TEMPORAL EVOLUTION OF THE LOWER HYBRID CAVITIES
IN THE IONOSPHERE PLASMA DUE TO TURBULENT DIFFUSION

N.A. Azarenkovl, D.V. Chibisovl, N.L Kovalenkoz, D.I. Maslennikov’
Ty N. Karazin Kharkiv National University, Kharkiv, Ukraine;
’Kharkiv National A grarian University, «Dokuchaievske-2», Kharkiv region, Ukraine
E-mail: dmitriychibisov@karazin.ua

The problem of evolution and disappearance of the lower hybrid cavities that are observed in the plasma of the
Earth’s ionosphere is solved. It is assumed that the destruction of the cavity is caused by turbulent diffusion of plas-
ma, which arises due to the drift instability of radially inhomogeneous plasma. The initial plasma density distribu-
tion on the radius in the cavity is considered to be the inverse Gaussian distribution. A solution of the diffusion
equation is obtained, which at any time determines the radial dependence of the plasma density in the cavity. In the
asymptotic limit # — o the plasma density in the cavity becomes equal to the density of the surrounding plasma.
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INTRODUCTION

Lower hybrid cavities (LHC) are axisymmetric soli-
tary structures in the Earth’s ionosphere, elongated
along the geomagnetic field, in which the plasma densi-
ty is depleted compared to the surrounding plasma [1].
A characteristic feature of cavities is also an enhanced
level of lower hybrid oscillations compared with ambi-
ent hiss. These two features are quite accurately reflect-
ed in the name of these structures. LHCs are detected by
satellites as well as by sounding rockets and are ob-
served only when they pass directly through cavities.
Since the time of cross of the cavity by the spacecraft is
short, the possibilities for detailed study of the LHC are
limited. In particular, the moments of appearance of
such structures, as well as their disappearance, have not
been detected. Despite the fact that quite a lot of re-
search data has been obtained, there is still no accepta-
ble theory of the origin of LHC. There is also no expla-
nation for their stability, but at the same time, the origin
of the oscillations is explained by the presence of an
azimuthal current caused by a non-uniform plasma den-
sity [1]. For a long time, no attention was paid to the
problem of the destruction of cavities. In our paper [2]
was suggested that the destruction of LHC is caused by
the anomalous diffusion of ions and electrons, which
occurs due to the development of drift turbulence of
radially inhomogeneous plasma. It was shown that radi-
al in homogeneity of plasma density leads to the devel-
opment of the drift instability and drift turbulence of
plasma in the cavity. For the conditions of LHC the es-
timates of values of the frequency, as well as the growth
rate of drift oscillations were made. In addition, the av-
erage time of plasma diffusion in the cavity was prelim-
inarily estimated. A comparison of these average times
showed that the plasma diffusion rate is less than the
oscillation growth rate. Apparently, this can explain the
absence of a low-frequency spectrum of oscillations in
the LHC, measured by a spacecratft.

In this paper, which is a development of work [2],
the problem of the plasma density temporal evolution in
a cavity due to the anomalous transport across the mag-
netic field caused by drift turbulence in radially inho-
mogeneous plasma is considered in detail. In particular,
more accurate estimates of the diffusion rate, which
correct the time of destruction of the cavity, are made.
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EVOLUTION OF PLASMA DENSITY
DEPENDENCE ON RADIUS

In homogeneous magnetized plasma, the density of
which is n,, we consider a cavity with axial symmetry,

whose axis coincides with the direction of the magnetic
field. It is assumed that the initial dependence of the
plasma density on the radius in the cavity is [2]

n(r): n{l—aexp[—%}], (1)

which is the inverse Gaussian distribution. In (1) 7 is

the length of the in homogeneity of plasma density, a is
the positive constant, which is the depth of the cavity.
The dependence (1) is confirmed by observations [1].
As a result of the development of drift turbulence due to
the radial in homogeneity of plasma, anomalous
transport of ions and electrons across the magnetic field
occurs, which is governed by the diffusion equation
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where subscripts e and i denotes the electrons and

ions, D
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i1 1s the diffusion coefficient across the mag-

netic field, which is the same for electrons and ions,
since diffusion is ambipolar. The value of D, ;, is [3 - 5]
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where y, (k) and @, (k) are the growth rate and the

frequency of drift oscillations in LHC [2]. For drift tur-
bulence in the saturation state, the diffusion coefficient
is[3-5]
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To solve the equation (2), we introduce the notation
4D, =D and rewrite (2) as
on _ i(rZDa—nj . 4)
o or’ or
Take the Laplace transform of eq. (4) by multiplying
both sides of it by exp(— prz) and integrate over »’
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Denote
N:N(p,t)zofn(r,t)efprzdrz, (5)
0

which is the Laplace transform for plasma density by
the squared radial coordinate. Then we get the equation

N _ Ie_prz iz(rzDa—nzj ar’ . (6)
at 0 @r ar

Now we integrate the right side of (6) by parts twice
and obtain:
8_N - _pj n(—pepr2r2D+ efp,-z %(VZD)jdrz .
ot 0 or
Suppose that the diffusion coefficient does not de-
pend on the radius, and then this equationis simplified
ON

= = pzDJ ne*pr2 r*dr* =pDN.  (7)
0

For the first term in (7), we use differentiation by pa-
rameter
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As aresult, the eq. (7) for N(p,t) becomes
G_N: _pZDa_N_pDN’
ot op
or
a—N+p2Da—N:—pDN. )
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To solve the partial differential equation (9), we use
the method of characteristics. First integral of the eq. (9)
we find from the characteristic equation

dt  dp
1 B Dp2 '

The solution of eq. (10), i.e. the first integral of

eq. (9) is

(10)
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Now we get the second integral of eq. (9). For this
we rewrite eq. (9) as
N apaN N
ot op ON
Then we obtain second characteristic equation for
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So the second integral is
v=Np.

(12)

(13)
First and second integrals give a general solution of
9):
v=g(u), (14)
where g is an arbitrary function. Substituting (11) and
(13) into (14) we obtain
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1
Np=g|t+—|,
i g[ Dp]
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N\p,t)=—g| t+—|.
(p) p[ Dp]

Now we take into account the initial dependence (i. e.
at t=0) of plasma density on the radius (1). Solving the
diffusion equation (9), we consider only second term in
(1), since the first does not depend on either time or coor-
dinate. Thus we study the evolution of the distribution
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n(r)=nyae 5 (16)
Find the Laplace transform of (16)
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and substitute it into (15) where we assume ¢=0.

Thereby we find the function N,(p) for the initial
moment of time
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Thus we found the explicit form of the function g
(14):

(18)
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Now we substitute into (19) instead of x the value
1
X=t+—m,
Dp
that yields time dependence of N(p,t):
1 nya
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To obtain the dependency n(r,t), we take the in-
verse Laplace transform for N ( p,t) (20):
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Now in (21) we back to the original diffusion coeffi-
cient D=4D, ;| and obtain
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Finally, we get the dependence of plasma density in
the cavity on the radius and on time as
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In (23), the depth of the cavity is determined by

a
a(t) =
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It follows from (24) that the depth of the cavity is
inversely proportional to time and in the asymptotic
limit # — oo the plasma density in the cavity tends to
the density of the surrounding plasma. In addition, the
cavity expands with time; the root-mean-square radial
size of the cavity varies with time as

/ 2D,
o(t)=rn 1+ ;’IL t.
"o

Let us estimate now the time of evolution of the
plasma density distribution in the cavity on the radius.
Characteristic values of plasma parameters in the cavity
are [1]: r,/ p,23, r,25Cm, B,~02Gs, T,~03eV .

~

(25)

For these parameter values the diffusion coefficient (3)
is D,., =5-10"cm” -5 . Denote k the ratio of the depth

el
of the cavity at the initial and arbitrary points in time,

2D, .
k=—2 |14y ,
a(t) roz

and obtain the time ¢, , which corresponds to the change
in the depth of the cavity by &

(k=1)

(26)
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Substituting known values into (27), we get
t :0.25(k—1). (28)

For example, a decrease in cavity depth by 2 times
will occur in 0.25 s, and a decrease in cavity depth by 5
times occurs in 1 s. The time evolution of the depend-
ence of the plasma density in the cavity on the radius is
shown in the Figure, where the plasma densities versus
radius are shown for different moments of time:
t,=0s,t =0.25s,1, =055 =0.75s, ¢, =1s at initial
cavity deptha =0.6.

Note that the time of development of the drift insta-
bility in the cavity is 0.5...1.5 s [2] and this time value
should be added to the diffusion time. Therefore the
complete disappearance of the cavity will occur in the
order of a few seconds.
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CONCLUSIONS

Radial in homogeneity of the plasma density in the
LHC causes the drift turbulence and anomalous diffu-
sion of ions and electrons to the center of the LHC
across the magnetic field. Plasma diffusion leads to the
temporal evolution of the dependence of the plasma
density on the radius in accordance with (23).

The depth of the cavity is inversely proportional to
time (24) and in the asymptotic limit # — o the plasma
density in the cavity tends to the density of the sur-
rounding plasma. The time to decrease the depth of the
cavity in k times is proportional to (kK —1) (27). Simul-
taneously with a decrease in the depth of the cavity, its
expansion occurs. Root-mean-square radial size of the
cavity is proportional to the square root of time (25).

Estimation of plasma diffusion time in the cavity,
taking into account the time of development of the drift
instability, shows that the destruction of the cavity oc-
curs within a few seconds. Thus, spacecraft are not able
to detect the process of destruction of the cavity, since
the observation time by them is much less than the time
of the existence of the cavity.
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BPEMEHHAS 3BOJIIOLIIUS HUKHET UBPUIHBIX HOJIMOCTEI‘/‘I B NOHOC®EPHOM IVIA3BME
BCJIEACTBHUE TYPBYJIEHTHOU JNO®DY3NHN

H.A. A3apenkos, /I.B.9uoucos, H.H. Kosanenxo, /[.U. Machennuxos

PemaeTcst mpoGiema BOIONMK U UCUC3HOBEHUS HUKHETHOPUIHBIX TOJIOCTEH, HAOI01aeMbIX B TUTa3Me HOHO-
ctepsr 3emmn. Ilpeamonaraercs, 4To pa3pymeHne MOJIOCTH BBI3BAHO TypOyIeHTHOH muddy3uelt mia3msl, KOTopas
BO3HHUKAET W3-3a Apeii(poBoil HEYCTOWIMBOCTH PaIuallbHO-HEOAHOPOIHOW TUIa3MEl. B KadecTBe HavalbHOTO paju-
aJBHOTO paCIpe/ICIICHHUs TNIOTHOCTH TUIa3MBbI B MOJIOCTH paccMaTpUBaeTcs oOpaTHoe pacnpenenenue ["aycca. [Tomy-
YeHO pelieHue ypaBHeHUs nupdy3un, KOTOpoe B JIFOOOW MOMEHT BPEMCHH OIPEACISICT 3aBUCUMOCTh OT pajuyca
IUTOTHOCTH I1J1a3Mbl B MONIOCTH. [oKa3aHo, 4TO B aCHMITOTHYECKOM Mpeelie ¢ — o0 MIIOTHOCTh IUIA3MbI B MTOJIOCTH
CTaHOBUTCS PABHOW IUIOTHOCTH OKPY KAIOIICH TIa3MBl.

EBOJIIOLIISI B YACI HUKHBOT' IEPUJTHUX ITOPOKHUH B IOHOC®EPHIM IJIA3ZMI
BHACJIIJIOK TYPBYJEHTHOI JTU®Y3Ii

M.O. Azapenxos, /1.B. Hivicos, M.1. Kosanenxo, /I.1. Macnennixoe

Bupimryerscs mpoGiieMa eBOJIONIT 1 3HUKHEHHS HIKHBOTIOPUIHUX TOPOKHUH, SIKI CIIOCTEPITalOThCS B IUIA3MI
ionocdepu 3emii. IlepenbadaeTbes, o0 pyHHYBaHHSA MOPOXHWHHU BUKIMKaHE TYpOYJIEHTHOIO AH(Y3i€l0 IIa3mu,
sIKa BUHHKA€ depe3 ApeiipoBy HECTIHKICTh pamiadbHO-HEOTHOPIAHOI TIa3MHU. B sSKOCTI MOYaTKOBOTO pamiallbHOTO
PO3MOALTY MIITFHOCTI IIa3MHU B TIOPOKHUHI PO3TILINAETECS 3BOPOTHIH posmonin ['aycca. OTpumaHo pilieHHs piB-
HAHHS uy3ii, ske B OyAb-IKHii MOMEHT Yacy BU3HAYa€ 3aJICKHICTh BiJ paiyca MITHFHOCTI TIA3MHU B TIOPOYKHUHI.
[TokazaHo, 0 B aCUMNTOTHUYHIN I'paHMLi ¢ — o0 IIUIBHICTh IJIa3MU B MOPOXKHHHI CTA€ PIBHOIO MIUIBHOCTI HaBKO-
JIMIIHBOI IUIa3MHU.
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