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The introduction of nuclear high-temperature gas-cooled reactors (HTGR) with an active zone based on spheri-
cal fuel elements (SFE) poses the task of determining the velocity of their free fall in cylindrical channels with a
viscous liquid. To solve it, the experimental data of other researchers are generalized, and for a certain range of
Reynolds numbers the criterion of similarity for the velocity of free fall of spheres in cylindrical channels with water
is found. The criterion is formulated on the basis of the Freud number. It is shown that from the dependence of the
velocity of falling of the model sphere in a cylindrical vessel with water on the dimensionless diameter of the
sphere, it is possible to determine the velocity of falling of the sphere in water, arbitrary.

PACS: 47.10. ab; 28.41.Te; 28.50.k; 28.90.+1

The world is currently conducting active research on
the transition of nuclear energy to more efficient high-
temperature gas-cooled reactors (HTGR) [1-3]. HTGR
may have an core based on spherical fuel elements
(SFE), usually with a diameter of 60 mm [4]. Under the
action of the helium gas cooler, the QDs move in cylin-
drical channels of the graphite masonry of the reactor
with diameters of 70.7 mm [5], or 75 mm [6].

At the early stages of HTGR development, both
bulk-type and channel-type core structures were consi-
dered. For example, the HTR-500 is a channel-type
reactor. This concept of HTGR reactors remains rele-
vant for the current level of development of high-
temperature reactor technology.

Helium is at a high temperature (~ 950 °C). There-
fore, to ensure the efficiency of HTGR there is a prob-
lem of determining the parameters of the motion of the
SFE in the gas-filled cylindrical channels. To simplify
the solution of the problem, instead of gas, you can
consider a liquid. This replacement of gas by liquid is
based on the fact that the parameters of the motion of
spheres in gaseous media are similar to their motion in
Newtonian fluids, because they are described by the
Navier-Stokes equation and similarity criteria [7]. Thus,
to determine the efficiency of HTGR, it is necessary to
be able to reliably measure the velocity of free (under
the action of gravity) SFE in the cylindrical channels.

However, reliable measurement of the velocity of
balls falling in the axial direction in cylindrical channels
is an urgent task in other areas of practice. For example,
in medicine, reliable measurement of the velocity of
spheres is necessary to describe the sedimentation of
spherical particles in viscous liquids [8], in viscometry —
to assess the error in determining the velocity of the ball
through shielding the walls of the channel [9]. The ex-
isting literature on the influence of the walls and the
height of the channel at the time of publication of the
article [9] is quite detailed (see bibliography [9]). Most
of these studies relate to the area of laminar flow. The
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results of studies in the intermediate flow region (Reyn-
olds numbers from 1 to 500), and some results in the
turbulent region (Reynolds numbers over 500) were also
systematized. In general, in [9] the results of experi-
ments with 60 spheres, which cover a wide range of
diameters of spheres and channels, using four cylinders
(channels) of different diameters and fifteen Newtonian
fluids of different viscosity and density. The Reynolds
number varied in the range from 0.054 to 20.000. The
obtained experimental results were used to assess the
reliability of previously obtained formulas taking into
account the shielding of the motion of the sphere by the
walls of the channel. Data on the study of the velocity of
free fall of a spherical particle in a cylindrical channel
were used as a basis for describing the processes of
deposition of suspensions that contain spherical parti-
cles [10]. In this work, using a hydrodynamic analogy
between a single particle falling in a cylindrical channel
and a suspension of many particles, a relation is ob-
tained to describe the effect of walls on the final deposi-
tion velocity of an individual particle in such a channel.
The ratio obtained in this paper, in contrast to existing
models, is valid for any flow regime (from viscous to
completely inertial), and agrees well with the experi-
mental data.

As we can see, studies of the dependence of the ve-
locity of free fall of spheres on the diameter of a cylin-
drical channel are relevant both in scientific terms and
in applied applications.

For the practical application of methods for calculat-
ing the parameters of free fall of a sphere in a cylindri-
cal channel with a viscous fluid, it is important to de-
termine the velocity of a spherical object under the
action of external forces under conditions of shielding
by the channel walls.

Therefore, the goal of this work is to determine the
physical laws of motion of spheres in viscous fluids in
cylindrical channels of different diameters.
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ANALYSIS OF EXPERIMENTAL DATA

To determine the physical laws of motion of spheres
in cylindrical channels with a viscous fluid, we consider
the experimental results presented in [9]. Consider the
results of a study of the dependence of the velocity of
spheres in water on their diameter. In Fig. 1,a are shown
graphs of the dependence of the velocity of spheres in
water on their diameter. In Fig. 1,b shows the same
graphs, but taking into account the condition of similari-
ty based on the dimensionless number of Froude (NF)
[7, 11]. NF characterizes the relationship between the
force of inertia and the external force in the field of

which the motion occurs:

VZ

=0 )

where v — the characteristic velocity of the fluid or
moving body; a— acceleration, which characterizes the
action of external forces; L — the characteristic size of
the flow or body.

For example, NF can be used when considering the
flow of fluid in a pipe in the gravitational field. In this
case, under the value a use the acceleration of free fall
g =9.81 m/s?, under the value v — the flow velocity or
velocity of the body and as L can be considered the
diameter of the tube b .

The similarity condition is the equality of the NF for
the model and for the tested objects. This condition is
used, for example, when modeling the movement of
ships [12], water flows in open channels, testing models
of hydraulic structures, etc.
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Fig. 1. The dependence of the velocity of spheres in
water v/v,, on their diameter d/D. Diameter of the

cylindrical channel D=1.5;2;2.5; 3, v, =131 cm/s

Based on Fig. 1, the similarity of the velocity of
movement of the spheres follows from the equality of
the NF for vessels of different diameters. This can be
easily Fig. 1,a verified using the expression:

V>< :VS\le/De ! (2)

where v, — velocity of the model sphere with a diameter
D,=3 cm; v,,D, — velocity and diameter of the test

spheres, respectively, the index x takes on values
1.5;2;25; 3.

From (2) it follows that the velocity of spheres with
a diameter d in cylindrical vessels with a diameter
D= 15;2;25;3 cm can be determined through their

velocity in a vessel with a diameter of 3 cm. As a result
of using formula (2), all experimental points in Fig. 1,b,
taking into account the measurement error of the order
of + 3%, are located near one curve.

From the similarity criterion for the diameters of the
vessels (2), one can obtain a similar criterion for the
diameters of the spheres.

The experimental data shown in Fig. 1,a can be re-
duced to Fig. 1,b if we use the similarity criterion for
the velocity of spheres, based on NF (1).

The similarity of the velocity of spheres follows
from the equality of NF for spheres of different diame-
ters. For example, the velocity of spheres with a diame-
ter of 2.5; 2; 1.5 cm can be determined by the velocity
of the model (sphere with a diameter of 3 cm) by:

v, =Vs/d, /d;, ®)

where d, is the diameter of a sphere in a vessel of di-
ameter 1.5; 2; 2.5;3cm.

It should be noted that based on the experimental da-
ta [6, 8], the similarity criterion (3) is applicable for
Reynolds numbers Re in the range 2 <log(Re)<4.5,

where Re = pvdz™ is the Reynolds number; , — densi-
ty of water; » — coefficient of dynamic viscosity of
water.

The similarity criterion for water (3) is a special
case.

In the general case, the experimentally obtained de-
pendence of the logarithm of the resistance coefficient

4g(p, - py )d
3p,V?
the Reynolds number log(Re) is shown in Fig. 2 [9].
Here p,, p; — density of the sphere material and the

liquid are respectively.

In Fig. 2,a lines for different values of the ratio are
shown in different colors d/D . Markers in the form of a
cross of the same color as the corresponding line, show
the points of Fig. 1,a. These points correspond to the
velocity of the sphere 115, 130, 115 cm/s for
d/D=0.6; d/D=0.4; d/D=0.2 respectively. You can
see a good correspond match of the experimental data.

For the general case, the similarity of the process of
motion of a sphere under the action of gravity can be
shown as follows.

log(y) , Where y = , on the logarithm of
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Fig. 2. Dependence of the logarithm of the resistance
coefficient log(y) on the logarithm of the Reynolds
number log(Re) : 1 — control line; 2 —d/D=0.05;
3-d/D=0.1; 4— d/D=0.2; 5-d/D=0.3;
6-d/D=04;7-d/D=0.5;8—-d/D=0.6

We consider the diameter of the sphere to be con-
stant and equal to p. We also consider the similarity
criterion for the Freud number to be fulfilled

v//D =C =const . Then we have:
log(y) =log(y,,) +log(d/D),

log(Re) =log(Re,) +log(d/D), (4)
where

p¢DV
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M, Re, =——, Re=Re; (d/D).
n
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The result obtained allows to expose the curves of
Fig. 2,a parallel to the transfer along the ordinate axis by
the value log(d/D) and leave the curves as is, because

the transfer in the direction of the abscissa axis is insig-
nificant, i.e. log(Re)>>log(d/D).

As a result of such actions we will receive curve —
Fig. 2,b.

It follows from the figure that the similarity criterion
is satisfied for Reynolds numbers 2 <log(Re) < 4.5.
According to this criterion the coordinates (Y,Xo), of
the intersection of the line log(y,) with the line of
Fig. 2,b in the interval 2 <log(Re) < 4.5 determine the
constant C and the ratio as follows:

log(yp) = Yo,

log(Re, ) +log(d/D) = X,. (5)

From Figs. 1,b; 2,b it follows that all experimental
points, taking into account the error in the range of

Reynolds numbers 2<log(Re)<4.5 are located near
one curve.

Yo =

Thus, in this section, based on experimental data, the
existence of the principle of similarity for the velocity
of falling under the force of gravity of spheres in cylin-
drical vessels filled with water is shown. The principle
of similarity is that the ratio of the velocities of the
spheres is inversely proportional to the square root of
the ratio of the diameters of the spheres. This principle
is similar to the well-known similarity criterion for
determining the velocity of movement of designed ships
based on the results of testing their small-sized models
[11].

ANALYTICAL DESCRIPTION OF THE
VELOCITY OF INCIDENCE OF SPHERES
IN A CYLINDRICAL CHANNEL FILLED
WITH A VISCOUS LIQUID

To construct an analytical dependence of the veloci-
ty of incidence of spheres in cylindrical channels filled
with viscous liquids on their diameter, we will proceed
from experimental data for water. Approximation of
points, the location of which is shown in Fig. 1,b, was
performed using a polynomial functions of the coordi-
nate. In this case, the section of the curve in the interval
0<vlv,, <0.22 near the origin (0<x<<1) will be

considered below, using the formula for the velocity of
a sphere in a channel with a large diameter.
For other experimental points, the analytical expres-

sion for the velocity of the sphere has the form:
0.65

V(X)=3.29-V,,, -(1—x)1'15(x—0.01) : (6)
In Fig. 3 shows the analytical dependence of the ve-
locity of fall of a sphere in a cylindrical channel filled
with water, which by means of the similarity criterion
(2) summarizes the experimental data given in [9].
From Fig. 3 follows the quantitative correspondence
of experimental points and analytical dependence (6).
The correspondence of the experimental points and the
analytical dependence (6) can be to estimate on the
value by calculation of standard deviation and the corre-
lation analysis.
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Fig. 3. The analytical dependence of the velocity of
spheres in water v on diameter d/D is shown by the
marker “x”. Other markers correspond to the values
in Fig. 1

The Table shows the results of statistical analysis of
the correspondence of the experimental points and the

analytical curve (6). The following notations are used in
the table:



(V(Xi )/Vmax - Vi/vmax )2

N-1
urements [13]; CCP — the strength of the connection
between the analytical v(x)/v,,, experimentally meas-

ured v, /v, value of the velocity [14].

N
=0

AE = ;N — number of meas-

Data of statistical analysis of comparison
of experimental points and analytical curve (6)

Comparison

parameter d=3cm|d=2.5cm|d=2cm

d=15cm

The standard

deviation, A& 0.024

0.018 | 0.017 0.04

Pierceon corre-
lation coeffi-
cient (CCP)

0.998 | 0.999 | 0.999 0.993

As can be seen from the table, the standard deviation
A& is at the level of 1.7...4%. This indicates the validity
of the application of the similarity criterion based on the
Freud number. In addition, the value of the CCP on the
Chaddock scale [13] shows a very high strength of the
linear relationship of experimental and theoretically
calculated points, because it is close to unity. This con-
clusion also confirms the legitimacy of the use of the
similarity criterion (3).

ASYMPTOTIC DESCRIPTION OF THE
VELOCITY OF FALL OF A SPHERE
IN A CYLINDRICAL CHANNEL
OF ARBITRARY DIAMETER

With sufficiently large diameters of the cylindrical
channel, the velocity of the sphere v(d) is determined by

Stokes' formula [15]:

v(d)= gXZDZM. )
9 n

For the analytical description of the velocity of the
sphere in the whole range of changes in the diameter of
the channel, we assume that the velocity of the sphere is
zero at x=1. This follows from simple physical consid-
erations: the velocity of the sphere is zero due to contact
with the walls of the channel, which are at rest.

At large channel diameters, when x<<1, at a point

X=X, , the velocity (6) must continuously change to

the velocity (7). Therefore, we assume that X=X,
expressions (6) and (7) are identically equal.

We also assume that the first derivatives of veloci-
ties on the variable x at the point of cross linking
X =X, are continuous.

With this method of stitching expressions (6), (7),
the diameters of the channel D, and sphere X, remain
undefined.

To determine them in water (in water at d=3 cm,
the maximum velocity of the sphere is 131 cm/s) it is
necessary to solve a system of equations composed of
the condition of continuity of functions (6), (7) and their
first derivatives at the point X, :

0.325

0.575

Xo — (1_ XO) (XO _001) , (8)

A(D,)
115 | 065
2=|- ,
{ (1—x0)+(xo—o.01)}x° ©)
where A(D,)=D, 292" 2) 165475,

9-3.29:77- V5

Equation (9) is solved analytically. From its two so-
lutions, the one that satisfies the condition x, <<1 is-

chosen.

The diameter of the channel is determined from
equation (8), using the values of the parameters:
p, =7800 kg/m®, p, =1000 kg/m®, 7,... =10 kg/(m-s)

[7,9].

In (8), (9) the density of steel is used, since experi-
ments investigated the free fall of steel balls in water.
Since a structural material based on graphite is used in
the HTGR core, the density of SFE should be used in
(8), (9).

As a result of solving the system of equations (8),
(9) we obtain the value of the ratio of the diameter of
the sphere to the diameter of the cylindrical channel and
the diameter of the cylindrical channel, respectively:m.

In Fig. 4 shows the analytically obtained from (8),
(9) the dependence of the velocity of a sphere falling in
a cylindrical channel with water.
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Fig. 4. Analytical dependence of the velocity of falling
of a sphere in water v/vy,, on its diameter d/D for the
entire range of changes in the ratio of the diameter of

the sphere to the diameter of the channel ((0<d/D<1)

From the study it can be concluded that the diameter
of the sphere x, at which the cross linking of expres-

sions (6), (7) is a small value 0.015 of the diameter of
the channel. From (8) it follows that the diameter of the
sphere increases in proportion to the square root of the
dynamic viscosity of the liquid.

Thus, knowing the dependence of the velocity of fall
of the model sphere in a cylindrical channel with water
from the ratio of the diameter of the sphere to the diam-
eter of the channel, we can determine the velocity of fall
of a sphere of arbitrary diameter in water depending on
the ratio of sphere diameter to channel diameter. To do

this, in Fig.4 should be replaced V., by

Ve = Vmaxy3/d", Where d' is the diameter of the inves-

tigated sphere, and, in particular, the diameter of SFE —
6 cm.



CONCLUSIONS

The design and implementation of HTGR with a
channel core based on SFE poses the task of accurately
estimating the velocity of free fall of SFE in cylindrical
channels with a viscous liquid. In addition, determining
the dependence of the velocity of free fall of spherical
bodies in cylindrical channels with a viscous fluid is not
only scientific but also of practical interest for solving
problems of viscometry, medicine.

To solve this problem, the known experimental data
are generalized, and a criterion of similarity for the
velocity of free fall of spheres in cylindrical channels
with water is found. In the range of Reynolds numbers

2<log(Re)<4.5, the similarity criterion is formulated

on the basis of the Freud number. It is that the ratio of
the velocity of the spheres is proportional to the root of
the quadratic ratio of their diameters. The obtained
criterion corresponds to the known similarity criterion
for modeling the movement of ships, as well as in their
model tests.

By the method of stitching the analytical dependence
of the velocity of the sphere in water taking into account
the walls of the channel with the expression defining the
motion of the sphere in the channel of infinite diameter,
the analytical dependence of the velocity of the sphere
in water for the whole range of sphere diameter
(0<d/D<1).

It is shown that in water the diameter of the sphere at
which the velocity of the sphere moving in the channel
changes to the velocity where the influence of the chan-
nel walls is insignificant is a small value of 0.015 from
the diameter of the channel. In this case, the diameter of
the channel increases in proportion to the square root of
the dynamic viscosity of the liquid.

It is concluded that from the dependence of the ve-
locity of fall of the model sphere in a cylindrical vessel
with water on the dimensionless diameter of the sphere,
it is possible to determine the velocity of fall of the
sphere in water of arbitrary diameter.

The obtained similarity criterion and the analytical
dependence of the velocity of the sphere in water for the
entire range of changes in the diameter of the sphere and
the channel can be used to estimate the velocity of free
fall of SFE in cylindrical HTGR channels.

REFERENCES

1. V.H. Grebennik, N.E. Kuharkin, H.H. Ponoma-
rev-Stepnoj. Vysokotemperaturnye gazoohlazhdaemye
reaktory — innovatsionnoe napravlenie razvitija atomnoj
energetiki. M.: “Energoatomizdat”, 2008, 136 s. (in
Russian).

2. A.G. Samojlov, V.S. Volkov, M.I. Solonin. Tep-
lovydelyayushchie  elementy yadernyh  reaktorov:
Ucheb. posobie dlya vuzov. M.: “Energoatomizdat”,
1996, 400 s. (in Russian).

3. V.F. Zelenskij, N.P. Odejchuk, V.K. Yakovlev,
V.A. Gurin. Modern Status of Works on High-
Temperature Gas-Cooled Reactors (HTGR) in the
World and Prospects of their Application in Ukraine //
PAST. Series “Physics of Radiation Effect and Radia-
tion Materials Science ” (94). 2009, N 4-2, p. 247-255.

4. Advances in Small Modular Reactor Technology
Developments. A Supplement to: IAEA Advanced Reac-
tors Information System (ARIS), 2018, Edition;
http://aris.iaea.org

5. Hoai Nam Tran, Van Khanh Hoang. Core Charac-
teristics of an OTTO Refueling Pebble Bed Reactor and
Comparison with a Multi-Pass Scheme // Proceedings
of the HTR 2012 Tokyo, Japan, October 28—
November 1. 2012, Paper HTR2012-5-025.

6. V.P. Smetannikov, 1.X. Ganev, V.D. Kolganov i
dr. Proektirovanie energeticheskih ustanovok s vysoko-
temperaturnymi gazoohlazhdaemymi reaktorami / Pod
red. chl.-kor. AN SSSR I.Ya. Emel'yanova. M.: “Ener-
goizdat”, 1981, 232 s. (in Russian).

7. L.D. Landau, E.M. Lifshic. Teoreticheskaya fizi-
ka. Gidrodinamika. T. 6. M.: “Nauka, Gl. red. fiz.-mat.
lit.”, 1986, 736 s. (in Russian).

8. R.L. Whitmore The sedimentation of suspensions
of spheres // Br. J. Appl. Phys. 1955, v. 6, N 7, p. 239-
245,

9. V. Fidleris, R.L. Whitmore. Experimental deter-
mination of the wall effect for spheres falling axially in
cylindrical vessels // Br. J. Appl. Phys. 1961, v. 12, N 9,
p. 490-494.

10. R. Di Felice. A relationship for the wall effect on
the settling velocity of a sphere at any flow regime //
International Journal of Multiphase Flow. 1996, v. 22,
issue 3, p. 527-533.

11. A.M. Prohorov, D.M. Alekseev, A.M. Baldin,
A.M. Bonch-Bruevich, A.S. Borovik-Romanov i dr.
Fizicheskaya enciklopediya. T. 5. M., 1998, 692 s. (in
Russian).

12. N.F. Emel'yanov. Hodkost' vodoizmeshchayush-
chih morskih sudov: Uch. pos. Vladivostok: “Dal'ryb-
vtuz”, 2004, 249 s. (in Russian).

13. G. Shilling. Statisticheskaya fizika v primerah.
M.: “Mir”, 1976, 432 s. (in Russian).

14. 1.1. Eliseeva. Ekonometrika: Uchebnik. M.: “Fi-
nansy i statistika”, 2007, 576 s. (in Russian).

15. G. Lamb. Gidrodinamika. M.: OGIZ, 1947,
929 s. (in Russian).

Article received 21.05.2021

KPUTEPUI MOJAOBUS 1J1s1 CKOPOCTH CBOBO/THOI'O IMAJIEHUS IIIAPOBBIX TB2JIOB
B IIWJIMHJIPUYECKHAX KAHAJIAX C BA3KOM KUJIKOCTbIO

O.JI. Anopeesa, JI.A. bBynasun, B.U. Tkauenxo

BHenpenre aTOMHBIX BBICOKOTEMIIEpATypHBIX ra3zooxyiaxaaeMblx peaktopoB (BTI'P) ¢ xaHanbHOW akTHBHOM
30HOH Ha ocHOBe MmapoBbIX TBAOB (IIIT) cTaBuT 3amauy MO ONpENEICHHIO CKOPOCTH MX CBOOOJHOTO IajEHUS B
LMJIMHAPUUECKUX KaHallaX ¢ BA3KOW KUAKOCTHIO. ISl ee pemeHnst 00001IeHbI SKCIIEpUMEHTANIbHBIE JaHHbBIE APYTHX
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WCCIIeIoBaTeNIel, U sl OTpeeIEHHOTO AWana3oHa n3MeHeHusl urciia PelHOIbIca HalIeH KpUTEPHA TIOJ00ST ISt
CKOpPOCTH CBOOOIHOTO MajeHMs cep B MIIMHAPHISCKUX KaHajmax ¢ Boxoi. CaenmaH BBIBOJ O TOM, YTO M3 3aBHUCH-
MOCTH CKOPOCTH TIaJICHUS MOJICTBHOH chephl B IMIMHAPHIESCKOM KaHaje ¢ BOIOH OT COOTHOIICHHUS AuameTpa cde-
PBI ¢ AMaMETPOM KaHaJIa MOKHO OIPEICIHUTh 3aBUCUMOCTh CKOPOCTH TaJICHHUS B BOAE c(hephl IPOU3BOIBHOTO paIH-
yca OT COOTHOIICHHSA e TUaMeTpa K JuaMeTpy KaHaua.

KPUTEPII MOJIBHOCTI JJISI IIBUJIKOCTI BUIBHOI'O MMAAITHHA KYJIbOBHUX TBEJIIB
Y HUWIIHAPUYHUX KAHAJIAX I3 B’A3KO10 PITUMHOIO

O.JI. Anopeesa, JI.A. Bynagin, B.1. Tkauenko

BripoBapkeHHS aTOMHUX BHCOKOTEMIIEPATypHHUX ra300XxoiokyBaHux peakropiB (BTI'P) 3 akTHBHOIO KaHANb-
HOIO 30HOI0 Ha OCHOBI KynboBHX TBeliB (KT) cTaBuTh 3a7auy 3 BU3HAUCHHS IMBUAKOCTI iX BUIBHOTO MAJiHHS B IU-
JMHIAPUYHUX KaHaJax 3 B'I3K0I0 piguHOI0. s i pillleHHs y3araJpHeHi eKCIIepUMEeHTaIbHI JaHi 1HITNX JOCIiTHHKIB,
1 71 TIEBHOTO Jiana3oHy 3HadeHb 4ucia PeifHoibpaca 3HAWOEHO KpUTepidt MOmiOHOCTI IS IIBHAKOCTI BLTBHOTO
nmagigasg cdep y IMIUTIHAPHIHIX KaHajlaX 3 BOJOI0. 3p0oOJICHO BHCHOBOK IIPO Te, IO i3 3aJIe)KHOCTI IMIBUIKOCTI Ma-
IHHS MOJENBHOI chepl B NIITIHAPUIHOMY KaHaJi 3 BOJOIO BiJ CIIBBiIHOIIEHHA AiaMeTpa chepu 10 AiaMeTpa Ka-
HaJly MOYXHA BU3HAYUTH 3AJICKHICTh MIBUAKOCTI MaXiHHA ¥ BOAI cpepH AOBUIBHOTO pajiyca BiJ CHiBBiOHOIIECHHS ii
ZiameTpa Jo AiaMeTpa KaHaly.



