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The dislocation-kinetic approach is applied to the study of plastic flow of plate specimens of two-dimensional
polycrystals of high purity metals under uniaxial tension with a constant strain rate at moderate temperatures. A
dislocation-kinetic equation is formulated. It takes into account the role of the free surface of a plate specimen,
which is the source and sink of dislocations, and the strengthening effect of through grain boundaries in a two-
dimensional polycrystal. To calculate tensile stress-strain curves, the kinetic equation was transformed using the
Taylor strain hardening law and an analytical solution was obtained for this equation. Using the example of plate
specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) it was shown that the calculation

results are in good agreement with experimental data.
PACS: 61.72.Cc, 61.82.Bg, 62.20.Fe

INTRODUCTION

The widespread use of various polycrystalline solids
as structural materials necessitates an understanding of
the physical nature of their strength and ductility. It is
known that grain boundaries are not only barriers to the
movement of dislocations that control the mechanical
properties of polycrystals, but also effective sources and
sinks of dislocations and other radiation defects
providing enhanced radiation resistance [1-3].Two-
dimensional polycrystals are a successful model object
for research. They contain only one layer of grains and
have through “vertical” grain boundaries. All grains are
“surface” in the sense that they have access to the free
surface of the sample. In two-dimensional polycrystals,
it is possible to determine the crystallographic
orientation of all grains and the crystal-geometric
parameters of their boundaries. Rotational [4, 5] and
other effects [6, 7] associated with plastic deformation
are specifically manifested due to the lack of tightness
of the “surface” grains in the “vertical” direction, which
is perpendicular to the tensile axis. At the same time,
two-dimensional polycrystals are finding independent
practical application as polycrystalline films, foils and
plates, which are operated under the action of
mechanical stresses.

A dislocation-kinetic approach can be used to
describe the plastic flow of a crystalline material. It is
based on equations describing the evolution of the
dislocation density in a material with increasing degree
of plastic strain. This approach makes it possible to
obtain the dependence of the flow stress on an average
grain size, transverse sample size, temperature, degree
and strain rate [8-14].

1. DISLOCATION-KINETIC EQUATION
FOR PLATE SPECIMENS
OF TWO-DIMENSIONAL POLYCRYSTALS

This paper is devoted to the study of plastic
deformation under conditions of uniaxial tension at
moderate temperatures of plate specimens of two-
dimensional polycrystals of high purity metals with a
thickness from ~50 um or more and with an average
grain size from ~50 um to macroscopic values (nano-
and micro-sized specimens with nano- and
microgranular structures were investigated in [12-14]).
Here, plate specimens are understood as specimens with
a rectangular cross section whose sizes are related by
the ratio D < w < [, where D is the specimen thickness
(size in the “vertical” direction), w and | are width and
length of the working area, respectively (Fig. 1). In such
specimens, the surface-to-volume ratio is Sg/V >
1cm™t

The Kinetic equation describes the evolution of the
average dislocation density p in a material with
increasing shear strain y. It should contain the product
p(dp/dy) and the terms describing the processes of
accumulation of dislocations in the material and
reduction of their density. We will write down the
dislocation-kinetic equation for plate specimens of two-
dimensional polycrystals using data from [8-14]. In this
case, the specificity of the studied specimens should be
taken into account. It consists in the fact that in such
objects a large role is played by the free surface of the
specimen, which is the source and sink of dislocations.
In addition, all grain boundaries are cross-cutting, which
determines the characteristics of the strain hardening
associated with them.
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Fig. 1. Scheme of a plate specimen of a two-dimensional polycrystal
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The accumulation of dislocations in a three-
dimensional polycrystal, the thickness D of which
greatly exceeds the average grain size d, due to the
presence of grain boundaries is described by (8/bd)p,
where b is the Burgers vector, g is the coefficient
determining the intensity of dislocation accumulation in
grains because the grain size d limits the mean free path
length of dislocations. The coefficient 8 expresses the
relative proportion of grains enclosed in the bulk of the
specimen and not having access to the free surface of
the specimen. However, in a two-dimensional
polycrystal all the grains are “surface”, therefore § = 0.
Here, the through “vertical” grain boundaries have a
strengthening effect and we need to take it into account.

According to [7], the “vertical” boundaries of the
“surface” grains create obstacles for the movement of
dislocations only in those areas of the grains that adjoin
these boundaries. Thus, in the “surface” grain the
volume of which is equal to V, there is a part of it with
volume V*, in which dislocations have difficulty for
movement, meeting with “vertical” grain boundaries,
whereas moving dislocations have no such obstacles in
the rest of the grain volume V — V", The relative part of
the grain which is adjacent to the "vertical" boundaries
determines the factor p* = V*/V. Then, by analogy with
the expression B/bd, we can write the expression
p*/bd”* which characterizes the strengthening effect of
the “vertical” grain boundaries in a two-dimensional
polycrystal. The mean free path length d* of
dislocations in the “surface” grain before the meeting
with the wvertical boundary (Fig. 1) needs to be
determined.

If we assume that the “surface” grains have the
shape of a square with a side d; on a free “horizontal”
surface and the size d, =D in the transverse
(“vertical”) direction then in the case of d; < d; we are
dealing with a grain structure that is “needle” if dg <
d;. Forit, p* =1 and d* = dg/cose where ¢ is the
angle between the slip plane and the tensile axis (the
length | of the working area of the specimen is measured
along this axis). Therefore, in this case p*/bd*=cos¢g/
bdg. For the grain structure with the parameters dg >
d;, which is “pancake” for dg > d;, we get p* =
(d;/ds)/tg and d* =d,/sinp, but the relation
p*/bd*=cosp/bd, remains unchanged. Thus, in a
dislocation-kinetic equation, grain-boundary hardening
in a two-dimensional polycrystal is described by the
term (p*/bd*)p = (cose/bd;)p.

In addition to the grain-boundary hardening
considered above, contributions to the accumulation of
dislocations are also provided by the operation of
surface dislocation sources with density ng and the
dislocation generation by double cross-slip of screw
dislocations on forest dislocations. In the Kkinetic
equation, they are described by the terms (Sg/V)(ng/b)
and kpp3/?, respectively. Here, the coefficient kf
describes the intensity of dislocation multiplication on

forest dislocations (k; ~ 1072/b). It should be noted
that the mechanism of dislocation generation on forest
dislocations is characteristic of so-called ordinary
polycrystalline metals with grain sizes from ~10 um
and more, but it does not work in nanocrystalline
materials [12, 14]. For specimens with a rectangular
cross section, the surface-to-volume ratio is determined
by the expression Sg/V = 2(1/D + 1/w), which for
plate specimens (D « w) takes the form Ss/V =2/D
[13].

The loss of dislocations from the process of
generation due to their exit from the specimen onto its
surface leads to a decrease in the average density p. In
the kinetic equation, such a process takes into account
the term —(sing@/bD)p. In addition, the dislocation
density in the material decreases due to the annihilation
of the screw sections of the dislocation loops, which
takes into account the term —k,p?, where k, is the
coefficient of annihilation of screw dislocation.

As a result, for plate specimens of two-dimensional
polycrystals of high purity metals with a thickness from
~50 um or more and with an average grain size from
~50 um to macroscopic values under uniaxial tension
with a constant strain rate € at moderate temperatures
(in the absence of diffusion mechanisms of dislocation
annihilation) the dislocation-kinetic equation can be

written as
dp cosQ 2\ (Mg
o(a)=Ga)e* (5) )
+ksp3/? — (sing/bD)p — kop?. 1)

2. PLASTIC FLOW OF PLATE SPECIMENS
OF TWO-DIMENSIONAL POLYCRYSTALS

The dependence of the stress o on the degree of
plastic strain e characterizes the plastic flow of a
material. To obtain stress-strain curves o(€) in the case
of wuniaxial tensile of plate specimens of two-
dimensional polycrystals, we transform the Kkinetic
equation (1) in the same way as was done in [8, 10, 14]
using the expressions y = me, ¢ = mt, where m is the
orientation factor, t is the flow stress which is
determined by the interaction of dislocations with each
other in accordance with the Taylor equation [15]

t=aubp*/?, )
in which a is the constant of interaction of dislocations
with each other, u is the shear modulus. Having
executed transformations, we receive
o3(do/de) = —mky(c* + a,03 + ay,6? + a3) /2, (3)

where
a; = —mapbky [k,
a, = —(cos@/bd; — sing /bD)(maub)?/k,,
az = —(2/D )(ns/b)(maub)*/k,.
Integrating (3), we obtain the dependence of the
deforming stress o on the degree of plastic strain € in
the implicit form:

—(2/mky)(Ailn|o — o;| + Ayln|o — 05| + (43/2)In|c? + &0 + &, +
+((—§143/2 + A /&2 — (§1/2)Parctg((0 +€1/2)/§2 — (§1/2)*)) + C = ¢, 4)

The integration constant C is determined from the condition ¢(0) = 0. The parameters in (4) are:



012 = (1/2)<Vaf/4—a2 +y1—a1/2i\/(a1/2—vaf/4—a2 +J’1)2_4(}’1/2_ y12/4—a3>>,

where

1/3 1/3
v = (~a/2 + G+ @27) " + (~a/2~ J@/3 + @/22) " + ax/3,
p=—a3/3—4a;, q = —2(ay/3)3 +8aya;/3 — a?as.
The quantities A;, A,, A3, A, are defined as the solution of the system of equations
A+ Ay + 45 =1,
A1 (1 — 05)A5(§y — 01) — As(oy + 02)+A4,=0,
A1 (§; — §102)+A5 (8, — §101) + Azoy05 — Ay(01 + 02)=0,
—A1$20,—A38,01 + A,0,0,=0,

wherein

& =a1/2+(a1/2)> —ay + y1, & = y1/2 + (01/2)? — as.

Further, as an example, the stress-strain curves o(¢)
are presented in the case of uniaxial tensile of plate
specimens of two-dimensional polycrystals of high
purity aluminium (99.999 at.%). The tensile stress-strain
curves a (&) are shown by the lines in Fig. 2. They were
calculated on the basis of (4) and “stitched” to the linear
section corresponding to the elastic strain at stress and
strain values of 0.07 MPa and 107°, respectively,
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according to [16]. The values of the parameters used in
the calculation of these tensile stress-strain curves by
the formula (4) were selected in accordance with the
data of [7, 12, 13, 17] and are presented in Table.
Experimental data are taken from [7] and are presented
in Fig. 2 by dots.
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Fig. 2. The tensile stress-strain curves for plate specimens of two-dimensional polycrystals of high purity aluminium
(99.999 at.%) a) with the thickness D = 95 um and a various average grain size d,: 1 —120 um, 2 —183 um,,
3 —205 um, 4 —1000 pum; b — with the average grain size d;, = 379 wm and a various thickness D:
5-50um,6 —100 um, 7 —266 um, 8 —700 um.

Parameters of plate specimens of two-dimensional polycrystals of high purity aluminium (99.999 at.%) used in the
calculations of the tensile stress-strain curves in Fig. 2 in accordance with the data of [7, 12, 13, 17]

n(jlrizgsr D,um w, mm ds, um m 7 4, GPa | b,nm a Ka ng, um=?2
1 95 4 120 2.60 /4 27 0.286 0.32 9.7 1.00
2 95 4 183 2.65 /4 27 0.286 0.32 9.7 0.85
3 97 4 205 2.52 /4 27 0.286 | 0.32 9.7 1.50
4 95 4 1000 2.60 /4 27 0.286 | 0.32 9.7 1.00
5 50 4 379 2.69 /4 27 0.286 | 0.32 9.7 1.00
6 100 4 379 2.69 /4 27 0.286 | 0.32 9.7 1.00
7 266 4 379 2.69 /4 27 0.286 0.32 9.7 1.00
8 700 4 379 2.69 /4 27 0.286 | 0.32 9.7 1.00

The strain hardening of plate specimens of two-
dimensional polycrystals depends according to (1) and
(4) both on the average grain size d; and on the
thickness D. The tensile stress-strain curves in Fig. 2
clearly show it. It should also be noted that these curves

are limited by the degree of strain of ~15 %. For large
plastic strain, it is necessary to take into account the
features of the formation of cellular and fragmented
dislocation structures and their contribution to strain
hardening.



CONCLUSIONS

In the framework of the dislocation-kinetic
approach, the plastic flow of plate specimens of two-
dimensional polycrystals of high purity metals to the
stage of developed plastic strain has been investigated.
Based on the data available in the literature, a kinetic
equation has been formulated that describes the
evolution of the dislocation density with increasing
degree of strain of a plate specimen of two-dimensional
polycrystal with a thickness and an average grain size
from ~50 um to macroscopic values under uniaxial
tension with a constant strain rate at moderate
temperatures. To calculate a tensile stress-strain curve,
the Kkinetic equation was transformed using the Taylor
strain hardening law and an analytical solution of this
equation was obtained. As an example, the tensile
stress-strain curves for plate specimens of two-
dimensional polycrystals of high purity aluminium
(99.999 at.%) are presented. They are in fairly good
agreement with experimental data. The proposed model
allows one to quantitatively describe the strain
hardening of plate specimens of two-dimensional
polycrystals depending on the average grain size and
thickness of the deformable specimens.
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JIACJIOKAIIMOHHAS KHHETHUKA TITPU IJTACTUUYECKOM JTE®@OPMAIINA
JABYMEPHBIX INIOJINKPUCTAJIJIOB

E.E. baousan, A.I. Toukonpso, E.B. ®memos, O.B. Illexoeyos

HI/ICJ’IOK&III/IOHHO'KI/IHCTI/I‘JCCKI/Iﬁ noAxoaA MNPUMEHCH K MCCICAOBAHUIO INIACTHUYCCKOIO0 TCUCHHUSA TIIOCKUX
06pa3u03 JABYMCPHBIX MOJHUKPUCTAJIOB YUCTBIX MCETAJJIOB B YCJIIOBHAX OAHOOCHOI'O PACTSXKCHUSA C IIOCTOSTHHOM



CKOPOCTBIO JedopMaluy INpH YMEpEHHBIX Temieparypax. CQopMylHMpoOBaHO ANCIOKAIMOHHO-KHHETHYECKOE
ypaBHEHNE, B KOTOPOM YYTEHBI POJb CBOOOAHOI IOBEPXHOCTH IIOCKOTO 00pasla, SBISIOIICHCS MCTOYHUKOM M
CTOKOM [IHCJIOKAIMi, M YNPOYHSIOIee IeHCTBHE CKBO3HBIX I'PAHMI[ 3€peH B JBYMEPHOM IIOMMKpHCTaiIe. st
pacuera KpuBOil nedopMmalMu KHHETHYECKOE YpaBHEHHE IpeoOpa3oBaHO C  HCIOJB30BAaHHEM 3aKOHA
nehopMalMoOHHOTO yNpoYHeHHs Teillopa M MOJyYeHO aHAIMTHYECKOE pelIeHHe 3TOro ypaBHeHHs. Ha mpumepe
IUIOCKUX OOpa3IoB JBYMEPHBIX MOJMKPUCTAIIIOB ducTOro amoMuHuS (99,999 ar.%) mokazaHo, 4TO pe3yabTaThl
pacyeToB JI0CTaTOYHO XOPOILO COTJIACYIOTCS € SKCHEPHUMEHTAIbHBIMH JaHHBIMH.

JUCJOKALINHA KIHETUKA IIPU VIACTUYHIN JE®OPMAILIT
JBOBUMIPHUX HOJIIKPUCTAJIIB

€.10. Badian, A.I. Toukonpsao, €.B. @®mvomos, O.B. Illexoeuos

JucnokanifHO-KiIHETHYHUH TIXiM 3aCTOCOBAaHO [0 MJOCHIDKEHHS IUIACTHYHOI Tedil IUIOCKHX 3pa3KiB
JIBOBUMIPHHX IOJIIKPUCTAIIB YUCTUX METANIIB B yMOBaxX OJJHOOCHOT'O PO3TSATY 3 HOCTIHHOIO MIBUAKICTIO AedopMariii
npu noMipHuX Temneparypax. ChopMyaboBaHO NHUCIOKAaliHHO-KIHETUYHE DPIBHSAHHSA, B SKOMY BpaxoBaHi pOJIb
BUIBHOT TIOBEPXHI IJIOCKOTO 3pa3Ka, sIKa € JHKEPEIoM i CTOKOM JIUCIIOKAIiH, 1 3MIIHIOIYA i HACKPI3HUX MEX 3epeH
y JABOBUMipHOMY mojikpuctam. s po3paxyHKy KpuBoi nedopmauii KiHETHYHE pPIBHSHHS IIEPETBOPEHO 3
BUKOPHCTAaHHSIM 3aKOHY JedopmaniiiHoro 3MirHeHHs Teiaopa i OTpUMaHO aHAIITHYHE DPIlIEHHS [[bOTO PIBHSHHSL.
Ha npuxnaai miockux 3paskiB JBOBUMIPHHX IMOJIKPUCTANIB YUCTOro aimoMiHito (99,999 ar.%) mokaszano, 1o
pe3yabTaTH pO3paxyHKiB JOCUTB 10OPE Y3roJLKYIOTHCS 3 eKCIICPUMCHTAIbHIMH TaHHMH.



