities:

RL − 1 =
∆11

∆12

− 1 =
∆11 −∆12

∆12

,

RCH − 1 =
∆21

∆22

− 1 =
∆21 −∆22

∆22

. (4.30)

From the expressions of the two reproduction numbers, RL andRCH obtained ear-
lier, it is clear that the denominators ∆12, ∆22 are positive for positive parameters.
By dividing the numerators of the two expressions in (4.19), we obtain

∆11 −∆12

∆21 −∆22

= µ+ σ > 0.

Hence, we can conclude that the two reproduction numbers RL and RCH will
have the same threshold. The algebraic calculations can be found in the Wolfram
Mathematica notebook available in our public GitHub repository, Section 6 of [171].

4.6.3 Local Asymptotic Stability of the Equilibrium Point E0

Using Theorem 2 of van den Driessche & Watmough (2002), [168], the following
result is established.

Theorem 4.6.2. The equilibrium point E0, of the system (4.26) is locally asymptot-
ically stable if RL < 1, and unstable if RL > 1.

Proof. The assumptions (A1)-(A4) of Theorem 2, [168] are clearly satisfied. we
only have to verify condition (A5). Using the substitution (4.28), the Jacobian
DI(E0) at the equilibrium E0 = (0, 0, 0), and is given by the matrix:

−r − RH 0 0
−β

β̂

(
µσ
µ+σ

+ RH

)
−r − µ− σ + β

(
− 1− ρ

β̂(µ+σ)
(µ− RH

)
ρ

µ+ RH σ −µ− ρ

 ,

where RH is the reproduction number for herpes given earlier. We obtain three
eigenvalues corresponding to the matrix DI(E0). The first eigenvalue is −µ− RH

which is negative for positive parameters. We denote the other two eigenvalues
as follows:

λ1 = z1 +
√
z2 and λ2 = z1 −

√
z3.
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For the case when the terms under the square roots are negative, the eigenvalues
will have imaginary parts. The real part for each eigenvalue is given by

z1 = −ββ̂(µ+ σ)2 − 2βµρ(µ+ ρ+ σ),

which is negative. In the other case, the sum and the product are obtained as
follows:

λ1 + λ2 = −2ββ̂(µ+ σ)2 − 2βµρ(µ+ ρ+ σ)

− 2β̂(µ+ σ)(µ+ ρ+ σ)(r + 2µ+ ρ+ σ),

λ1 × λ2 = 4β̂(µ+ σ)(µ+ ρ+ σ)
(
rβ̂(µ+ ρ)(µ+ σ)(µ+ ρ+ σ)

+ β̂µ(µ+ σ)(µ+ ρ+ σ)2 + β(µ+ ρ)(β̂(µ+ σ)2 + µρ(µ+ ρ+ σ))
)
.

It is clear that the sum is always negative and the product is positive, implying that
the two eigenvalues are negative for positive parameters. Thus, we conclude that
the equilibrium E0 = (0, 0, 0) is LAS for RL < 1, and unstable for RL > 1.

4.6.4 Global Asymptotic Stability of the Equilibrium Point E0

Theorem 4.6.3. The equilibrium point E0, of the system (4.26) is globally asymp-
totically stable whenever RL < 1 and unstable if RL > 1.

Proof. The system of equations in (4.26) can be expressed in the following man-
ner 

dc(t)
dt

dILC(t)
dt

dIHP (t)
dt

 = (F̃ − Ṽ − S)


C(t)

ILC(t)

IHP (t)

 ,

where the matrices F̃ and Ṽ are as defined above, and S is a non negative matrix
given by

S =


βC βC 0

βILC βILC 0

βIHP βIHP 0


.
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Thus, 
dC(t)
dt

dILC(t)
dt

dIHP (t)
dt

 ≤ (F̃ − Ṽ )


C(t)

ILC(t)

IHP (t)

 . (4.31)

From the local stability result given in (4.6.2), it follows that, if RL < 1, then
ϱ̂(F̃ Ṽ −1) < 1, which is equivalent to F̃ − Ṽ having all its eigenvalues in the left-
half plane [168]. It follows that the linearized differential inequality system (4.31)
is stable whenever RL < 1. Consequently, (C(t), ILC(t), IHP (t)) → (0, 0, 0) as
t → ∞ for this linear ODE system. Thus, using a standard comparison theorem
[173, P. 31], (C(t), ILC(t), IHP (t)) → (0, 0, 0) as well for the nonlinear system (4.26)
implying that the disease free equilibrium E0 is GAS in DL whenever RL < 1.

4.6.5 The Endemic Equilibrium Point

The endemic equilibrium point E∗ = (C∗, I∗LC , I
∗
HP ) is obtained by setting the right

hand sides in Eq. (4.26) to zero. Its existence is established in the next lemma.

Lemma 4.6.4. If RL > 1, then the limiting system (4.26) has a positive endemic
equilibrium point.

Proof. At endemic equilibrium point E∗, the system (4.26) becomes

β(x∗ − C∗)C∗ + β(x∗ − C∗)I∗LC − (β̂y∗ + r + µ)C∗ = 0 (4.32)

ρI∗HP + β(1− x∗ − y∗)(C∗ + I∗LC)− βI∗LC(C
∗ + I∗LC)− (r + µ+ σ)I∗LC = 0, (4.33)

(β̂y∗ + β(y∗ − I∗HP ))C
∗ + (σ + β(y∗ − I∗HP ))I

∗
LC − (ρ+ µ)I∗HP = 0. (4.34)

From equations (4.32) and (4.33), we obtain the following implicit solutions to the
respective compartments,

I∗LC = −C∗(r + βC − βx∗ + β̂y∗ + µ)

β(C∗ − x∗)
,

I∗HP =
βI∗2LC + βC∗(−1 + x∗ + y∗) + I∗LC(r + µ+ σβ(C∗ − 1 + x∗ + y∗))

ρ
,

where C∗ is the solution of the following equation:

f(C∗) =
C∗

(C∗ − x)3βρ

(
f1C

∗4 + f2C
∗3 + f3C

∗2 + f4C
∗) = 0,
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and f : [0, x∗) → R is a continuous function with f1, f2, f3, f4 given as follows:

f1 = β(r + β̂y∗)(β̂y∗ − σ),

f2 =
(
y∗3β̂2(β − β̂) + r2(β(y∗ − 1)− β̂y∗ + σ) + β̂y∗2(ββ̂((2x∗2 − 1)

+ µ) + β̂(−µ+ ρ+ σ)) + βµ(ρ+ σx∗) + r(2β̂y2(β − β̂)

+ βy∗(2β̂(x∗ − 1) + µ) + µσ + β̂y∗(−µ+ ρ+ 2σ) + β(−µ+ ρ− 2x∗σ))

+ β̂y∗(µ(ρ+ σ)− β(µ+ µx∗ − ρ+ 2x∗σ)))
)
,

f3 = x∗(r3 + ββ̂2y∗3 + r2(β(y∗ − 1) + 2β̂y∗ + 2µ− ρ+ σ)

+ β̂2y∗2(β(x∗ − 1) + 2µ+ ρ+ σ)− y∗(βµ2 − 2β̂µ2 − 2ββ̂ρ

+ ββ̂x∗(2µ+ σ)) + r(β̂y∗2(2β + β̂) + µ2 + 2βρ− 2µρ− βσx∗

+ β̂y∗(−2β + βx∗ + 4µ+ 2σ)) + µ(−µ(ρ+ σ) + β(µ+ 2ρ+ 2σx∗))
)
,

f4 = x∗2(ββ̂µy∗2 + r2(µ+ ρ) + βy∗
(
β̂µ(x∗ − 1) + µ2 − β̂ρ

)
+ β̂µy∗(µ+ ρ+ σ) + µ2(µ+ ρ+ σ)− βµ(µ+ ρ+ σx∗)

+ r
(
βµ(y∗ − 1)− βρ+ β̂y∗(µ+ ρ) + µ(2µ+ 2ρ+ σ)

))
,

for C∗ ∈ [0, x∗). We have f(0) = 0 and lim
C∗→x∗−

f(C∗) = −∞. The derivative of
f(C∗) at 0 is given by

f ′(0) = −
[
(µ+ σ)

(
ββ̂µ2ρ+ β̂r2(µ+ ρ+ σ)2 − βµ2(µ+ ρ+ σ)3

+ β̂2(µ+ σ)(µ3 + 2µ2(ρ+ σ)− βρ(ρ+ σ) + µ(−2βρ+ (ρ+ σ)2))

+ r(µ+ ρ+ σ)(β̂2(µ+ ρ)(µ+ σ)− βµ2(µ+ ρ+ σ)

+ β̂2(µ3 + 2µ2(ρ+ σ)− βρ(ρ+ σ) + µ(−2βρ+ (ρ+ σ)2)))
)]

/
[
βµρ(µ+ ρ+ σ)3

]
.

Now,

f ′(0)

(RH − 1)(RL − 1)
=
[
(RH + rC)

(
rβ̂(µ+ ρ)(µ+ σ)(µ+ ρ+ σ)

+ β̂µ(µ+ σ)(µ+ ρ+ σ)2 + β(µ+ ρ)(β̂(µ+ σ)2

+ µρ(µ+ ρ+ σ))
)]
/
[
βµρ(RH − 1)

]
Hence if both the reproduction numbers RH and RL are greater than 1, then
f ′(0) > 0. Thus, there exists an ϵ > 0 such that f(C∗) > 0 if 0 < C∗ < ϵ. By
continuity of f , there exists Ĉ ∈ (ϵ, x∗) such that f(Ĉ) = 0. Hence, we can con-
clude that the model in (4.33) will always have an endemic equilibrium point when-
ever RL > 1. For the algebraic calculations, refer to the Wolfram Mathematica
notebook available in our public GitHub repository, Section 6 of [171].
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Lemma 4.6.5. The region

D̄L := {(S,C,H, ILC , IHP , L) ∈ D | S + C = x∗, H + IHP = y∗}, (4.35)

is invariant with respect to the system (4.2) defined in the phase space D given
by (4.4).

Proof. From the original co-infection system (4.2), adding the equations for S and
C, we have

(S + C)′ = µ− β̂(S + C)(H + IHP )− µ(S + C)

= µ− β̂x∗y∗ − µx∗.

From (4.28), we substitute the values of x∗ and y∗ to obtain

(S + C)′ = µ− β̂

RH

µ

β̂
(RH − 1)− µ

RH

= 0.

Similarly, adding the equations for H and IHP , we have

(H + IHP )
′ = β̂(S + C)(H + IHP )− ρ(H + IHP ) + σ(L+ ILC)− µ(H + IHP )

= β̂x∗y∗ − ρy∗ + σ(1− x∗ − y∗)− µy∗.

Substituting the values of x∗ and y∗, and simplifying, we have

(H + IHP )
′ =

µ+ σ

RH

− (ρ+ σ + µ)µ

β̂
= (µ+ σ)

(
1

RH

− 1

RH

)
= 0.

Thus, we have shown that D̄L is invariant with respect to the original co-infection
system defined in the phase space D. However, the space D̄L is analogous to DL

where the limiting system (4.26) is defined.

Theorem 4.6.6. The equilibrium point EH for the model system (4.2) is globally
asymptotically stable if RCH < 1 and unstable if RCH > 1. In the latter case, a
co-existing equilibrium ECH exists.

Proof. The global stability of the zero equilibrium in the limiting system (4.26) im-
plies that the herpes equilibrium of the full system (4.2), EH , attracts the whole
subspace DL (since on DL the two systems coincide). Since solutions of the orig-
inal system converge to DL, the ω-limit set of any solution of the original system
intersects the basin of attraction of the zero equilibrium of the limiting system,
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hence by the theory of asymptotically autonomous systems (see Thieme [172]),
the herpes equilibrium EH is GAS in the original system (4.2), whenever zero is
GAS in the limiting system (4.26), i.e. when RL > 1 (Theorem 4.6.3), equivalently
RCH > 1 with respect to the system (4.2). Moreover, EH is unstable if the zero is
unstable in the limiting system (4.26), i.e. RL < 1 (Theorem 4.6.3), equivalently
RCH < 1 with respect to the original co-infection system (4.2).

If RCH > 1, then RL > 1 as well (see Lemma 4.6.4), thus E0 in the limiting system
is unstable (Theorem 4.6.2). Consequently, EH is unstable in the invariant domain
DL for the original system, hence it is unstable in system (4.2). By Lemma 4.6.5,
there exists an endemic equilibrium point in the limiting system (4.26), which is,
since DL is invariant, corresponds to a co-existing equilibrium point within DL of
the system (4.2).

4.7 Persistence of both Diseases

In the previous sections, we proved that ifRH ≤ 1 andRC ≤ 1, then both diseases
die out (since ES is globally asymptotically stable by Theorem 5.4). If RH ≤ 1 and
RC > 1, then herpes dies out but chlamydia persists in the population (since
EC is GAS by Theorem 5.4). Furthermore, Theorem 6.6 states that if RH > 1

and RCH ≤ 1, then herpes persists but Chlamydia is eradicated (since EH is
GAS). Then the remaining case is RH > 1 and RCH > 1: then we know that
the coexistence equilibrium exists, and below we will show that in this case, both
diseases will remain in the population.

To prove our persistence results, we use some definitions and results from [174].

Definition 4.7.1. Let X be a nonempty set and ϱ : X → R+. A semiflow Φ :

R+ × X → X is called uniformly weakly ϱ-persistent, if there exists some ϵ > 0

such that

lim
t→∞

sup ϱ(Φ(t, χ)) > ϵ for all χ ∈ X, ϱ(χ) > 0.

Φ is called uniformly (strongly) ϱ-persistent if there exists some ϵ > 0 such that

lim
t→∞

inf ϱ(Φ(t, χ)) > ϵ for all χ ∈ X, ϱ(χ) > 0.

A set M ⊂ X is called weakly ϱ-repelling if there is no χ ∈ X such that ϱ(χ) > 0

and Φ(t, χ) → M as t → ∞.

System (4.2) generates a continuous flow on the feasible state space D.
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Theorem 4.7.2. If RH > 1 and RCH > 1, then both diseases as well as the
susceptible population are uniformly persistent.

Proof. (i) S(t) is uniformly persistent.

We use the method of fluctuation to prove the persistence of S(t) (see e.g. Ap-
pendix A of [174]). We denote by S∞ the limit inferior of S(t)(t → ∞). Using
the fluctuation lemma it follows that there exists a sequence tk → ∞ such that
S(tk) → S∞ and S ′(tk) → 0 as k → ∞. We apply this for the equation for S(t) :

S ′(tk) +
(
βC(tk) + β̂H(tk) + βILC(tk) + β̂IHP (tk) + µ

)
S(tk) = µ+ rC(tk),

and using 0 ≤ C(tk), H(tk), ILC(tk), IHP (tk) ≤ 1 we obtain

(2β + 2β̂ + µ)S∞ ≥ µ

i.e. S∞ ≥ µ

2β + 2β̂ + µ
> 0.

(ii) Chlamydia persistence.

For the sake of simplicity, for the state of the system, we use the notation χ =

(S,C,H, ILC , IHP , L) ∈ D. Let ϱc = C+ ILC + IHP be our persistence function, and
consider the corresponding extinction space, which is

DH = {χ ∈ D : ϱc(χ) = 0} = {(S, 0, H, 0, 0, L) ∈ R6
+ : S +H + L = 1}.

Clearly DH is invariant. Following [174, Chapter 8], we examine the set Ω :=

∪χ∈DH
ω(χ). On the extinction space, the system coincides with the HSV subsys-

tem (4.8), with solutions converging to one the two equilibria, corresponding to
ES and EH . Thus, Ω = {ES, EH}. We let M1 = {ES} and M2 = {EH}. Then
Ω ⊂ M1 ∪ M2 and {M1,M2} acyclic and M1 and M2 are invariant, isolated, and
compact. We have to show that M1 and M2 are both weakly repelling.

Let us suppose that M1 is not weakly ϱc-repelling, i.e. there exists a solution such
that

lim
t→∞

(S(t), C(t), H(t), ILC(t), IHP (t), L(t)) = ES = (1, 0, 0, 0, 0, 0)

and
ϱc(χ) > 0.

Then either C(0) > 0, or ILC(0) > 0, or IHP (0) > 0. In the latter case, from the
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ILC equation we conclude ILC(t) > 0 for t > 0. This implies, using the C equation,
C(t) > 0 as well. In any case, we have C(t) > 0 for t > 0.

For any ϵ > 0, for sufficiently large t, S(t) > (1− ϵ), H(t) < ϵ, ILC(t) < ϵ, IHP (t) < ϵ

and L(t) < ϵ hold and we can give the following estimation for C ′(t):

C ′(t) = C(t)(βS(t)− β̂H(t)− β̂IHP (t)− r − µ) + βS(t)ILC(t)

> C(t)(β − βϵ− β̂ϵ− β̂ϵ− r − µ) + β(1− ϵ)ϵ.
(4.36)

ButRC > 1means β > r+µ, so if ϵ is small enough then (β−βϵ−β̂ϵ−β̂ϵ−r−µ) > 0

contradicting C(t) → 0. Using the previous argument, we can conclude that if
ϱc(χ) > 0, then the solution cannot converge to (1, 0, 0, 0, 0, 0), and M1 is weakly
ϱc-repelling. To show the repelling property of M2, assume that there exists a
solution such that

lim
t→∞

(S(t), C(t), H(t), ILC(t), IHP (t), L(t)) =

(
µ(µ+ ρ+ σ)

β̂(µ+ σ)
, 0,

µ

β̂

(
β̂(µ+ σ)

µ(µ+ ρ+ σ)
− 1

)
, 0, 0,

µσ

β̂(µ+ σ)

(
β̂(µ+ σ)

µ(µ+ ρ+ σ)
− 1

))

and ϱc > 0. The Jacobian corresponding to the equations C, ILC , and IHP of the
system (4.2) calculated at the equilibrium M2 is given by

JEH =


r − β̂(µ+σ)

(µ+ρ+σ)
− βµ(µ+ρ+σ)

β̂(µ+σ)

βµ(µ+ρ+σ)

β̂(µ+σ)
0

βρ
(

−µ

β̂(µ+σ)
+ 1

(µ+ρ+σ)

)
r − µ− σ + βρ

(
−µ

β̂(µ+σ)
+ 1

(µ+ρ+σ)

)
ρ

(β+β̂)(β̂(µ+σ)−µ(µ+ρ+σ))

β̂(µ+ρ+σ)

−βµ

β̂
+ σ + β(µ+σ)

(µ+ρ+σ)
−µ− ρ


.

The characteristic polynomial of the above Jacobian is of the form

P (λ∗) = −λ∗3 + α1λ
∗2 + α2λ

∗ + α3,

where α3 > 0 for RCH > 1 (see the details of the algebraic calculations in the
supplementary file, Section 7 of [171]). Thus, in this case we have P (0) > 0

and lim
λ∗→∞

P (λ∗) = −∞, and there exists λ̂ > 0 such that P (λ̂) = 0. Hence, we
can conclude that there exists a positive eigenvalue, whenever RCH > 1. One
can check that the matrix JEH is quasi-positive, and also irreducible, so there is
a positive left eigenvector v of JEH . Now choose this eigenvector to define our
ϱv = v1C + v2ILC + v3IHP , with v1 > 0, v2 > 0, v3 > 0 being the components of v.
Clearly, if ϱc > 0 for some solution then ϱv > 0 as well. This way we have, with
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the notation χv(t) = (C(t), ILC(t), IHP (t)),

d

dt
ϱv(χv(t)) = vTχ′

v(t) = vTJESχv(t) + o(∥χv(t)∥2)

= vT λ̂χv(t) + o(∥χv(t)∥2) = λ̂ϱv(χv(t)) + o(∥χv(t)∥2) > 0

for small ∥χv(t)∥, which contradicts that the solution converges to EH (since that
implies χv(t) → 0 and ϱv(t) → 0 as well).

We established the weak persistence of ϱc.

(iii) Herpes persistence. Consider now ϱh(χ) = H + ILC + IHP + L. The corre-
sponding extinction space is

DC = {χ ∈ D : ϱw(χ) = 0} = {(S,C, 0, 0, 0, 0) ∈ R6
+ : S + C = 1}.

Clearly DC is invariant. Substituting S(t) = 1 − C(t), on the extinction space our
system takes the form

C ′(t) = β(1− C(t))C(t)− rC(t)− µC(t).

The two equilibria for RC > 1 are 0 and (β − r − µ)/β, corresponding to ES and
EC . Similarly as in case (ii), consider the set Ω := ∪χ∈DC

ω(χ), which is in this
case Ω = {ES, EC}. We let M1 = {ES} and M2 = {EC}. Then Ω ⊂ M1 ∪ M2 and
{M1,M2} acyclic and M1 and M2 are invariant, isolated, and compact. We have
to show that M1 and M2 are both weakly repelling, with respect to ϱh.

First, we show the repelling property of M1. Let us assume that

lim
t→∞

(S(t), C(t), H(t), ILC(t), IHP (t), L(t)) = (1, 0, 0, 0, 0, 0),

and ϱh(χ(t)) > 0 for all t. Let J denote the Jacobian corresponding to the equa-
tions H, ILC , IHP and L of the system (4.2) calculated at ES which is given by

JES =


β̂ − µ− ρ 0 β̂ 0

0 −r − µ− σ ρ 0

0 σ −µ− ρ 0

ρ r 0 −µ− σ


.

The largest eigenvalue of the Jacobian JES is given by

λ =
1

2
(β̂ − 2µ− ρ− σ) +

√
(ρ− β̂)2 + 2ρσ + 2β̂σ + σ2.
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We have λ > 0 for RH > 1. A left eigenvector corresponding to the eigenvalue λ

is given by

w =



1

1
2ρ

(
ρ− β̂ − σ +

√
(ρ− β̂)2 + 2ρσ + 2β̂σ + σ2

)
1

1
2σ

(
ρ− β̂ − σ +

√
(ρ− β̂)2 + 2ρσ + 2β̂σ + σ2

)


∈ R4.

All the components of w are positive for RH > 1. Let us consider ϱw(χ) = wTχw,
where χw = (H, ILC , IHP , L)

T .

Then ϱw(χ(t)) > 0 for all t and ϱw(χ(t)) → 0 as t → ∞. For sufficiently large t, we
can make the following estimation for the derivative of ϱw(χ(t)):

d

dt
ϱw(χ(t)) = wTχ′

w(t) = wTJESχw(t) + o(∥χw(t)∥2)

= wTλχw(t) + o(∥χw(t)∥2) = λϱw(χ(t)) + o(∥χw(t)∥2) > 0,

whenever ∥χw(t)∥ is small enough. Hence, for large t, ϱw is increasing which is a
contradiction to the assumption that ϱw(χ(t)) → 0 as t → ∞.

Next, we suppose that M2 is not weakly ϱh-repelling, i.e. there exists a solution
such that

lim
t→∞

(S(t), C(t), H(t), ILC(t), IHP (t), L(t)) =

(
r + µ

β
, 1− r + µ

β
, 0, 0, 0, 0

)
.

and ϱh(χ) > 0. With an analogous argument, we can calculate the Jacobian at EC
along with the positive eigenvalue and positive eigenvector z explicitly to construct
a function ϱz analogously and prove that the assumption ϱh(χ(t)) → 0 as t → ∞
leads to a contradiction. The calculations are omitted here but can be found in
Section 7 of our public GitHub repository [171].

Thus, uniform weak persistence is shown for both persistence functions, ϱc, ϱh.
Since the phase space D is compact, the existence of a compact global attrac-
tor follows. Consequently, all conditions of [174, Theorem 4.5] hold, and thus
we obtain uniform strong persistence in both cases. Since the persistence func-
tions were given as a sum of all infected individuals by chlamydia and by herpes,
respectively, we proved that both diseases will remain in the population.
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4.8 Numerical Results

The system (4.2) is numerically simulated for various sets of parameters. The
stability of the disease free equilibrium point ES is shown in Figure 4.2, where
both the reproduction numbers RC and RH are less than 1, and the parameter
values are as follows:

β = 0.054, β̂ = 0.0086, ρ = 0.05, σ = 0.01, µ = 0.0154, r = 0.145.

The reproduction number in this case is obtained as RC = 0.05 and RH = 0.18.
Figure 4.3 illustrates the existence of an endemic equilibrium for the set of param-
eter values,

β = 0.34, β̂ = 0.11, ρ = 0.3, σ = 0.12, µ = 0.0154, r = 0.145,

where all the state variables are positive, and all the reproduction numbers greater
than 1 and are given as RC = 2.14, RH = 2.22 and RCH = 2.08.

Figure 4.2: stability of ES in the
case where RC < 1, and RH < 1.

Figure 4.3: Existence of ECH when
RC > 1, RH > 1, and RCH > 1

Similarly, the stability of EC is demonstrated in Figure 4.4 where RC > 1 and
RH < 1. ES exists but is unstable and the equilibrium points EH and ECH doesn’t
exist. The corresponding parameter values are as follows:

β = 0.34, β̂ = 0.01, ρ = 0.3, σ = 0.12, µ = 0.0154, r = 0.145.

The reproduction numbers in this setting are obtained as RC = 2.148 and RH =

0.2. The stability of EH is demonstrated in Figure 4.5 where the reproduction num-
ber RH is greater than 1, but RCH is less than 1. In this case, ES and EC exists but
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are unstable, ECH doesn’t exists. The parameter values are as follows:

β = 0.163, β̂ = 0.11, ρ = 0.3, σ = 0.12, µ = 0.0154, r = 0.145.

The reproduction numbers are obtained as RC = 1.03, RH = 2.22 and RCH = 0.9.
It is to be noted that this situation is synonymous with RC < 1, as the presence of
Chlamydia, doesn’t affect the transmission of herpes in the population.

Figure 4.4: Stability of EC in the
case where RC > 1, and RH < 1.

Figure 4.5: Stability of EH in the case
where RH > 1, and RCH < 1.

Figure 4.6: Figure illustrating existence of a co-infection equilibrium ECH when
RC = 2.14861, RH = 1.9699, and RCH = 2.02736. The figure is a projec-
tion of the solution curves on the C − H plane and shows the convergence
of solutions to the co-infection equilibrium starting from different initial points.
Numerical values of the state variables at the equilibrium point are obtained
to be S = 0.399268, C = 0.193693, H = 0.0339702, IHP = 0.0833719, ILC =
0.0471582, and L = 0.0786341. The numerical values of the eigenvalues
are −0.262134 + 0.i,−0.162314 + 0.i,−0.0732374 + 0.00898703i,−0.0732374 −
0.00898703i,−0.0157534 + 0.0188849i,−0.0157534 − 0.0188849i. Clearly, all eigen-
values have negative real parts.
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Figure 4.7: Existence and stability diagram of equilibrium points depending on
RC , RH and RCH . The global dynamics is fully described whenever RCH < 1.
Cross-marks denote combinations of reproduction numbers that are not possible.

4.9 Parametrization and Prevalence Estimations

In the above simulations, the parameter values have been chosen so as to fa-
cilitate the realization of all possible scenarios as depicted in Figure 4.7, corre-
sponding to the three reproduction numbers. A more exhaustive analysis was
performed to obtain more robust parameters that have been also used in other
similar studies. We would like to draw attention to the fact that for disease param-
eters related to Chlamydia, there are serious shortcomings and there are simply
rough approximations. It is uncertain how likely it is to contract C.trachomatis in
sexual contact. It is believed that though the transmission probabilities per contact
are lower, the duration of infectiousness lasts longer than it does for other STDs
such as gonorrhea [175]. Taking into account the large infrequency surrounding
parameter values, several models have considered the impact of screening strate-
gies in reducing C.trachomatis prevalence. A study based on a national survey
carried out in the Netherlands estimated the transmission rate for C.trachomatis
as depending on the type of connection, sexual contact frequency, and transmis-
sion likelihood per sexual contact [110]. However, a significantly varied pattern of
the dynamics of sexual partnerships can result from differing presumptions about
the individual’s sexual behavior in different models. An SEIRS model used to an-
alyze the effect of screening deduced the value of ‘infection rate’ β to be between
1.3 and 3.9 per person per year by adapting disease-specific parameters within
the previously utilized range. Their data analysis indicated that the trend of infec-
tion is mainly represented by a natural clearance rate of 0.84 per year [121]. A
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deterministic compartmental model constructed to qualitatively analyze the inter-
relationships between HIV and HSV-2 gives the range of baseline reactivation rate
of latent HSV-2 to be 0.339 - 0.436, and the baseline rate of acute HSV-2 becom-
ing latent as 2.083 - 2.678 [176]. With disease-specific parameter values obtained
as above, we have ρ = 2.083, σ = 0.436, r = 0.07, and µ = 0.00128 (the time unit is
months). We then perform numerical simulations to adjust the transmission rates
in our model, in order to obtain the same baseline reproduction number for both
diseases. The base value for the reproduction number of HSV is calculated to be
1.79 [177], whereas it is estimated to be 1.07 for C.trachomatis [121]. With the
disease-specific parameter values above, for these reproduction numbers, we ob-
tain the transmission rates as β = 0.0763, and β̂ = 0.0132, moreover RCH = 1.06

follows.

HSV present (22.661%) HSV Absent
Active Chlamydia 10.629% 13.791%
Persistent Chlamydia 0.529% 0.161%
Total 11% 14%

Table 4.2: Frequency of C.trachomatis in the presence or absence of HSV

We estimated the disease prevalence obtained via themodel simulation (Table 4.2)
and, the results obtained had high correspondence with the disease prevalence
in the incarcerated population [178]. The model simulation showed 22.621% HSV
prevalence as compared to 22.4% obtained in the article, whereas the model pre-
dicted 10.103% prevalence for C. trachomatis against (1.02% - 6.7%) according
to the paper. It is important to note that a relatively high percentage of C. tra-
chomatis are asymptomatic in nature. It is observed that approximately 70% of
infections with C. trachomatis run an asymptomatic course that remains unde-
tected. The difference in the estimation for the C. trachomatis can be justified
by this fact [179]. We also calculated the fraction of persistently C. trachoma-
tis infected population in the presence of HSV and found it is around 5% of the
C. trachomatis population. A study carried out to examine the use-efficacy of
various drug therapies for preventing C. trachomatis persistence or recurrence in-
fection in women recorded (9/165) cases of Persistent/Recurrent C. trachomatis
cases which is approximately 5.455% [180]. The model predicts that when HSV
is prevalent in the population, there is a slightly lower prevalence of C. trachoma-
tis than it would be otherwise, but among the infected, a higher percentage of
individuals have persistent C. trachomatis infection (0.529 %) compared to when
HSV is absent (0.161%). With the given parameter values and the reproduction
numbers, the second column of the disease prevalence table (Table 4.2) corre-
sponds to the scenario depicted in the first quadrant of the bifurcation diagram
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(4.7) with RCH > 1. This is the situation where both the disease are prevalent in
the population, and there exists an endemic equilibrium. On the other hand, if the
reproduction number of HSV is reduced below 1, then HSV is no longer prevalent,
as depicted in the third column of the disease prevalence table (Table 4.2). The
dynamics of the population is then shifted to the second quadrant of the bifurca-
tion diagram (4.7). In this case, RCH > 1 is no longer accountable, and only C.
trachomatis is prevalent in the population.

4.10 Discussion

In this Chapter, we have established and analyzed a six-compartment model de-
scribingC. trachomatis-HSV co-infection. Themodel introduced describes a novel
approach to defining infection dynamics owing to the one-of-a-kind relationship
between two cohabiting pathogens. The occurrence of co-infection has been ob-
served to bemore common, however the interrelationship betweenC. trachomatis
and HSV gives us this unique opportunity to mathematically study a new dynamic
model. We derive important threshold parameters that determine the conditions
under which C. trachomatis can remain either active in the population or in a per-
sistent phase in infected individuals.

The analysis of the C. trachomatis and HSV subsystems (when only one of the
diseases is present) show that when the respective basic reproduction numbers
are less than 1, then the disease free equilibrium points are globally asymptotically
stable, and unstable when greater than 1. The endemic equilibrium points in both
cases exist provided the reproduction numbers are greater than 1, and are globally
asymptotically stable.

To understand the dynamics of the full co-infection system, when both pathogens
are in circulation, we identify two new reproduction numbers, in addition to the C.
trachomatis and HSV reproduction numbers calculated at the disease free equilib-
rium. These new threshold parameters determine whether a disease can invade
a population where the other disease is already established. The reproduction
number of HSV calculated at the C. trachomatis-endemic steady state is precisely
the reproduction number calculated at the disease free equilibrium, indicating that
the spread of HSV is not influenced by the presence of C. trachomatis in the sys-
tem. On the other hand, the C. trachomatis reproduction number calculated at
the HSV-endemic steady state is smaller than the basic reproduction number of
C. trachomatis at the disease free equilibrium, meaning that for chlamydia it is
more difficult to invade a population that has HSV.
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”Persistence” in association with Chlamydia signifies a long term interrelation be-
tween the bacterium and their living host. Studies conducted in in vitro settings
mostly constitute the current knowledge regarding Chlamydia persistence, and
although such experiments have provided conclusive information, are accompa-
nied by their own limitations. Substantial evidence has been obtained via animal
experiments and epidemiological studies [181]. Experiments performed on mice
to study Chlamydia quiescence have shown that immunosuppressive therapy can
reactivate chronic Chlamydia infection, or can induce recurrence of unculturable
chlamydial infections in mice [182–185]. Results from these studies demonstrated
that persistent Chlamydiae were reactivated upon cortisone therapy that was ad-
ministered after clearance of a culture-positive infection. Another study concluded
that Persistent Chlamydia, also termed as aberrant RB were formed in C. muri-
darum infected mice after treatment with amoxicillin [186]. In vitro experiments
have corroborated that penicillin or high interferon concentrations treatment of
Chlamydia in culture inhibits binary fission and leads to the formation of abnormal
RBs [19, 187, 188]. Persistent Chlamydia forms have also been closely asso-
ciated with insensitivity towards antibiotics than normally developing organisms
and are a significant cause of treatment failures. In this form, Chlamydia remains
indiscernible by cell culture and may promote chronic Chlamydia infections in a
sub-clinical manner [27]. Studies indicate that chronic Chlamydial infections due
to persistence or recurrent infection are also linked with more hazardous health
conditions [189]. It is yet unknown whether aberrant Chlamydial RBs exist in
vivo and, if so, whether they contribute to persistent inflammation, fibrosis, and
scarring. This is despite the fact that all persistence-inducing circumstances are
capable of being there.

The divergence ofChlamydia from its normal growth is seemingly a stress-induced
response and the presence of numerous diversified factors in actual cases of
Chlamydia may further give rise to complications that can interrupt normal bio-
logical processes. In our current study, we have emphasized the appearance of
abnormally growing Chlamydiae as a consequence of HSV-induced physiological
trauma. We hypothesize that the process of persistent Chlamydial formation is re-
versed upon the HSV reneging its active form. Under the current setting, we have
defined situations corresponding to disease parameters under which Chlamydia
can either prevail in the population remain epidemiologically insignificant, or can
co-exist with HSV.

We characterized the situation when the emergence of HSV can driveChlamydiae
into extinction in a population. The most interesting, and probably most realistic
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case is when all reproduction numbers are greater than one and both pathogens
remain in circulation. Then, it is an important public health issue to assess the im-
pact of HSV on the overall disease burden caused by Chlamydia in the population,
given that while the presence of HSV reduces Chlamydia transmission in the pop-
ulation, the composition of cases shifted towards a higher fraction of individuals
having persistent Chlamydia infection.

It poses a fascinating case study, to compare and contrast the relative threats
the two situations represent for public health. It remains to be factually concluded
that the presence of active herpes can induce persistence in Chlamydiae in a
natural infection. If evidence of such a phenomenon could be documented in
in vivo, such discoveries could have profound implications in the epidemiologi-
cal trend, along with significant influence in the medical treatment of Chlamydiae
infection. Although conclusions obtained from animal studies are suggestive of
the likely occurrence of in vivo Chlamydia persistence [186], there are many ob-
scurities surrounding the characterization of persistence in human Chlamydial in-
fection. Furthermore, there exists no conventional method for the detection of
Chlamydial persistence and requires much more invasive sampling than in case
of acute Chlamydial infection [190]. Active Chlamydia or reactivation of persis-
tence Chlamydia while on one hand can facilitate transmission and/or aggravate
infection, it might increase antibiotic vulnerability. It is nevertheless a key medi-
cal research question if patients with Chlamydial persistence experience worse
outcomes than individuals who do not. This current study helped to shed light
on some intriguing topics about the circumstances surrounding co-infection of
Chlamydia and HSV, furthermore, it has elevated the significance of the central
query pertaining to the potential effects of chlamydial persistence.
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5 Optimal Control for
Maturity-Structured Systems
with an Application to
Chlamydia Treatment

5.1 Introduction

Experimental studies have demonstrated that the role of Th1 CD4 T cell-mediated
immune response is of primary importance in protective immunity, and is predom-
inant in host defense against Chlamydial infection [191, 192]. Humoral immunity
(anti-Chlamydia antibodies), although is able to neutralize infection in vitro, and
plays a significant role in the secondary memory response, however, may not be
substantial during initial infection [193]. The antibodies produced via humoral im-
munity help in the attachment blocking of the Chlamydia particles, but once the
infection is established, the cell-mediated immune response becomes critical for
the removal of Chlamydia [11]. Among the different cell types essential for immu-
nity against C. trachomatis, the CD4+ and CD8+ T lymphocytes play a significant
role, particularly through their secretion of interferon-γ (IFN-γ) [191]. IFN-γ has
been known to restrict Chlamydia infection, and high levels of IFN-γ can com-
pletely inhibit intracellular replication of Chlamydia [194].

Currently, there is no vaccine available for Chlamydia yet. The development of an
effective vaccine is considered of primary importance and has beenmuch invested
in by WHO. However, Chlamydia infection can be efficiently treated and cured
with antibiotics if effectively diagnosed. The most common treatment regimen is
a single 1g oral dose of azithromycin or 7 days of doxycycline [26]. The effects of
these antimicrobial agents are purely bacteriostatic, meaning they can only inhibit
the growth of bacteria [27].

While larger cost is a concern for single-dose therapy which is estimated to be four
to twelve times more expensive than multi-dose therapy, the multi-dose regimen
on the other hand is associated with non-compliance of drug therapy. As a result,
there are significant trade-offs between public and private prevention programs’
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use-effectiveness of various regimens, which depends on both efficacy and com-
pliance [180]. Moreover, it has been suggested that antibiotic therapy may not
be as effective for chronic conditions. The inhibitory effects of IFN-γ on bacterial
development are mediated by the inducement of indoleamine 2,3-dioxygenase
(IDO), an enzyme implicated in L-tryptophan metabolism. L-tryptophan is an es-
sential amino acid required for the biosynthesis of proteins, which humans de-
rive solely from food nourishment [195]. IDO-mediated tryptophan deprivation
appears to be the main innate immunological mechanism limiting C. trachomatis
development in human cells [196]. IDO stimulates the process of reducing the con-
centration of L-tryptophan intracellular pools, a mechanism that leads to the forma-
tion of persistent Chlamydia due to starvation of the necessary amino acids [40,
158]. The organism then transforms into an abnormal nondividing persistent form
in response to limited cellular tryptophan concentrations [158], which can be ex-
tremely effectively reactivated, leading to the bacteria resuming its normal life cy-
cle once the persistence-inducing stimulus is removed [188]. Recently, there has
been an expanding attraction in research regarding therapeutically targeting the
catalyzing agents such as IDO1, IDO2, and tryptophan-2,3-dioxygenase (TDO),
that has been sparked by the association of imbalances in tryptophan metabolism
with disorders including cancer and neurodegenerative disease [195]. The ab-
sence of regulatory mechanisms that maintain immunological homeostasis is di-
rectly connected with allergic diseases, unresolved infections, and inflammation
[197]. In vitro experiments conducted to study the mechanism involved in the
process of persistent Chlamydia formation due to IFN-γ and its reversal, have
shown that the addition of 1-levo-methyl tryptophan (1-L-MT) (at times referred
to as levo-1-methyl tryptophan (L-1MT)) can defer IFN-γ stimulated tryptophan
depletion, causing hindrance to the production of persistent Chlamydia. They fur-
ther concluded that L-1MT considerably increased doxycycline’s effectiveness in
eradicating persistent C.trachomatis forms [198]. Laboratory studies have shown
that commercially produced L-1MT can adequately supply tryptophan, counter-
balancing its deficit mediated by IDO. Additionally, they demonstrate that 1-L-MT
can restore IDO’s immunoregulatory actions [199]. These pieces of evidence are
highly suggestive of the fact that a therapy that is a combination of tryptophan
and antibiotic can promote a better and more successful treatment for persistent
chronic Chlamydia infections.

We have developed a compartmental maturity structured in-host model for intra-
cellular development of Chlamydia taking into account its interactions with the
immune system based on an earlier model developed by Wilson et al. [11], at
the same time extending the model from several points of view. The basic model
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describing the intracellular development cycle of Chlamydia is constructed as fol-
lows. C(t) denotes the concentration of extracellular Chlamydia EBs in the sys-
tem; I1(t), the concentration of host cells infected with Chlamydia particles; I2(t),
the concentration of infected cells with Chlamydia EBs transforming to RBs; P (t),
the concentration of cells infected with persistent Chlamydia; A(t), the concentra-
tion of IFN-γ cells produced by the cell-mediated immune response (assumed to
be produced at a rate proportional to the number of newly infected epithelial cells
I1(t) [102]).

We denote by ρ(r, t) the concentration of host cells at time t that entirely contain
replicating RBs, at the stage of maturity r ∈ [r1, r2] over the replicating phase.
i(r, t) denotes the concentration of host cells that contain RBs converting to EBs
structured with respect to the maturity level r, where r ∈ [r2, r3]. The parameter
r denotes an age parameter tracking the maturity of the infected cell through the
process, which can be associated with the maturity of theChlamydia development
in its internal inclusion. For the sake of simplicity, we rescale the maturity struc-
tured compartments such that r ∈ [0, 1]. For r > 0, ρ(r, t) consists entirely of host
cells that include replicating RBs, whereas ρ(0, t) comprises host cells that consist
entirely of EBs that have transformed into RBs and are at the initial stage of repli-
cation. For the i compartment, when r > 0, i(r, t) consists entirely of host cells
that contain RBs transforming back to EBs, whereas i(0, t) comprises host cells
that consist of RBs that are at the final stage of replication. The rates of transition,
kρ, of replicating RBs, and ki, of RBs converting to EBs, throughout the replicat-
ing phase are positive L1-function of r. Let Tρ be the duration of the replication,
and Ti be the duration for transformation from RBs to EBs. Based on the known
description of the lytic cycle, Tρ = 6 hours and Ti = 16 hours. Then

∫ 1

0
1

kρ(s)
ds = 6.

Assuming that kρ is a constant function, it implies that kρ = 1/6. similarly, we have∫ 1

0
1

ki(s)
ds = 16, which implies ki = 1/16, when ki is a constant function.

The development of a mathematical model to investigate the optimal control for
persistent Chlamydia infection in the presence of cell-mediated immune response
derives its motivation from an earlier model presented by Akinlotan et al. [8]. We
apply Pontryagin’s maximum principle to determine the conditions for the most ef-
fective control to minimize systemic costs of the treatments/drugs, simultaneously
minimizing the concentrations of extracellular EBs, infected host cells, and persis-
tently infected cells present at treatment cessation. For effective control of the dis-
ease and to ensure optimum clearance, a treatment/control measure that reduces
the number of Chlamydia infected cells with IFN-γ-induced persistent within, and
also limits the production of infectious EBs is advocated. Persistent Chlamydia
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Figure 5.1: Schematic diagram for the C. trachomatis intracellular growth model
with control.

can be reactivated with tryptophan replenishment which would further facilitate
clearance by antimicrobial agents and the immune system. Levo-1-methyl trypto-
phan (L-1MT) supplement can inhibit the IFN-γ-induced persistent in Chlamydia
whilst also reducing its resistance to antibiotic treatment, in addition, it also re-
duces the number of infectious EBs released upon the lysis of the infected cell.

The time-dependent control variable u1(t) is considered in order to reflect the effect
of antibiotic treatment such as azithromycin and doxycycline. The bacteriostatic
activity of antibodies inhibits the intracellular growth of Chlamydia by preventing
their protein synthesis, consequently facilitating the reduction in the number of
Chlamydia EBs produced at the end of the lytic cycle. u2(t) is a measure of the
tryptophan-L-1MT concentration that prevents the formation of persistent Chlamy-
dia formed due to IFN-γ cells and at the same time, aids in the persistent Chlamy-
dia retaining its active form by reversing the process.

Using these definitions and assumptions, we construct the system of equations
describing a maturity structure forChlamydiawith control, along with the boundary
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Parameters Descriptions Values
N Average number of EBs released upon bursting 200− 500 [11]
β Rate of attachment of Chlamydia particles into

healthy epithelial cells
2h−1 [11]

µH Humoral immunity induced death rate of extracel-
lular EBs

0.08h−1 [11]

µT Tryptophan-induced reduction in EB production 0.04h−1 [8]
ω Production rate of IFN-γ cells 0.001h−1 [102]
µA Natural death rate of IFN-γ cells 0.1h−1 [102]
δ Natural death rate of P 0.1h−1

α1 Rate of progression from I1 to I2 0.125h−1 [11]
α2 Rate of progression from I2 to the beginning of ρ 0.1h−1 [11]
η Fraction of IFN-γ induced persistence 0 ⩽ η ⩽ 1
θ Effect of attachment blocking due to humoral im-

mune response
0 ⩽ θ ⩽ 1

ζ Rate of disintegration of Chlamydia infected cells
by IFN-γ cell

[0.05, 5]h−1 [102]

m1 Maximum dosage of control u1(t) 0.9 [8]
m2 Maximum dosage of control u2(t) 0.9 [8]
ξ Rate at which Tryp. reverses persistence 0.6h−1 [8]
Tρ Length of maturation of ρ 10h[11]
Ti Length of maturation of i 32h[11]

Table 5.1: Parameters and their Descriptions

conditions as follows:

Ċ(t) = (1− u1(t))Nki(1)i(1, t)− βC(t)− µCC(t),

Ȧ(t) = ωI1(t)− µAA(t),

İ1(t) = (1− θ)βC(t)− α1I1(t),

İ2(t) = α1I1(t)− α2I2(t)− ζA(t)I2(t),

ρ(0, t) = α2I2(t),

∂ρ(r, t)

∂t
= −∂ (kρ(r)ρ(r, t))

∂r
− ζA(t)ρ(r, t),

Ṗ (t) = (1− u2(t))ηkρ(1)ρ(1, t)− ξu2(t)P (t)− δP (t),

i(0, t) = (1− η)kρ(1)ρ(1, t) + ξu2(t)P (t),

∂i(r, t)

∂t
= −∂ (ki(r)i(r, t))

∂r
− ζA(t)i(r, t),

(5A)

where r ∈ [0, 1], t ∈ [0, T ]. At the end of the maturity cycle, each infected cell
releases N Chlamydia particles upon cell lysis. The death rate of the free ex-
tracellular Chlamydia particles is denoted by µC = µH + µT , where µH denotes
the action of the humoral immunity, and µT is the removal rate due to effect of the
tryptophan-L-1MT cocktail. It is to be noted that µT > 0 only if u2 > 0, thereby facil-
itating the abatement of EB production upon lysis. The rate of production of IFN-γ
cells (A(t)) is denoted by ω and µA denotes the rate at which they disintegrate.
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The constant rates of progression through various stages of the development cy-
cle are given by αi’s, (i = 1, 2). The parameter θ ∈ [0, 1] indicates the effect of
blocking Chlamydia attachment to the host cells due to antibodies, where θ = 1

indicates complete blockage. The rate of clearance of infected cells due to cell-
mediated immune response is denoted by ζ. The fraction of infected cells induced
into persistence from ρ(1) due to IFN-γ cells is indicated by η ∈ [0, 1], whereas δ

denotes their natural death rate. The rate of reversal of the persistent intracellular
Chlamydia due to tryptophan supplement is denoted by ξ.

Initially, we assume that there is a small inoculum of EBs, of concentration C0 > 0

introduced into the system at time t = 0. It is also assumed that there are no cells
infected with Chlamydia. Hence, the initial conditions are

C(0) = C0,

A(0) = 0, I1(0) = I2(0) = I3(0) = P (0) = I4(0) = 0,

ρ(r, 0) = i(r, 0) = 0.

(5B)

The results of the standard form of Pontryagin’s maximal principle for ODEs are
not suitable for the system we consider, hence in the following section, we con-
struct an optimal control problem for a general maturity compartmental model.

5.2 Formulation of the Optimal Control Problem

Optimal control problem also referred to as dynamic optimization is a very effi-
cient mathematical tool applied in a wide variety of natural and applied sciences.
It has tremendous application in mathematical models of epidemic diseases, as
such dynamical systems may involve elements or variables that can be externally
controlled [200]. As such, the optimal control problem has been used to estimate
optimal therapeutic intervention strategies for many epidemic models [201–204].
The theory for optimal control problems for age-structured systems finds its sig-
nificance in its applicability in diverse fields of sciences such as harvesting [205],
birth control of population [206], vaccination strategies [207], and in a wide range
of investment economic and technology adoption models [208–210], COVID-19
[211]. More general age-structured models have been considered in [212–216],
with applications in harvesting and population dynamics [214], capital accumula-
tion and epidemics [215] etc. We consider a fairly general mixed system described
by a continuous maturity structure.

Throughout this chapter, we assume that T > 0, m,n, p ∈ N are constants, and
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U is a nonempty, compact subset of Rp. Our aim is to minimize the function J :

L1([0, T ], U) → R,

J(u) =F

(
x(T ),

∫ 1

0

WF (r)y(r, T )dr, u(T )

)
+

∫ T

0

G

(
t, x(t),

∫ 1

0

WG(r, t)y(r, t)dr, u(t)

)
dt

(5.1)

such that (x, y) is the (weak) solution of the system

ẋ(t) = f

(
t, x(t),

∫ 1

0

Wf (r, t)y(r, t)dr, y(1, t), u(t)

)
, (5.2)

y(0, t) = g

(
t, x(t),

∫ 1

0

Wg(r, t)y(r, t)dr, y(1, t), u(t)

)
, (5.3)

∂y(r, t)

∂t
= −∂(K(r)y(r, t))

∂r
+ h

(
r, t, x(t), y(r, t),

∫ 1

0

Wh(s, r, t)y(s, t)ds, u(t)

)
,

(5.4)

with initial condition

x(0) = x0, x0 ∈ Rm (5.5)

y(r, 0) = y0(r), y0(r) ∈ Rn, 0 ≤ r ≤ 1. (5.6)

Here, xi(t) denotes the number of individuals in the ith compartment which appear
without maturity structure, i = 1, . . . ,m, yj(r, t) denotes the density of the popula-
tion in the jth compartment with individuals at maturity r ∈ [0, 1] at time t ∈ [0, T ],
j = 1, . . . , n. The term WG(r, t) captures the time-varying importance or weight
of cost associated with a particular variable or state y(r, t) in this case. This time-
dependent weighting allows one to model situations where certain aspects of the
system become more or less important over time. We assume that the following
hypotheses hold.

(H1) The weight functions are matrix-valued L∞-functions, i.e.,

WF ∈ L∞([0, 1],RdF×n), WG ∈ L∞([0, 1]× [0, T ],RdG×n),

Wf ∈ L∞([0, 1]× [0, T ],Rdf×n), Wg ∈ L∞([0, 1]× [0, T ],Rdg×n),

Wh ∈ L∞([0, 1]2 × [0, T ],Rdh×n),

74 Biomathematics of Chlamydia



and the dimensions dF , dG, df , dg, dh ∈ N are fixed.

(H2) The functions

F : [0,∞)m × RdF × U → R,

G : [0, T ]× [0,∞)m × RdG × U → R,

f : [0, T ]× [0,∞)m × Rdf × [0,∞)n × U → Rm,

g : [0, T ]× [0,∞)m × Rdg × [0,∞)n × U → Rn,

h : [0, 1]× [0, T ]× [0,∞)m × [0,∞)n × Rdh × U → Rn

are continuous, F and G continuously differentiable in their last three argu-
ments, f , g, and h are continuously differentiable in their last four arguments.

(H3) The matrix-valued functionK is diagonal with positive, bounded, continuous
maturity rates on its diagonal, i.e.,

K = diag(k1, . . . kn),

where k1, . . . , kn ∈ C([0, 1], [k∗, k
∗]), 0 < k∗ ≤ k∗ < ∞.

(H4) The initial values are

x0 ∈ [0,∞)m,

y0 ∈ L1([0, 1], [0,∞)n).

The problem is formulated using L1 spaces, but it can be modified to arbitrary Lq

spaces for q ∈ [1,∞]. Moreover, the systems introduced in [203, 213–216] can
be considered as special cases of the system (5.1)–(5.6) introduced here.

There are several contributions to finding optimal control models in Banach spaces
[217–220]. However, due to the complex nature of the model and the non-linearity
of the boundary condition (5.3), the optimal control results obtained in the cited
papers are not applicable.

In the following section, we prove the existence of a unique nonnegative solu-
tion of system (5.2)–(5.6) for a given control under further hypotheses. Section
5.4 contains the Pontryagin maximum principle for optimal control of the maturity
structured model (5.1)–(5.6).
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5.3 Existence and Uniqueness for a Given Control

In the sequel, the abbreviations

F̃ (T ) = F

(
x(T ),

∫ 1

0

WF (r)y(r, T )dr, u(T )

)
,

G̃(t) = G

(
t, x(t),

∫ 1

0

WG(r, t)y(r, t)dr, u(t)

)
,

f̃(t) = f

(
t, x(t),

∫ 1

0

Wf (r, t)y(r, t)dr, y(1, t), u(t)

)
,

g̃(t) = g

(
t, x(t),

∫ 1

0

Wg(r, t)y(r, t)dr, y(1, t), u(t)

)
,

h̃(r, t) = h

(
r, t, x(t), y(r, t),

∫ 1

0

Wh(s, r, t)y(s, t)ds, u(t)

)
,

are used, for r ∈ [0, 1], t ∈ [0, T ].

We call L1([0, T ], U) the set of admissible controls. The vector spaces Rl, l ∈ N
are endowed with the 1-norm defined by

|x|1 =
l∑

i=1

|xi|, x ∈ Rl.

The system (5.2)–(5.6) is considered on the phase space

X = Rm × L1([0, 1],Rn)

with norm

∥(x, y)∥X = |x|1 + ∥y∥L1 = |x|1 +
∫ 1

0

|y(r)|1dr =
m∑
i=1

|xi|+
∫ 1

0

n∑
j=1

|yj(r)|dr.

The choice of the phase space X is natural as the norm defined above describes
the total number of entities in the system. Next, we define the space containing
the solutions of system (5.2)–(5.6) as

W =

{
(x, y) ∈ L1([0, T ], X) : ẋ ∈ L1([0, T ],Rm),

∂y

∂t
+

∂(Ky)

∂r
∈ L1([0, 1]× [0, T ],Rn)

}
.

Note thatL1([0, T ], X) ∼= L1([0, T ],Rm)×L1([0, 1]×[0, T ],Rn), andwewrite y(t)(r) =
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y(r, t) if (x, y) ∈ L1([0, T ], X), r ∈ [0, 1], t ∈ [0, T ].

For a given control u ∈ L1([0, T ], U), pair (x, y) ∈ W is called a weak solution [213]
of system (5.2)–(5.6) if and only if∫ T

0

(〈
ẋ(t)− f̃(t), λ(t)

〉
+ ⟨K(0)(y(0, t)− g̃(t)), µ(0, t)⟩

+

∫ 1

0

〈
∂y(r, t)

∂t
+

∂(K(r)y(r, t))

∂r
− h̃(r, t), µ(r, t)

〉
dr

)
dt

+ ⟨x(0)− x0, λ(0)⟩+
∫ 1

0

⟨y(r, 0)− y0(r), µ(r, 0)⟩ dr

= 0

(5.7)

for all λ ∈ L∞([0, T ],Rm), µ ∈ L∞([0, 1] × [0, T ],Rn), where ⟨·, ·⟩ denotes the eu-
clidean inner product. In this paper, solutions are only considered in this weak
sense, so we neglect the attributive ”weak”.

Proposition 5.3.1. Assume that (H1)–(H4) holds and u ∈ L1([0, T ], U). The sys-
tem of equations (5.2)–(5.6) can be written as

x(t) = x0 +

∫ t

0

f̃(θ)dθ, (5.8)

yj(r, t) =
kj(0)

kj(r)
g̃j

(
t−
∫ 1

0

1

kj(s)
ds

)
+

1

kj(r)

∫ 1

0

h̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds, (5.9)

if t−
∫ 1

0
1

kj(s)
ds ≥ 0, and

yj(r, t) =
kj(r̃j(r, t))

kj(r)
y0 (r̃j(r, t)) +

1

kj(r)

∫ r

r̃j(r,t)

h̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds (5.10)

where

t−
∫ r

r̃j(r,t)

1

kj(s)
ds = 0, (5.11)

if t −
∫ 1

0
1

kj(s)
ds < 0, r ∈ [0, 1], t ∈ [0, T ], j = 1, . . . , n. If a pair of functions

(x, y) ∈ L1([0, T ], X) satisfy (5.8)–(5.11) then it is a solution of system (5.2)–(5.6).

Proof. (5.8) follows from a simple integration. (5.4) can be written coordinatewise
as

∂yj(r, t)

∂t
= −∂(kj(r) yj(r, t))

∂r
+ h̃j(r, t), j = 1, . . . , n. (5.12)
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As kj(r) > 0 for all r ∈ [0, 1], (5.12) can be transformed to

1

kj(r)

∂yj(r, t)

∂t
+

∂yj(r, t)

∂r
= −k′

j(r)
yj(r, t)

kj(r)
+

h̃j(r, t)

kj(r)
. (5.13)

We apply the method of characteristics, our aim is to find a curve parametrized
by t = tj(r) where (5.13) can be reduced to the following system of ordinary
differential equations.

dt(r)

dr
=

1

kj(r)
,

d

dr
yj(r, t(r)) = −k′

j(r)
yj(r, t(r))

kj(r)
+

h̃j(r, t(r))

kj(r)
.

Integrating these equations from some r0 ∈ [0, r) to r, we get

t = t(r0) +

∫ r

r0

1

kj(s)
ds (5.14)

and

yj(r, t(r)) =
kj(r0)

kj(r)
yj(r0, t(r0)) +

1

kj(r)

∫ r

r0

h̃j(s, t(s)) ds (5.15)

Expressing t(r0) from (5.14) and substituting it into (5.15), we obtain

yj(r, t) =
kj(r0)

kj(r)
yj

(
r0, t−

∫ r

r0

1

kj(s)
ds

)
+

1

kj(r)

∫ r

r0

h̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds.

There are two cases depending on the sign of t0 = t−
∫ 1

0
1

kj(s)
ds:

• If t0 ≥ 0 then

yj(r, t) =
kj(0)

kj(r)
yj

(
0, t−

∫ 1

0

1

kj(s)
ds

)
+

1

kj(r)

∫ 1

0

h̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds.

Using equation (5.3), this can be written as

yj(r, t) =
kj(0)

kj(r)
g

(
t−
∫ 1

0

1

kj(s)
ds

)
+

1

kj(r)

∫ 1

0

h̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds.
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• If t0 < 0 then let r̃j(r, t) ∈ [0, r) be the unique solution of (5.11), and we have

yj(r, t) =
kj(r̃j(r, t))

kj(r)
y0 (r̃j(r, t)) +

1

kj(r)

∫ r

r̃j(r,t)

h̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds.

Summarizing these cases, we obtain (5.9)–(5.11). By a straightforward calcula-
tion, one can see that a solution (x, y) of (5.8)–(5.11) is inW and satisfies (5.7) as
well. Hence, the proof is complete.

Proposition 5.3.2. Assume that (H1)–(H4) hold, (x, y) is a solution of system
(5.2)–(5.6) for some u ∈ L1([0, T ], U) and the following hypothesis holds as well.

(H5) There exist integrable functions

ai : [0, T ]× Rm × Rdf × Rn × U → [0,∞),

bj : [0, 1]× [0, T ]× Rm × Rn × Rdh × U → [0,∞)

such that

f̃i(t, x, z, y, u) ≥ −ai(t, x, z, y, u)xi,

g̃j(t, x, z, y, u) ≥ 0,

h̃j(r, t, x, y, z, u) ≥ −bj(r, t, x, y, z, u)yj

hold for all x ∈ [0,∞)m, y ∈ [0,∞)n, z ∈ R, r ∈ [0, 1], t ∈ [0, T ], i = 1, . . . ,m,
j = 1, . . . , n.

Then the solution is nonnegative, i.e. xi(t) ≥ 0 and yj(r, t) ≥ 0 for all r ∈ [0, 1],
t ∈ [0, T ], i = 1, . . . ,m, j = 1, . . . n.

Proof. By Proposition 5.3.1 and (H5),

xi(t) ≥ (x0)i −
∫ t

0

ãi(θ)xi(θ)dθ,

for t ∈ [0, T ], i = 1, . . . ,m, where

ãi(t) = ai

(
t, x(t),

∫ 1

0

Wf (r, t)y(r, t)dr, y(1, t), u(t)

)
.

Applying Grönwall’s inequality we conclude

xi(t) ≥ (x0)i exp
(
−
∫ t

0

ãi(θ)dθ

)
≥ 0, t ∈ [0, T ].
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A similar argument applies for y along the characteristic curves. In the case when
t−
∫ 1

0
1

kj(s)
ds ≥ 0, we have

yj(r, t) ≥
kj(0)

kj(r)
g̃j(t0)−

1

kj(r)

∫ 1

0

b̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
yj

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds

≥ kj(0)

k∗ g̃j(t0)−
1

k∗

∫ 1

0

b̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
yj

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds

for r ∈ [0, 1], t ∈ [0, T ], j = 1, . . . n, where

b̃j(r, t) = bj

(
r, t, x(t), y(r, t),

∫ 1

0

Wh(s, r, t)y(s, t)ds, u(t)

)
.

By Grönwall’s inequality,

yj(r, t) ≥
kj(0)

k∗ g̃j(t0) exp
(
− 1

k∗

∫ 1

0

b̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds

)
≥ 0.

In the other case, when t−
∫ 1

0
1

kj(s)
ds < 0, we obtain

yj(r, t) ≥
kj(r̃j(r, t))

k∗ y0 (r̃j(r, t))

− 1

k∗

∫ r

r̃j(r,t)

b̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
yj

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds,

and analogously,

yj(r, t) ≥
kj(0)

k∗ y0(r̃j(r, t)) exp

(
− 1

k∗

∫ r

r̃j(r,t)

b̃j

(
s, t−

∫ r

s

1

kj(σ)
dσ

)
ds

)
≥ 0

for r ∈ [0, 1], t ∈ [0, T ].

Proposition 5.3.3. If (H3) holds, the function r̃j defined by (5.11) for r ∈ [0, 1],
t ∈ [0, t], t−

∫ 1

0
1

kj(s)
ds < 0 is continuously differentiable with

∂r̃j(r, t)

∂r
=

kj(r̃j(r, t))

kj(r)
∈
[
k∗
k∗ ,

k∗

k∗

]
,

∂r̃j(r, t)

∂t
= −kj(r̃j(r, t)) ∈ [−k∗,−k∗] .

(5.16)

Proof. By the implicit function theorem, differentiating (5.11), we obtain

− 1

kj(r)
+

1

kj(r̃j(r, t))

∂r̃j(r, t)

∂r
= 0, 1 +

1

kj(r̃j(r, t))

∂r̃j(r, t)

∂t
= 0,
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implying the statement.

1

(r,t)

T

0 1

(r,t)

T

0 r(r,t)~

Figure 5.2: The two cases in the definition of yj and the characteristic curves if
kj(r) = 1.25 + sin(5r), r ∈ [0, 1], 1 = 3, T = 3.5.

Proposition 5.3.4. Assume that (H1)–(H5) and the following hypothesis hold.

(H6) g is linearly bounded with its second, third, and fourth arguments, i.e. there
exists L ≥ 0 such that

|g(t, x, z, y, u)|1 ≤ L(|x|1 + |z|1 + |y|1)

for all t ∈ [0, T ], x ∈ Rm, y ∈ Rn, z ∈ Rdg , u ∈ U .

(H7) h is nonpositive, i.e. hj(r, t, x, y, z, u) ≤ 0 for all r ∈ [0, 1], t ∈ [0, T ], x ∈ Rm,
y ∈ Rn, z ∈ Rdh , u ∈ U , j = 1, . . . , n.

(H8) There exist nonnegative constants a and b, such that if (x, y) is a solution of
system (5.2)–(5.6) for some u ∈ L1([0, T ], U) then

d

dt
∥(x(t), y(·, t))∥X ≤ a∥(x(t), y(·, t))∥X + b|y(1, t)|1

Then there exist positive constants B1, B2, B3, B4 such that a solution (x, y) is
bounded by

∥(x(t), y(·, t))∥X ≤ B1∥(x0, y0)∥XeB2t and (5.17)∫ t

0

|y(1, θ)|dθ ≤ B3

∫ t

0

∥(x(θ), y(·, θ))∥Xdθ +B4∥y0∥L1 , (5.18)

for t ∈ [0, T ].
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Proof. By Proposition 5.3.2, the solution is nonnegative, we can neglect the abso-
lute value signs during the calculations. For t ∈ [0, 1/k∗], the characteristic curve
through (1, t) crosses [0, 1]× {0}, then, by (5.9), (5.16), and (H7),∫ t

0

|y(1, θ)|1dθ =

∫ t

0

n∑
j=1

yj(1, θ)dθ

≤ k∗

k∗

∫ t

0

n∑
j=1

(y0)j(r̃j(1, θ))dθ

≤ k∗

k2
∗

∫ 1

0

n∑
j=1

(y0)j(r)dr

=
k∗

k2
∗

∫ 1

0

|y0(r)|1 dr

≤ k∗

k2
∗
∥y0∥L1 .

(H6) implies that there exists a L̃ such that

g̃(t) ≤ L̃ (∥(x(t), y(·, t))∥X + |y(1, t)|1)

For N ∈ N, t ∈ [NR/k∗, (N + 1)1/k∗], the characteristic curve through (1, t) does
not cross {0} × [NR/k∗, (N + 1)1/k∗], then

∫ t

0

|y(1, θ)|1dθ ≤ k∗

k∗

∫ N 1
k∗

0

|g̃(θ)|1 dθ +
k∗

k2
∗

∫ 1

0

|y0(r)|1 dr

≤ k∗

k∗
L̃

∫ N 1
k∗

0

(∥(x(θ), y(·, θ))∥X + |y(1, θ)|1) dθ +
k∗

k2
∗
∥y0∥L1 .

By recursion,

∫ t

0

|y(1, θ)|1dθ ≤
N∑

M=1

(
k∗

k∗
L̃

)M ∫ M 1
k∗

0

∥(x(θ), y(·, θ))∥Xdθ

+
N∑

M=1

(
k∗

k∗
L̃

)M
k∗

k2
∗
∥y0∥L1

≤ B3

∫ t

0

∥(x(θ), y(·, θ))∥Xdθ +B4∥y0∥L1

for some positive constants B3, B4. Hence, by (H8),

∥(x(t), y(·, t))∥X ≤ ∥(x0, y0)∥X +

∫ t

0

(a∥(x(θ), y(·, θ))∥X + b|y(1, θ)|1 + c) dθ
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≤ B1∥(x0, y0)∥X +B2

∫ t

0

∥(x(θ), y(·, θ))∥Xdθ

for some positive constants B1, B2. Applying Grönwall’s inequality, we conclude
the statement.

Theorem 5.3.5. Assume that the hypotheses (H1)–(H5), (H7), (H8) and the fol-
lowing ones hold.

(H6’) g is linear, i.e. there exist bounded functions α : [0, T ] × U → Rn×m, β :

[0, T ]× U → Rn×dg , γ : [0, T ]× U → Rn×n such that

g

(
t, x,

∫ 1

0

Wg(r, t), y(r)dr, y(1), u

)
= α(t, u)x+ β(t, u)

∫ 1

0

Wg(r, t)y(r)dr + γ(t, u)y(1)

for all t ∈ [0, T ], u ∈ U , (x, y) ∈ X.

(H9) f(t, 0, 0, 0, u) = 0, h(r, t, 0, 0, 0, u) = 0 for all r ∈ [0, 1], t ∈ [0, T ], u ∈ U .

Then for a fixed control u ∈ L1([0, T ], U), there exists a nonnegative, unique solu-
tion (x, y) for system (5.2)–(5.6).

Proof. Fix u ∈ L1([0, T ], U), and define

A(t) : D(A(t)) → X, (A(t)(x, y))1 = 0, (A(t)(x, y))2(r) = −∂(K(r)y(r, t))

∂r

with domain

D(A(t)) =

{
(x, y) ∈ X, y(0) = α(t, u)x+ β(t, u)

∫ 1

0

Wg(r, t)y(r)dr + γ(t, u)y(1)

}
,

φ : [0, T ]×X → X, φ(t, z)1 = f̃(t), φ(t, z)(r)2 = h̃(r, t)

Then, denoting z(t) = (x(t), y(·, t)), z0 = (x0, y0) we can write system (5.2)–(5.6)
in the following inhomogeneous abstract equation

ż(t) = A(t)z(t) + φ(t, z) (5.19)

with initial value

z(0) = z0. (5.20)

In order to prove the existence and uniqueness of the solution of system (5.19)–
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(5.20), we consider the homogeneous equation

ż(t) = A(t)z(t) (5.21)

with initial condition (5.20). Using the original notation, this system can be written
as

ẋ(t) = 0 (5.22)
∂y(r, t)

∂t
= −∂(K(r)y(r, t))

∂r
(5.23)

with (5.5)–(5.6). The solution of this system has x-component x(t) = x0, t ∈ [0, T ].
For finding the y-component, we consider the Banach space

Y = {y ∈ L1([0, T1],Rn), y(·, 0) = y0}

with L1-norm, where T1 ∈ (0,max{T, 1/k∗}) is a constant to be determined later.

Let P : Y → Y , P (y) = ỹ, where

ỹj(r, t) =
kj(0)

kj(r)
gj

(
t−
∫ 1

0

1

kj(s)
ds

)

if t−
∫ 1

0
1

kj(s)
ds ≥ 0,

ỹj(r, t) =
kj(r̃j(r, t))

kj(r)
y0 (r̃j(r, t))

where r̃j(r, t) is defined by (5.11) if t −
∫ 1

0
1

kj(s)
ds < 0, r ∈ [0, 1], t ∈ [0, T ], j =

1, . . . , n.
Furthermore

gj

(
t−
∫ 1

0

1

kj(s)
ds

)
= g

(
t, x(t),

∫ 1

0

Wg(r, t)y(r, t)dr, y(t), u(t)

)
,

where
y(t) =

kj(r̃j(1, t))

kj(1)
y0 (r̃j(1, t)) .

Since

∥∥ỹ1 − ỹ2
∥∥
L1 =

∫ T1

0

n∑
j=1

∫ 1

0

∣∣ỹ1j (r, t)− ỹ2j (r, t)
∣∣ dr dt
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=

∫ T1

0

n∑
j=1

∫ 1

0

kj(0)

kj(r)

∣∣∣∣g1j (t− ∫ 1

0

1

kj(s)
ds

)
− g2j

(
t−
∫ 1

0

1

kj(s)
ds

)∣∣∣∣
1

dr dt

≤ k∗

k2
∗

∫ T1

0

n∑
j=1

∫ t

0

∣∣g1j(θ)− g2j(θ)
∣∣
1
dθ dt

=
k∗

k2
∗

∫ T1

0

∫ t

0

∣∣gj(θ)− gj(θ)
∣∣
1
dθ dt

≤ C

∫ T1

0

∫ t

0

∥∥y1(·, θ)− y2(·, θ)
∥∥
L1 dθ dt

≤ C
T 2
1

2

∥∥y1 − y2
∥∥
L1

for some positive constant C, P is a strict contraction if we choose T1 ∈ (0,
√

2/C).
Then by the Banach Fixed Point Theorem, it has a unique fixed point, that is the
unique solution of system (5.22), (5.23), (5.5), (5.6), and z = (x, y) is the unique
solution of system (5.21),(5.20). Using method of steps with step length T1, the
solution can be extended uniquely to [0, T ], that is, system (5.21), (5.20) is well-
posed.

Define the constant
D = B1∥(x0, y0)∥XeB2T

and the set

V = {(x, y) ∈ L1([0, T ], X) : ∥(x(t), y(t))∥X ≤ D, t ∈ [0, T ]}.

Since (H6’) implies (H6), by Proposition 5.3.4, the possible solutions z = (x, y) of
system (5.19), (5.20) have values in the bounded set V . Restricting the problem
to V , φ(t, ·)|V is uniformly Lipschitz continuous, and by (H9), φ(t, 0) = 0 for all t ∈
[0, T ]. Applying [221, Proposition 2], system (5.19), (5.20) has a unique solution,
that is nonnegative by Proposition 5.3.2.
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5.4 Optimal Control

We state the Pontryagin principle for the system (5.1)–(5.6):

Theorem 5.4.1. If u∗ ∈ L1([0, T ], U) is an optimum of the control problem (5.1)–
(5.6) with solution (x∗, y∗) ∈ W , then there exist a pair (λ, µ) ∈ L∞([0, T ],Rm) ×
L∞([0, 1]× [0, T ],Rn) satisfying

λ̇(t) = −D2G̃
T (t)−D2f̃

T (t)λ(t)−D2g̃
T (t)K(0)µ(0, t)

−
∫ 1

0

D3h̃
T (r, t)µ(r, t)dr,

K(1)µ(1, t) = D4f̃
T (t)λ(t) +D4g̃

T (t)K(0)µ(0, t),

∂µ(r, t)

∂t
= −K(r)

∂µ(r, t)

∂r
−W T

G (r, t)D3G̃
T (t)−W T

f (r, t)D3f̃
T (t)λ(t),

−W T
g (r, t)D3g̃

T (t)K(0)µ(0, t)−D4h̃
T (r, t)µ(r, t)

−
∫ 1

0

W T
h (r, s, t)D5h̃

T (r, t)µ(s, t)ds,

λ(T ) = D1F̃
T (T ),

µ(r, T ) = W T
F (r)D2F̃

T (T ).

(5.24)

for almost every r ∈ [0, 1], t ∈ [0, T ], i.e., the corresponding integral equations
hold. In this case, u∗ minimizes the Hamiltonian

H(t, x(t), y(r, t), u(t), λ(t), µ(r, t))

= G̃(t) +
〈
f̃(t), λ(t)

〉
+ ⟨K(0)g̃(t), µ(0, t)⟩+

∫ 1

0

〈
h̃(r, t), µ(r, t)

〉
dr

for almost every t ∈ [0, T ], i.e.

H(t, x∗(t), y∗(r, t), u∗(t), λ(t), µ(r, t))

= min
u∈U

H(t, x∗(t), y∗(r, t), u, λ(t), µ(r, t))
(5.25)

for almost every t ∈ [0, T ].

Note that by Di we denote the partial derivative of the function without tilde with
respect to the ith variable, i = 1, 2, 3, 4, 5, for example

D4f̃(t) = D4f

(
t, x(t),

∫ 1

0

Wf (r, t)y(r, t)dr, y(1, t), u(t)

)
.

Proof. Assume that u∗ is an optimum of the control problem (5.1)–(5.6) with so-
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lution (x∗, y∗). The Lagrangian of the constraint optimization problem to be mini-
mized is

L(x, y, u, λ, µ) = F̃ (t) +

∫ T

0

(
G̃(t)−

〈
ẋ(t)− f̃(t), λ(t)

〉
− ⟨K(0)(y(0, t)− g̃(t)), µ(0, t)⟩

−
∫ 1

0

〈
∂y(r, t)

∂t
+

∂(K(r)y(r, t))

∂r
− h̃(r, t), µ(r, t)

〉
dr

)
dt

− ⟨λ(0), x(0)− x0⟩ −
∫ 1

0

⟨y(r, 0)− y0(r), µ(r, 0)⟩ dr.

To find the adjoint system, we solve the equation

D(x,y,u)L(x, y, u, λ, µ) = 0

by applying this Fréchet derivative to arbitrary functions x ∈ L1([0, T ],Rm), y ∈
L1([0, 1]× [0, T ],Rn), u ∈ L1([0, T ], U). Denote

xε = x∗ + εx, yε = y∗ + εy, uε = u∗ + εu.

Then obviously

x =
d

dε
xε
∣∣
ε=0

, y =
d

dε
yε
∣∣
ε=0

, u =
d

dε
uε
∣∣
ε=0

.

We introduce the abbreviations

F̃ ε(T ) = F

(
xε(T ),

∫ 1

0

WF (r)y
ε(r, T )dr, uε(T )

)
,

G̃ε(t) = G

(
t, xε(t),

∫ 1

0

WG(r, t)y
ε(r, t)dr, uε(t)

)
,

f̃ ε(t) = f

(
t, xε(t),

∫ 1

0

Wf (r, t)y
ε(r, t)dr, yε(1, t), uε(t)

)
,

g̃ε(t) = g

(
t, xε(t),

∫ 1

0

Wg(r, t)y
ε(r, t)dr, yε(1, t), uε(t)

)
,

h̃ε(r, t) = h

(
t, r, xε(t), yε(r, t),

∫ 1

0

Wh(s, r, t)y
ε(s, t)uε(t)

)
.

Then the derivative is given by

D(x,y,u)L(x, y, u, λ, µ)(x, y, u) =
d

dε
L(xε, yε, uε, λ, µ)

∣∣
ε=0

= I1 + I2 + I3 + I4 + I5 + I6,
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where

I1 =
d

dε

(
F̃ ε(T ) +

∫ T

0

G̃ε(t)dt

) ∣∣∣∣
ε=0

= D1F̃ (T )x(T ) +D2F̃ (T )

∫ 1

0

WF (r)y(r, T )dr +D3F̃ (T )u(T )

+

∫ T

0

(
D2G̃(t)x(t) +D3G̃(t)

∫ 1

0

WG(r, t)y(r, t)dr +D4G̃(t)u(t)

)
dt

=
〈
x(T ), D1F̃

T (T )
〉
+

∫ 1

0

〈
y(r, T ),W T

F (r)D2F̃
T (T )

〉
dr +D3F̃ (T )u(T )

+

∫ T

0

(〈
x(t), D2G̃

T (t)
〉
+

∫ 1

0

〈
y(r, t),W T

G (r, t)D3G̃
T (t)

〉
dr +D4G̃(t)u(t)

)
dt,

I2 =
d

dε

(
−⟨xε(0)− x0, λ(0)⟩ −

∫ T

0

⟨ẋε(t), λ(t)⟩ dt
) ∣∣∣∣

ε=0

=
d

dε

(
⟨x0, λ(0)⟩ − ⟨xε(T ), λ(T )⟩+

∫ T

0

〈
xε(t), λ̇(t)

〉
dt

) ∣∣∣∣
ε=0

= ⟨x(T ),−λ(T )⟩+
∫ T

0

〈
x(t), λ̇(t)

〉
dt,

I3 =
d

dε

∫ T

0

〈
f̃ ε(t), λ(t)

〉
dt

∣∣∣∣
ε=0

=

∫ T

0

(〈
D2f̃(t)x(t), λ(t)

〉
+

〈
D3f̃(t)

∫ 1

0

Wf (r, t)y(r, t)dr, λ(t)

〉
+
〈
D4f̃(t)y(1, t), λ(t)

〉
+
〈
D5f̃(t)u(t), λ(t)

〉)
dt

=

∫ T

0

(〈
x(t), D2f̃

T (t)λ(t)
〉
+

∫ 1

0

〈
y(r, t),W T

f (r, t)D3f̃
T (t)λ(t)

〉
dr

+
〈
y(1, t), D4f̃

T (t)λ(t)
〉
+
〈
D5f̃(t)u(t), λ(t)

〉)
dt,

I4 =
d

dε

∫ T

0

(
− ⟨K(0) (yε(0, t)− g̃ε(t)) , µ(0, t)⟩

−
∫ 1

0

〈
∂(K(r)yε(r, t))

∂r
, µ(r, t)

〉
dr

)
dt

∣∣∣∣
ε=0

=
d

dε

∫ T

0

(
⟨K(0)g̃ε(t), µ(0, t)⟩ − ⟨K(1)yε(1, t), µ(1, t)⟩

+

∫ 1

0

〈
K(r)yε(r, t),

∂µ(r, t)

∂r

〉
dr

)
dt

∣∣∣∣
ε=0

=

∫ T

0

(〈
x(t), D2g̃

T (t)K(0)µ(0, t)
〉
+

∫ 1

0

⟨y(r, t),W T
g (r, t)D3g̃

T (t)K(0)µ(0, t)⟩dr

+
〈
y(1, t), D4g̃

T (t)K(0)µ(0, t)
〉
+ ⟨K(0)D5g̃(t)u(t), µ(0, t)⟩

+ ⟨y(1, t),−K(1)µ(1, t)⟩+
∫ 1

0

〈
y(r, t), K(r)

∂µ(r, t)

∂r

〉
dr

)
dt,
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I5 =
d

dε

(
−
∫ 1

0

⟨yε(r, 0)− y0(r), µ(r, 0)⟩ dr −
∫ T

0

∫ 1

0

〈
∂yε(r, t)

∂t
, µ(r, t)

〉
dr dt

) ∣∣∣∣
ε=0

=
d

dε

∫ 1

0

(
−⟨yε(r, 0)− y0(r), µ(r, 0)⟩ −

∫ T

0

〈
∂yε(r, t)

∂t
, µ(r, t)

〉
dt

)
dr

∣∣∣∣
ε=0

=

∫ 1

0

(
⟨y(r, T ),−µ(r, T )⟩+

∫ T

0

〈
y(r, t),

∂µ(r, t)

∂t

〉
dt

)
dr,

I6 =
d

dε

∫ T

0

∫ 1

0

〈
h̃ε(r, t), µ(r, t)

〉
dr dt

∣∣∣∣
ε=0

=

∫ T

0

∫ 1

0

(〈
D3h̃(r, t)x(t), µ(r, t)

〉
+
〈
D4h̃(r, t)y(r, t), µ(r, t)

〉
+

〈
D5h̃(r, t)

∫ 1

0

Wh(s, r, t)y(s, t)ds, µ(r, t)

〉
+
〈
D6h̃(r, t)u(t), µ(r, t)

〉)
dr dt

=

∫ T

0

(〈
x(t),

∫ 1

0

D3h̃
T (r, t)µ(r, t)dr

〉
+

∫ 1

0

(〈
y(r, t), D4h̃

T (r, t)µ(r, t)

+

∫ 1

0

W T
h (r, s, t)D5h̃

T (r, t)µ(s, t)ds

〉
+
〈
D6h̃(r, t)u(t), µ(r, t)

〉)
dr

)
dt.

Collecting the terms with x(t), y(1, t), y(r, t), x(T ), y(r, T ), u(T ) and u(t), the fol-
lowing is obtained

d

dε
L(xε, yε, uε, λ, µ)

∣∣
ε=0

=

∫ T

0

(〈
x(t), D2G̃

T (t) + λ̇(t) +D2f̃
T (t)λ(t)

+D2g̃
T (t)K(0)µ(0, t) +

∫ 1

0

D3h̃
T (r, t)µ(r, t)dr

〉
+

〈
y(1, t), D4f̃

T (t)λ(t)

+D4g̃
T (t)K(0)µ(0, t)−K(1)µ(1, t)

〉
+

∫ 1

0

〈
y(r, t),W T

G (r, t)D3G̃(t)

+W T
f (r, t)D3f̃

T (t)λ(t) +W T
g (r, t)D3g̃

T (t)K(0)µ(0, t) +K(r)
∂µ(r, t)

∂r
+

∂µ(r, t)

∂t

+D4h̃
T (r, t)µ(r, t) +

∫ 1

0

W T
h (r, s, t)D5h̃

T (r, t)µ(s, t)ds

〉
dr

)
dt

+
〈
x(T ), D1F̃

T (t)− λ(T )
〉
+

∫ 1

0

〈
y(r, T ),W T

F (r)D2F̃ (T )− µ(r, T )
〉
dr

+D3F̃ (T )u(T ) +

∫ T

0

(
D4G̃(t)u(t) +

〈
D5f̃(t)u(t), λ(t)

〉
+ ⟨K(0)D5g̃(t)u(t), µ(0, t)⟩

+

∫ 1

0

〈
D6h̃(r, t)u(t), µ(r, t)

〉
dr

)
dt.

Since the derivative of the Lagrangian with respect to εmust be zero for all triplets
(x, y, u), we obtain the adjoint system and the condition
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D3F̃ (T )u(T ) +

∫ T

0

(
D4G̃(t)u(t) +

〈
D5f̃(t)u(t), λ(t)

〉
+ ⟨K(0)D5g̃(t)u(t), µ(0, t)⟩+

∫ 1

0

〈
D6h̃(r, t)u(t), µ(r, t)

〉
dr

)
dt = 0.

This is the Fréchet derivative of F̃ (t) +
∫ T

0
H̃(t)dt with respect to u, applied to u.

Hence we obtain (5.25), the theorem holds.

The results obtained above are applicable to any maturity structured model that
is compatible with the general system we consider. In the next section, we apply
the results obtained in the previous section for obtaining the optimal treatment
strategy for Chlamydia infection. In our paper, another application can be found
that has been applied to a system describing stem cell maturation, where we aim
to obtain the optimal conditions for achieving the desired level of matured stem
cells in the system.

5.5 Optimal Treatment of Chlamydia

We recall our set of differential equations which is given by

Ċ(t) = (1− u1(t))Nki(1, t)− βC(t)− µCC(t),

Ȧ(t) = ωI1(t)− µAA(t),

İ1(t) = (1− θ)βC(t)− α1I1(t),

İ2(t) = α1I1(t)− α2I2(t)− ζA(t)I2(t),

ρ(0, t) = α2I2(t),

∂ρ(r, t)

∂t
= −∂ (kρ(r)ρ(r, t))

∂r
− ζA(t)ρ(r, t),

Ṗ (t) = (1− u2(t))ηkρ(1)ρ(1, t)− ξu2(t)P (t)− δP (t),

i(0, t) = (1− η)kρ(1)ρ(1, t) + ξu2(t)P (t),

∂i(r, t)

∂t
= −∂ (ki(r)i(r, t))

∂r
− ζA(t)i(r, t),

(5A)

with initial conditions

C(0) = C0, A(0) = 0, I1(0) = I2(0) = I3(0) = P (0) = I4(0) = 0, ρ(r, 0) = i(r, 0) = 0.

(5B)
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We consider an optimal control problem with the objective function given by

J(u) = W1C
2(T ) +W2I

2
1 (T ) +W3I

2
2 (T ) +W4P

2
2 (T )

+

(∫ 1

0

(W5(r)ρ(r, T ) +W6(r)i(r, T ))dr

)2

+

∫ T

0

(
W7C

2(t) +W8I
2
1 (t) +W9I

2
2 (t) +W10P

2
2 (t)

+

(∫ 1

0

(W11(r)ρ(r, t) +W12(r)i(r, t))dr

)2

+W13u
2
1(t) +W14u

2
2(t)

)
dt.

(5C)

In vector form, the system (5A)–(5C) can be written in the form (5.1)–(5.6) with

x = (C,A, I1, I2, P )T , y = (ρ, i)T .

The control u = (u1, u2)
T ∈ L1([0, T ], U), where U = [0,m1]× [0,m2] and m1,m2 ∈

(0, 1]. As the system (5A) does not contain integral terms, we have WF = 0, Wf =

0, Wg = 0, Wh = 0. The weights Wi, i = 1, 2, 3, . . . 14, are scale-related factors
that balance the trade-offs between the systemic treatment, the removal of the
infection, and the significance of the fourteen components of the cost functional.

In correspondence with the general system (5.1)–(5.6), the following functions are
obtained,

F̃ (T ) = W1C
2(T ) +W2I

2
1 (T ) +W3I

2
2 (T ) +W4P

2
2 (T )

+

(∫ 1

0

(W5(r)ρ(r, T ) +W6(r)i(r, T ))dr

)2

,

G̃(t) = W7C
2(t) +W8I

2
1 (t) +W9I

2
2 (t) +W10P

2
2 (t)

+

(∫ 1

0

(W11(r)ρ(r, t) +W12(r)i(r, t))dr

)2

+W13u
2
1(t) +W14u

2
2(t),

f̃(t) =


(1− u1(t))Nki(1, t)− βC(t)− µCC(t)

ωI1(t)− µAA(t)

(1− θ)βC(t)− α1I1(t)

α1I1(t)− α2I2(t)− ζA(t)I2(t)

(1− u2(t))ηkρ(1)ρ(1, t)− ξu2(t)P (t)− δP (t)


,
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g̃(t) =

(
α2I2(t)

(1− η)kρ(1)ρ(1, t) + ξu2(t)P (t)

)
,

h̃(r, t) =

(
−ζA(t)ρ(r, t)

−ζA(t)i(r, t)

)
,

K(r) =

(
kρ(r) 0

0 ki(r)

)
.

Hypotheses (H1)–(H6’), (H7), (H9) clearly hold, (H8) is verified by

Ċ + Ȧ+ İ1 + İ2 + Ṗ +

∫ 1

0

(
∂ρ(r, t)

∂t
+

∂i(r, t)

∂t

)
dr

= Ċ + Ȧ+ İ1 + İ2 + Ṗ

+

∫ 1

0

(
−∂(kρ(r)ρ(r, t))

∂r
− ζAρ(r, t)− ∂(ki(r)i(r, t))

∂r
− ζAi(r, t)

)
dr

= Ċ + Ȧ+ İ1 + İ2 + Ṗ − kρ(1)ρ(1, t) + kρ(0)ρ(0, t)

− ki(1)i(1, t) + ki(0)i(0, t)− ζA

∫ 1

0

(ρ(r, t) + i(r, t))dr

= Nk(1− u1)i(1, t)− θβC − µCC + ωI1 − α2I2

− µAA− ζAI2 + (1− u2)ηkρ(1)ρ(1, t)− ξu2P − δP − kρ(1)ρ(1, t) + kρ(0)α2I2

− ki(1)i(1, t) + ki(0)((1− η)kρ(1)ρ(1, t) + ξu2P )− ζA

∫ 1

0

(ρ(r, t) + i(r, t))dr

≤ Nki(1, t) + ωI1 + ηkρ(1)ρ(1, t) + kρ(0)α2I2 + ki(0)(kρ(1)ρ(1, t) + ξu2P ).

Hence, by Theorem 5.3.5, system (5A)–(5B) has a solution for any control (u1, u2) ∈
L1([0, T ], U). We introduce the following adjoint variables

λ =(λC , λA, λI1 , λI2 , λP )
T ,

µ =(µρ, µi)
T .

By Theorem 5.4.1, if the control is optimal then the following adjoint system holds:

λ̇C = −2W7C + (β + µc)λC − (1− θ)βλI1 ,

λ̇A = µAλA + ζI2λI2 + ζ

∫ 1

0

(ρ(r, t)µρ(r, t) + i(r, t)µi(r, t))dr,

λ̇I1 = −2W8I1 − ωλA + α1λI1 − α1λI2 ,

λ̇I2 = −2W9I2 + (α2 + ζA)λI2 − α2kρ(0)µρ(0, t),

λ̇P = −2W10 + (ξu2 + δ)λP − ξu2ki(0)µi(0, t)

(5.26)
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with boundary conditions

µρ(1, t) = (1− u2)ηλP + (1− η)kρ(0)µi(0, t),

µi(1, t) =
(1− u1)Nk

ki(1)
λC ,

(5.27)

partial differential equations

∂µρ(r, t)

∂t
= −kρ(r)

∂µρ(r, t)

∂r
− 2

∫ 1

0

(W11(r)ρ(r, t) +W12(r)i(r, t))drW11

+ ζAµρ(r, t),

∂µi(r, t)

∂t
= −ki(r)

∂µi(r, t)

∂r
− 2

∫ 1

0

(W11(r)ρ(r, t) +W12(r)i(r, t))drW12

+ ζAµi(r, t),

(5.28)

and the transversality conditions given by

λC(T ) = 2W1C(T ),

λA(T ) = 0,

λI1(T ) = 2W2I1(T ),

λI2(T ) = 2W3I2(T ),

λP (T ) = 2W4P (T ),

µρ(r, T ) = 2

∫ 1

0

(W5(r)ρ(r, T ) +W6(r)i(r, T ))drW5(r),

µi(r, T ) = 2

∫ 1

0

(W5(r)ρ(r, T ) +W6(r)i(r, T ))drW6(r).

(5.29)

As u minimizes the Hamiltonian

H(t, C,A, I1, I2, P, ρ, i, u1, u2, λC , λA, λI1 , λI2 , λP , µρ, µi)

= W7C
2W8I

2
1 +W9I

2
2 +W10P

2
2 +

(∫ 1

0

(W11ρ+W12i)dr

)2

+W13u
2
1 +W14u

2
2

+ λC((1− u1)Nki(1, t)− βC − µCC) + λA(ωI1 − µAA) + λI1((1− θ)βC − α1I1)

+ λI2(α1I1 − α2I2 − ζAI2) + λP ((1− u2)ηkρ(0)ρ(1, t)− ξu2P − δP )

+ kρ(0)α2I2µρ(0, t) + ki(0)((1− η)kρ(1)ρ(1, t) + ξu2P )µi(0, t)

− ζA

∫ 1

0

(ρµρ + iµi)dr

for all t ∈ [0, T ], we compute its partial derivatives as follows
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∂H

∂u1

= 2W13u1 − λCNki(1, t),

∂H

∂u2

= 2W14u2 − λPηkρ(0)ρ(1, t)− ξPλP + ξPki(0)µi(0, t),

and obtain the optimal control as

ul(t) = min{max{dl(t), 0},ml}, t ∈ [0, T ], l = 1, 2,

where

d1(t) =
λC(t)Nki(1, t)

2W13

,

d2(t) =
λP (t)ηkρ(0)ρ(1, t) + ξP (t)λP (t)− ξP (t)ki(0)µi(0, t)

2W14

.

5.6 Numerical Results

In this section, we present graphical illustrations of the model system (5A) cor-
responding to different scenarios. We demonstrate the numerical results for the
dynamics of intracellular bacterial growth with and without any therapy. For this
purpose, the system of equations (5A) is solved in the absence of any control
until time zero which is equivalent to the system with u1 = u2 = 0. The analysis
shows that the infection will persist in the absence of any therapeutic intervention,
in spite of the fact that the presence of the cell-mediated immune response trig-
gers an antimicrobial response. The simulation shows that each of the variables
remains at the endemic equilibrium. The objective is to obtain an optimal treat-
ment for chlamydia where the host is suffering from chronic chlamydia infection,
whereby the bacterial population has reached chronic equilibrium. The chlamydia
steady state is obtained by setting the right-hand side of the system of equations
(5A) to zero by allowing u1 ≡ u2 ≡ 0 that is in the absence of any control.

5.6.1 Optimal control

The optimal control strategy is numerically approximated by the forward-backward
sweep method (FBSM) [200, 222]: Starting with an initial guess, we integrate the
state equations (5A) forward in time (using Euler scheme for the state variables
corresponding to ODEs and the method of finite differences for those described
by PDEs) with initial condition (5B). Using the current approximating solution of
the state equations, the adjoint system (5.26)–(5.28) is integrated backward in
time by means of the transversality conditions (5.29). The guess for the optimal

94 Biomathematics of Chlamydia



control is obtained as the minimum of the Hamiltonian for every t ∈ [0, T ]. By
repeated iteration of the process, the optimal solution is attained as the limit of the
approximating solutions. The simulation is subject to various combinations of the
weight parameters Wi, i = 1, 2, 3, . . . 14, and the initial condition is considered to
be the equilibrium solutions of the system excluding the treatment.

This control strategy is to examine the application of the recommended treatment
as a combination of tryptophan supplement, L-1MT, and the bacteriostatic agent.
A supplementary cocktail of tryptophan and L-1MT is hypothesized to act as an
immunomodulating agent thereby facilitating the abatement in the number of EBs
produced upon lysis of infected epithelial cells [8]. The system (5A) is solved by
utilizing both the controls u1 and u2 to optimize the objective functional J defined
as in (5C), for different Wi, i = 1, 2, 3, . . . 14. The optimal control for this particular
treatment regimen suggests that the population of active Chlamydia particles, as
well as persistently infected cells, are eliminated at the end of the period of therapy.

We look for the outcome that optimizes the usage of both the treatment types
u1, which acts as a bacteriostatic agent on chlamydia, and u2 which stands for
tryptophan-L-1MT supplement, with respect to two distinctive scenarios: (i) when
the effect of the intermediate weights Wi, i = 7, 8, 9, 10, 11, 12 are accounted for,
and; (ii) when they are neglected. In both cases, we use identical values for
weights Wi, for i = 1, 2, . . . 6, which are values indicating the relative importance
of extracellular EBs and infected epithelial cells at the end of the treatment period
T , as well as identical values for weightsW13, andW14, which are values indicating
the relative costs for the antibiotic therapy, and the tryptophan and L-1MT cocktail
respectively.

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14

(a) 10 10 10 10 10 10 1 1 1 1 1 1 10 5
(b) 10 10 10 10 10 10 0 0 0 0 0 0 10 5

Table 5.2: Table of weights

In the initial scenario, we have allocated specific values to weights denoted asWi,
where i ranges from 7 to 12, to represent the relative significance of extracellular
EBs and infected epithelial cells throughout the duration of the treatment period.
These weight values have been set uniformly at 1 to maintain consistency and
standardize their respective importance. Furthermore, in this context, the weight
values designated for W13 and W14 have been assigned 10 and 5, respectively.
As depicted in Fig. 5.3b, Fig. 5.3c, and Fig. 5.5, in this case, with the values of
the weights as indicated in Table 5.2 (a), the optimal control problem predicts that
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Figure 5.3: Numerical simulation for the control problem with the bacteriostatic
agent and tryptophan-L-1MT supplementation for weights corresponding to Ta-
ble 5.2 (a): (a) solution sketch for controls u1(t) and u2(t); (b) time course plot
of state variables C(t), and A(t); and (c) time course plot of state variables I1(t),
I2(t), and P (t).
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Figure 5.4: Numerical simulation for the control problem with the bacteriostatic
agent and tryptophan-L-1MT supplementation for weights corresponding to Ta-
ble 5.2 (b): (b) solution sketch for controls u1(t) and u2(t); (b) time course plot
of state variables C(t), and A(t); and (c) time course plot of state variables I1(t),
I2(t), and P (t).

(a) (b)

Figure 5.5: Numerical simulation for the control problem with a bacteriostatic
agent and tryptophan-L-1MT supplementation for weights corresponding to Ta-
ble 5.2 (a): (a) time course plot of state variable ρ(r, t); and (b) time course plot of
state variable i(r, t).
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(a) (b)

Figure 5.6: Numerical simulation for the control problem with bacteriostatic agent
and tryptophan-L-1MT supplementation for weights corresponding to Table 5.2
(b): (a) time course plot of state variable ρ(r, t); and (b) time course plot of state
variable i(r, t).

when tryptophan supplements and bacteriostatic drugs are used in conjunction for
treatment, the chronic Chlamydial infection will be eradicated. According to our
simulations, as detailed in Fig. 5.3a, the optimal control strategy advises main-
taining the maximum concentration of the bacteriostatic agent, denoted as u1(t),
throughout the entire treatment period. Likewise, for the tryptophan and L-1MT
cocktail, referred to as u2(t), the optimal approach entails continuous administra-
tion, with the only exception being the discontinuation of u2(t) a few days prior
to the conclusion of the treatment. This strategy is deemed effective in achiev-
ing the desired outcome. Next, we investigate the scenario in which the weights
Wi, for i = 7, 2, . . . 12 are all null, and the remaining weights have the previous
values. In this case, with the values of the weights as indicated in Table 5.2 (b),
the optimal control predicts, as shown in Fig. 5.4b, Fig. 5.4c, and Fig. 5.6, by
primarily administering the bacteriostatic agent u1(t), and maintaining minimum
concentration of tryptophan and L-1MT cocktail, Chlamydial elimination can be
achieved. As depicted in Figure Fig. 5.4a, the optimal control strategy indicates
that treatment should be administered using the highest concentration of u1 for the
entire duration of the treatment period, with some concentration of tryptophan and
L-1MT cocktail administered before the end of therapy. In both cases, persistent
Chlamydia have been successfully cleared from the system. In both cases, the
commencement of the treatment period is t = 0, and it is seen that, before the
initiation of the therapy, the disease remains at the chronic condition, which is the
equilibrium point of the system.

The primary distinction between the two control types lies in their effect on the per-
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sistent Chlamydial load within the system throughout the course of therapy. In the
initial scenario, as illustrated in (Fig. 5.3c), it is evident that the control measures
effectively and promptly eliminate the persistent Chlamydia from the system. In
the second scenario, when the weights Wi for i = 7, 2, . . . , 12 are not factored
into consideration, the model forecasts a prolonged duration for the treatment to
effectively eradicate the persistent Chlamydial particles from the system. This is
visually represented in Figure (Fig. 5.4c).

5.7 Discussion

Optimal control theory is a phenomenal mathematical tool for investigating control
policies. It has found its application in many dynamical systems, as well as nu-
merous other systems, especially for exploring control measures in maintaining
disease transmission. The application of control theory in epidemiology is unde-
niable and is enforced by the primary goal of health authorities and policymakers,
which is to curtail the spread of various infectious illnesses. Numerous disease
models with control have been presented in the scientific community, from general
disease models to models describing specific infections [223–228].

In this chapter, we have constructed an optimal control problem for a general
compartmental model, where some of the compartments are maturity structured.
Hence, it is a mixed system of ordinary and partial differential equations, more-
over, the boundary conditions are also nonlinear. Subject to certain assumptions,
for a fixed control, we verify the existence, uniqueness, and boundedness of the
solutions. A suitable objective function is formulated, and results for the presence
of ideal control variables that minimize the objective function are determined. For
the given system, we make use of Pontryagin’s principle, which is a necessary
condition for the optimality of the control. The Hamiltonian function, the adjoint
variables, and the corresponding differential equations along with transversality
conditions are derived. In the proof, we consider the task as a constraint opti-
mization problem, define the Lagrangian functional, and derive the condition for
its Fréchet derivative to be zero. As our results are proven for a general model
with a maturity structure, we believe that they can be applied to any particular
compartmental model that is compatible with the system we have defined.

We then apply the results obtained to the particular problem involvingC. trachoma-
tis infection introduced at the beginning of the chapter. We checked that our hy-
potheses hold, and derived the adjoint equations, the Hamiltonian, and the formula
of the control for that particular system.
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STIs are consistently responsible for causing massive health catastrophes. Ac-
cording to estimates, in the year 2010, treatable STIs stood responsible for the
loss of nearly 11 million disability-adjusted life years [229]. C. trachomatis remains
the most common STI and accounts for high global economic cost and morbidity.

It is a well-known fact that viral STIs are constantly evolving and pose severe
challenges to virologists and medical health professionals. However, today, it
has been established that not only viruses, but bacteria as well, in a manner of
incorporating genetic factors, metamorphosis, or adaptations, have likely been
evolving [230]. As such, mathematical models are quite handy in helping us bet-
ter understand their dynamics. Infectious disease models that are defined by age
structure and cell-to-cell transmission are remarkable ways to describe the dy-
namics of within-host infection processes. The application of structured models
has seen many applications, particularly for studying the disease progression for
viruses [231, 232]. Nevertheless, such models have been utilized to study the
evolution of bacterial populations and can be found in literature [230].

We have considered a maturity structured model, earlier developed by Wilson et
al. [11], and investigate the optimal treatment of chronic C. trachomatis infection.
The chronic condition of the patient is subject to the presence of IFN-γ mediated
persistent Chlamydia particles. The optimal control problem is formulated in the
presence of two distinct types of therapies, a bacteriostatic agent, the effect of
which is denoted by u1, and tryptophan analogs acting as effective competitors
that counteract and block Chlamydial persistence due to IFN-γ cells.

Chlamydial persistence refers to a long-term relationship between the bacteria
and its living host. In this form, the bacteria do not manifest clinically and may re-
main undetectable for a long period of time, ultimately developing chronic health
problems. For C. trachomatis treatment with bacteriostatic agents alone, the ul-
timate clearance also depends not only on the efficacy of the antibiotic but also
on the host’s ability to eradicate the residual bacteria in the system. The produc-
tion of persistent forms of Chlamydia has also emerged as a potential issue with
bacteriostatic drug treatment of Chlamydia infections. In addition to being more
resistant to antibiotics than typically developing organisms, persistent Chlamydia
forms have also been strongly linked to treatment failures [27]. According to stud-
ies, Chlamydia can survive after therapy in a form, the presence of which cell
culture or immunoassay may fail to detect [233, 234]. The transformation of the
RBs into persistent bodies, although indefinite, in the presence of growth obsta-
cles in the form of IFN-γ, its reactivation into the infectious EB forms is immediate
once the tryptophan level retains its balance [40].
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The optimal control problem formulated here predicts total clearance ofChlamydia
particles from the system with respect to both scenarios, as depicted in Fig. 5.3b,
Fig. 5.3c, and Fig. 5.5, and Fig. 5.4b, Fig. 5.4c, and Fig. 5.6. Nonetheless, as pre-
viously mentioned, the second treatment protocol, while ultimately successful in
eradicating the infection by the conclusion of the therapy, does require a compar-
atively extended period to completely eliminate the persistent chlamydia from the
system. This phenomenon can have a very significant impact on the health of the
infected host. As previously elaborated in the preceding Chapter (4), the deviation
of Chlamydia from its typical growth pattern appears to be a response triggered by
stress, and in real-world cases of Chlamydia infection, the presence of numerous
diverse factors can potentially lead to complications that disrupt normal biological
processes. Research findings suggest that chronic Chlamydial infections, arising
from either persistence or recurrent infections, are associated with a heightened
risk of more severe and deleterious health conditions [189]. In conclusion, we ad-
vocate the first type of control, which gives emphasis to the intermediate weights,
which are in some way connected to the health status of the patient being treated
during the course of therapy.
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Summary
In this thesis, we contribute to the study ofChlamydia infection, by means of apply-
ing compartmental modeling to obtain a thorough understanding of the bacterial in-
fection C. trachomatis at an in-host level and at a population level. At a fundamen-
tal level, a mathematical model using a delay differential equation is formulated to
gain insight into the dynamics of infection within host. These observations can be
invaluable in understanding the unique development cycle of the bacterium. Fur-
thermore, they can prove to be useful in building treatments. Secondly, we model
C. trachomatis dynamics in a population by considering its interaction with another
pathogen, Herpes Simplex Virus (HSV) within-host and, investigating the impact
their peculiar association can have in a population of human beings. Lastly, we
develop a compartmental maturity structured in-host model for the C. trachoma-
tis growth cycle and apply Pontryagin’s maximum principle to identify the optimal
conditions to reduce the systemic expenses of the treatments and medications,
at the same time reducing the quantities of extracellular Chlamydia particles, and
chronically infected cells.

The first two Chapters are introductory to the chlamydiae bacteria. We provide a
concise description of the pathogen’s biotic attributes, describing its very peculiar
development cycle, evolution, and epidemiology. A brief history of the application
of mathematical modeling to study infectious diseases in general and its particular
application in studying chlamydia is provided.

In Chapter 3, a mathematical model for a laboratory experiment that describes the
growth of the intracellularly growing bacteria is constructed. The system of delay
differential equation tracks the number of cells infected with chlamydiae at each in-
host level. The delay is introduced to account for the time taken for the pathogen
to move through successive compartments, which corresponds to various stages
of the bacteria. The state variables in the basic in vitro model are considered to
account for the following developmental stages:

Stage 1: Attachment and incorporation of an EB to the host epithelial cell’s sur-
face;
Stage 2: EBs differentiate into RB forms within the infected epithelial cell;
Stage 3: RBs divide by undergoing repeated cycles of binary fission within the
infected epithelial cell;
Stage 4: Matured RBs differentiate back to EBs within the infected epithelial cell;
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Stage 5: Infected epithelial cells undergo cell lyses to produce more EB particles.

This model though very simple can very well mirror the dynamics of the in-host
developing bacteria. An explicit formula for the final size of the system, i.e. the
number of infected cells, and the total number of EBs generated at the end of
the development cycle is derived. This model can, in particular, anticipate the
amount of EBs at any given time and accurately duplicate the empirical results of
the laboratory trials.

In Chapter 4, the dynamics of the co-infection betweenC. trachomatis, and HSV is
developed. The model takes into account the establishment of persistent Chlamy-
dia infection in the presence of HSV, allowing susceptible individuals to be dually
infected with both pathogens. However, in the case of the presence of active her-
pes, Chlamydia is driven into persistence. First off, we consider the sub-system,
which is when only one of the diseases is present in the population. We explore the
global dynamics and determine important threshold values for disease prevalence.
The analysis of the co-infection model shows that the presence of Chlamydia is
inconsequential for the disease dynamics of HSV, and its pervasiveness or extinc-
tion is entirely dependent on the reproduction number of HSV. Conversely, it is
shown thatChlamydia is not invariably capable of invading an HSV-endemic popu-
lation, and its capacity to spread is subject to a new threshold parameter. Further,
when all reproduction numbers are greater than one, a co-infection steady state
is shown to exist. Calibrating the model to determine the population prevalence
of both diseases and their comparison with epidemiological findings indicate that
this scenario is perhaps the most plausible. It is also particularly the most intrigu-
ing case, as when both infections are in circulation and all reproduction numbers
are greater than one, then a higher percentage of Chlamydia infected individual is
driven to being persistently infected. This means HSV reduces Chlamydia trans-
mission in the population, but the distribution of cases has changed to include a
greater percentage of people with persistent Chlamydia infection.

In Chapter 5, an optimal control problem for a general compartmental model,
where some of the compartments exhibit maturity structure is constructed. Con-
sequently, we have a mixed system of partial differential equations and ordinary
differential equations with nonlinear boundary conditions. For a fixed control, we
establish the existence, uniqueness, and boundedness of solutions. The Pontrya-
gin principle, which states that the control must always minimize a Hamiltonian
function, additionally requiring the adjoint variables to satisfy differential equations
with transversality conditions, has also been demonstrated for the system. The
fundamental aim is to apply the results for Chlamydia infection.
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In the second part of Chapter 5, an optimal control problem for amaturity-structured
model is considered for within-hostChlamydia infection. The age-structuredmodel,
or more precisely the maturity-structured model as it explores the maturity of the
infected cells is considered, taking into account the role of the immune response.
The effects of two types of immune systems are taken into consideration: the
humoral immune response (antibody-mediated feedback) plays a dominant role
in preventing the onset of infection; the cell-mediated immune response (activ-
ity of cytotoxic T cells or macrophages) is crucial for the removal of infection
once pathogens have moved passed initial protection and have successfully es-
tablished infection within the epithelial cells. Our goal is to identify the best treat-
ment/drug combination that will reduce the systemic cost of the treatment, at the
same time reducing extracellular Chlamydia, infected epithelial host cells, and
more critically, curtail the development of Chlamydia persistence/alter persistent
Chlamydia into its normal form. Chlamydia in its persistent form does not mani-
fest clinically and may go lengthy periods of time undetected before establishing
chronic health issues. Hence, a control measure that helps the prevention of per-
sistent Chlamydia development is favorable. Our approach is to consider two
types of treatments: (1) a bacteriostatic agent that inhibits the growth of bacteria,
and (2) tryptophan and levo-1-methyl tryptophan supplement that has the ability
to reverse Chlamydial persistence, and also reacts by reducing the production of
infectious forms of the bacteria. The results of the first section are then applied to
obtain the optimal control strategy, which is then numerically solved.

The optimal control problem numerically solved is conditional to two different sce-
narios: (1) In the first scenario, during the days encompassed by the ongoing
therapy, we place particular emphasis on the significance of the infected com-
partments and the extracellular EBs. Consequently, the weights assigned to
represent their relative importance are positive. In this case, the weights Wi for
i = 7, 2, . . . , 12 hold positive values, and (2) In the second scenario, the weights
Wi for i = 7, 2, . . . , 12 are disregarded. A significant distinction between the two
cases lies in the fact that although the treatment regimens recommended by both
scenarios are capable of eliminating the infection, it is evident that the process
takes a comparatively longer duration to completely clear persistent Chlamydia
from the system when the weights Wi for i = 7, 2, . . . , 12 are omitted from consid-
eration. This could have a critical impact on the health of the infected host. We,
therefore, would like to highlight the importance of considering the status of the
infection during the process of treatment.

Biomathematics of Chlamydia 103



Summary in Hungarian

A disszertációban a Chlamydia fertőzést tanulmányozzuk matematikai modellek
segítségével. A dolgozat az 1. fejezetben a Chlamydia baktérium és az általa
okozott betegség rövid leírásával kezdődik. A 2. fejezetben bemutatjuk a fertőző
betegségek matematikai modellezését, és annak konkrét alkalmazását az adott
kórokozóra. A 3. fejezetben egy lineáris késleltetett differenciálegyenletek rend-
szerével kifejezett kompartmentális modellt dolgozunk ki a Chlamydia intracel-
luláris fejlődési ciklusának tanulmányozására. A modell a fertőzött sejtek számát
írja le a sejtosztódási ciklus minden egyes szakaszában. Ezen túlmenően az
egyes kompartmentek végső méretére vonatkozó képletet is levezetjük. A meg-
oldást a laboratóriumi adatokból származó eredményekre illesztjük, és megmu-
tatjuk hogy ez az egyszerű lineáris modell nagyon jól tükrözi a laboratóriumi kísér-
let eredményeit. A 4. fejezetben egy új matematikai modellt mutatunk be a C.
trachomatis, és a HSV (humán herpeszvírus) közötti együttes fertőzés dinamikájá-
nak tanulmányozására az emberben. A modell feltételezi, hogy egy olyan egyén-
ben, aki egyidejűleg mindkét kórokozóval fertőzött, a HSV jelenléte a Chlamy-
diát perzisztenssé teszi. A perzisztens fázisban a Chlamydia nem szaporodik és
nem fertőz. Ljapunov-függvények, és az aszimptotikusan autonóm rendszerek
elméletének alkalmazásával globális stabilitási eredményeket bizonyítunk a beteg-
ségmentes és az endemikus egyensúlyokra. Továbbá a modellt kalibráljuk a
betegség paramétereire, hogy meghatározzuk mindkét betegség populációs elő-
fordulását, és összehasonlítsuk azt a járványtani eredményekkel. Az 5. fejezetben
egy parciális differenciálegyenletes modellt dolgozunk ki a krónikus Chlamydia-
fertőzés kombinált terápiájának optimalizálására. A Pontryagin-féle maximum-elv
segítségével meghatározunk egy olyan kezelési protokollt, ami minimalizálja a fel-
használt gyógyszerek és a krónikusan fertőzött sejtek mennyiségét.
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Publications
The dissertation is based on the following three articles, the first two of which are
published, and the third one is a manuscript:

1. B Das, G Röst, Delay Linear Chains in Mathematical Biology: Migratory
Birds, Stem Cell Maturation, and Intracellular Chlamydia Infection, Trends
in Biomathematics: Modeling Cells, Flows, Epidemics, and the Environment
(ed. R. Mondaini), pp. 71–80, Springer (2020)

2. B Das, G Röst, Dynamics of herpes and chlamydia co-infection in a popu-
lation, Discrete and Continuous Dynamical Systems-B 28 (8) (2023) 4366–
4398.

3. B Das, István Balázs, G Röst, Optimal control for maturity-structured sys-
tems with an application to Chlamydia treatment.

Other Publications

1. Barua, Saumen and Das, Bornali and Dénes, Attila, A compartmental model
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