High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice

4	Shinsaku	Okai,	Fumihito	Usui,	Shuhei	Yokota,	Yusaku	Hori-i,	Makoto	Hasegawa,	Toshinobu

- 5 Nakamura, Manabu Kurosawa, Seiji Okada, Kazuya Yamamoto, Eri Nishiyama, Hiroshi Mori, Takuji
- 6 Yamada, Ken Kurokawa, Satoshi Matsumoto, Masanobu Nanno, Tomoaki Naito, Yohei Watanabe,
- 7 Tamotsu Kato, Eiji Miyauchi, Hiroshi Ohno, Reiko Shinkura
- 8
- 9 This file includes:
- 10 ABSTRACT (146 words)
- 11 MAIN TEXT (3,224 words)
- 12 METHODS (2,953 words)
- 13 REFERENCES (39)
- 14 ACKNOWLEDGMENTS
- 15 AUTHOR CONTRIBUTIONS
- 16 COMPETING FINANCIAL INTERESTS
- 17 FIGURE LEGENDS (1,163 words)
- 18
- 19 Present address of Shinsaku Okai, Fumihito Usui and Reiko Shinkura:
- 20 Applied Immunology, Graduate School of Biological Sciences,
- 21 Nara Institute of Science and Technology
- 22 Ikoma, Nara 630-0192, Japan
- 23

High-affinity monoclonal IgA regulates gut microbiota and prevents colitis in mice

10	
27	Shinsaku Okai, ^{1, 13} Fumihito Usui, ^{1, 13} Shuhei Yokota, ¹ Yusaku Hori-i, ¹ Makoto
28	Hasegawa, ² Toshinobu Nakamura, ³ Manabu Kurosawa, ⁴ Seiji Okada, ⁵ Kazuya
29	Yamamoto, ⁶ Eri Nishiyama, ⁶ Hiroshi Mori, ⁶ Takuji Yamada, ⁶ Ken Kurokawa, ⁷
30	Satoshi Matsumoto, ⁸ Masanobu Nanno, ⁸ Tomoaki Naito, ⁸ Yohei Watanabe, ⁸ Tamotsu
31	Kato, ⁹ Eiji Miyauchi, ⁹ Hiroshi Ohno, ^{9, 10, 11} Reiko Shinkura ^{1, 12*}
32	
33	¹ Department of Immunology, ² Department of Protein Function Analysis, ³ Department
34	of Epigenetics, Nagahama Institute of Bioscience and Technology, Nagahama, Shiga
35	526-0829, Japan
36	⁴ Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8501,
37	Japan
38	⁵ Division of Hematopoiesis, Center for AIDS Research, Kumamoto University,
39	Kumamoto 860-0811, Japan
40	⁶ Graduate School of Bioscience and Biotechnology, ⁷ Earth-Life Science Institute,
41	Tokyo Institute of Technology, Tokyo 152-8550, Japan
42	⁸ Yakult Central Institute, Tokyo 186-8650, Japan
43	⁹ RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa 230-0045, Japan
44	¹⁰ Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
45	¹¹ Graduate School of Medical Life Science, Yokohama City University, Kanagawa
46	230-0045, Japan
47	¹² PRESTO, Japan Science and Technology Agency, Saitama 332-0012, Japan
48	
49	¹³ Co-first author
50	
51	*Correspondence: <u>rshinkura@bs.naist.jp</u> (<u>r_shinkura@nagahama-i-bio.ac.jp)</u>
52	
53	

54 ABSTRACT

56	Immunoglobulin A (IgA) is the main antibody isotype secreted into the
57	intestinal lumen. IgA plays a critical role in the defense against pathogens and in the
58	maintenance of intestinal homeostasis. However, how secreted IgA regulates gut
59	microbiota is not completely understood. In this study, we isolated monoclonal IgA
60	antibodies from small intestine of healthy mouse. As a candidate of efficient gut
61	microbiota modulator, we selected a W27 IgA that binds to multiple bacteria but not
62	beneficial ones such as Lactobacillus casei. W27 could suppress the cell growth of
63	Escherichia coli but not Lactobacillus casei in vitro, indicating an ability to improve the
64	intestinal environment. Indeed W27 oral treatment could modulate gut microbiota
65	composition and have therapeutic effect on both lymphoproliferative disease and colitis
66	models in mice. Thus W27 IgA oral treatment is a potential remedy for inflammatory
67	bowel disease, acting through restoration of the host-microbial symbiosis.

69	Dysbiosis of gut microbiota disrupts intestinal homeostasis and causes
70	inflammatory bowel disease (IBD), such as Crohn's disease and ulcerative colitis (UC).
71	Hence restoration of gut microbiota symbiosis is a key to prevention and treatment of
72	IBD ¹⁻³ . One of the promising agents shown to shape the gut microbiota community is
73	intestinal IgA ⁴⁻⁷ . Intestinal IgA is thought to comprise two types; one is high-affinity
74	IgA that is produced by somatic hypermutation (SHM) process in germinal center (GC)
75	B cells and reacts specifically to pathogens and their toxins in a Fab-dependent manner,
76	and the other is poly-reactive IgA that is produced by GC-independent process and
77	recognizes a variety of commensal bacteria probably in a Fab-independent manner ^{4,5,8} .
78	IgA coating of commensal bacteria was originally discovered as early as in 1968 ⁹ . A
79	recent study refocused IgA coating and suggested that intestinal IgA selectively coated
80	disease-associated commensal bacterial taxa ^{7, 10} , although how IgA can specifically
81	select colitogenic bacteria remained unclear.
82	

83 Our previous studies revealed that even in the absence of pathogens mice that 84 lack whole IgA (activation-induced cytidine deaminase (AID) deficient mice) and mice 85 that lack only high-affinity IgA due to SHM defect (AID^{G23S} (glycine to serine at the

86	23 rd amino acid) mutant mice) developed immune hyperactivation and
87	dysbiosis-associated lymphoproliferative disease ^{11,12} . These data demonstrate that only
88	high-affinity IgA, but not low-affinity IgA, plays a crucial role in the control of
89	commensal gut microbiota as well as of pathogens. Since gut microbiota contain a huge
90	number of variable species, we thought that only poly-reactive IgA could shape and
91	maintain microbial community in a steady state. Therefore we hypothesized that
92	high-affinity poly-reactive IgA could be a useful gut commensal modulator to restore
93	symbiosis.

95	In this study, we isolated monoclonal IgA antibodies and identified their target
96	bacterial epitopes. Interestingly more than 90% of monoclonal IgAs derived from small
97	intestine of mice recognized an epitope, which represented four amino acids (EEHI)
98	expressed in a bacterial enzyme, serine hydroxymethyltransferase (SHMT). Among
99	those IgAs, we selected a high-affinity poly-reactive W27 IgA as the best candidate for
100	an efficient gut microbiota modulator and showed that W27 oral treatment modulated
101	gut microbiota composition and had therapeutic effect on both lymphoproliferative
102	disease and colitis models in mice.

 $\mathbf{5}$

104 **RESULTS**

105

106Establishment of IgA Monoclonal Antibodies and Selection of High-affinity 107 Poly-reactive IgA, W27 108 We thought that the best commensal microbial modulator, which is 109 high-affinity poly-reactive IgA, must be produced through intact SHM process in wild 110 type mice. Therefore we generated hybridomas from intestinal lamina propria (LP)-derived IgA-secreting cells of unimmunized wild type (C57BL/6) mice kept under 111 specific pathogen free (SPF) condition. We isolated 16 monoclonal IgAs, each carrying 112unrelated sequence of variable region gene in the immunoglobulin heavy chain (V_H) 113114(Supplementary Table 1). We tested their binding ability against 14 different cultivable commensal bacterial strains with an ELISA assay. All of the 16 monoclonal 115116 IgAs recognized at least three different bacterial strains at antibody concentration of 1.4

 μ g/ml (**Fig. 1a**).

118

119	We selected four clones (W2, W27, W34, W43) producing antibodies in
120	relatively high amounts, and tested their relative binding ability against 14 different
121	strains with a dose-dependent ELISA assay. Among four IgAs, W27 had the most
122	potent reactivity against 12 out of the 14 bacterial strains (Fig. 1b and Supplementary
123	Fig. 1). Interestingly, W27 bound to each bacterial strain with variable binding strength.
124	The relative reactivities of W27 to Escherichia coli, Staphylococcus lentus, and
125	Pseudomonas fulva were about 100 times higher than that of W2, while those of W27 to
126	Bifidobacterium bifidum and Blautia coccoides (previously classified as Clostridium
127	(C.) coccoides, one of beneficial bacteria which induces $FoxP3^+$ regulatory T cells) ¹³
128	were only 10 times higher than that of W2. W27 had very weak reactivity, if any, to
129	Lactobacillus casei (a species of genus Lactobacillus generally considered to be
130	probiotic) (Fig. 1b). We assume that W27 is the best candidate for commensal
131	microbiota regulator, because it selectively binds to a series of commensal bacteria
132	(including potentially colitogenic one) rather than beneficial ones such as
133	Bifidobacteirum bifidum, Blautia coccoides and Lactobacillus casei.

135 High-throughput Analysis of W27-binding bacteria

136 We further analyzed W27 selective binding ability by IgA-seq of sorted

W27-binding and W27-non-binding gut bacteria from gut contents of IgA-null AID^{-/-} 137mice (Fig. 1c). Family level analysis identified Porphyromonadaceae, Prevotellaceae 138 W27-binding bacteria and Lachnospiraceae 139Lactobacillaceae and as and *Ruminococcaceae* as W27-non-binding bacteria (**Fig. 1c**). A previous study⁷ 140141demonstrated that high IgA-coating identified colitogenic bacteria in a mouse colitis model as well as in IBD patients. In their study⁷ and in other report¹⁴, *Lactobacillaceae* 142and Prevotellaceae appeared as potentially colitogenic commensal bacteria, whereas 143Lachnospiraceae and Ruminococcaceae were recognized as beneficial bacteria e.g., as 144Tregs inducers^{13, 15}. These findings suggested that W27 could change gut microbiota to 145symbiotic balance, through selective binding to colitogenic bacteria rather than 146147beneficial bacteria. 148Mouse Intestinal IgAs Recognize an E. coli Enzyme SHMT 149We further tried to identify the target molecule of IgA clones through Western 150

blot analysis with comparable amounts of cell lysate from seven different bacterial
strains, including a commercially available *E. coli* strain (DH5α), a mouse cell line
(NS-1) and a human cell line (293T). Four IgA monoclonal antibodies (W27, W2, W34,
W43) revealed visible target bands for DH5α, *E. coli* (a strain isolated from mouse

155	faeces), and Pseudomonas fulva. In contrast, all four IgAs did not recognize any protein
156	in Staphylococcus lentus, Lactobacillus casei, Blautia coccoides, Bifidobacterium
157	bifidum, NS-1 and 293T cells, except for ambiguous bands for Blautia coccoides on
158	W27 blot (Fig. 2a and Supplementary Fig. 6). This suggests that the specific target
159	protein of four IgAs is most likely a common molecule expressed by E. coli and
160	Pseudomonas fulva (Fig. 2a and Supplementary Fig. 6). We performed mass
161	spectrometry analysis of a target protein from DH5 α cell lysate and found that the target
162	molecule of W27 was an enzyme serine hydroxymethyltransferase (SHMT).
163	Interestingly, the other independent IgA clones (W2, W34 and W43) also recognized
164	Myc-tagged cloned E. coli SHMT as well as endogenous SHMT (Fig. 2b and
165	Supplementary Fig. 6). SHMT is an important metabolic enzyme that catalyzes the
166	reversible methylation reaction of serine and tetrahydrofolate (THF) to glycine and
167	5,10-methylene THF. In the previous studies, SHMT was detected in the periplasm
168	fraction of <i>E. coli</i> $^{16-18}$, suggesting that IgA could recognize SHMT on the surface of <i>E</i> .
169	coli.

171 Epitope of SHMT recognized by W27

According to our database search, the gene encoding SHMT, *glyA*, is not found

173	in the genome of <i>Bifidobacterium bifidum</i> , but a wide range of bacteria have the gene.
174	To check whether W27 also recognizes the SHMT proteins in other bacterial species,
175	we cloned the full-length glyA gene encoding SHMT from Pseudomonas fulva,
176	Staphylococcus lentus, Lactobacillus casei, Blautia coccoides as well as the human
177	SHMT. Then we overexpressed their Myc-tagged SHMT proteins in 293T cells. As
178	shown in Fig. 2c and Supplementary Fig. 6, W27 recognized SHMT of Pseudomonas
179	fulva as well as of E. coli, but not other bacterial or human SHMT proteins. It suggests
180	that W27 can distinguish the differences in amino acid sequences of each distinct
181	bacterial SHMT.

183	Indeed further epitope mapping study of E. coli SHMT revealed that W27
184	specifically recognized the peptide SHMT-P1 (AA25-AA45 of E. coli SHMT) (Fig. 2d
185	and Supplementary Fig. 6). Through alignment of amino acid sequences of SHMT
186	from different species, we found the highly conserved motif (RQ-XXXX-ELIASEN) in
187	the N-terminal region of SHMT and further identified four amino acids (EEHI) in the
188	middle of conserved motif (RQ-XXXX-ELIASEN) as a critical determinant of the W27
189	binding, which is shared by E. coli and Pseudomonas fulva (Fig. 2d and
190	Supplementary Fig. 6). To ensure that the residues EEHI were the core epitope

191	sequence, we generated and overexpressed mutant E. coli SHMT protein (replacing
192	EEHI with EHNI) and mutant Lactobacillus casei SHMT replaced reciprocally in 293T
193	cells. Western blot analysis clearly showed that W27 specifically recognized EEHI but
194	not EHNI in SHMT (Fig. 2e and Supplementary Fig. 6), indicating that EEHI is a
195	critical target sequence for W27.

197 We further confirmed that W27 had the most potent reactivity to SHMT-P1 among the four IgA clones with dose-dependent binding assay (Fig. 2f). Interestingly, 198 the other IgA antibodies (W2, W34 and W43) also recognized the same SHMT-P1, 199whereas myeloma-derived mouse IgA (mIgA) did not recognize it at all (Fig. 2f), 200suggesting that SHMT-P1 is a common bacterial target for intestinal IgA. Indeed 201forty-two out of forty-four monoclonal IgAs, including sixteen clones shown in Fig. 1a 202and additional monoclonal IgAs derived from other mice, could bind to the peptide 203204containing EEHI sequence (Supplementary Fig. 2). According to our database search, 205E. coli shares EEHI amino acid sequence not only with Pseudomonas fulva (Fig. 2d) 206but also with variable pathogenic bacteria, including Haemophilus influenzae, 207Klebsiella pneumoniae, Legionella pneumophila, Salmonella paratyphi A, Salmonella 208typhimurium and Shigella flexneri, etc. (Supplementary Table 2). It is reasonable that 209 most of intestinal IgAs recognize the EEHI sequence in view of mucosal defense.

210

211 Bacterial Growth Suppression by W27 IgA

Our hypothesis agrees with the idea that IgA-binding of colitogenic bacteria 212may improve dysbiosis ^{5,7}. However, its mechanism is unknown. One possibility is that 213high-affinity IgA such as W27 may inhibit bacterial cell growth by binding, but do not 214affect the cell growth of non-binding beneficial bacteria, leading to the establishment of 215host-microbiota symbiosis. To prove this hypothesis, we tested if W27 binding could 216have any effect on bacterial cell growth. For *in vitro* growth assay, we purified W27 by 217affinity chromatography against SHMT-P1 peptide. The purified fraction of W27 218mainly consisted of oligomers (Supplementary Fig. 3). Co-culture of affinity-purified 219220W27 and DH5 α cells significantly inhibited their cell growth in a dose-dependent manner (Fig. 3a), whereas non-binding mIgA (derived from myeloma cells, Fig. 3b) 221222did not affect it at all (Fig. 3a). By contrast, the cell growth of *Lactobacillus casei* that 223were not bound by W27 (Fig. 1b, Fig. 3b) was not altered by W27. These suggest that 224binding of bacteria by W27 can suppress their cell growth.

225

226

It has been demonstrated that IgA bound to bacteria via Fab-independent,

227	non-specific manner ^{4-6,8, 9} . We took advantage of SHMT-deficient <i>E. coli</i> (JW2535)
228	(Fig. 3e and Supplementary Fig. 6) ¹⁹ . Since SHMT is one of the key enzymes for the
229	one-carbon metabolism, JW2535 cells exhibits growth retardation as reported
230	previously (Fig. 3c) 20 . W27 suppressed only wild type (ME9062) cell growth
231	significantly and did not affect SHMT-deficient cell (JW2535) growth (Fig. 3c),
232	although W27 bound to both strains equally (Fig. 3d, f). Our results indicated that W27
233	had an inhibitory effect on <i>E. coli</i> cell growth via SHMT-recognition.
234	
235	Oral Treatment of W27 Improved Lymphoproliferative Disease and Associated
236	Pathological Crypt Damage in AID ^{G23S} Mice
237	We reasoned that the proposed role of W27 to modulate intestinal microbiota
238	leading to symbiosis had to be confirmed in an in vivo model lacking high affinity IgA
239	antibodies. Currently, AID ^{G23S} knock-in mice are the best candidate mice ¹² . We
240	examined whether oral supplementation of W27 could prevent lymphoproliferation in
241	AID ^{G23S} mice. W27 (partially purified through ammonium sulfate precipitation,
242	Supplementary Fig. 3) was given to AID^{G23S} mice in the drinking water at

- concentration of 25 μ g/ml for four weeks. As a control treatment, low-affinity,
- poly-reactive IgA (W2, see **Fig. 1b** and **2f**) was given to AID^{G23S} mice in the same

manner. These IgA antibodies consisted of both monomer and oligomer forms and were
stable in the drinking water for at least seven days (Supplementary Fig. 3). They were
delivered through the whole intestine and could be recovered from faeces
(Supplementary Fig. 4).

250	Compared to those of untreated AID ^{G23S} mice suffering from GC B cell
251	hyperplasia, GC B cell numbers in Peyer's patches (PPs) of W27-treated AID ^{G23S} mice
252	were significantly decreased ($p < 0.01$), down to the level of those of wild-type mice
253	(Fig. 4a). On the other hand, W2 treatment did not affect it significantly (Fig. 4a).
254	Furthermore 30 μ g of W27 (affinity-purified) was given by gavage twice a week to
255	IgA-null AID ^{-/-} mice suffering more prominent GC hyperplasia than AID ^{G23S} mice. Oral
256	W27 treatment for four weeks significantly decreased GC B cell numbers in PPs of
257	AID ^{-/-} mice (Fig. 4b). In addition, diffuse crypt atrophic damage found in eight (> 30%
258	of total colonic length) and two (5-30% of total colonic length) out of thirty AID ^{G23S}
259	mice at 12-16 weeks of age was not observed in any of the thirteen W27-treated
260	AID ^{G23S} mice (Fig. 4c, d). We concluded that W27 oral supplementation could prevent
261	lymphoproliferative disease and associated crypt damage in AID ^{G23S} and AID ^{-/-} mice.

263 Oral W27 Treatment Changed Gut Microbiota Composition

264 We questioned whether W27 IgA directly affected gut microbiota composition
265 Through bacterial 16S rRNA meta sequencing, we found that W27 oral administration
to AID ^{G23S} mice induced a significant change in the relative abundance of 12 different
267 bacterial families (Fig. 4e). The relative abundance of Lachnospiraceae and
268 Ruminococcaceae were significantly increased after W27 oral treatment (Fig. 4e)
269 These bacterial species are generally considered as beneficial Tregs inducers ^{13, 15} . Or
270 the other hand, <i>Prevotella</i> and <i>Lactobacillaceae</i> , plausible colitogenic bacteria ^{7, 14}
271 decreased in relative abundance in response to W27 treatment (Fig. 4e). In good
agreement with our W27 IgA-seq data (Fig. 1c), bacteria bound strongly by W27 such
273 as Lactobacillaceae and Prevotellaceae were decreased in faeces after W27 ora
treatment, while bacteria bound weakly by W27 such as Lachnospiraceae and
275 <i>Ruminococcaceae</i> were increased in faeces after W27 oral treatment (Fig. 1c and 4e). In
addition, our quantitative PCR analysis ²¹ revealed that W27 oral treatment significantly
277 increased the absolute numbers of Blautia coccoides group (corresponding to
278 Lachnospiraceae in 16S rRNA analysis) and Clostridium leptum group (corresponding
to Ruminococcaceae in 16S rRNA analysis) (Supplementary Fig. 5, left half and

280	Supplementary Table 3), whereas W2 (low-affinity IgA) oral treatment did not change
281	them except for a slight decrease of <i>Prevotella</i> (Supplementary Fig. 5, right half). The
282	significant shift in composition of the microbiota after W27 oral treatment was further
283	confirmed at individual mouse level ($p < 0.05$) (Fig. 4f). Thus, as expected from its
284	beneficial effect on lymphoproliferative disease, W27 oral treatment modulated gut
285	microbiota composition towards symbiosis.

287 W27 Oral Treatment Showed Beneficial Effect on the Experimental Colitis in Mice

288 by Modulating Gut Microbiota

We addressed the question whether W27 oral treatment could prevent colitis 289induced by dextran sodium sulfate (DSS). As shown previously, when dysbiosis was 290induced in wild type mice by cohousing them with colitogenic mice or by exposing 291them to colitogenic bacteria, those mice showed more severe body weight loss than 292untreated wild-type mice in DSS-induced colitis experiment⁷. Since W27 targets 293dysbiosis, but not inflammation itself, we assume that W27 supplementation may 294295improve the severity of DSS-induced colitis in mice suffering from dysbiosis. To induce 296dysbiosis in wild type mice, we gave repeatedly DSS in the drinking water with 297 intervals with the supplementation of W27 in the drinking water or water only (Fig. 5a).

W27 oral treatment significantly reduced the body weight loss and the increase in 298disease activity index ²² (Fig. 5a, b). A previous study ⁷ showed that IgA-binding 299proportion of intestinal bacteria was significantly increased in IBD patients and in a 300 mouse model of colitis. At the end of the experiment, in W27-treated mice, IgA-binding 301302proportion of faecal bacteria was significantly decreased compared to that in control mice (Fig. 5c), suggesting the improvement of gut microbial composition by W27. 303 Indeed 16S rRNA analysis revealed the significant difference of microbial composition 304 between W27-treated and untreated mice (Fig. 5d). 305

306

Finally, we tested whether W27 could prevent another colitis model induced by 307 adoptive transfer of CD4⁺CD45RB^{high} T cells in Rag1^{-/-} mice in an independent other 308 309 animal facility. W27 treatment clearly ameliorated wasting disease (Fig. 5e) associated with chronic $colitis^{23}$ (Fig. 5f, g). We confirmed that microbiota composition between 310 W27-treated and untreated mice was significantly different at three weeks after T cell 311 312 transfer (Fig. 5h). Since microbial condition in each animal facility was not identical, 313additional studies are required to define the dysbiosis condition that W27 can target. 314However, our data suggest that W27 oral treatment can have beneficial effect on colitis 315that originates through different mechanisms but is associated with dysbiosis.

DISCUSSION

319	In this study we isolated a monoclonal IgA antibody W27 that had strong
320	binding ability against a variety of bacteria and suppressed the cell growth of E. coli via
321	an epitope-specific binding, but neither bind to nor suppress Lactobacillus casei in vitro.
322	In gut lumen, orally given W27 modulated commensal microbiota composition towards
323	symbiotic balance, resulting in beneficial effects on several dysbiosis-associated disease
324	models in mice.

326	Recent studies showed that secreted intestinal IgA could recognize and bind to
327	a subset of commensal bacteria that preferentially affect IBD susceptibility in mice and
328	human patients ^{7, 10} . Such subset of bacteria may vary depending on environment such as
329	mouse facilities and it is difficult to identify a disease-causing bacterium in each human
330	patient. A new approach based on targeted microbial modulation such as W27 oral
331	treatment may overcome this difficulty and contribute to the cure of IBD patients, since
332	W27 selectively binds preferably to multiple colitogenic bacteria through its
333	epitope-specific recognition. However, several questions of critical importance have
334	never been solved.

335	We demonstrated that simple IgA coating of bacteria did not always inhibit the
336	bacterial growth. Our finding agreed with an early paper published in 1968
337	demonstrating that certain bacteria continued to grow despite being IgA-coated ⁹ .
338	Thereafter non-specific binding has been thought to occur via carbohydrates on
339	bacterial cell surface and IgA molecule ⁸ . Recently Mathias et al. has demonstrated the
340	significant difference in IgA binding on cell surface between E. coli strains and
341	Lactobacillus ²⁴ . Their results showed that the interaction of the three tested
342	Gram-negative bacteria (E. coli strains) with deglycosylated or native IgA proteins
343	resulted in similar high level binding, while the interaction of Gram-positive bacteria
344	such as Lactobacillus and Bifidobacterium was lost by deglycosylated IgA, suggesting a
345	selective role of carbohydrates in the binding of Gram-positive bacteria. In good
346	agreement with these findings, we observed equal levels of surface binding of W27 to E.
347	coli strains, ME9062 and JW2535 (Fig. 3d, f), indicating the epitope
348	(SHMT)-independent binding on E. coli by W27 IgA. A future study is required to
349	determine the unknown molecular patterns involved in IgA binding to E. coli.
350	

We addressed a question what type of molecule W27 IgA recognizes to control the diversified commensal bacteria. We identified the epitope of W27 at the amino acid

353	residue level. W27 recognized EEHI sequence of SHMT in highly specific manner (Fig.
354	2d, e). To understand the physiological importance of EEHI motif in SHMT, we
355	searched the bacterial species that share EEHI in SHMT among 2739 strains whose
356	genome sequences were available. They were mostly Gammaproteobacteria and
357	Betaproteobacteria species, including a lot of pathogens (Supplementary Table 2).
358	Since we generated IgA-producing hybridomas from unimmunized mice kept under
359	SPF condition, the mice had never been exposed by those pathogens listed in
360	Supplementary Table 2. The intestinal IgA that reacted with the EEHI sequence,
361	however, seemed to be preferentially selected in vivo (Supplementary Fig. 2). On the
362	other hand, from our database search, we found that the bacterial species that do not
363	have a glyA gene encoding SHMT included several beneficial probiotic bacteria such as
364	Bifidobacterium bifidum BGN4 and Faecalibacterium prausnitzii L2-6, etc. Thus, for
365	both the mucosal defense and the maintenance of symbiosis, the EEHI sequence that we
366	identified can be a key sequence of bacterial selection by IgA in mice. It is of worth to
367	identify the corresponding target sequence in humans.
368	

369 **METHODS**

370

371 Animal Experiments

Unless specifically mentioned, mice were kept and bred under SPF conditions at 372 373Nagahama Institute of Bioscience and Technology. The Animal Research Committees of Nagahama Institute of Bioscience and Technology, Yakult Central Institute and 374IMS-RCAI approved all animal experiments. Unless otherwise mentioned, almost equal 375numbers of males and females of BALB/c background mice were used for all mouse 376 studies. All mice were from 8 to 18 week old of age, except for the mice used in Fig. 1c. 377 No statistical methods were used to predetermine sample size. Animals were not 378randomized and the data collected were not blinded. The investigators were not blinded 379 380to allocation during experiments and outcome assessment except for the experiments in Fig. 5f. 381

382

383 Hybridoma Generation

Small intestines were collected and opened longitudinally, washed with PBS to remove
all luminal contents, and shaken in PBS containing 5 mM EDTA for 20 min at 37°C.
Epithelial cells were removed, and lamina propria layers were cut into small pieces and

387	incubated with RPMI1640 containing 2% fetal bovine serum, 0.5 mg/ml collagenase
388	and 0.5 mg/ml dispase for 1 h at 37°C with shaking. After the remaining tissues were
389	removed, isolated lamina propria cells were washed with PBS and fused with NS-1 cells
390	using PEG. Cell fusion and subcloning method followed the manufacturer's protocol
391	(ClonaCell-HY Hybridoma Cloning Kit, STEMCELL Technologies). IgA-secreting
392	hybridomas were selected by standard sandwich ELISA with goat anti-mouse IgA
393	(Southern Biotech) and alkaline phosphatase-conjugated goat anti-mouse IgA (Southern
394	Biotech).

IgA Preparation for ELISA and oral treatment of mice

397	The ascites from RAG2 ^{-/-} Jak3 ^{-/-} mice ²⁵ injected intraperitoneally with IgA-producing
398	hybridoma or culture supernatants of IgA-producing hybridoma were collected and
399	filtered. Equal volume of saturated ammonium sulfate solution was added to precipitate
400	IgA antibodies. After incubation at 4°C for 24 hours, samples were centrifuged for 20
401	min at 10,000g and 4°C. The pellet was reconstituted with 50% ammonium sulfate
402	solution and centrifuged again. Finally the pellet was reconstituted with PBS, followed
403	by buffer change to PBS on PD-10 column (GE Healthcare).

404

405 IgA Affinity-Purification for Immunoblot Analysis, Bacterial Growth Inhibition

406 Assay and Flow Cytometry

Antibody solutions precipitated with ammonium sulfate solution as above were further purified by affinity chromatography on $HiTrap^{TM}$ column (GE Healthcare) conjugated with SHMT-P1-BSA for W27 or $HiTrap^{TM}$ column conjugated with goat anti-mouse IgA antibody (Southern Biotech) for W2, W34 and W43. Standard ELISA determined concentration of each purified IgA antibody. For bacterial growth inhibition assay, purified mouse IgA purchased from Immunology Consultants Laboratory, Inc. was applied onto PD-10 column to eliminate sodium azide and incubated with DH5 α cells.

414

415 ELISA for Binding Assay against Bacteria

All bacteria were cultured at 37° C overnight in appropriate media as shown in **Supplementary Table 4** under anaerobic conditions (80% N₂, 10% H₂, 10% CO₂) in an anaerobic chamber (Coy laboratory Products) or in an aerobic chamber. The cells were centrifuged, washed with PBS, and suspended in 0.05 M Na₂CO₃ buffer for coating the plates (NUNC Maxisorp) at the concentration of ~10⁸ cells /well, except for *Blautia coccoides* and *Bifidobacterium bifidum* (~10⁷ cells /well). Relative binding ability of IgA was detected with alkaline phosphatase-conjugated goat anti-mouse IgA (Southern 423 Biotech). ELISA plates were incubated at 4°C overnight. Then OD values were
424 estimated.

425

426 ELISA for Binding Assay against Synthesized Peptides

- 427 Synthesized peptides (SHMT-P1~P3) conjugated with BSA were obtained from Sigma.
- 428 They were suspended in 0.05 M Na₂CO₃ buffer at 1 μ g/ ml for coating the plates.
- 429 Relative binding ability of purified monoclonal IgA antibodies were measured as

430 described above. OD values were estimated after incubation at 25°C for 30 min.

431

432 Immunoblot analysis for bacteria and mammalian cells

433All bacteria were cultured under appropriate conditions as described above. NS-1 and 434293T cells were cultured in RPMI1640 and DMEM medium respectively supplemented 435with 10% fetal calf serum, 2-ME and gentamycin. The bacterial cells were centrifuged and suspended in PBS containing 1% NP-40 and a proteinase-inhibitor cocktail 436 437(Nacalai). For Staphylococcus lentus, Lactobacillus casei, Blautia coccoides and 438Bifidobacterium bifidum, lysozyme (0.2 mg/ml) (WAKO) was added in PBS, then sonicated and incubated for 30 min on ice. Total lysates were denatured for SDS-PAGE. 439440 Mammalian cells were centrifuged, washed with PBS and suspended directly in

441SDS-buffer for heat denaturation. After electrophoresis, all proteins were transferred on a nitrocellulose filter. The filter was incubated with blocking buffer (LI-COR) followed 442by 2 µg/ml each purified monoclonal IgA. To detect the bound IgA, goat anti-mouse 443IgA (Southern Biotech) and IR800-conjugated anti-goat IgG (LI-COR) were used. Then 444445the signals were visualized on Odyssey scanner (LI-COR). To assess the amount of loaded bacterial protein, the duplicated SDS-PAGE gel was stained with Coomassie 446brilliant blue (Nacalai). For Myc-tagged protein detection, anti-Myc-tag antibody (MBL, 447clone PL14) and IRDyeTM800-conjugated anti-rabbit IgG (Rockland) were used. 448

449

450 Bacterial Cell Growth Inhibition Assay

DH5a and Lactobacillus casei were cultured in Brain Heart Infusion Broth (Fluka 451Analytical) and DifcoTM Lactobacilli MRS broth (BD) at 37°C overnight, respectively. 452453Then they were centrifuged, washed with PBS twice and diluted to approximately 454300-500 cells/ 25 µl in PBS supplemented with 1% (w/v) BSA and 20% normal rat 455serum and incubated for three hours at 37°C with or without purified W27 IgA or mIgA 456(myeloma-derived mouse IgA purchased from Immunology Consultants Laboratory, Inc.). After three hours incubation, DH5 α and Lactobacillus casei were followed by an 457additional seven and forty-five hours incubation at 37°C in each growth media for 458

459	growth suppression assay in Fig. 3a. In Fig. 3c, ME9062 and JW2535 cells were
460	cultured in LB broth at 37°C overnight. Then they were centrifuged, washed with PBS
461	twice and diluted to approximately 0.8-1.2 x $10^5\text{cells}/$ 25 μl in PBS supplemented with
462	1% (w/v) BSA and 20% normal rat serum. The cells were incubated with the designated
463	IgA antibodies at 37°C for three hours and further incubated at 37°C for three hours
464	with LB broth (final concentration, x0.33). Then cells were lysed in buffer A (50 mM
465	Tris-HCl (pH 8.0), 300 mM NaCl, 1 mM EDTA (pH 8.0), 0.5% SDS) on Bead Smash
466	(TOMY), and incubated in the presence of proteinase K (0.2 mg/ml, Nacalai) overnight
467	at 55°C. DNA was isolated by phenol/chloroform extraction and precipitated by ethanol.
468	Finally DNA was dissolved in TE buffer. DNA was then subjected to quantitative PCR
469	with KAPA SYBR [®] FAST qPCR Kit Optimized for LightCycler [®] 480
470	(KAPABIOSYSTEMS) with DH5α-specific primers (F:
471	5'-ACCTTCGGGCCTCTTGCC-3' and R: 5'-TTCCTCCCCGCTGAAAGTAC-3') and
472	Lactobacillus casei-specific primers (F: 5'-TGGCGCAAGCTATCGCTTTT-3' and R:
473	5'-CGCCGACAACAGTTACTCT-3') to measure cell numbers. DNA samples purified
474	from the corresponding numbers of DH5 α and Lactobacillus casei cells were used as
475	qPCR standard to obtain the cell number of each sample.

477 Isolation of Bacterial Strains from Mouse Faeces

478	Fresh faeces from wild-type mice kept in the SPF area of Nagahama Institute were
479	suspended in PBS on Bead Smash (TOMY). Diluted feces with PBS were seeded onto
480	blood-agar plates. The plates were incubated under aerobic or anaerobic conditions at
481	37°C for two or three days, and individual colonies on the plates were picked up for
482	PCR to identify the 16S rRNA gene sequences. Primers for PCR were as follows: 27F
483	(5'-GGAGRRTTTGATYHTGGYTCAG-3') and 1492R
484	(5'-GGGBTACCTTGTTACGACTT-3'). The resulting sequences were compared with
485	sequences in RDP database and genome database using BLAST to determine close
486	species/strains. Identified colonies were cultured independently and stored for
487	subsequent experiments. For IgA binding screening, we used 14 strains of bacteria,
488	which included six isolated strains from mouse faeces and eight clones purchased from
489	ATCC.

490

491 Mass Spectrometry Analysis

492 Immunoprecipitated proteins with W27 antibody from DH5 α cell lysate were 493 electrophoresed on two-dimensional SDS-PAGE gel. W27-bound spot was separated 494 and subjected to standard mass spectrometry. Briefly, the sample was loaded onto a 495 nano-LC equipped with PicoFrit column (New Objective) directly coupled to a
496 nanospray tip of LCMS-IT-TOF system (Shimadzu).

497

498 Construction of SHMT Expression Vector

Full length *glyA* gene encoding SHMT of DH5 α was amplified with the following primers: SHMT-NotIF (5'-CC<u>GCGGCCG</u>CCCATGTTAAAGCGTGAAA-3') and SHMT-NotIR (5'-AGA<u>GCGGCCGC</u>CTGCGTAAACCGGGTAAC-3'). Underlined sequences represent the recognition sites for NotI. PCR fragment was cloned into pcDNA3.1 (+) (Invitrogen) with 3 X Myc-tag at its 3'-end. Other primers for cloning of different bacterial strains are shown in **Supplementary Table 5**.

The primers used for mutagenesis were as follows: E. coli SHMT mutF 505506(5'-CAGGAACACAACATCGAACTGATCGCC-3'), Е. coli SHMT mutR (5'-GATGTGGTGGTTCTGACGTACTTTTTC-3'), L. 507casei SHMT mutF (5'-CGTCAGGAGGAGCATATCGAACTCATTGCC-3') and L. casei SHMT mutR 508(5'-TTCGATATGCTCCTCCTGACGCTCTTCTTC-3'). 509

510

511 Bacterial Flow Cytometry and Sorting of W27 Binding and Non-binding Bacteria

512 Gut contents of small intestine, cecum and large intestine from four male AID^{-/-} mice

513	(21 week-old of age) were collected and suspended in 50 ml of PBS. Immunostaining
514	and sorting were performed according to a previous report 7 with minor modifications.
515	Briefly, washed bacteria were suspended in 100 μl PBS containing 1% (w/v) BSA and
516	20% rat normal serum (WAKO), incubated for 20 min on ice, and then stained with 100
517	μl buffer containing 250 $\mu g/ml$ of W27 for 30 min on ice. Samples were washed three
518	times and then stained with PE-conjugated anti-mouse IgA (eBioscience, clone
519	mA-6E1). IgA coating of bacteria was determined by flow cytometry (Fig. 3) was done
520	as shown above. For bacterial sorting from gut contents, MACS sorting was done on LS
521	columns with anti-PE MACS beads (Miltenyi Biotec) according to manufacture's
522	methods. After MACS separation, the W27-binding and W27-non-binding fractions
523	were further purified on cell sorter (FACSAria, BD Biosciences).

524

525 16S rRNA Gene Sequencing and Analysis for W27 Binding and Non-binding 526 Bacteria

527 Bacterial DNA was isolated and purified according to the literature ²⁶ with minor 528 modifications. In brief, bacterial samples were incubated with 15mg/ml lysozyme 529 (Wako) at 37°C for 1h, followed by incubation with purified achromopeptidase (2000 530 units/ml; Wako) at 37°C for 30min. Then, the samples were incubated with 1% sodium dodecyl sulfate and 1mg/ml proteinase K (Merck) at 55°C for 1h. DNA was purified by
phenol/chloroform/isoamyl alcohol extraction and polyethylene glycol precipitation.

533

The V4 variable region of the 16S rRNA gene was amplified by PCR with dual 534barcoded primers as described previously ²⁷. PCR amplicons were purified by AMPure 535XP magnetic purification beads (Beckman Coulter, Inc.) and quantified using the 536Quant-iT PicoGreen ds DNA Assay Kit (Life Technologies Japan, Ltd). The pooled 537amplicons were sequenced on a MiSeq (Illumina, 2 x 250 bp paired-end reads) 538according to the manufacturer's instructions. The 16S rRNA reads were processed with 539Mothur following the mothur MiSeq SOP (http://www.mothur.org/wiki/MiSeq_SOP). 540In brief, the assembled reads were screened to eliminate reads containing ambiguous 541bases and then aligned to the SILVA 16S rRNA sequence database. UCHIME ²⁸ 542removed chimeric sequences. The remaining reads were clustered into 97% identity 543Operational Taxonomic Units (OTUs) and then assigned taxonomy using Ribosomal 544Database Project database (trainset9_032012.pds). OTUs of less than 0.01% relative 545546abundance were eliminated, and the resulting OTU table was rarefied to 15,000 reads 547per samples.

548

549 Histology and Immunohistochemistry

550	Freshly isolated colons were snap frozen embedded in OCT compound (Sakura, Japan)
551	in Swiss roll and stored at -80°C. Cryostat sections (6 μ m) were fixed in acetone at
552	-20°C for 5 min and stained with hematoxylin and eosin or with Alcian blue (WAKO)
553	and nuclear fast red. For immunohistochemistry, rabbit anti-mouse IgA was purchased
554	from ROCKLAND antibodies & assays and Alexa Fluor 568 goat anti-rabbit IgG was
555	purchased from Life Technologies. Concentration-matched isotype control antibodies
556	were applied to each immunohistochemical staining to ensure the specificity of
557	antibody.

558

559 W27 Oral Treatment of Mice

For all oral treatments of W27 except for **Fig.3b**, W27 (precipitated with ammonium sulfate) in the drinking water (tap water) was administered to mice *ad libitum*. Drinking water with or without W27 was renewed once a week. In the experiment of **Fig. 3b**, 30 μ g of affinity-purified W27 in PBS was administered to AID^{-/-} mice with a gastric tube twice a week *ad libitum*.

565

566 Flow cytometry analysis for germinal center B cells

567Peyer's patches were excised from the small intestine. Single-cell suspensions were 568stained with the following antibodies. The following antibodies were obtained from PE-Cy7-labeled 569eBioscience: anti-mouse/human CD45R (B220) (RA3-6B2), APC-labeled Streptavidin. Biotinylated peanut agglutinin was obtained from VECTOR 570571Laboratories. Dead cells were excluded by propidium iodide. The stained samples were analyzed on BD AccuriTM C6 (BD Bioscience) and Kalusa software (Beckman Coulter). 572573

574 Bacterial Cell Numbers Analysis for W27 Oral Treatment

Bacterial genomic DNA was isolated as described previously²⁰. In brief, faecal samples 575were suspended in extraction buffer (100mM Tris-HCL, 40mM EDTA (pH 9.0) and 57610% sodium dodecyl sulfate). Then glass beads (diameter, 0.1 mm TOMY) and 577578buffer-saturated phenol were added to the fecal suspension. The suspensions were mixed vigorously on a FastPrep FP 120 instrument (BIO 101, Vista, Calif.). After 579580centrifugation, the supernatants were collected. Then DNA was extracted with 581phenol/chloroform. Finally, DNA was reconstituted in TE-buffer. Quantitative PCR 582(qPCR) amplification and detection were performed in 384-well optical plates on an 583ABI PRISM 7900HT sequence detection system (Applied Biosystems) with group-specific primers for Blautia coccoides group, C. leptum subgroup, Atopobium 584

585 *cluster*, *Bacteroides fragilis* group, *Prevotella*, *Eubacterium cylinderroides*, 586 *Lactobacillus* and *Enterobacteriaceae* (See **Supplementary Table 3**) ²⁹⁻³¹ DNA 587 samples purified from the corresponding number of cells derived from each type-strain 588 of eight bacterial groups were used as qPCR standard to obtain the number of each 589 bacterial group.

590We confirmed the uniqueness of amplification for the eight group-specific primer pairs by calculating the percentage of matched rRNA gene sequences in each 591genus from the RDP database (release 11, update 2) (used for the 16S rRNA genes)³² 592and the SILVA Large Subunit Ref database (release 117) (used for the 23S rRNA 59333 594genes) within mismatch with the RDP ProbeMatch one (https://rdp.cme.msu.edu/probematch/search.jsp) and the SILVA TestPrime programs 595(http://www.arb-silva.de/search/testprime/). The results are shown in Supplementary 596Table 3. 597

598

599 DNA Extraction for Sequencing of 16S rRNA Genes

Faeces samples were freeze-dried overnight. Freeze-dried feces were broken with 3.0
mm Zirconia Beads in Shake Master (Biomedical Science, Tokyo, Japan). Ten
milligrams of feces was suspended in 200 µl of 10% SDS/TE (Sodium Dodecyl Sulfate/

603	Tris-EDTA buffer) buffer. Bacterial cells in buffer were broken with 0.1 mm
604	Zirconia/Silica Beads (BioSpec Products, Inc., USA) by vigorous shaking for 5 min at
605	1,500 rpm. The homogenates were centrifuged to isolate DNA for 10 min at 14,000 rpm.
606	The extracted DNA was purified in phenol/chloroform/isoamyl alcohol (25:24:1)
607	solution, precipitated by adding ethanol and 3M sodium acetate, and stored at -20°C.
608	

609 Sequencing of 16S rRNA Genes

The effects of W27 oral treatment for mice gut microbiota were analyzed by two 610 experiments. (i) Comparison of the mean relative abundances of each family of 611 microbiota before and after W27 oral treatment was conducted by the 454 GS JUNIOR 612sequencer-based 16S rRNA gene sequencing analysis. (ii) Comparison of 97% identity 613 OTU abundances of microbiota between W27 and water oral treatment to wild type and 614AID^{-/-} mice in DSS-induced colitis was conducted by the Illumina MiSeq 615sequencer-based 16S rRNA genes amplicon paired-end sequencing analysis. In both 616 experiments, the 338F (5'-ACTCCTACGGGAGGCAGCAGT-3') ³⁴ and 806R 617 (5'-GGACTACCAGGGTATCTAAT-3') ³⁵ primers were used to amplify 16S rRNA 618 619 genes of gut microbiota. The mixed samples were prepared by pooling approximately 620 equal amounts of PCR amplicon from each sample and subjected to the 454 GS

621 JUNIOR and Illumina MiSeq sequencer.

622	In the 454 GS JUNIOR sequencer-based analysis, we obtained the high-quality
623	reads after removal of the reads that (i) contained ambiguous nucleotides, (ii) contained
624	< 350 or > 650 nt, and (iii) were associated with an average Phred-like quality score of
625	less than 25 as calculated by the 454 GS JUNIOR sequencer. Both the forward and
626	reverse primer sequences were removed by a TagCleaner (version 0.12) search with
627	allowed three mismatches ³⁶ . Sequence clustering of the high-quality 454 reads was
628	conducted by using the UCLUST (version 6.0.307) with identity $> 97\%$, and query and
629	reference coverage $> 80\%^{-28}$. Chimeric OTUs were detected and removed if the OTUs
630	were assigned to the chimera in both of the following two methods, (i) a UCHIME
631	(version 6.0.307) 28 reference mode search against the reference gold database
632	(http://drive5.com/uchime/gold.fa), and (ii) a UCHIME de novo mode search.
633	Taxonomic assignment of the high-quality 454 reads was performed by a RDP
634	MultiClassifier (version 1.1) search with bootstrap value > 0.5 37 .

In the Illumina MiSeq sequencer-based analysis, we discarded the reads that (i) contained ambiguous nucleotides and (ii) were mapped to the PhiX genome sequence by a Bowtie 2 (version 2.1.0) search with default parameters ³⁸. After that, each forward and reverse read for the paired-end library was merged by a USEARCH (version

639	6.0.307) with-fastq_truncqual 7 parameter. Both the forward and reverse primer
640	sequences were removed by a TagCleaner search with allowed three mismatches. We
641	obtained the high-quality reads after removal of the reads that (i) contained < 350 or $>$
642	650 nt and (ii) were associated with an average Phred-like quality score of less than 25
643	as calculated by the Illumina MiSeq sequencer. The 97% identity OTU clustering and
644	chimera filtering were performed in the same way for the 454 GS JUNIOR
645	sequencer-based 16S rRNA genes amplicon sequencing analysis. Compositional
646	differences of the 97% identity OTUs among mice with different treatments were
647	visualized by a hierarchical clustering analysis with Bray-Curtis dissimilarity index,
648	and statistically analyzed by a PERMANOVA in the vegan library of the R software.

650 DSS-induced Colitis

DSS (MP Biomedicals, M.W. 36,000-50,000) at designated concentration in the drinking water (hypochlorous acid water) was administered to mice *ad libitum*. The mice that died before the end of experiments (two water-treated and one W27-treated mice in **Fig. 5a**) were excluded. Disease activity index was scored based on the criteria²¹ (**Supplementary Table 6**) in a non-blinded fashion. The experiments were performed at Yakult Central Institute.

658	Colitis Induced by Adoptive Transfer of CD4 ⁺ CD45RB ^{high} T Cells
659	Colitis was induced in Rag1 ^{-/-} mice (C57BL6) by adoptive transfer of CD4 ⁺ CD45RB ^{high}
660	T cells (C57BL6) as described previously ³⁹ . Histological score was determined as
661	shown in Supplementary Table 7 23 in a blinded fashion. The experiments were
662	performed at IMS-RCAI.
663	
664	Statistics
665	Statistic analyses were performed by designated procedures described in each Figure
666	legend. P < 0.05 was considered significant.
667	
668	ACCESSION NUMBERS
669	The nucleotide sequences determined in this study were deposited in the DDBJ
670	Sequence Read Archive with the DDBJ BioProject ID PRJDB3207.
671	

672 **REFERENCES**

- 1. Hooper, L.V., Littman, D.R. & Macpherson, A.J. Interactions between the microbiota and the immune system. *Science* **336**, 1268-1273 (2012).
- 2. Huttenhower, C., Kostic, A.D. & Xavier, R.J. Inflammatory bowel disease as a model for translating the microbiome. *Immunity* **40**, 843-854 (2014).
- 3. Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. *Nat Rev Immunol* **9**, 313-323 (2009).
- 4. Brandtzaeg, P. Secretory IgA: designed for anti-microbial defense. *Front Immunol* **4**, Article 222 (2013).
- 5. Macpherson, A.J. & McCoy, K.D. Independence Day for IgA. *Immunity* **43**, 416-418 (2015).
- Pabst, O. New concepts in the generation and functions of IgA. *Nat Rev Immunol* 12, 821-832 (2012).
- 7. Palm, N.W., *et al.* Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. *Cell* **158**, 1000-1010 (2014).
- 8. Mantis, N.J., Rol, N. & Corthesy, B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. *Mucosal Immunol* **4**, 603-611 (2011).
- 9. Brandtzaeg, P., Fjellanger, I., & Gjeruldsen, S.T. Adsorption of immune A onto oral bacteria in vivo. *J Bacteriology* **96**, 242-249 (1968)
- Kau, A.L., *et al.* Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. *Sci Transl Med* 7, 276ra224 (2015).
- 11. Fagarasan, S., *et al.* Critical roles of activation-induced cytidine deaminase in the homeostasis of gut flora. *Science* **298**, 1424-1427 (2002).
- 12. Wei, M., *et al.* Mice carrying a knock-in mutation of Aicda resulting in a defect in somatic hypermutation have impaired gut homeostasis and compromised mucosal defense. *Nat Immunol* **12**, 264-270 (2011).
- 13. Atarashi, K., *et al.* Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. *Nature* **500**, 232-236 (2013).
- 14. Gevers, D., *et al.* The treatment-naive microbiome in new-onset Crohn's disease. *Cell Host Microbe* **15**, 382-392 (2014).
- 15. Andoh, A., *et al.* Multicenter analysis of fecal microbiota profiles in Japanese patients with Crohn's disease. *J Gastroenterol* **47**, 1298-1307 (2012).
- Lasserre, J.P., *et al.* A complexomic study of Escherichia coli using two-dimensional blue native/SDS polyacrylamide gel electrophoresis. *Electrophoresis* 27, 3306-3321 (2006).

- Link, A.J., Robison, K. & Church, G.M. Comparing the predicted and observed properties of proteins encoded in the genome of Escherichia coli K-12. *Electrophoresis* 18, 1259-1313 (1997).
- Weiner, J.H. & Li, L. Proteome of the Escherichia coli envelope and technological challenges in membrane proteome analysis. *Biochim Biophys Acta* 1778, 1698-1713 (2008).
- 19. Baba, T., *et al.* Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol Syst Biol* **2**, 2006 0008 (2006).
- 20. Nichols, R.J., *et al.* Phenotypic landscape of a bacterial cell. *Cell* **144**, 143-156 (2011).
- Matsuki, T., *et al.* Quantitative PCR with 16S rRNA-Gene-Targeted Species-Specific Primers for Analysis of Human Intestinal Bifidobacteria. *Applied and Environmental Microbiology* 70, 167-173 (2004).
- 22. Cooper, H.S., Murthy, S.N., Shah, R.S. & Sedergran, D.J. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. *Lab Invest* **69**, 238-249 (1993).
- 23. Asseman, C., Mauze, S., Leach, M.W., Coffman, R.L. & Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. *J Exp Med* **190**, 995-1004 (1999).
- 24. Mathias, A., & Corthesy, B. Recognition of gram-positive intestinal bacteria by hybrid- and colostrum-derived secretory immune A is mediated by carbohydrates. *J Biol Chem* **286**, 17239-17247 (2011).
- Ono, A., *et al.* Comparative study of human hematopoietic cell engraftment into BALB/c and C57BL/6 strain of rag-2/jak3 double-deficient mice. *J Biomed Biotechnol* 2011, 539748 (2011).
- 26 Morita, H., *et al.* An improved DNA isolation method for metagenomic analysis of the microbial flora of the human intestine. *Microbes and environments* **22**, 214-222 (2007).
- Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K. & Schloss, P.D.
 Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. *Appl Environ Microbiol* **79**, 5112-5120 (2013).
- 28 Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27, 2194-2200 (2011).
- 29 Matsuda, K., Tsuji, H., Asahara, T., Kado, Y. & Nomoto, K. Sensitive

quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR. *Appl Environ Microbiol* **73**, 32-39 (2007).

- 30 Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T. & Tanaka, R. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. *Appl Environ Microbiol* **70**, 7220-7228 (2004).
- 31 Rinttila, T., Kassinen, A., Malinen, E., Krogius, L. & Palva, A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. *J Appl Microbiol* 97, 1166-1177 (2004).
- 32 Cole, J.R., *et al.* Ribosomal Database Project: data and tools for high throughput rRNA analysis. *Nucleic Acids Res* **42**, D633-642 (2014).
- 33 Quast, C., *et al.* The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. *Nucleic Acids Res* **41**, D590-596 (2013).
- 34 Walter, J., *et al.* Detection and identification of gastrointestinal Lactobacillus species by using denaturing gradient gel electrophoresis and species-specific PCR primers. *Appl Environ Microbiol* **66**, 297-303 (2000).
- 35 Osek, J. Development of a multiplex PCR approach for the identification of Shiga toxin-producing Escherichia coli strains and their major virulence factor genes. *Journal of Applied Microbiology* **95**, 1217-1225 (2003).
- 36 Schmieder, R., Lim, Y.W., Rohwer, F. & Edwards, R. TagCleaner: Identification and removal of tag sequences from genomic and metagenomic datasets. *BMC Bioinformatics* 11, 341 (2010).
- 37 Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. *Appl Environ Microbiol* 73, 5261-5267 (2007).
- 38 Langmead, B. & Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat Methods 9, 357-359 (2012).
- 39 Furusawa, Y., *et al.* Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cell. *Nature* **504**, 446-450 (2013).

674 Correspondence and requests for materials should be addressed to

675 R.S. (rshinkura@bs.naist.jp).

676

677

678 ACKNOWLEDGMENTS

- 679 We thank Dr. T. Honjo for providing AID^{G23S} and $AID^{-/-}$ mice, Dr. Niki for providing E.
- 680 coli strains, ME9062 and JW2535, Dr. S. Nomura and Ms. M. Ohta for important
- technical help and Drs. T. Nakano, K. Asoh and V. Shivarov for critical reading. This
- 682 work was supported by grants from The Japan Science and Technology Agency, JSPS
- 683 KAKENHI 15H04732, Yakult Bio-Science Foundation, Naito Memorial Foundation,
- 684 Senshin Medical Research Foundation and Astellas Foundation for Research on
- 685 Metabolic Disorders (to R.S.), and also by AMED-CREST, AMED and RIKEN

686 Pioneering Project "Biology of Symbiosis" (to H.O.).

687

688 AUTHOR CONTRIBUTIONS

689 S.Okai, F.U. and R.S. designed experiments, performed experiments, analyzed data and

- 690 wrote the paper. S.Okai, S.Y., Y.H., T.N. and M.K. performed pathological analyses.
- 691 S.M., M.N., T.N., and Y.W. provided live anaerobic bacteria and performed bacterial

699	COMPETING FINANCIAL INTERESTS
698	
697	and T.K. were involved in data discussions.
696	S.Okada provided essential materials. S.Okai, F. U., R.S., S.M., H.O., K.K., H.M., E.M.
695	and K.K. performed microbiome bioinformatics analyses for antibody-treated mice.
694	bacterial sorting and related bioinformatics analyses. T.K., H.O., K.Y., E.N., H.M., T.Y.
693	were involved in induced colitis experiments. E.M. and H.O. performed W27 binding
692	qPCR analysis. M.H. performed mass spectrometry. S.Okai, R.S., S.M., E.M., H.O.

700 The authors declare no competing financial interests.

702 FIGURE LEGENDS

703

Figure 1 LP-derived Monoclonal W27 Antibody is Identified as a High-affinity

705 Poly-reactive IgA

706(a) Reactivity of 16 monoclonal IgA antibodies against 14 different bacterial strains was evaluated by ELISA assay. Each monoclonal IgA at concentration of 1.4 µg/ml was 707708applied to ELISA plates coated with each strain of bacteria. The positive binding was determined by O.D. value > 0.3. Grey squares, positive binding; open squares, no 709 binding. ND: not determined. * Isolated bacteria from mouse faeces. (b) The relative 710 binding ability of each IgA clone was analysed by ELISA assay with serially diluted 711 monoclonal IgA antibodies. O.D., optical density. All data are representative of at least 712713three independent biological experiments (a and b). (c) Representative FACS bacterial sorting results of Pre-sorted, Sorted W27 binding and Sorted W27 non-binding 714populations from mixed gut contents of four AID^{-/-} mice (21 weeks of age) (left). Mean 715relative abundance of operational taxonomic units classified at the family level for each 716 717population (right). Data were obtained from five technical replicated sorting and 718sequencing procedures. Source Data are provided online.

721 Figure 2 W27 IgA Recognizes an Epitope of the Enzyme SHMT to Target a Set of

722 Bacteria Selectively

723 (a) The reactivity of four IgAs to cell extracts from seven bacteria, a mouse B cell line (NS-1) and a human cell line (293T). SDS-PAGE gels were applied to either Western 724blot with antibody (W27, W2, W34, and W43) or Coomassie brilliant blue (CBB) 725726staining to confirm that comparable amounts of each protein were loaded. (b) Four IgAs recognized a single molecule, SHMT, in DH5a. Overexpressed Myc-tagged E. coli 727 728 SHMT in DH5 α was detected as well as endogenous SHMT. Note that total DH5 α lysate amount loaded on each gel was not identical. (c) Myc-tagged cloned SHMT 729 730proteins derived from five bacteria and human were overexpressed in 293T cells to confirm binding by W27. (d) Amino acid (AA) sequences of synthesized three peptides 731732(SHMT-P1~P3) are shown. Conserved and variant amino acid sequences were shown in 733 black and red, respectively. Underlined red residues were the core epitope for W27. (e) Myc-tagged mutant SHMT proteins (E. coli SHMT^{mut-EHNI} and Lactobacillus casei (L. 734*casei*) SHMT^{mut-EEHI}) were overexpressed in 293T cells. (f) Relative affinity of each 735736purified IgA against SHMT-P1-BSA. mIgA: myeloma-derived mouse IgA. O.D., 737optical density. Data are representative from two or three independent biological experiments (a to f). The entire gels and blots are shown in Supplementary Fig. 6 (a to
e).

740

741 Figure 3 W27 Suppressed E. coli Cell Growth via SHMT-specific Recognition

742(a) Three to five hundred cells of DH5 α and Lactobacillus (L.) casei were incubated 743with affinity-purified W27 or control mouse IgA (mIgA) at the designated concentration for three hours at 37°C. After then the DH5a and L. casei cells were incubated with 744745growth medium at 37°C for additional seven and forty-five hours respectively, until the cells grew to reach the comparable cell numbers. ** P < 0.01, * P < 0.05. ANOVA was 746performed, followed by Bonferroni-Holm post-hoc tests for multiple comparisons. (b) 747IgA surface staining of *E. coli* and *L. casei.* (c) *E. coli* cells (0.8-1.2 x 10^5 cells) were 748incubated with affinity-purified W27 or control mouse IgA (mIgA) at the designated 749750concentration for three hours at 37°C. After then the samples were incubated for additional three hours with growth medium at 37° C. ** p < 0.001 vs. without W27. 751Statistical analysis was performed by two-sided Mann-Whitney test. ME9062: 752SHMT-proficient E. coli, JW2535: SHMT-deficient E. coli. Each dot represents mean 753754of three technical replicates (a and c). Data were collected from 3-9 independent biological experiments (a and c). All data are expressed as medians \pm range in (a) and 755

756	(c). (d) IgA surface staining of ME9062 and JW2535. Open histogram: unstained cells
757	in (b) and (d). (e) Western blot analysis confirmed the SHMT deficiency of JW2535.
758	The entire gel and blot are shown in Supplementary Fig. 6. (f) Reactivity of W27 and
759	mIgA antibodies against two different bacterial strains was evaluated by ELISA assay.
760	Data are representative from three independent biological experiments (b , d , e and f).

762 Figure 4 W27 Oral Treatment Prevented Pathological Colonic Phenotype and

763 Modulated Gut Microbial Composition in AID^{G23S} Mice

(a) Total number of GC B cells (B220⁺PNA^{high}) in PPs from mice. Data are from 2-5 764independent biological experiments, except for W2 treatment (one experiment). IgA 765antibodies (W27, W2) were orally administered to AID^{G23S} mice in the drinking water at 766concentration of 25 μ g/ml for 4 weeks. All data are expressed as means <u>+</u> SE. ** P < 767 0.01. ANOVA was performed, followed by Bonferroni-Holm post-hoc tests for multiple 768comparisons. (b) The PP GC B cell numbers by W27 oral treatment by gavage in AID^{-/-} 769 770mice. Data are from three independent biological experiments. All data are expressed as medians \pm range. ** P < 0.01. Statistical analysis was performed by two-sided 771772Mann-Whitney test. (c) Representative hematoxylin and eosin (HE) staining of colon from control (upper) and W27-treated (lower) AID^{G23S} mice. Scale bars, 500µm. (d) 773

The severity of colonic crypt damage was examined on HE-stained colon sections based 774on the percentage of affected area of the full-length of the colon. (e) Mean relative 775abundance of operational taxonomic units classified at the family level before (left) and 776after (right) W27 oral treatment in AID^{G23S} mice (n=4). The bacterial family names were 777778listed only when their relative abundance was changed significantly by W27 oral 779 treatment (p < 0.05, Fisher's exact test. Corrected for false discovery rate). (f) Hierarchical clustering and PERMANOVA comparing before and after W27 treatment. 780 M1-M4 represents the individual mice. p < 0.05. Source Data are provided online (e and 781 **f**). 782

783

Figure 5 W27 Oral Treatment Presented Colitis Induced by DSS and Adoptive Transfer of Naïve T Cells.

(a) Body weight change. DSS (3.5%) and W27 (25 μ g/ml) were given to female BALB/c wild-type mice in the drinking water. Timeline of DSS and W27 treatment is shown below the graph. (b) Disease activity index scored as reported previously²². (c) IgA binding population of faecal bacteria from W27-treated or water control mice at the end of the experiment. (d) Faecal microbial composition analysis at the end of experiment by hierarchical clustering and PERMANOVA comparing between

792	W27-treated and -untreated mice. $p < 0.05$. (e) Body weight change after
793	CD4 ⁺ CD45RB ^{high} T cell adoptive transfers into male Rag1 ^{-/-} mice. (f) Histological score
794	according to a previous report ²³ . (g) Representative colonic sections stained with HE
795	and Alcian blue (AB) with nuclear fast red. Scale bars, 200 μ m. (h) Faecal microbial
796	composition analysis at three weeks post transfer by hierarchical clustering and
797	PERMANOVA comparing between W27-treated and -untreated mice. $p < 0.05$. Data
798	are expressed as means \pm SE. (a and e), and expressed as medians \pm range (b , c , and f).
799	* p < 0.05, ** p < 0.01. Two-way repeated measured ANOVA followed by Bonferroni
800	post hoc test (a and e). Statistical analysis was performed by two-sided Mann-Whitney
801	test (b, c, and f). (a)-(d) One experiment performed at Yakult Central Institute. (e)-(h)
802	One experiment performed at RIKEN Center for IMS. Source Data are provided online
803	(d and h).
804	

Figure 1

а

	_															
	Wild-type clones															
bacteria	W 1	W 2	W 3	W 4	W 6	W 7	W 11	W 24	W 27	W 28	W 30	W 32	W 34	W 37	W 43	W 45
Escherichia coli *																
Staphylococcus lentus *																
Enterococcus faecalis *																
Pseudomonas fulva *																
Lactobacillus murinus *																
Enterorhabdus mucosicola*																
Lactobacillus casei																
Blautia coccoides								N D								
Megamonas hypermegale								N D								
Bifidobacterium bifidum																
Prevotella melaninogenica																
Bacteroides vulgatus																
Megamonas funiformis																
Blautia producta																

С

Figure 3

Figure 4

