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In this work, the excitation problem of bulk-surface helicons by a point magnetic dipole moving in a vacuum 

parallel to the element of magnetized solid-state plasma cylinder is theoretically studied. The external magnetic field 
is directed parallel to the cylinder axis. The problem is solved in the magnetostatic approximation. It is shown that 
hybrid modes of the magnetic type with large values of the azimuthal mode index and one field variation along the 
radius are most efficiently excited at nonrelativistic velocities of magnetic dipole. 
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INTRODUCTION 
The determination of the generation mechanisms of 

electromagnetic waves due to a movement of charged 
particles in various electrodynamic systems is an actual 
problem of radiophysics and electronics. The waves of 
millimeter and submillimeter wavelengths are of par-
ticular interest. They are actively used in biology [1], 
medicine [2], for the transmission of electromagnetic 
signals in the earth's atmosphere [3], for the implemen-
tation of broadband wireless communication [4], in 
submillimeter spectroscopy [5] and other applications of 
science and technology. 

In this regard, it is of interest to study the properties 
of magnetoplasma waves of the special type that exist at 
the boundary between a magnetoactive plasma of semi-
conductor and a dielectric (vacuum). Such waves are 
surface and bulk-surface helicons [6 - 10]. These waves 
exist independently of the ratio between the signal fre-
quency and the collision frequency of charge carriers in 
classical and quantizing magnetic fields. The magnetic 
field components of a helicon are large compared to the 
electric field components. Therefore, for example, cou-
pled helicon-spin surface waves can appear at the semi-
conductor-ferrite interface [11]. Another important fea-
ture of helicon waves is their relatively low phase veloc-
ity. The excitation of surface helicons by a magnetic 
dipole moving above flat surface of a semi-bounded 
semiconductor in an external magnetic field was theo-
retically studied in [12]. 

Note that helicon waves continue to be of interest 
both for fundamental research on the properties of mate-
rials and for applied research. 

Thus, in [13], the theory of helicon waves propagat-
ing in three-dimensional Weyl semimetals, the conduc-
tivity of which is determined by the topological proper-
ties of the wave functions of charge carriers, was pre-
sented. In [14], the collisionless Landau damping of 
helicon waves propagating in a Dirac semimetal placed 
in a quantizing magnetic field was predicted. In particu-

lar, the effect of giant oscillations of the damping coef-
ficient of helicons was predicted. In [15], the study of 
helicons in semimetals was extended to the case of a 
pseudomagnetic background field. A qualitative ex-
perimental facility was proposed for observing helicons 
with magnetic and pseudomagnetic background fields. 

In this work, the excitation of bulk-surface helicons 
by a point magnetic dipole moving near the lateral sur-
face of semiconductor cylinder in a coaxial external 
magnetic field is theoretically studied in the magne-
tostatic approximation. The expression of energy losses 
of a magnetic dipole for the excitation of helicon ei-
genmodes of the cylinder is obtained, and the numerical 
analysis of magnitudes of these losses is carried out for 
modes with different values of the azimuthal and radial 
mode indices. 

1. PROBLEM STATEMENT  
AND BASIC EQUATIONS 

Consider a cylindrical plasma solid-state waveguide 
with a radius с  that occupies the space region of 
0 с   , 0 2   , and | |z   . The waveguide 
is located in a vacuum in an external constant magnetic 
field, the intensity vector 0H


 of which is directed paral-

lel to its axial symmetry axis. We assume that the plas-
ma has a high conductivity of n-type. The equilibrium 
density of plasma electrons is 0N . The positively 
charged background of the crystal lattice of solid-state 
plasma compensates the negative charge of conduction 
electrons. In a vacuum a point magnetic dipole moves 
with a constant longitudinal velocity 0v c  (where c  
is the velocity of light in vacuum) at the distance 

m c   from the cylinder axis. The magnetic moment 

M


 of the dipole is given by the following expression: 

0 0 0 0( , ) ( ) ( ) ( )M r t M x x y y z v t     
  ,   (1) 

 ( , ) 0,0, ( , )zM r t M r t
   ,                  (2) 
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where 0M


 is the constant component of the magnetic 
moment, ( )x  is the Dirac delta function, 0x  and 0y  
are the coordinates of the dipole in the plane ( , )x y . In 
the approximation of a point dipole we can consider the 
circular current created by a charged particle (macropar-
ticle) rotating in a plane ( , )x y , provided that the Lar-
mor radius Lr  of this particle is less than the distance 

m c  . From the condition L mr   it is possible to 
obtain the condition for the magnitude of the transverse 
velocity component v  of a charged particle perpen-
dicular to the external magnetic field. To do this, we use 
the definition of the Larmor radius L Hr v  , where 

0 /H qQH m c   is the Larmor frequency of a charged 
particle with charge Q  and mass qm . Then the point 
dipole approximation will be valid under the condition 

m Hv    . The constant longitudinal component of 
the magnetic moment 0 zM  of such the circular current 
will be determined by the expression [16]: 

2

0
02

q
z

m v
M

H
 .                           (3) 

The current density created by such a dipole will be 
determined by the expression [16]: 

( , ) rotM( , )mj r t c r t
   .                    (4) 

The electric ( , )mE r t
   and magnetic ( , )mH r t

   fields 
of the point dipole at an arbitrary space point r  in an 
instant time t  satisfy the following equations: 

4rot ( , ) ( , )m
mH r t j r t

c



   ,                   (5) 

1rot ( , ) ( , )m mE r t H r t
c t


 


   ,             (6) 

div ( , ) 0mH r t 
  .                             (7) 

In equation (5), due to the small value of the electric 
field, the displacement current is not taken into account.  

Free fields (radiation fields) ( , )vE r t
   and ( , )vH r t

   
in a vacuum satisfy the equations of magnetostatics: 

rot ( , ) 0vH r t 
  ,                           (8) 

div ( , ) 0vH r t 
  .                           (9) 

Note, the considered magnetostatic approximation is 
valid if the radiation wavelength 2 c    (in a vac-
uum) is substantially greater than the cylinder radius 
[17], it is equivalent to 

c

c



 .                           (10) 

In this case, the fields found from equations (8) and 
(9) will be correct at distances from the cylinder, which 
is less than the wavelength  . 

Free fields ( , )cE r t
   and ( , )cH r t

   in the solid-state 
plasma cylinder satisfy the quasi-stationary Maxwell 
equations and the motion equation of electrons in a 
plasma-like medium: 

4rot ( , ) ( , )c
cH r t j r t

c



   ,               (11) 

div ( , ) 0cH r t 


,                       (12) 
1rot ( , ) ( , )c cE r t H r t
c t


 


   ,            (13) 

0
1( , ) ( , ) 0cE r t u r t H
c
    

    ,          (14) 

where ( , )u r t   and 0( , ) ( , )cj r t eN u r t
     are the velocity 

and the density of current of charge carriers (electrons) 
in a plasma-like medium, respectively. 

The solutions of the above equations will be carried 
out by the method of separation of variables represent-
ing all magnitude variables in the form of a set of space-
time harmonics. For example, the magnetic field 
strength is determined by the formula: 

( , ) ( , , )

exp[ ( )] ,

n z
n

z z

H r t H q

i q z n t dq d

 

  

 

  

 

  

  
 

      (15) 

where  , zq  and n  are the frequency, and the longitu-
dinal wavenumber and the spatial harmonic number 
(coinciding with the azimuthal mode index), respec-
tively; 2 1i   . Note, the considered quasi-stationary 
approximation for describing fields in a plasma-like 
medium is valid if this medium is well conducting, i.e. 
the smallness condition of frequency of the fields   in 
comparison with the collision frequency of electrons   
is satisfied: 

  .                             (16) 
In this case, it is justified to neglect the displacement 

current in comparison with the conduction current of 
electrons in a plasma-like medium [17]. In addition, the 
magnitude of the constant magnetic field is assumed 
such to be condition 

H  ,                            (17) 
where 0H eH mc   is the Larmor frequency of plas-
ma electrons; e  and m  are the charge and effective 
mass of electrons of the plasma-like medium. The ful-
fillment of conditions (16) and (17) is necessary for the 
existence of bulk-surface helicons in the considered 
solid-state plasma waveguide (see [8, 19, 11]), the exci-
tation of which we consider. In the vacuum region, the 
field distributions of such waves have a monotonically 
decreasing character with distance from the cylinder 
surface in the radial direction, and in the cylinder re-
gion, they have an oscillating character in the radial 
direction. Note that due to the fulfillment of conditions 
(16) and (17) the motion equation of electrons (14) in a 
plasma-like medium is correct. This corresponds to the 
situation when the force lines of the magnetic field are 
“frozen” into the electron liquid, and the electrons are 
“placed” on these force lines [11]. Physically, this 
means that the considered plasma-like medium is ide-
ally conducting, and the alternating surface current 
flows along the cylinder surface in the direction of its 
generating lines [9]. A consequence of the ideal conduc-
tivity of plasma-like medium is the equality to zero of 
the longitudinal components of free electric fields zE  in 
both the medium and the vacuum. Nonzero components 
of free fields are E , E  for the electric field, and H  , 
H , zH  for the magnetic field. 
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The boundary conditions on the cylinder surface 
(when c  ) are the conditions for the continuity of 
the H  and zH  components of resultant magnetic field 
(dipole and radiation fields): 

( , ) ( , ) ( , )
c c c

m v cH r t H r t H r t         
 

   ,  (18) 

( , ) ( , ) ( , )
c c c

m v c
z z zH r t H r t H r t

       
 

   .  (19) 

The component H  of the resultant magnetic field 
at the boundary c   undergoes the discontinuity due 
to the presence of the surface current with the density 

( , )s
zj z t : 

( , ) ( , )

4( , ) ( , ).

c c

c

m v

c s
z

H r t H r t

H r t j z t
с

    

  


 



 

 

 

              (20) 

Our goal is to find the fields created by the point di-
pole and reflected from the cylinder surface (radiation 
field) from the above-given equations and boundary 
conditions. Obviously, the radiation field is expressed 
through the parameters of the point dipole and the me-
dium. Then we shall determine the energy losses of the 
point dipole for the excitation of bulk-surface helicons 
per time unit as (see [12]) 

0
( , )v

e z m
z

dW H r t
M

dt t


 



,                (21) 

where the value of the time derivative of magnetic field 
strength component ( , )v

zH r t  is taken at the point 

mr r
  , where the magnetic dipole is located. 

Using the integral representations of the Dirac delta 
functions (see [18]) and substituting them into the right-
hand side of (1), we obtain the following expression for 
the component zM  of the point magnetic dipole in the 
cylindrical coordinate system: 

0
2

0

0

( , , , ) ( ) ( )
(2 )

exp{ [ ( )]} ( ) ,

z
z n n m

n

z m z z

M
M z t kJ k J k dk

i q z n q v dq

   


   









 

   

 


 (22) 

where ( )nJ u  is the Bessel function of the n-th order of 
the first kind [18]; m  is the azimuthal coordinate of the 
point dipole; the variable of integration k  is the 
wavenumber of field spatial harmonic of the point di-
pole. 

Let us find the expressions for the components of 
magnetic field strength created by the point dipole. Ap-
plying the operation of calculating the rotor to the left 
and right sides of equation (5) and using the definition 
of current (4), we obtain the following equation: 

( , , , ) 4 [graddiv ( , , , )

( , , , )],

m

m

H z t M z t
M z t

    

 

   



 

   (23) 

where  

  2 2

2m m
m m H H

H H  
  


    




,           (24) 

  2 2

2m m
m m H H

H H  
  


    




,           (25) 

 m m
zz

H H  


,                                 (26) 
2 2 2

2 2 2 2

1 1
z z


    

    
      

   
,    (27) 

  0M


 


;   0M


 


;   zz
M M  


,        (28) 
2 ( , , , )grad div ( , , , )

m
m zM z tM z t

z
 

 





 


,       (29) 

2 ( , , , )1grad div ( , , , )
m

m zM z tM z t
z

 
 

 



 


,    (30) 

2

2

( , , , )grad div ( , , , )
m

m z
z

M z tM z t
z
 

 






.       (31) 

From equation (23), taking into account (28) and 
(31), we obtain the equation for the field component 

( , , , )m
zH z t  : 

( , , , ) 4 ( , , , )m m
z zH z t M z t       .        (32) 

Let us represent the Fourier component 
( , , )m

z zH q   of the magnetic field strength created by 
the magnetic dipole in the form 

0

( , , ) ( ) ( , , )m m
z z n z zH q kJ k H k q dk   



  .       (33) 

From equation (32), taking into account (15), (22), 
(26), (28), and (33), we obtain the following expression 
for ( , , )m

z zH k q  : 

0

3

02 2
0

( , , )

( ) ( )
( ).

m z
z z

n m n
z

z

M
H q

k J k J k
dk q v

k q

 


 
 



 

 


           (34) 

To find the field components ( , , , )mH z t    and 

( , , , )mH z t    we introduce new dependent variables: 
( , , , ) ( , , , ) ( , , , )H z t H z t iH z t         ,   (35) 

for which the wave equations can be written: 

2 2

( , , , ) ( , , , )2( , , , )

( , , , ) ( , , , )4 . (36)
m m
z z

H z t H z tiH z t

M z t M z ti
z

   
 

 

   


  

 



   



  
      

 

Substituting expressions (15), (22), (33) into (36) 
and using definitions (24), (25), (35), we obtain solu-
tions for ( , , , )mH z t    and ( , , , )mH z t    in the form 

0

2

02 2
0

2
( , , )

( ) ( )
( ),

m z z
z

n m n
z

z

iq M
H q

k J k J k
dk q v

k q

  


 
 



 


 


           (37) 

0

02 2
0

2
( , , )

( ) ( )
( ),

m z z
z

n m n
z

z

q nM
H q

kJ k J k
dk q v

k q

  


 
 



  

 


              (38) 

where the prime near the Bessel function means its de-
rivative with respect to the argument. 

Let us find the free fields of the considered magnet-
ized cylindrical solid-state plasma waveguide. Applying 
the operation of calculating the rotor from the left and 
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right sides of equation (8) and using the equation (9), 
we obtain the wave equation for the component 

( , , , )v
zH z t   of the radiation field in the vacuum: 

( , , , ) 0v
zH z t   .                    (39) 

Substituting the expression (15) into (39), we obtain 
the solution for ( , , )v

z zH q   in the form 

1( , , ) (| | )v
z z n zH q C K q   ,            (40) 

where ( )nK u  is the modified Bessel function of the  
n-th order of the second kind (Macdonald function) 
[18]; 1C  is the arbitrary constant. Using solution (40), 
from the equation (9) we find expressions for the com-
ponents ( , , )v

zH q    and ( , , )v
zH q   : 

( , , ) ( , , )v v
z z z

z

nH q H q
q    


 ,          (41) 

( , , )1( , , )
v

v z z
z

z

H q
H q

iq

 
 







.         (42) 

Determining the rotor from the left and right sides of 
the motion equation of electron (14) and using the equa-
tion (11), we obtain the equation for the magnetic field 
of helicon wave in the cylinder: 

0

4 ( , , , )rot ( , , , ) eN H z tH z t
z cH t

  
 

 


 


.     (43) 

Taking into account (15), solutions of the equation 
(43) have the following form 

2( , , )

( , , )
( , , ) ,

c
z

c
cz z z
z z

qH q

iq H q in H q
q

  


 
 

 

 

 
   

      (44) 

2

1( , , )

( , , )
( , , ) ,

c
z

c
cz z z
z z

H q

H q nq
q H q

  


 
 

 

 

 
   

       (45) 

2( , , ) ( )c
z z nH q C J   ,                 (46) 

where 0 04 zq e N q cH   is the wavenumber of heli-

cons and 2 2
zq q    is the transverse wavenumber of 

the wave of helicon origin; 2C  is the arbitrary constant. 
Substituting expressions for the fields of the mag-

netic dipole and free fields in the both vacuum and cyl-
inder in (18) and (19), and taking into account the defi-
nition (15), we obtain the following expression for the 
constant 1C : 

1
0

2

1
(| | ) ( , )

( ) ( , , )
( )

( , , ) ,

n z c z

mn cz
z c z

c n c

m
c z

C
K q q

Jqq n H q
q J

iH q

 


 

 

 

 


      
 

    (47) 

where 

0 2

(| | ) ( )
( , ) .

| | (| | ) ( )
n z c n cz z

z
z n z c n c c

K q Jq q nqq
q K q J

 


    
 

     (48) 

In order to use formulas (15), (21), (40), and (47), 
(48) to calculate the energy losses of the point dipole for 

the excitation of bulk-surface helicons, it is first neces-
sary to calculate the integrals in the expressions for the 
components of the magnetic dipole fields ( , , )m

c zH q    

and ( , , )m
z c zH q  . Using the corresponding formulas 

from [19], we obtain the expressions for the required 
components of the magnetic dipole field in the form 





0
0

1 0
1

1

1

2( , , ) ( )

| | (| | ) (| | ),     0,

| |
(| | )

22
(| | ) (| | ),     0,

m z z
z z

z z c z m
n
c z
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where ( )nI u  is the modified Bessel function of the  
n-th order of the first kind (Infeld function) [18]. 

When calculating the energy losses of the point di-
pole upon integration over zdq , we introduce into con-
sideration small dissipative losses and use the Sokhot-
skii formula (see [20]) to go around the pole of 

0 ( , ) 0zq   : 

0

1lim ( ) Pi x
x i x



 


,                  (51) 

where P  is the main value of the integral;   is the 
small value of bypass radius around the pole x . The 
equation 0 ( , ) 0zq    is the dispersion equation for the 
eigenwaves of cylinder, i.e. the dispersion equation for 
bulk-surface helicons when 2 0  . 

In final, the expressions for the energy losses of the 
point dipole for the excitation of space-time harmonics 
with numbers n  have the following form 
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when 0n  , 
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when 0n  , where 
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where | | 1p n  , and signs ( )  mean cases 0n   and 
0n  , respectively; the quantities 0 0 0zq v  and 0  

satisfy the Vavilov-Cherenkov resonance condition and 
correspond to the roots of the dispersion equation 

0 ( , ) 0zq   ; 0q  and 0  are the wavenumbers of heli-
con waves calculated when 0zq q  and 0  . 

2. NUMERICAL ANALYSIS OF ENERGY 
LOSSES OF THE MAGNETIC DIPOLE 

We performed the numerical analysis of the energy 
losses of the magnetic dipole for the excitation of bulk-
surface helicons using the following dimensionless 
quantities: 

0
0

0

1 edW
P dt

  ; 
( )

( )

0

1 pe
p

dW
P dt


  ; 0v

c
  ,     (58) 

where 2 2 2
0 0 0c z cP M v  . Semiconductor indium anti-

monide with electronic conductivity (n-InSb), in which 
0N  = 1.351014 cm–3, was chosen as the material of the 

cylinder. The strength of the external magnetic field was 
specified 0H  = 8 kGs, the radius of the cylinder 

c  = 0.25 cm, and the distance between the magnetic 
dipole and the cylinder axis m  = 0.5 cm. 

Figs. 1-3 show the values of the magnetic dipole en-
ergy losses (in units 0P ) for the excitation of bulk-
surface helicon modes with azimuthal indices n  for 
various values of the dimensionless dipole velocity  . 
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Fig. 1. Energy losses of the point magnetic dipole  

for the excitation of bulk-surface helicons  
of the 0 1H - and  1nEH -type when   = 0.1 

From Fig. 1 it can be seen when   = 0.1 the values 
of losses increase monotonically with increasing n . In 
this case, modes with one field variation along the ra-
dius ( 1s  ) are only excited. 

In Fig. 2 modes 0 1H  and  1nEH  are shown with 
black dots, and mode 1 2EH  is shown with the empty 

circle. From Fig. 2 it can be seen when   = 0.2 the 
dependence of the value of losses on n  ceases to be 
monotonic. Local maxima are appeared, and when 

1n   the loss values are decreased by an order of 
magnitude than when   = 0.1 (see Figs. 1 and 2). In 
addition to the modes with 0n  , the mode with 

1n    and 1s   is excited, and when 1n  , modes 
with one ( 1s  ) and two ( 2s  ) field variations along 
the radius are simultaneously excited. In addition, the 
analysis showed that the magnitude of the losses ( )

1
  

for the excitation of mode -1 1EH  exceeds the magni-
tude one ( )

1
  for the excitation of mode 1 1EH . 
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Fig. 2. Energy losses of the point magnetic dipole  

for the excitation of bulk-surface helicons  
of the 0 1H - and  snEH -type when   = 0.2 
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Fig. 3. Energy losses of the point magnetic dipole  

for the excitation of bulk-surface helicons  
of the 0 sH - and  snEH -type when   = 0.3 

In Fig. 3 modes 0 1H  and  1nEH  are shown with 
black dots, modes 0 2H  and n 2EH  are shown with emp-
ty circles, and mode 1 3EH  is shown with the black tri-
angle. From Fig. 3 it can be seen when   = 0.3 the 
quantities of excited modes with 2s   increases and 
mode 1 3EH  appears. When the dipole velocity   = 0.3 
the values of its energy losses for the excitation of iden-
tical modes decrease by ~60 and ~1000 times in com-
parison with   = 0.2 and   = 0.1, respectively. 

From the numerical analysis, it follows that for 
0n   the values of the losses for the excitation of 

modes n 2EH  exceed the values of the losses for the 
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excitation of modes  1nEH , in which 0,1, 2n  . When 
3n   these values become comparable in magnitude, 

and when 4n   the values of the losses for the excita-
tion of modes n 2EH  become less than the values of the 
losses for the excitation of modes  1nEH . The value of 
the losses for the excitation of mode -1 2EH  is compara-
ble in magnitude with one for the excitation of mode 

-1 1EH . 
We also note that the values of the losses for the ex-

citation of modes with the same values s  and the same 
magnitude, but different in sign values n  turn out to be 
different. This may indicate about the demonstration of 
the effect of nonreciprocity in the propagation of bulk-
surface helicons in a magnetized plasma cylinder. From 
the comparison of Figs. 1-3 it follows that the lower 
velocity of the magnetic dipole  , modes  1nEH  with 
large values of the azimuthal mode index n  are more 
efficiently excited. In this case, modes  snEH  with 

1s   are not excited. The excitation of such modes be-
comes possible when   increases. 

CONCLUSIONS 
In work, the problem of the excitation of bulk-

surface helicons by a point magnetic dipole moving in a 
vacuum near a magnetized solid-state plasma cylinder 
parallel to its generating lines is studied theoretically. 
The external magnetic field is directed parallel to the 
symmetry axis of the cylinder. A circular current cre-
ated by a charged particle rotating in a plane perpen-
dicular to the cylinder axis, provided the Larmor radius 
of this particle is less than the distance from the dipole 
to the lateral surface of the cylinder, is considered as a 
point dipole. 

In a vacuum, the electromagnetic fields (radiation 
fields) satisfy the equations of magnetostatics, and in a 
cylinder, they (free fields) satisfy the quasi-stationary 
Maxwell equations and the motion equation of electrons 
in an ideally conducting plasma-like medium. The cho-
sen approximation is valid if the radiation wavelength 
(in vacuum) is much greater than the radius of the cyl-
inder, and the displacement current in the plasma cylin-
der is negligible in comparison with the conduction cur-
rent due to the high conductivity of the plasma medium. 
The magnitude of the constant magnetic field was as-
sumed such that the Larmor frequency of charge carriers 
significantly exceeds its collision frequency in the 
plasma cylinder. Under these conditions, the propaga-
tion of bulk-surface helicons is possible in the plasma. 
In addition, this physically means that an alternating 
surface current flows along the cylinder surface in the 
direction of its generating lines. 

The consequence of the ideal conductivity of the 
plasma-like medium is the equality to zero of the longi-
tudinal (parallel to the cylinder axis) components of free 
electric fields in both the medium and the vacuum. The 
boundary conditions on the cylinder surface are the 
conditions for the continuity of the radial and longitudi-
nal components of alternating magnetic field strength. 
The axial component of magnetic field strength on the 

cylinder surface suffers a discontinuity due to the sur-
face current. 

The numerical analysis of the expression for the en-
ergy losses of the magnetic dipole for the excitation of 
bulk-surface helicons showed that when the velocity of 
the magnetic dipole is lower, modes  1nEH  with large 
values of the azimuthal mode index n  are more effi-
ciently excited. In this case, modes  snEH  with 1s   
are not excited. The excitation of modes  snEH  with 

1s   becomes possible when the velocities of the mag-
netic dipole 0.2  . With an increase of the magnetic 
dipole velocity above   = 0.1, the dependence of the 
magnitude of losses on the azimuthal mode index n  
ceases to be monotonically-increasing. Local maxima 
appear on this dependence. 

In addition, the values of the losses for the excitation 
of modes with the same values of the radial index s  and 
the same magnitude, but different in sign values of the 
azimuthal index n  turn out to be different. This indi-
cates about the demonstration of the effect of nonrecip-
rocity in the propagation of bulk-surface helicons with 
identical spatial field distributions in a magnetized 
plasma cylinder. 
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ПОТЕРИ ЭНЕРГИИ ТОЧЕЧНОГО МАГНИТНОГО ДИПОЛЯ ПРИ ВЗАИМОДЕЙСТВИИ  
С ЗАМАГНИЧЕННЫМ ПЛАЗМЕННЫМ ЦИЛИНДРОМ 

Ю.О. Аверков, Ю.В. Прокопенко, А.А. Шматько, В.М. Яковенко 
Теоретически изучена задача о возбуждении объемно-поверхностных геликонов точечным магнитным 

диполем, движущимся в вакууме параллельно образующим замагниченного твердотельного плазменного 
цилиндра. Внешнее магнитное поле направлено параллельно оси цилиндра. Задача решена в магнитостати-
ческом приближении. Показано, что гибридные моды магнитного типа с большими значениями азимуталь-
ного модового индекса и с одной вариацией полей по радиусу наиболее эффективно возбуждаются при не-
релятивистских скоростях магнитного диполя. 

ВТРАТИ ЕНЕРГІЇ ТОЧКОВОГО МАГНІТНОГО ДИПОЛЯ ВНАСЛІДОК ВЗАЄМОДІЇ  
ІЗ ЗАМАГНІЧЕНИМ ПЛАЗМОВИМ ЦИЛІНДРОМ 

Ю.О. Аверков, Ю.В. Прокопенко, О.О. Шматько, В.М. Яковенко 
Теоретично вивчено задачу про збудження об'ємно-поверхневих геліконів точковим магнітним диполем, 

що рухається у вакуумі паралельно твірним замагніченого твердотільного плазмового циліндра. Зовнішнє 
магнітне поле направлено паралельно осі циліндра. Задача розв'язана в магнітостатичному наближенні. По-
казано, що гібридні моди магнітного типу з великими значеннями азимутального модового індексу і з одні-
єю варіацією поля вздовж радіуса найбільш ефективно збуджуються в разі нерелятивістських швидкостей 
магнітного диполя. 


