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INTRODUCTION 
 

The theoretical study of ECRF waves in plasma 

requires accurate accounting relativistic effects [1, 2].
 

The ground for studying waves in plasmas is the exact 

evaluation of the fully relativistic plasma dielectric 

tensor. This direction in the theory of plasma waves is 

known as the fully relativistic approach. Two original 

equivalent integral forms of this tensor were given in 

[3]. However, their applicability was rather limited. 

Then gradually there appeared the non-relativistic 

approximation [4] and the weakly relativistic one [5].  

Later, the limitations were weakened due to 

introducing the fully relativistic plasma dielectric tensor 

with the exact plasma dispersion functions (PDFs) for 

two branches:
 10  IIN  and  IIN1 . This tensor is 

given as double series in the EC harmonics and in the 

exact PDFs with coefficients of the Taylor expansion of 

the functions )()(  
nn IeA   in the parameter   [6].  

The condition λ<<1 is fulfilled in the applications 

of this tensor for the fast EC waves, when series in   

converges rapidly. However, for the slow or plasma EC 

waves   can reach values, 1~ , and λ>>1. Then the 

series in λ converges slower, which can cause 

difficulties in summation, even in the weakly relativistic 

case [7] and in the fully relativistic one as well [8]. Then 

the key task is looking for the alternative form of tensor, 

suitable for exact applications.  

 

1. FUNCTIONS GENERATING FULLY 

RELATIVISTIC DIELECTRIC TENSOR 

ELEMENTS  
 

Let us demonstrate that  
ijDIm  

and  
ijDRe  [6] for 

arbitrary λ can be expressed in terms of 1-D integrals, 

suitable for exact applications. Really, in the case of 

unfavorable (for summation) value of λ for element of 

the tensor [6] and harmonic number n  the summation 

for the slow convergent series can be reduced on the 

base the theory of Cauchy type integrals to a two-step 

procedure. The 1st step introduces the function 

generating the anti-Hermitian part of this series in λ, and 

then a numerical calculation of the 1-D integral of this 

function leads to the anti-Hermitian part of the series. 

The 2nd step consists of calculating numerically the 

principal value of the integral of Cauchy of the anti-

Hermitian part, which leads to the Hemitian part of the  

 

series. Then, both parts together give a value of the 

whole series for the tensor element. 

Let us begin this two-step procedure for the tensor 

element 
11D . From the first Trubnikov integral 
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Here )(2 K  is the Macdonald function, )/(mcpp   is 

normalized momentum, 21 p ,  
2 . Using the 

last definition, (1) can be converted into  
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After a change p  in (2) with Jacobian 

  pdpd //  , accounting )1( 222
IIpp   , we have 
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After one more change in (3) x , with 21 IIpx    

and Jacobian 1/ dxd , and accounting the relation 

  212 IIpxxx  22 1 IIp , we obtain 
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(4) 

The integral over x  in (4), with the multiplier 

)( 2
1exp IIp , is one of the Cauchy type with real 

density, satisfying the Hölder condition of continuity, 

and tending to 0 when 0x  and x . It is known 

from complex analysis that the integral of the Cauchy-

type 
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with density )(  satisfying the former conditions at the 

contour, is defined at the contour itself by the formulas 

of Sokhotskii-Plemelj  
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Here, the functions )(zF  , )(zF   are the boundary values 

of integral (6) when z  tends to the contour from the 

right or from the left-hand side with respect to the 

integration direction, respectively. The letter P before 

integral denotes its principal value in the Cauchy sense. 

At the real axis, out of the contour, the integral (6) is not 

singular and is, consequently, 
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Thus, for the case 0/1 2  cnpNp IIIIII
 the anti-

Hermitian part of the integral over x  in (4), with the 

multiplier )1exp( 2

IIp , can be obtained by 

substituting the anti-Hermitian part 

)/1( 2  cnpNpi  IIIIII
 of the second of the 

formulae (7), times i2 , which corresponds to the 

Landau rule for passing the pole, instead of the Cauchy 

integral in (4). In this way 
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In (8), it is convenient to use the arguments: 2/IIpx  , 

)1( / cnz  , /2μNa
2

II . Then (8) is 
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From (4) and (9) for the case 10  IIN  it follows 
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(10) 

Here were used the notation )N11( 2

II a  and the 

integration limits follow from the condition that the pole 

must appear inside the integral of expression (9), which 

is equivalent to the equation 

01//2/
2

21   zxax . Consequently the limits 

are 


)/1([  zax ))]2/((
2

zza  , where )N1/(1
2

II . 

Thus, we obtain an alternative expression to (1) for the 

cyclotron harmonic n  and for the anti-Hermitian part of 

the element 
11D . For this expression, the summation of 

the series in   is reduced to the evaluation of the one-

dimensional integral (10). We perform now the change 

tx   in accordance to )/1(  zaxt  , which leads to 

the symmetry of the new limits of integration 

)2/(2  zzat   respectively 0. Then, one more 

change ut   with )2/(
2

 zzaut   leads to the 

normalization of integration limits to 1u  
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 (11) 

where we used )2/(
2

 zzaK   for brevity. 

 For the case  IIN1  from (10) for arbitrary 

z  in the similar way it follows 

 

,

)(
Im

)/()
2

1(2

2

2

12

2

11

2
)2(



































uKn

n

J

eduK
K

e
nD

uKa
az

   (12) 

 

where was used )2/()(
2

 zzaK 
 . The 1-D 

integrals (11) and (12) are not singular, and can be 

exactly calculated for arbitrary  . Their calculation 

completes the 1st step of the two-step numerical 

procedure mentioned above. 

The hermitian part of 
11D  can be evaluated from 

the imaginary parts (11) and (12) using one of Kramers-

Kronig formulas, linking Hermitian and anti-Hermitian 

parts of Cauchy type integral defined on the real axis  

and obeying the Landau rule of passing the pole [1],  

 

.
),,(Im1

),,(Re 11
11 







zt

dttaD
PzaD




       (13) 

 

After inputting (11) into (13) one will have 
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after the change uat  

, where the contour of 

integration passes above the pole, obeying the Landau 

rule. To move in (14) to the standard coordinates it is 

necessary to change variables 
nzaz 2 . Thus, to 

calculate 
11D  for a cyclotron harmonic n , the evaluation 

of the series in   can be reduced to the 1-D integral 

(11) and then to the principal value of the integral (14).  

 

2. CALCULATION OF THE FULLY 

RELATIVISTIC PLASMA DIELECTRIC 

TENSOR ELEMENT 
11  FOR 3  

 
     Since all elements of 

ijD  are of the same type and 

differ only in weighted multipliers, it is sufficient to 

describe in detail the computation of the tensor element 
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11D  for the harmonic 1n . Let us demonstrate 

applications of the formulae (11) for calculations of this 

element for the branch 1IIN . From (11) one can 

numerically evaluate 
11Im D  with the desired accuracy 

using a standard program for computing a nonsingular 

1-D integral over a finite interval for arbitrary value of 

the parameter  . 

The Hermitian part of the component 
11D  can also 

be evaluated numerically from the 
11Im D  using one of 

Kramers-Kronig formulas (17), linking Hermitian and 

anti-Hermitian parts of an integral of Cauchy type 

defined on the real axis and obeying the Landau rule of 

passing the pole above it [6]. To move to the standard 

coordinates in (17) it is necessary to make the change 

nzaz 2 . Thus, calculation of the element 
11D , which 

is equivalent to the evaluation of the series in   in the 

expression (2), can be reduced to the calculation of the 

principal value of (17). Introducing in (17) the notations 

)(/),,(Im 11 ufuaaD     and zab    one will have 

the following integral of Cauchy type 
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For the evaluation of the singular integral (15) for the 

case 0b  it was used the following non-singular 

integral form which was used earlier for evaluating of 

exact relativistic PDFs for the case 1IIN  [6] 
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     Indeed, the first integral on the right-hand side is not 

singular, since the constant b  does not belong to the 

integration interval. In the second integral in the same 

part, the constant b  is the right-hand end of the 

integration interval  b,0 , but it can be shown that for 

bu   the integrand   )(2)/()2()( bfbuubfuf  , that 

is, it is finite at a point b , and hence there is no 

singularity at this point either. 

     For the case 0b , the point b  also does not fall into 

the integration interval  ,0  and hence the integral on 

the left-hand side of (6) is not singular and hence 
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     It remains to consider the case 0b  in (17). But in 

this case, for 0u  the integrand function 0)( uf  as 

well, since 0),,(Im 11  aaD  (see (3)) and therefore 

)0(/)( fuuf  , according to Lompital rule, and the 

singularity at 0u  on the right in (17) is also absent. 

     Fig. 1 shows the graph of the anti-Hermitian and 

Hermitian parts of the element ),,( 111 zD k  of the fully 

relativistic tensor obtained with the use of expressions 

(4), (5) with relative accuracy 1010  . Calculations were 

carried out for the following plasma and wave 

parameters: electron temperature keVTe 20 , 3 , 

3.0IIN . These dependences are qualitatively very 

similar to the analogous dependences for the anti-

Hermitian and Hermitian parts of the exact relativistic 

plasma dispersion function for plasma and waves with 

the same parameters. 
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Fig. 1. The real and imaginary tensor components 

11D  

for longitudinal refractive index, 3.0IIN  and 

temperature Te = 20 keV 

 

     For the case 1IIN  a scheme for calculation 
11D  of 

the relativistic plasma dielectric tensor remains very 

similar previous one except for some features. First, 

instead of integrals of Cauchy type, all the elements of 

the tensor are expressed in terms of Cauchy integrals 

and are smoother analytic functions that do not contain 

branch points as in the previous case. We will calculate 

the element 
11D  on the basis of the calculation technique 

used to calculate fully relativistic PDFs for the case 

1IIN  [6]. The 1-D integrals in the first formula of (10) 

are not singular, and therefore ones can be calculated 

with desired precision for arbitrary value of the 

parameter  . Their calculation completes the first step 

of the two-step numerical procedure. 

     The Hermitian part of 
11D  can also be numerically 

evaluated from the imaginary part on the base (11) 

using one of Kramers-Kronig formulas [6]. A change to 

the standard coordinates, usual in the non-relativistic 

case, can be made in (7) through the relation 
nzaz 2 . 

Introducing in the formula (17) the notations 

)(/),,(Im 11 ttaD    and zb   one will have the 

following typical Cauchy integral  
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For the exact evaluation of the singular integral (18) it 

was used the following non-singular integral form 

which was used earlier for evaluating of exact 

relativistic PDFs for the case 1IIN  [6] 
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where the contour of integration passes below the pole.
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Fig. 2. The same as Fig. 1, but for N‖=1.1 and 

temperature Te = 40 keV 

 

     Fig. 2 shows the graph of the anti-Hermitian and 

Hermitian parts of the element D11 of the fully 

relativistic tensor obtained with the use of expressions 

(18), (19) with accuracy 10
-10

. Calculations were carried 

out for the following plasma and wave parameters: 

electron temperature Te = 40 keV, λ = 3, N‖=1.1. 

 

CONCLUSIONS 
 

     1. The 1-D integral form for the fully relativistic 

plasma dielectric tensor is presented. This form is 

suitable for exact numerical applications for the value of 

the parameter λ>1.  

     2. This form is interesting for applications to study 

electron Bernstein waves in the ECRF range in 

thermonuclear plasmas and to study arbitrary fast and 

slow ECRF waves in hot astrophysical plasmas.  

     3. In a similar way, it can be obtained the similar 

exact 1-D integral form of the fully relativistic plasma 

dielectric tensor for ions.  
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ПОЛНОСТЬЮ РЕЛЯТИВИСТСКИЙ ПОДХОД К ТЕОРИИ МЕДЛЕННЫХ И ПЛАЗМЕННЫХ  

ЭЦР ВОЛН  

С.С. Павлов, F. Castejon
 

 

Предлагается новая точная одномерная интегральная форма для вычисления полностью релятивистского 

тензора диэлектрической проницаемости плазмы.  

 

ПОВНІСТЮ РЕЛЯТИВІСТСЬКИЙ ПІДХІД ДО ТЕОРІЇ ПОВІЛЬНИХ І ПЛАЗМОВИХ 

ЕЦР ХВИЛЬ 

С.С. Павлов, F. Castejon
 

 

Пропонується нова точна одномірна інтегральна форма для обчислення повністю релятивістського 

тензора діелектричної проникності плазми.  


