COMPUTING AND MODELLING SYSTEMS

ADVANCED FEATURES OF NVIDIA KEPLER
ARCHITECTURE AND PARALLEL COMPUTATION
PLATFORM CUDA FOR DEVELOPING SCIENTIFIC

COMPUTE-INTENSIVE APPLICATIONS

V. A. Dudnik,* V. I. Kudryavtsev, S. A. Us, M. V. Shestakov
National Science Center ”Kharkiv Institute of Physics and Technology”, 61108, Kharkiv, Ukraine
(Received January 23, 2018)

The paper describes additional features offered by new Kepler architecture of NVIDIA graphic processors, and

their usage for creating high performance programs in a wide range of scientific compute-intensive applications.

Recommendations are given for their use at realization of sci-tech computation algorithms by means of graphic

processors. New capabilities of the parallel computation platform CUDA are also described, in particular, regarding

a set of program development tool extensions for the Fortran, C and C++ languages. The extended capabilities make

it possible to minimize the time of application development and to increase the programming productivity.

PACS: 89.80.+h, 89.70.4-c, 01.10.Hx

1. INTRODUCTION

The architecture advance of NVIDIA graphic proces-
sors has been represented by a family of GK104 and
GK110 graphic processors of the Kepler architecture.
As the main differences of the Kepler architecture
from the previous Fermi architecture, we mention the
following:

e improved energy efficiency;

e new architecture of data flow processors SMX
(Streaming Multiprocessor Architecture);

e dynamic parallelization of data streams;
e hyper-Q technology.

Let us consider in greater detail the above-noted
capabilities of the graphic processor architecture in
terms of their use in the development of programs for
scientific and technical computations.

2. THE INCREASED ENERGY
EFFICIENCY

The improvement of energy efficiency (with simulta-
neous increase in productivity has been gained due
to the use of new memory and bus controllers, which
enabled the increase in the clock rate of memory up
to 6 GHz. This value is considerably higher than
the 4.4 GHz memory rate attained with the archi-
tecture of previous generation, though it is still lower
than the theoretically maximum values of 7 GH z pre-
dicted for GDDR5. These graphics memory parame-
ters have made it possible to organize the operation

of shader units at the same (on one frequency with as
that of the graphic processor kernel. The rejection of
the model with independent shader clocks, which was
used in the previous NVIDIA GPUs, has permitted
the manufacturers to reduce the energy consumption
owing to circuitry simplification of the graphics mem-
ory data exchange control units. This is justifiable
even in view of the fact that it has taken a greater
number of shader kernels to attain the processing pro-
ductivity of previous developments. An additional
point is that the reduction in energy consumption
occurs not only because the new architecture of the
memory and bus controllers is more energy-saving
than the previous-generation architecture. The use
of the unified clock rate leads to the decrease in the
operation frequency of shader units, and this, in turn,
substantially reduces the energy consumption of the
graphics kernel [1,2]. As a result, two Kepler shader
kernels consume about 90% of the supply power re-
quired for one kernel of the previous Fermi architec-
ture.

3. THE SMX ARCHITECTURE

Essential modifications in the architecture of Kepler
SMX processors provide improved energy efficiency
and a 3-fold higher data processing capacity due to
a new innovative structure of streaming multiproces-
sors. Each SMX-processor of the Kepler architecture
includes four stream branch (”warp”) schedulers,
each scheduler providing dispatching of two parallel
streams of instructions. (Fig.1).

*Corresponding author. E-mail address: vladimir-1953@mail.ru

ISSN 1562-6016. PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2019, N3(121).

Series: Nuclear Physics Investigations (71), p.105-108.

105

time
sse
-

Fig.1. A single warp scheduler unit

Thus, four complicated and energy-inefficient SMX
units of the Fermi architecture are replaced by four
device-simple SMX units of the Kepler architec-
ture. This permits the arrangement of a greater
number of SMX processors on the same chip area.
Besides, the saving in area occupied by the con-
trol logic of the graphics processor has made it
possible to use the free chip area for placing addi-
tional SMX processors (Fig.2). The complete Kepler
GK110 architecture includes fifteen SMX-processors
and six 64-bit memory controllers. During the pro-
gram source code compilation, the CUDA compiler
introduces the information required for optimum
scheduling directly into the GPU instructions. Fur-
thermore, the new SMX-processor makes it possi-
ble to execute the double-precision floating-point
instructions concurrently with standard instructions.

SM SMX
FERMI

CONTROL LOGIC

3X

PERF/WATT

=

EEES
EEEm
Glelela!
EEES
EEEN
Aman
EEES
AAAA

32 CORES

192 CORES

Fig.2. SMX:192 CUDA cores, 32 Shecial Fanction
Units (SFU)

4. DYNAMIC PARALLELIZATION
(PARALLELISM, MULTISEQUENCING)
OF DATA STREAMS

The new option offered by the Kepler architec-
ture, viz., the so-called dynamic parallelization of
data streams, permits one to develop concurrent
child processes during runtime of the GPU-program,

106

and also, to organize their synchronization directly
within the GPU, without the CPU call (Fig.3).
DYNAMIC PARALLELISM

W
P
(I1D) (TT0 (T (D (M

[\ ||
(0 (0 [[m

m

—a i
..__[I]IH]]]]
.

.R

Fig.3. Static (left side) and Dynamic Parallelism
(right side)

The CUDA dynamic parallelism also provides the
GPU realization of hierarchical algorithms, where the
structures of subsequent levels of computations and
the data for them are determined and formed by the
GPU means, without reference to the CPU (Fig.4).

Fig.4. Static (left side) and Dynamic Parallelism
(right side)

This makes it possible to realize the recursive algo-
rithms, the dynamic structures of cycles and other
software constructions within the GPU, thereby en-
abling, e.g., an easy speed-up of nested parallel cy-
cles. The realization of such algorithmic construc-
tions within the CUDA kernel shortens drastically
the traffic due to exclusion of data duplication be-
tween the CPU and GPU, and thus speeds up the op-
eration of software constructions using these options.
To make use of the advantages of dynamic paralleliza-
tion of data streams, the CUDA software configura-
tion was extended to include the support means of
streams creation and synchronization (Fig.5).

__global__ ChildKernel(void* data)
{ //Operate on data } __global__
ParentKernel (void *data)

{ if (threadIdx.x == 0) {
ChildKernel<<<1l, 32>>>(data);
cudaThreadSynchronize(); }

__syncthreads();

//0Operate on data

}

// In Host Code ParentKernel<<<8,
32>>>(data);

WITHOUT HYPER-Q WITH HYPER-Q

100

GPU UTILIZATION
8
GPU UTILIZATION %

Fig.5. GPU management for streams control

5. HYPER-Q TECHNOLOGY

A rather complicated problem that prevented the
full use of GPU capabilities for scientific computa-
tions was a weak optimization of executing paral-
lel computational streams. The Fermi architecture
provided simultaneous execution of up to 16 inde-
pendent streams, but in this case a simple hardware
resources multiplexing was ensured within a single
request queue. In the case of stream interdepen-
dences, the SMD-processors occupied by a waiting
stream were simply suspended until the execution of
the scheduled stream was completed. The optimiza-
tion of the GPU loading resulted in a sharp sophis-
tication of the application program and was insuf-
ficiently efficient. The Hyper-Q capability has been
realized in the Kepler architecture. It is similar to the
existing technology for the CPU processors, which is
known as Hyper-threading [3]. The physical proces-
sor that realizes this technology can keep at once the
state of two independent streams. For the operat-
ing system, that looks as the presence of two logical
processors. Physically, each of the logical processors
has its own register set and the interrupt controller
(APIC), and the rest processor elements (generally,
the address calculation unit and arithmetic units) are
shareable. If during the execution of the stream by
one of the logical processors the pause arises (as a
result of cache miss, the branch prediction error, pre-
vious instruction outcome expectation), then the con-
trol is transferred to the stream in the other logical
processor. Thus, while one process is waiting, for
example, for the memory data, the computational
resources of the physical processor are used for the
running the other process. The realization of this
architecture for the INTEL processors has increased
the processor throughput by 30...50% at only a 10%
increase in the chip area. A similar Hyper-Q tech-
nology [4] realized in the GPU GP110 based on the

Kepler architecture provides a simultaneous opera-
tion of several CPU computation kernels with a sin-
gle GPU processor. Each CUDA stream has its own
GPU apparatus queue. In the device, the stream de-
pendences are optimized, and the waiting on the ter-
mination of operation in the one stream no longer
leads to blocking the execution of the other stream.
And thus, no additional efforts in the development
of the program are required for organizing the com-
petitive execution of independent streams. Hyper-Q
allows one to increase drastically the GPU loading,
and also, to reduce the CPU idle periods. In the
case of GPU GP110, this provides the possibility of
processing at a time up to 32 hardware-controlled
independent streams (communications) between the
CPU and GPU Kepler GK 110 (compare only one
communication in the Fermi case). Owing to the use
of Hyper-Q, the multithread applications, earlier re-
stricted to the capabilities of only one GPU, can now
increase the computation speed by a factor of up to 32
without any modifications of the existing programme
code [5].

6. CONCLUSIONS

The GPU Kepler GK110 architecture much con-
tributes to a high performance computing efficiency.
New advantages of the architecture, viz., SMX, Dy-
namic Parallelism and Hyper-Q, extend the capabil-
ities of hybrid compute-intensive applications, real-
ized through CPU and GPU, and drastically increase
their throughput.

References
1. Whitepaper. NVIDIA’s Next Generation.
CUDATM Compute Architecture:Kepler
TM GK110. 2012 NVIDIA Corporation

https://www.nvidia.com/content /PDF /kepler/
NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

2. Inside 3. David Luebke, Greg Humphreys. How
GPUs Work. IEEE Computer, February, 2007.
IEEE Computer Society, 2007.

3. Pentium 4 Architecture. 2004-11, Hard-
ware Secrets, LLC. All rights reserved.
http://www.webcitation.org/61BZRGf11

4. New line GPU NVIDIA Quadro
for architecture NVIDIA Kepler
http://www.render.ru/books/show-
book.php?book-id=1788

5. CUDA Almanac October 2016

http://www.nvidia.ru/content/ EMEAI/images/
tesla/almanac/CUDA-almanac-October16.pdf

107

HOBBIE BOSMOXKHOCTU APXUTEKTYPHI NVIDIA KEPLER U IIJIAT®OPMBI
ITAPAJIJIEJIBHBIX BBIYNCJIEHNU CUDA® U NX NCIIOJIB30OBAHUE 1JI¢
PA3BPABOTKM BHIYNCJINTEJIBHBIX HAYYHBIX ITPUJIOXKEHNIA

B. A. Tyonux, B. U. Kydpssues, C. A. Yc, M. B. Illecmaxos

Onucanbl JOMOTHUTEIBHBIE BO3SMOXKHOCTH, MPEIOCTABIISIEMbIE HOBOM apXUTEKTypOil TrpadUuvecKux MpOIec-
copos Kepler komnanuu NVIDIA, u npumenenune ux ajis CO3JAHUS BBLICOKOIPOU3BOIUTE/ILHLIX IPOrPAMM
MIIAPOKOTO CIEKTPA BBIYUCIUTEIBHBIX HAYYHBIX TPUIOKeHUi. JIaHbl PEKOMEHIAIUN 0 X HCIOJIb30BAHUIO
[IPY PeaTu3allii AJTOPATMOB HAYYHO-TEXHUIECKUX PACIETOB cpeacTBaMu rpadudaeckux mpormeccopos. [lpu-
BEJIEHO ONMCAHME HOBBIX BOSMOXKHOCTEH mnardopmbl mapamnenbabix Berauciaenuit CUDA®), obecneansaro-
KX HabOp paclIMpeHuil CpejcTB pa3paboTKu porpaMm st A3bikoB Fortran, C u C++, HanpaB/eHHbIX Ha
MUHAMW3AIUIO BPEMEHU PAa3PabOTKN MPUJIOKEHUH U TOBBINIeHHE WX 3(PDHEKTUBHOCTH.

HOBI MO2KJINBOCTI APXITEKTYPH NVIDIA KEPLER I IIJTAT®OPMMNI
IIAPAJIEJIbHUX OBUNCJIEHb CUDA® I iX BUKOPUCTAHHSA 1JIsd PO3POBKHI
OBYNCJIIOBAJIBHUX HAYKOBUX JTOJATKIB

B. O. yonix, B. I. Kydpasues, C. 0. ¥Ye, M. B. Illecmaxos

Onucano A0MATKOBI MOXKJIMBOCTI, IO HATAIOTHCS HOBOK apxiTekTyporo rpadiunux mporecopis Kepler kom-
manii NVIDIA, i 3acrocyBanHs iX 1jisi CTBOPEHHS BUCOKOMPOIYKTUBHUX MPOrPaM IMUPOKOrO CHEKTPY 00-
YHUCIIOBAIBHIUX HAYKOBHUX 3aCTOCYyBaHb. Hamgano pekoMeHnmalii ix BHKOPUCTAHHSA TP Peasi3allil aJropuTMiB
HAYKOBO-TEXHIYHUX PO3PaxyHKiB 3acobamu rpadidamx mporecopis. [IpuBeseHO OMMC HOBUX MOKJIMBOCTEI
maardopmu napasieabunx obunciaerh CUDAR), mo 3abe3mnedyiors HAbIp PO3IMIUPEHs 3aC00IB POZPOOKH TTPO-
rpam g mos Fortran, C i C++4-, HampasjaeHnx Ha MIHIMI3AIio Yacy po3poOKH JOMATKIB i IMiIBUIEHHS TX
e€(PeKTUBHOCTI.

108

