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Abstract

Imagine that we are on a train playing with some mechanical systems. Why

can’t we detect any differences in their behavior when the train is parked versus

when it is moving uniformly? The standard answer is that boosts are symmetries

of Newtonian systems. In this paper, I use the case of a spring to argue that this

answer is problematic because symmetries are neither sufficient nor necessary for

preserving its behavior. I also develop a new answer according to which boosts

preserve the relational properties on which the behavior of a system depends, even

when they are not symmetries.
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1 Introduction

Why do mechanical systems inside a bigger system behave in the same manner regardless

of the (constant) velocity of the bigger system? For example, why is it that a pendulum

hanging from the rough of a train’s cabin oscillates with the same period when the train

is at rest at the station and when it is moving at a speed of 150 km/h in a straight line?

The standard answer to these questions appeals to the fact that the laws of mechanical

systems are invariant under constant velocity transformations, or, what amounts to the

same thing, to the fact that boosts are dynamical symmetries of mechanical systems

(one could also say that “Newton’s laws are Galilean invariant,” which includes being

invariant under boosts). In this paper, I will argue that the standard answer is wrong. In

particular, I will show that some transformations are dynamical symmetries and do not

preserve the behavior of a mechanical system, and others are not dynamical symmetries

and yet they do preserve the behavior of a mechanical system. Hence, being a dynamical

symmetry is neither necessary nor sufficient for a given transformation (like a boost) to

preserve the behavior of a Newtonian system. The main upshot of the paper is that we

should look beyond dynamical symmetries for an answer to why mechanical systems,

such as a pendulum inside a train, behave the same under boosts of the train.

The arguments in this paper pose a problem not only for the standard physics

explanation of why mechanical systems behave in the same way under boosts (i.e., the

explanation that appeals to the fact that boosts are symmetries of Newtonian systems)

but for any philosophical view of symmetries that entail the standard explanation. For

example, although they adopt rather different approaches to elucidating the connection

between symmetries, observations, and measurements, Healey (2009), Dasgupta (2016),
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and Wallace (2022) have developed frameworks that seem to agree on this particular

point: in order to explain why in Newtonian mechanics experiments confined to the

cabin of a train yield the same outcomes regardless of the constant velocity of the train,

we must appeal to (among other things) the fact that boosts are dynamical symmetries

of the laws that characterize the mechanical systems in the cabin (see Dasgupta (2016,

section 4.3), Healey (2009, Section 5) or Wallace (2022, Sections 4 and 5)). Hence, these

different approaches seem to recover the standard physics explanation that aims to

derive sameness in behavior for a system from its dynamical symmetries, at least when

restricted to the case of boosts in Newtonian mechanics. Hence, these accounts are also

vulnerable to the arguments developed in this paper.

The structure of the paper goes as follows. In section 2, I will present a simple

mechanical system (a spring inside a spaceship) around which the rest of the paper will

be structured. The point of using this system is to examine, as concretely as possible,

different explanations for why it is that the system remains invariant under the boosts of

the spaceship. In section 3, I consider the standard approach to explaining why the

system behaves in the same way under boosts; boosts are dynamical symmetries of the

laws characterizing the system. Section 4 shows a problem with this kind of approach

having to do with a proliferation of dynamical symmetries. Section 5 shows a second

problem; being a dynamical symmetry is not sufficient for explaining sameness in

behavior. And section 6 shows a third problem; being a dynamical symmetry is not

necessary for explaining the sameness of behavior. Section 7 presents a different

approach that is more general and simpler than the one that appeals to dynamical

symmetries, and that centers on the fact that boosts can preserve the relative quantities

on which the behavior of a system depends even when they are not symmetries.
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Before moving on, it is worth stressing that other scholars, such as Belot (2013) or

Wallace (2022), have already noted that some symmetries do not preserve the physical

behavior of systems. However, in contrast to this paper, these works do not focus on the

explanatory role of symmetries and do not question the claim that symmetries do

explain why the behavior of simple mechanical systems (such as springs) remains

invariant under boosts.

2 The main question

2.1 Terminology

Before considering the various arguments, it is a good moment to fix some basic

terminology. Roughly, a dynamical symmetry is a mathematical transformation of the

dependent or independent variables appearing in the equation for a law (usually, a

differential equation) that leaves it invariant (equivalently, such transformation maps

solutions to solutions). For the sake of brevity, “symmetry” and “dynamical symmetry”

will be treated as interchangeable unless otherwise noted (this is common in the

literature, e.g. Dasgupta (2016) or Wallace (2022)). Also for brevity, I say “dynamical

symmetry of the system” instead of “dynamical symmetry of the system’s laws” but it

should be clear that the latter is more precise.

2.2 A spring in a spaceship

Suppose that we want to explicitly show that boosts are symmetries of a spaceship

moving in (almost) empty space with some constant velocity with respect to a faraway
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star (which is not accelerating). In order to explicitly show that boosts are symmetries

of the spaceship one can show that the equations representing its dynamics are invariant

under boosts. In practice, this involves showing that either the two sides of the

differential equation remain unchanged under the transformation or showing that the

two sides are changed by the very same factor so that it cancels out at the end. In

particular, for the present case, one can do the following: since the spaceship is a

mechanical system and since it is assumed to be isolated (i.e., no external force acts on

it), its dynamics can be represented by the equation 0 = mdv/dt (Newton’s second law

for zero force). Then, we note that a boost of the form v 7→ v + k (with k constant)

produces no change in the acceleration because d(v + k)/dt = dv/dt if k is constant,

meaning that the right-hand of equation 0 = mdv/dt does not change. And then, we

show that v 7→ v + k produces no changes in the force F = 0 because, we assume, the

system remains isolated after the boost. Hence, both sides of 0 = mdv/dt remain

invariant under a boost, indicating that the simple dynamical law characterizing the

spaceship is preserved by this transformation. We can then say that the transformation

(a boost) is a symmetry of the equation. This entails that such a boost will map

solutions of 0 = mdv/dt into other solutions with higher or slower velocity (e.g., it will

map v = c into v = c± k). This is all very familiar: symmetry transformations map

solutions of the equations of motion of the system into other (or the very same) solutions.

Now, even though we just showed that the boosts of the spaceship are symmetries

(they preserve the law describing the spaceship’s behavior), notice that the previous

explanation does not really say anything concrete about what is happening inside the

spaceship. Arguably, the most important feature of Galileo’s famous ship thought

experiment is that mechanical systems confined to the ship behave in the same manner
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Detector

Figure 1: We have a block attached to an ideal spring that is itself attached to a wall
of the spaceship. The detector is also rigidly attached to the same wall and it is located
at the equilibrium position. We want to understand why the behavior of the spring with
respect to the detector looks the same after boosts.

no matter what the velocity of the ship with respect to an external system is (see Brown

and Sypel (1995) for a historically-informed discussion of this thought experiment). So,

how do we show in an explicit way that the behavior of mechanical systems inside the

spaceship in question (which is a version of Galileo’s ship) remains the same under the

boosts of the spaceship? To be as concrete as possible, let’s consider this question in the

context of a particular Newtonian system inside the spaceship’s cabin. In particular, let’s

focus on a block of mass M, which is connected to the back cabin’s wall by an ideal

spring that is measured by a detector inside the cabin that is located at the equilibrium

position (see Figure 1). Given this setup, consider the following question:

QUESTION: why is it that the behavior of the block, as seen inside the cabin

(e.g., as measured by the detector), remains invariant under the boosts of the

spaceship?

This apparently simple question will be the focus of attention of the present paper.
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3 The Dynamical Symmetries approach

The standard way to answer why the behavior of a system remains invariant under

boosts appeals to the dynamical symmetries of the system (in particular, it appeals to

showing that boosts are symmetries of such a system). For example, Steven Weinberg

(2021, 90) illustrates that Newtonian gravity is invariant under boosts by showing

explicitly that the equation that describes two massive bodies interacting via Newtonian

gravitation is invariant under transformations of the form r 7→ r+ vt (with v constant).

The idea, then, is to use the exact same kind of strategy in order to answer QUESTION

(where the relevant system is a spring seen by a detector at the equilibrium position).

It will be convenient to call “DSE” (“dynamical symmetries explain”) the view that

purports to answer QUESTION along these lines, that is, by focusing on the relevant

dynamical symmetries of the laws that characterize the system. Although DSE is widely

defended in physics circles, it is not less popular in philosophical accounts of symmetries.

For example, according to Dasgupta (2016), symmetries preserve appearances (they do

so by definition according to Dasgupta). Hence, if one can show that boosts are

symmetries of a certain law characterizing a given system, then it follows that

measurement outcomes of such system will be preserved under boosts (see also Roberts

(2008)). To give another example, Healey (2009, 707-08) explicitly points out that the

fact that boosts are dynamical symmetries of Newtonian mechanics explains why

mechanical systems look the same after a boost.

Let’s then follow DSE for the case of the spring. First, it is clear that the relevant

law characterizing the block’s behavior is Hooke’s, as the block is attached to an ideal

spring. Second, according to DSE, we need to show that Hooke’s law is invariant under
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boosts –showing this would suffice for answering QUESTION because all the detector

does is measure the displacement of the spring with respect to equilibrium.

Mathematically, Hooke’s law can be expressed as

xb = −ω2 d
2

dt2
xb, (1)

where xb is the position of the endpoint of the spring (the point at which the block is

attached) measured with respect to the equilibrium position of the spring (we follow

physics practice and use a coordinate system where the equilibrium position is the

origin), ω depends on the spring’s constant k and the block’s mass via ω =
√

m/k, and t

represents the time. The general solution of equation 1 can be written as

xb = A cos(ωt) +B sin(ωt), where A represents the initial amplitude and B the initial

speed. Hence, the actual motion of the spring as a function of time is determined by a

specific value of A and B (the initial conditions). For simplicity, I will keep referring to

equation 1 as “Hooke’s law,” although the more precise terminology would be “the law

for a classic harmonic oscillator.”

Now, let’s try to answer QUESTION by showing that equation 1 is invariant under a

boost, that is, under a transformation of the form x 7→ x+ vt. Notice that the

right-hand side of equation 1 remains invariant under this transformation because the

second derivative of vt vanishes.1 However, the left-hand side of equation 1 is not

invariant, for xb is obviously different from xb + vt. Hence, the transformation

x 7→ x+ vt takes equation 1 into equation xb + vt = −ω2 d2

dt2
xb, which is not the equation

1Explicitly, −ω2 d2

dt2
(xb + vt) = −ω2 d2

dt2
(xb) − ω2 d2

dt2
(vt) = −ω2 d2

dt2
(xb) (since v is con-

stant).
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of an ideal spring. This seems to be suggesting that, contrary to what we expected,

boosts are not dynamical symmetries of ideal springs! And this suggestion seems

reinforced by the fact that the transformation in question does not map solutions into

solutions. For instance, it takes xb = A1 cos(ωt) (a particular solution of equation 1 for

B = 0 and A = A1), into xb = A1 cos(ωt)− vt, which is not a solution. Does this then

mean that contrary to what DSE says, the reason a spring behaves in the same manner

in a spaceship at rest and in a spaceship that is moving is not a consequence of boosts

being dynamical symmetries of the spring? Not so quickly!

A defender of DSE might point out that we have misinterpreted the transformation

x 7→ x+ vt. Recall that xb represents the position of the block (the endpoint of the

spring) with respect to the equilibrium position. Hence, if we take the transformation

x 7→ x+ vt as acting only on the endpoint xb, then we seem to be representing a boost of

the block with respect to the equilibrium position as if we were stretching the end of the

spring in a way proportional to speed and time. And, of course, if we stretch the spring

in this manner, we no longer expect the spring to behave like an ideal spring. Hence,

what we really need to do according to DSE is to show that the behavior of the block

remains the same under boosts of the spring taken as a whole (instead of boosts of just

the spring’s endpoint).

Motivated by the previous remarks, let’s write Hooke’s law (or something that looks

like it) in a different form that explicitly relates the endpoint to the equilibrium position

of the spring via xb = xf − xeq. Here xf is the position of the block (the endpoint) and

xeq is the position of the equilibrium point with respect to a certain coordinate system

(initially we take the equilibrium position to be at the origin of such a system). With

these conventions, we can write the following equation:
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xf − xeq = −ω2 d
2

dt2
(xf − xeq). (2)

Mathematically speaking, equation 2 is what we get if we make the identification

given by xb = xf − xeq in equation 1. The point of this identification is simply that it

makes it easier to keep track of the equilibrium position, which will be useful for what

comes next. As before, the general solution of this differential equation is

xb = xf − xeq = A cos(ωt) +B sin(ωt)2

Consider a boost that acts on both the endpoint xf and the equilibrium point xeq

(and any other point of the spring for that matter). Explicitly, let’s interpret the boost

transformation x 7→ x+ vt as a transformation acting on every single point of the spring

so that in particular it acts on xf like xf 7→ xf + vt and on xeq as xeq 7→ xeq + vt (this

means that the equilibrium point of the spring is no longer at rest). It is trivial to show

that equation 2 remains invariant under such transformation, for xf − xeq is just a

difference between two terms, and so the left-hand side of equation 2 is invariant under

the transformation. And, of course, if this difference is preserved, so it is any derivative

of it, meaning the right-hand side is invariant too. Hence, both sides of equation 2

remain invariant, meaning that x 7→ x+ vt (when interpreted as explained here) is

indeed a dynamical symmetry, just as DSE expected to show!

Similarly, it is easy to show that the transformation in question maps solutions to

2To be more precise, we are solving for xf (t) as a function of time and we take xeq as

an external parameter that depends on the situation (if the spaceship is at rest, xeq = 0;

if the spaceship is moving at a constant velocity, xeq = vt, and so on). So the general

solution can be written as xf (t) = A cos(ωt) +B sin(ωt) + xeq(t).
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solutions (this is a different way of establishing the same thing, namely, that boosts are

symmetries of equation 2). To see this, notice that the only reference the general

solution (e.g. xf − xeq = A cos(ωt) +B sin(ωt)) of equation 2 makes to either xf or xeq

comes from the term xf − xeq, which is preserved by the transformation, as explained

above. Hence, the transformation maps solutions into themselves:

(xf − xeq) 7→ (xf − xeq) or, using the variables of equation 1, xb 7→ xb (contrast this with

the case of the spaceship at the beginning of the section, where a solution is mapped to a

different solution, v = c 7→ v = c± k).

It is worth mentioning that the argument just given in no essential way depends on

choosing the formulation given in equation 2 as opposed to the one given in 1. One only

needs to be careful remembering that if the boost acts on the whole spring, this amounts

to xb 7→ xb in formulation 2 and to (xf − xeq) 7→ (xf − xeq) in the newer formulation.

That is, once we recognize that the boost acts on the whole spring, both formulations of

the law are left invariant under boosts. In short, it seems that DSE offers the right

answer to our original question:

DSE’s answer: the spring (and so the block attached to it) behaves the same

way before and after the boost because boosts (understood as applying to all

points of the spring) are dynamical symmetries of Hooke’s law, which is the

law that characterizes the motion of the spring. And since the spring’s

behavior does not change under the boosts of the spaceship, the detector will

not detect any differences in behavior.
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4 Problem 1: proliferation

Although DSE’s answer seems to match our expectations, a closer inspection reveals an

interesting problem. If DSE is right, then, contrary to conventional wisdom, there is

nothing special about boosts or spatial translations because infinitely many

transformations in one dimension preserve the difference xf − xeq and hence leave

equation 2 invariant (this includes transformations that are not normally counted as

dynamical symmetries of springs). Hence, according to DSE, infinitely many

transformations would make the behavior of the block remain invariant. To see this,

notice that x 7→ x+ g(t), if applied to both xf and xeq, will leave equation 2 invariant,

no matter what alteration of one-dimensional motion g(t) is taken to represent !3 For

example, g(t) can represent a constant acceleration (in which case we can write the

transformation as x 7→ x+ 0.5at2),4 or it can also represent a variable acceleration, or it

3For (xf+g(t))−(xeq+g(t)) = xf−xeq, and if xf−xeq is preserved then any derivatives

of it are preserved too.
4One might suggest that constant accelerations of mechanical systems are indeed dy-

namical symmetries of Newtonian systems (including springs) by appealing to something

like Corollary VI to the laws of Newton’s Principia (e.g., see Saunders (2013).). As

provocative and interesting as this might sound, however, this kind of approach faces some

problems. To name a rather obvious one, notice that equation −G m2

|r1−r2|3 (r1 − r2) =
d2r1
dt2

(describing the motion of a body gravitating with respect to another one) is not invariant

under constant accelerations, and neither is the equation of the spaceship at the begin-

ning of section 2.2. More generally, the fact that, locally, a system looks the same in the

presence of a constant acceleration does not imply that the differential equation character-

izing such a system is invariant under constant accelerations (e.g., the differential equation
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can correspond to a bizarre transformation such as this one: x 7→ x+ cos t+ t3 (here

g(t) = cos t+ t3). This last transformation has no natural physical interpretation (it looks

like a weird combination of a harmonic motion combined with a jolt term). However,

whatever motion g(t) represents here (if any!), if the transformation were to act on all

the points of the spring simultaneously, then it would leave equation 2 invariant.

The fact that so many transformations, from the very mundane ones like shifts and

boosts all the way to rather bizarre ones like x 7→ x+ cos t+ t3 + t6 would, if

implemented, leave Hooke’s law invariant should puzzle defenders of DSE. At the very

least, it seems puzzling that the reasoning in DSE’s answer ends up generalizing way

beyond the transformations that physicists usually take to be relevant when discussing

Newtonian systems (e.g., see Weinberg (2021, ch. 4) or Feynman et al. (1963, ch. 52)).

And it is worth pointing out that the proliferation of symmetries for Hooke’s law affects,

not only springs but any other systems that obey the equations of the harmonic

oscillator, including, for instance, pendulums undergoing small oscillations, the vibrating

particles of the medium in a sound wave or even a ball rolling in a curved dish.

The proliferation of dynamical symmetries is also problematic for formal reasons. For

example, it has been shown that ideal springs are characterized by a finite group of eight

independent symmetry transformations (e.g., see Wulfman and Wybourne (1976)),

which would be in clear tension with the existence of infinite independent symmetries

(and none of the symmetries discussed in the literature include transformations such as

x 7→ x+ cos t+ t3 + t6). Related to this, as Belot (2013) points out, dynamical

might explicitly characterize the system with respect to an inertial frame, in which case

the equation will fail to be invariant under constant accelerations). We will come back to

this point in section 6.
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symmetries are hard to come by. The fact that we just found an infinite number of them

(g(t) can be any smooth function) with one simple line of elementary math should make

us a bit suspicious of the approach!

5 Problem 2: stretching the spring

Given the nature of the questions here discussed, it seems rather important to look at

what physicists and mathematicians working on the dynamical symmetries of the

classical harmonic oscillator have said. It turns out that if we do this, a different

problem for DSE appears (a problem already identified by Belot (2013) although in a

different context). If we read physics papers on the symmetries of the harmonic

oscillator (e.g., see Wulfman and Wybourne (1976) or Lutzky (1978)), we find that there

are plenty of dynamical symmetries that do not preserve the physical behavior of springs

(it is also worth pointing out that in those same papers, boosts are not counted among

the symmetries of Hooke’s law). This highlights a second problem for DSE; to be a

dynamical symmetry is not a sufficient condition for preserving the behavior of

mechanical systems. Schematically, this suggests that we need to replace DSE with DSE

+ X, where X refers to some property that distinguishes those dynamical symmetries

that preserve behaviors from those that do not.

Consider the following symmetry transformation of the harmonic oscillator equation5:

5A slightly different version of this symmetry transformation is discussed in Wulfman

and Wybourne (1976, 516). The authors do not write the generator of this symmetry

explicitly, but given their prior results, one can show that the generator is SB = sin t ∂
∂x
.
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xb 7→ xb + cos(t). (3)

Here, we assume that the equilibrium point is initially placed at the origin of the

coordinate system, and xb is understood as the position of the endpoint with respect to

such origin (following Wulfman and Wybourne (1976), we also assume units such that

ω = 1). Here, the transformation is understood as only acting on the endpoint of the

spring with respect to the origin (but see section 6 below for alternative interpretations).

Using the notation introduced earlier, this means that xf 7→ xf + cos(t) and xeq 7→ xeq

(or xb 7→ xb + cos(t) using the original variables).6

For our purposes, the crucial point of this transformation is this: in contrast to the

transformations we discussed in prior sections, this one does map a solution of the classic

harmonic oscillator equation to a different solution. For instance, it takes xb = A cos(t)

into xb = (A− 1) cos t, which is a solution with a different amplitude. Hence, this

dynamical symmetry of the spring does not preserve the behavior of the spring (the

spring is less stretched or more stretched after the transformation takes place). More

generally, one can check that any given spring state (even a spring that is not

6To see that this transformation is a symmetry, note that

xb + cos(t) =− d2

dt2
(xb + cos(t))

xb +�
���cos(t) = − d2

dt2
xb +�

���cos(t).

This is actually an instance of the much more general symmetry xb 7→ xb+α cos(t)+ϵ sin(t)

(where α and ϵ are real numbers) that can map a spring state to any other state given a

suitable choice of α and ϵ.
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oscillating) can be mapped to any other spring state via a symmetry of the form

xb 7→ xb + α sin(t) + ϵ cos(t), where α and ϵ are real numbers (see footnote 6). This

illustrates how some dynamical symmetries of the spring disrupt the behavior in a rather

significant way.

This is a good moment to point out in passing that, contrary to what is often said in

the philosophy literature, this is a dynamical symmetry that does not fix how “things

look” (e.g., see Dasgupta (2016)) and it does not seem to map a solution to another one

with the same representational capacities (see, e.g., Fletcher (2020) for a recent defense

of a nuanced version of this thesis). The amplitude, the period, and the elastic energy of

the spring (all things that we can measure inside the spaceship) are all changed by this

symmetry transformation. Hence, equation 3 provides a surprisingly simple but effective

illustration of a point already suggested by Belot (2013) (see also Belot (2018) and

Wallace (2022)), namely, that many of the allegedly important features about

symmetries so often discussed in philosophy fail to hold for some of the symmetries that

physicists discuss in their research (and this is true of other cases as well, including

physicist’s discussions of the symmetries of the Kepler problem, e.g., see Prince and

Eliezer (1981)).7

Going back to the discussion of DSE, the fact that x 7→ x+ cos(t) is a symmetry of

the spring shows that defenders of DSE need to say more when presenting their accounts.

In particular, at the very least they need to exclude those dynamical symmetries that

change the behavior of the spring with respect to equilibrium. Hence, the defenders of

7For example, symmetries like the one discussed in this section suggest that Dasgupta’s

definition of symmetries is not extensionally adequate because it leaves out symmetries

that relate empirically inequivalent states.
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DSE need to add the requirement that the symmetries must preserve the values of A and

B (changes in these variables would represent changes in the initial amplitude or the

initial speed, respectively). This requirement amounts to demanding that the symmetry

acts like the identity in the space of solutions of the harmonic oscillator, that is, it maps

every solution of the harmonic oscillator to itself; xb 7→ xb (or xf − xeq 7→ xf − xeq). Let’s

follow mathematical jargon and call “trivial” those symmetry transformations that act

like the identity. DSE’s answer to QUESTION might then be modified as follows:

DSE*’s answer: the spring (and so the block attached to it) behaves the same

way before and after the boost because boosts, when understood as applying

to all points of the spring, are trivial dynamical symmetries of Hooke’s law.

Schematically, X in DSE + X corresponds to something like “the transformation is

trivial.” Notice that x 7→ x+ cos(t) is a non-trivial symmetry and so they do not pose a

problem for DSE*. Also, notice that boosts when acting on the whole spring are trivial,

but boosts when acting on the endpoint are not (in that second case, they are not even

symmetries).

How compelling is DSE*? It is better than DSE in that it avoids, by fiat, the case of

dynamical symmetries that do not preserve the behavior of the spring. But,

unfortunately for the defenders of DSE*, it still suffers from the other problems affecting

DSE. For instance, it is still vulnerable to the proliferation of symmetries because the

bizarre transformations that we considered then are also trivial (all these

transformations act trivially in the solution space if they are applied to both xf and xeq).

In addition to not solving the proliferation issue, DSE* seems to be ad hoc; the

justification for adding the triviality condition seems to be that not adding it leads to
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counter-examples. Third, DSE* seems so restrictive that it leaves out other cases that

one might have wanted to explain by appealing to symmetries. For instance, go back to

the case of the spaceship governed by 0 = m d
dt
v. If someone asks why is it that the

spaceship still behaves like an object in free-fall even after being boosted, one would

imagine that part of the answer (at least for a sympathizer of DSE) is that 0 = m d
dt
v is

invariant under boosts. And yet, boosts map solutions of that equation to different

solutions (boosts do not act trivially over the space of solutions). And fourth, there just

seems to be something highly suspicious when trying to explain a deep fact about

mechanical systems of our world (i.e., the fact that their behavior is preserved under

boosts) in terms of mathematically trivial transformations such as xb 7→ xb. The fact

that mapping xb to itself does not change equations that contain xb seems too trivial of a

fact to offer a substantive resolution to QUESTION.

6 Problem 3: Active and passive

6.1 Where did the inertial effects go?

In this section, we will consider another problem that a defender of DSE (or DSE*)

faces. We will see how the resolution to this problem provides some insights into both

the proliferation of symmetries issue and the trivial vs. non-trivial distinction introduced

in the previous section.

It is a basic fact of Newtonian mechanics that if we are using an equation to describe

a system from the perspective of an inertial frame, and we “switch” to an accelerating

frame, then we need to use a modified equation to take into account the emergence of
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some inertial or “fictitious” forces. These fictitious forces appearing in the modified

equation for the system signal that we are no longer describing the target system from

the perspective of an inertial frame. To illustrate this, consider again the case of a

spaceship in outer space whose motion is described by 0 = mdv/dt. Take a case where

we transform the frame via v 7→ v + at (this is not a symmetry of this differential

equation). Notice that if we do that, we can no longer use 0 = mdv/dt in order to

describe the spaceship’s motion because, from the perspective of the new frame, it looks

as if the spaceship had started accelerating. Instead, we need to consider a fictitious

force Ff to account for the apparent acceleration of the object, and so the equation for

the spaceship in this new frame will be Ff = mdv/dt (Newton’s second law, now with a

non-zero fictitious force).

Problems seem to arise, however, when we go back to the block attached to the

spring. Take, once again, Hooke’s law as written in equation 2. And now take the

transformation x 7→ x+ 0.5at2 interpreted passively, indicating a shift from an inertial

frame to a non-inertial frame that moves with constant acceleration. As with the case of

the spaceship, we expect that going to such a frame brings about fictional forces in the

(new) equation describing the system. And yet, none of that seems to happen because,

as we already showed, xf − xeq = −ω2 d2

dt2
(xf − xeq) (or xb = −ω2 d2

dt2
xb under the

understanding that xb = xf − xeq) is invariant under a transformation that affects both

xf and xeq in the same manner, and in particular, invariant under x 7→ x+ 0.5at2 if

applied to both xf and xeq. Mathematically speaking, this is not surprising: if

x 7→ x+ 0.5at2 is a symmetry of Hooke’s law (assuming we act on all the points of the

spring in the same manner), then this remains true regardless of whether we interpret it

actively or passively. But physically speaking, this is concerning; Hooke’s law seems to
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be completely blind to the non-inertial effects that should arise when the observer jumps

into an accelerating frame.

6.2 Recovering the inertial effects

It turns out that the reason inertial effects seem to be missing is connected to an

interesting ambiguity in how we characterize the displacement of a spring. In particular,

let’s go back to the standard formulation of Hooke’s law, xb = −ω2 d2

dt2
xb (the subscript b

in xb refers to the block). There are at least two ways of interpreting this equation when

modeling a spring. First, this equation can be taken “internally,” as representing the

displacement of the endpoint with respect to the equilibrium point of the spring (I call it

“internal” because it focuses on the displacement between two points in the spring). In

this interpretation, it is natural to define xb via xb = xf − xeq, as the latter is the

displacement between the endpoint and equilibrium, and so it is natural to use equation

xf − xeq = −ω2 d2

dt2
(xf − xeq). Second, the equation can be interpreted “externally,” as

representing the displacement of the endpoint with respect to the origin of an external

reference frame (henceforth “external interpretation”). Notice that in this second

interpretation, it is misleading to define xb in terms of xf − xeq because in this

interpretation, xb in equation xb = −ω2 d2

dt2
xb is not modeling the displacement from the

endpoint to equilibrium. Rather, in this interpretation, xb models the same thing xf

does, namely, the displacement of the endpoint with respect to the origin of the frame.

Hence, instead of xb = xf − xeq, we should write xb = xf . That is, in this interpretation,

the differential equation for the spring can be written as xf = −ω2 d2

dt2
xf , where xf stands

for the endpoint’s position and where the equilibrium point is not modeled (in the
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external interpretation, the quantity xf − xeq still represents the internal displacement of

the spring; it is just that this quantity does not appear in the differential equation). The

difference between these two interpretations of equation xb = −ω2 d2

dt2
xb is reflected in the

number of dependent variables of the differential equation; in the internal case, this is a

differential equation consisting of two dependent variables, one representing the endpoint

and the other one representing the equilibrium point (this becomes apparent once we

insert xb = xf − xeq in the equation). In the external case, xb = −ω2 d2

dt2
xb is a differential

equation consisting of one dependent variable, the one representing the endpoint. Note,

by the way, that in the internal case there are some “external elements,” for both xf and

xeq represent the positions of parts of the system with respect to the origin of an

external frame. But only in the internal case does xb = −ω2 d2

dt2
xb model the behavior of

the “internal quantity” xb = xf − xeq (in the external case, that equation models the

behavior of the endpoint alone).

Usually, from a practical point of view, this ambiguity in how to read xb = −ω2 d2

dt2
xb

has little to no importance; in both cases, the displacement is exactly the same due to

the fact that the standard convention for the frame places the equilibrium position at the

origin (i.e., xb = xf − xeq and xb = xf coincide when xeq = 0). But the external and

internal interpretations entail different results under certain specific circumstances: a

change in the frame (a shift in the origin, or in the velocity of the frame, or in the

acceleration) will bring no changes to the equation of a spring according to the internal

interpretation because changes in the frame will preserve relational quantities such as

xf − xeq. This is precisely why xf − xeq = −ω2 d2

dt2
(xf − xeq) is invariant under

accelerations of the frame such as x 7→ x+ 0.5at2, and so this is why no inertial effects

appear in such a case. Things are very different, however, if we adopt the external
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interpretation.

Passive-external acceleration: Consider the constant acceleration transformation

given by x 7→ x+ 0.5at2, and let’s interpret it passively. From the perspective of the new

accelerating frame, the endpoint of the spring no longer behaves like a spring because it

acquires some constant acceleration with respect to the frame. Mathematically, this is

reflected in the fact that xb = −ω2 d2

dt2
xb (interpreted externally) is not invariant under

xb 7→ xb + 0.5at2. Hence, the transformation is not a dynamical symmetry of Hooke’s law

so interpreted. Instead of Hooke’s law, we must now describe the endpoint by using an

equation such as kxb + Ff = m d2

dt2
xb, where Ff is a fictitious force (coming from the

choice of a non-inertial frame). Thus, the external interpretation recovers the inertial

effects coming from an accelerating frame. Notice that an acceleration of the frame will

not affect the internal displacement of the spring, which is given by xf − xeq (recall that

xeq does not appear in the external interpretation of xb = −ω2 d2

dt2
xb). In general, a

change in the frame modifies the coordinates of both the equilibrium point and the

endpoint by the very same factor so that the relative displacement of those two points is

preserved (clearly, a change in the frame will not make the spring get more stretched or

less stretched). This is important because it shows a case in which a transformation fails

to be a dynamical symmetry and still preserves the “internal behavior” of a system.

Passive-external oscillation: To give another example, consider transformation

x 7→ x+ cos(t), which we showed to be a dynamical symmetry of xb = − d2

dt2
xb in section

5 (remember that we are using units so that ω = 1). If we adopt the external

interpretation, then this means that the relative displacement of the endpoint xb = xf

with respect to an external frame (originally at rest) exhibits now some sort of

oscillatory behavior. Read passively, this means that the frame used to describe the
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endpoint is starting to oscillate and so it is no longer an inertial frame. Hence, we should

expect some inertial effects! However, as we saw in section 5, the transformation

xb 7→ xb + cos(t) is a symmetry of xb = − d2

dt2
xb. Back then, this transformation was

understood actively (as deforming the spring), but if T is a symmetry of an equation

when interpreted actively, it remains one when interpreted passively (either an equation

remains invariant under T or it does not). Hence, xb = − d2

dt2
xb remains invariant if the

frame starts oscillating according to x 7→ x+ cos(t). This seems puzzling; we are

jumping to a non-inertial frame and yet the equation describing how the endpoint

behaves with respect to the new oscillatory frame does not change at all. So where are

the inertial effects? It turns out that the fictional force that the non-inertial frame

“produces” is an oscillatory force that can be modeled as the force of an ideal spring.

This means that the original spring still looks like a spring from the perspective of the

new oscillatory frame in the sense that it still obeys xb = − d2

dt2
xb. However, as seen from

the oscillatory frame, the total force acting on the endpoint is different from the original

force: if F = kxb was the original force acting on the block in the stationary frame, then

F ′ = k′xb (k
′ ̸= k) is the new (partially fictional) force acting on the block according to

the oscillatory frame. Given that the magnitude of the force is different, the amplitude

and acceleration as measured with respect to the new frame will be different too (this is

why the transformation is a non-trivial symmetry, as it takes us to a different solution).

Those differences in force and acceleration are precisely the inertial effects that we were

looking for. Also, notice that the oscillatory frame preserves the internal displacement,

given by xf − xeq (again, these two variables are transformed equally). So in the external

interpretation, both constant accelerations of the frame and oscillatory accelerations give

rise to inertial effects (as expected), and both preserve the internal behavior of the spring.
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But only oscillatory accelerations preserve the form of the equations, and hence only

these count as a dynamical symmetry of the system.

Passive-external boosts: A similar analysis can be done for the case of boosts. We

know that in the internal interpretation boosts are symmetries (see section 4). But in

the external interpretation, a boost (either active or passive) is not a symmetry of the

equation because it distorts how the oscillation of the endpoint looks with respect to the

origin of the frame. 8 Importantly, no inertial effects appear here; from the perspective

of a boosted frame, the acceleration of the endpoint is just the same as it was before.

Also, a boost of the frame will not change how the endpoint moves with respect to the

equilibrium point (i.e., xf − xeq is invariant). This is important because it shows once

again (as constant accelerations did) that, according to the external interpretation, it is

not necessary for a transformation to be a symmetry in order for it to preserve the

(internal) behavior of the spring.

Active-external boosts: Just as there are different ways of reading passively a

given transformation of the harmonic oscillator, there are also different ways of reading a

transformation actively. For example, according to the external interpretation, we can

take a boost as acting only on the endpoint xb = xf of the spring

(“active-external-endpoint”), or as acting on the whole spring (“active-external-whole”)

so that it affects both xb = xf and xeq. In both cases, the boost is not a dynamical

symmetry from the external perspective because the endpoint xb = xf is not oscillating

around a fixed point (mathematically, xb = − d2

dt2
xb is not invariant under xb 7→ xb + vt).

8Mathematically, this is shown by the fact that xb = − d2

dt2
xb is not invariant under

xb 7→ xb + vt (recall that xb = xf in this case).
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However, in the case of the active-external-endpoint interpretation, the boost does not

preserve the internal behavior of the spring (as xeq is not boosted, so xf − xeq changes

into xf + vt− xeq). In contrast, in the active-external-whole interpretation, the boost

does preserve the internal behavior because the relative motion of the endpoint with

respect to equilibrium is preserved in this case ((xf + vt)− (xeq + vt) = xf − xeq). This

shows, once again, that it is not necessary for a boost to be a symmetry of the equations

characterizing a system for it to preserve the (internal) behavior of the system.

Active-external oscillations: Similarly, we can read x 7→ x+ cos(t) according to

the active-external-endpoint interpretation (as we actually did in section 5, where the

endpoint alone is made to oscillate in a new manner), or according to the

active-external-whole one (where all the points of the spring are made to oscillate with

respect to an external frame). In both cases, the transformation is a non-trivial

dynamical symmetry of xb = − d2

dt2
xb (read externally) but only in the

active-external-endpoint case does it change the internal displacement of the spring.9

Physically, these transformations represent very different states of affairs even if both are

dynamical symmetries.

Active-internal transformations: A similar analysis shows that for a given

transformation of the harmonic oscillator equation, we can have an active-internal-whole

interpretation or an active-internal-endpoint interpretation. Indeed, the proliferation of

symmetries discussed in section 4 is a direct consequence of the adoption of an

active-internal-whole interpretation; the displacement between the endpoint and the

9In both cases, the new solution is related to the original through xb 7→ xb + cos t.

However, in the active-external-whole case, the equilibrium point is also transformed via

xeq 7→ xeq + cos t, and so the internal behavior xb − xeq is preserved.
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equilibrium point is not altered if one acts on the endpoint and equilibrium in the same

way. This is why boosts, oscillations, constant accelerations, and general one-dimensional

transformations are trivial symmetries of xb = − d2

dt2
xb in the active-internal-whole case.

6.3 Is one interpretation more natural in the current context?

Given the fact that, as argued in this section, one can understand a differential equation

such as xb = − d2

dt2
xb both internally and externally, it is natural to ask if, in the present

context, one of the two interpretations is more natural. The only interpretation that

allows a defender of DSE to say that boosts are dynamical symmetries of a spring (as

they want to say in order to answer QUESTION) is an internal-whole interpretation,

that is, an interpretation for which the boost acts on the whole spring and xb models the

displacement with respect to equilibrium (not with respect to an external coordinate

system). Are then any independent reasons to believe that the internal-whole

interpretation is a natural or well-motivated interpretation?

I think that there are at least three reasons why the internal-whole interpretation is

not a natural one in the context of physical symmetries. First, physicists seem to treat

xb = − d2

dt2
xb externally. As evidence for this claim, one can point out at least four

(related) things: (i) physicists usually take xb to represent the position with respect to

the origin of an external frame (but they chose the frame so that the equilibrium point is

at the origin); (ii) they treat xb = − d2

dt2
xb as having only one dependent variable and the

solutions as requiring two initial conditions (the initial speed and initial position); (iii)

when physicists investigate the symmetries of xb = − d2

dt2
xb, they calculate how xb changes

after applying the various symmetry transformations on the spring (in the internal-whole
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interpretation, xb does not change); (iv) physicists count xb 7→ xb cos t, but not boosts,

among the symmetries of xb = − d2

dt2
xb (see both Lutzky (1978) and Wulfman and

Wybourne (1976) for examples of the last two points). Only the external interpretation

is consistent with these four points.

Second, an internal-whole interpretation renders trivial paradigmatic cases of

physical symmetries such as the ones exhibited in Galileo’s ship thought experiment. In

these cases, we assume that the relevant equations give us the trajectory of the system

with respect to an external frame (e.g., the shore) and that the transformation changes

those trajectories in certain ways. What is interesting about these cases is that despite

the fact that such trajectories do change, they do so in a way that they still satisfy the

same differential equations.10 For example, take a rock falling in the ship’s cabin at rest,

which we can model with g = d2

dt2
r (the only acceleration is the gravitational one). If we

boost the ship in any direction, this equation remains invariant, and so we infer that the

rock still behaves as an object in free fall even though the new trajectory is different

(i.e., even if r(t) 7→ r(t) + vt). If one were to understand the trajectories r(t) for the rock

“internally,” for example, as relating the rock’s motion to the ship’s floor (with the

understanding that both the floor and the rock are transformed jointly), then it would

no longer be interesting to note that g = d2

dt2
r is preserved under boosts (in such a case,

r 7→ r simply because the floor and the rock are boosted together). But this last scenario

is precisely an instance of the internal-whole interpretation.

Third, one of the most physically significant features of symmetries is that they are

tightly connected to the conserved quantities of a system (via Noether’s first theorem).

But if one adopts the internal-whole interpretation, then there are no conserved

10As I have argued here, this is not true of all mechanical systems (e.g., springs).
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quantities (they are all zero) associated with the various symmetries simply because in

this interpretation the apparently different transformations are all just different ways of

writing the identity transformation in the solution space (e.g., according to this

interpretation, x 7→ x+ cos t amount to the identity xb 7→ xb in the space of solutions of

the equation). Adopting an interpretation for which there are no interesting conserved

charges is problematic because conserved or invariant quantities are usually thought to

be paradigmatic examples of quantities that are observable or measurable. The

physically interesting link between conserved quantities, measurements, and dynamical

symmetries seems to collapse under an internal-whole interpretation. In contrast, the

external interpretation does treat the symmetries (e.g. x 7→ x+ cos t) as giving rise to

non-zero conserved quantities (see Lutzky (1978, 274) for a discussion).

In sum, the defender of DSE (or DSE*) faces a dilemma. On the one hand, if they

want to answer QUESTION by showing that boosts are symmetries of the spring, then

they must adopt the internal-whole interpretation of boosts. On the other hand, this

interpretation is problematic for various reasons discussed so far: it is not the one

adopted in physics and mathematical circles, it leads to a proliferation of symmetries, it

does not recover inertial effects for non inertial frames, it is not connected to (non-zero)

conserved quantities, and it seems ad hoc.

7 A relational answer

The previous considerations strongly suggest that answering QUESTION by adopting an

internal-whole interpretation is problematic on various accounts. However, if one does

not adopt that kind of interpretation, then one is forced to the conclusion that boosts
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are not symmetries of springs. If boosts are not symmetries, what then explains the fact

that springs in trains behave the same way regardless of the velocity of the train? If

boosts are not symmetries, how do we answer QUESTION?

A clue towards solving these questions comes from the observation, noted in section

6, that a transformation might fail to be a dynamical symmetry and still preserve the

internal behavior of a system. In particular, recall that according to the external-whole

interpretation, boosts are not dynamical symmetries of the harmonic oscillator and yet

they still preserve how the endpoint oscillates with respect to the equilibrium point (they

still preserve xf − xeq). Why, if boosts are not symmetries in this interpretation, do

boosts preserve how the endpoint oscillates with respect to the equilibrium point? I

think that there is a simple answer already hinted at in the last sections: boosts of the

whole spring preserve the relevant relational quantities of the system, and that is

precisely why they preserve how it looks from inside the spaceship. In particular,

consider the following answer to QUESTION:

Relational answer (RA): what is essential in the explanation for why the

block (attached to the spring) behaves the same way under boosts of the

spaceship is that the boost is taken to “act” on the whole spring (and the

whole spaceship) simultaneously and in the same way. Any transformation

that acts on the spring in such a manner will automatically preserve the

spring’s internal behavior for it would preserve the relevant relational

properties (e.g., it preserves the spring’s amplitude and the spring’s velocity

with respect to equilibrium).

To better see the motivation behind RA, note that if the boost were to act only on a
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proper part of the spring such as its endpoint, then it would not leave the internal

behavior of the spring invariant, as we discussed in prior sections (and this is not

because a transformation acting on the endpoint can’t be a symmetry of the spring, for

x 7→ x+ cos t is a symmetry even when acting only on the endpoint). In short, the

crucial point in the explanation is not that the transformation itself (the boost) is a

dynamical symmetry (it is not in the external interpretation) but simply the fact that

the transformation is assumed to act on all the parts of the system simultaneously and in

the same way.11

To put the point more explicitly, consider the following attempt to justify RA:

Boosting the frame preserves the relative positions between the parts of the spring (it

shifts all the coordinates equally). But boosting the frame is equivalent to boosting the

whole spring in the opposite direction. Therefore, boosting the whole spring preserves

the relative positions between the parts of the spring. As the internal behavior of the

spring only depends on these relative positions, the boost will preserve such internal

behavior. Note that this reasoning also works for any transformation of the frame in one

dimension, not just boosts. This is why, from the perspective of RA, there is nothing

particularly problematic with a proliferation of transformations (symmetries or not) that

preserve internal behaviors. For example, according to RA, there is nothing surprising in

realizing that a frame transformation given by x 7→ x+ cos t+ t3 + t6 + exp(t) preserves

internal behaviors because it will preserve the relative coordinate positions of all the

parts of the system as a function of time. And since this is not surprising, it is also not

surprising that the active version preserves such behaviors as well.

11In future work, it would be worth looking into how the arguments in this paper connect

to the ones developed in Saunders (2013).
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To get a clearer sense of RA and how it compares to DSE, consider the following

scenario. Say that we want to understand the relative motion of two subsystems, S1 and

S2 (they could be different parts of the same system, but they do not have to be). Say

that we use differential equation DEQ1 to represent the motion of S1 with respect to an

external frame R, and differential equation DEQ2 to represent the motion of S2 with

respect to that same frame (these equations represent the relevant dynamical laws).

From these differential equations (and the initial conditions), we can obtain a trajectory

x1(t) for the motion of S1 and a trajectory x2(t) for the motion of S2 (with respect to the

same frame). The relative motion of S1 with respect to S2 will be given by

xr(t) = x1(t)− x2(t). Now consider a generic one-dimensional transformation

x 7→ x+ g(t) that acts on all the objects in the same way; x1 7→ x1 + g(t) and

x2 7→ x2 + g(t). Clearly, this transformation will preserve xr(t) = x1(t)− x2(t) regardless

of what g(t) is simply because it affects S1 and S2 in the exact same manner (or in the

passive case, it shifts all the coordinates equally). So if we ask why it is that g(t) does

not affect how S1 behaves with respect to S2 (this is analogous to asking why boosts

preserve how the spring behaves with respect to the detector), RA would simply note

that such transformation preserves xr(t) = x1(t)− x2(t) when acting on the two systems.

Crucially, and unlike DSE, RA does not require that the transformation is a symmetry

of DEQ1 or DEQ2 (notice that nothing in the explanation just given hinges on g(t)

being a symmetry of these equations).

To illustrate, take S1 to be the endpoint of the spring and S2 to be the equilibrium

point. And say that the spaceship is initially at rest with respect to an external frame R

whose origin initially coincides with the equilibrium point. For the behavior of the

endpoint with respect to the frame, we use xf = − d2

dt2
xf (with units so that ω = 1).
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Since the equilibrium point has a constant velocity (zero, in this frame), we can model it

using equation d2

dt2
xeq = 0. The solution of the first equation is xf (t) = A cos t+B sin t

(for some specific A and B depending on the initial conditions), and of the second one

xeq(t) = vt+ d = 0 (v = d = 0 in this frame). The displacement of the endpoint with

respect to equilibrium is given by the relational variable xr(t) = xf (t)− xeq(t). In this

case, xr(t) = A cos t+B sin t (since xeq = 0). So far, this is just the familiar displacement

of a spring found in textbooks. But now consider a boost that acts on both subsystems

according to xf 7→ xf + vt and xeq 7→ xeq + vt. Notice that the boost will be a symmetry

of d2

dt2
xeq = 0 but not a symmetry of xf = − d2

dt2
xf . The boost will take

xf (t) = A cos t+B sin t into x∗
f (t) = A cos t+B sin t+ vt (which is not the solution of a

harmonic oscillator) and xeq(t) = 0 into x∗
eq(t) = vt (which is a solution for d2

dt2
xeq = 0).

However, xr(t) = xf (t)− xeq(t) will stay just the same because both xf (t) and xeq(t) are

shifted by vt; x∗
r(t) = xf (t)

∗ − xeq(t)
∗ = (xf (t) + vt)− (xeq(t) + vt) = xr(t). According to

RA, this last fact is what explains why the behavior of the spring with respect to the

detector remains the same under boosts. As another example, take a ball in free fall

inside the cabin of a ship moving uniformly in the sea. As seen from the shore, we can

represent the ball’s behavior with g = d2

dt2
rb, while the floor’s motion can be represented

with d2

dt2
rf = 0 (as the ship is moving with constant velocity). Then, consider a constant

acceleration of both objects, rb 7→ rb + 0.5at2 and rf 7→ rf + 0.5at2. Such acceleration is

not a symmetry of either equation, and yet we can easily see that it would preserve the

relative motion of the ball with respect to the floor (i.e., rb − rf remains invariant).

Once again, we have a case where a transformation preserves relational information even

if it does not leave the dynamical laws invariant.

Having said this, it is worth pointing out that this kind of framework still allows
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symmetries to convey interesting physical information about the system. In particular,

in this kind of framework, dynamical symmetries give us meaningful information about

the type of external behavior of a system (how it behaves with respect to a frame), but

not interesting information about the internal behavior (the latter is wholly a matter of

the relational degrees of freedom, which can be preserved with or without symmetries).

For example, the fact that the transformation x 7→ x+ cos t is a symmetry of

xf = − d2

dt2
xf (read externally) entails that if we had used an oscillatory frame in order to

describe the endpoint xf , we still would have seen that xf satisfies Hooke’s law, even

though the acceleration or amplitude would have looked very different. Hence, the type

of external motion would have been preserved, but the particular external motion would

not have. In contrast, the fact that x 7→ x+ t2 is not a symmetry of the same equation

entails that, had we moved from an inertial frame to a frame in constant acceleration, we

would have seen the endpoint of the spring no longer obeying Hooke’s law (with respect

to the frame). Hence, the type of external motion would have been different. In short,

only those transformations that are symmetries preserve the type of external behavior of

a system, and there relies their physical significance.12

How do we answer QUESTION, then? While I believe RA is significantly better than

DSE, it is only the beginning of a better answer. There are other relevant physical facts

that are not considered by RA. For example, we should mention the rigidity of the

bodies constituting mechanical systems without which we could not actually boost a real

system without deforming it; and we should mention the homogeneity and isotropy of

12To the very least, this is the case for those transformations of a system that can

be defined with respect to another system that can work as a frame (such as spacetime

transformations).
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space, without which the direction and location of the boost might have affected the

behavior of the system (e.g., had we lived in an Aristotelian universe, translations of the

spring to the center of the universe would have disrupted its behavior greatly); and we

should mention the absence of an ethereal-like substance, whose presence might have

interfered with the motion of material bodies (including springs); and we should mention

the fact (not completely independent from the previous ones) that the laws of

mechanical systems do not make explicit reference to absolute positions and to absolute

velocities. Thus, even though RA is right in noting that preserving the relational

quantities is necessary when answering QUESTION, a more complete answer worth

investigating in future work would have to consider some of these other facts.

8 Conclusion

There is a widespread belief in the philosophy literature that there is a strong link

between symmetries and observations (e.g, see Ismael and van Fraassen (2003), Roberts

(2008), Healey (2009),Baker (2010), Dewar (2015), Dasgupta (2016)). The current paper

uses the case of a simple spring to highlight that the alleged link between symmetries

and observations is much weaker than has been recognized.13 In particular, I have shown

that even if a transformation is not a symmetry of a system, it can still preserve how the

system looks provided that the observer (detector) is transformed in the same way, and I

have shown that a transformation can be a symmetry and at the same time fail to

13See Read and Møller-Nielsen (2020) for detailed criticism of approaches that define

symmetries purely epistemically (their criticism is different, but complementary, to the

one developed here).
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preserve how the system looks (as when the endpoint of the spring is transformed

according to x 7→ x+ cos t). In short, whether or not a transformation is a symmetry of

a system, and whether or not it preserves how the system looks from the perspective of

an observer (detector) that is also transformed are two rather independent matters.

Thus, contrary to what has been suggested rather often, dynamical symmetries should

not be understood as telling us how things look when both the system and the detector

are transformed together (as it happens inside the cabin of Galileo’s ship or in the

Leibniz-Clarke correspondence, where all objects are transformed together). Rather,

they should be understood in an external fashion, as telling us how things look when

only the system or only the detector is transformed (as when we look at the behavior of

a boosted system in a ship from a fixed shore). For example, the fact x 7→ x+ cos t is a

symmetry of springs but x 7→ x+ vt is not tells us that springs still look like springs

when described from the point of view of an external oscillatory frame, but not when

described from a frame in uniform motion.
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