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The new exact integral form for the fully relativistic plasma dielectric tensor in the ECRF range is presented.
This form is suitable for numerical applications for arbitrary wave numbers.
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INTRODUCTION

The theoretical study of ECRF waves in plasma
requires accurate accounting relativistic effects [1, 2].
The ground for studying waves in plasmas is the exact
evaluation of the fully relativistic plasma dielectric
tensor. This direction in the theory of plasma waves is
known as the fully relativistic approach. Two original
equivalent integral forms of this tensor were given in
[3]. However, their applicability was rather limited.
Then gradually there appeared the non-relativistic
approximation [4] and the weakly relativistic one [5].

Later, the limitations were weakened due to
introducing the fully relativistic plasma dielectric tensor
with the exact plasma dispersion functions (PDFs) for
two branches: g< N, <1 and 1< N, <+o0- This tensor is

given as double series in the EC harmonics and in the
exact PDFs with coefficients of the Taylor expansion of
the functions A (1) =e™*1,(4) in the parameter 4 [6].

The condition A<<1 is fulfilled in the applications
of this tensor for the fast EC waves, when series in 2
converges rapidly. However, for the slow or plasma EC
waves A can reach values, 1 ~1, and A>>1. Then the
series in A converges slower, which can cause
difficulties in summation, even in the weakly relativistic
case [7] and in the fully relativistic one as well [8]. Then
the key task is looking for the alternative form of tensor,
suitable for exact applications.

1. FUNCTIONS GENERATING FULLY
RELATIVISTIC DIELECTRIC TENSOR
ELEMENTS

Let us demonstrate that |m( ) and Re( ) [6] for

arbitrary A can be expressed in terms of 1-D integrals,
suitable for exact applications. Really, in the case of
unfavorable (for summation) value of A for element of
the tensor [6] and harmonic number n the summation
for the slow convergent series can be reduced on the
base the theory of Cauchy type integrals to a two-step
procedure. The 1st step introduces the function
generating the anti-Hermitian part of this series in A, and
then a numerical calculation of the 1-D integral of this
function leads to the anti-Hermitian part of the series.
The 2nd step consists of calculating numerically the
principal value of the integral of Cauchy of the anti-

Hermitian part, which leads to the Hemitian part of the
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series. Then, both parts together give a value of the
whole series for the tensor element.

Let us begin this two-step procedure for the tensor
element D,,- From the first Trubnikov integral
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Here K,(u) is the Macdonald function, p=p/(mc) is

normalized momentum, 5 =./1+ p?, V2=l Using the
last definition, (1) can be converted into
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After one more change in (3) y — x, with x—=,_ 14 p?
and Jacobian dy/dx=1, and accounting the relation
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The integral over x in (4), with the multiplier
exp(~u/1+ p2) is one of the Cauchy type with real

;"”7 [O RN fue

density, satisfying the Holder condition of continuity,
and tending to 0 when x -0 and x—o. It is known
from complex analysis that the integral of the Cauchy-
type
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with density ¢(7) satisfying the former conditions at the

contour, is defined at the contour itself by the formulas
of Sokhotskii-Plemelj
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Here, the functions F+(z), F-(z) are the boundary values

of integral (6) when z tends to the contour from the
right or from the left-hand side with respect to the
integration direction, respectively. The letter P before
integral denotes its principal value in the Cauchy sense.
At the real axis, out of the contour, the integral (6) is not
singular and is, consequently,
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Thus, for the case j1+pZ-N,p,—nQ,/w<0 the anti-
Hermitian part of the integral over x in (4), with the
multiplier  exp(—u,/1+pZ2), can be obtained by
substituting the anti-Hermitian part
,ﬂi¢(,m+|\lm“+ngc/w) of the second of the
formulae (7), times 2z, which corresponds to the

Landau rule for passing the pole, instead of the Cauchy
integral in (4). In this way
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In (8), it is convenient to use the arguments: x = p,/u/2,
2=p(-nQ, | @), a=uNi/2. Then (8) is

Hermitian  part—
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From (4) and (9) for the case 0 <N, <1 it follows
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Here were used the notation a* = ;(1- f1— NZ) and the
integration limits follow from the condition that the pole
must appear inside the integral of expression (9), which
is equivalent to the equation
Vi+ 252 u—2ax/ u+2/u-1-0. Consequently the limits
are  x* - pia@-z/u)+ (a—z+2°/@2u)], WHere pg—1/a-nN2).
Thus, we obtain an alternative expression to (1) for the
cyclotron harmonic n and for the anti-Hermitian part of
the element p, . For this expression, the summation of

the series in A is reduced to the evaluation of the one-
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dimensional integral (10). We perform now the change
x —>t in accordance to t = x— gya(1-z/ ), Which leads to

the symmetry of the new limits of integration
t*=+pJa—z+22/(2u) respectively 0. Then, one more

change t—u with (_ysfa_7+,7/2n leads to the
normalization of integration limits to y*=+1
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where we used K = gJa—z+2%/(2) Tor brevity.
For the case 1< N, <+ from (10) for arbitrary

z in the similar way it follows
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where was used K*=(-p) /a_Hz?/(gﬂ). The 1-D

integrals (11) and (12) are not singular, and can be
exactly calculated for arbitrary 4. Their calculation
completes the 1st step of the two-step numerical
procedure mentioned above.

The hermitian part of p, can be evaluated from

the imaginary parts (11) and (12) using one of Kramers-
Kronig formulas, linking Hermitian and anti-Hermitian
parts of Cauchy type integral defined on the real axis
and obeying the Landau rule of passing the pole [1],
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After inputting (11) into (13) one will have
ImD,,(a,t, w)dt _PTIm Dy (a, a" —u, x)du
) . 7u-@ -2)

(14)

after the change t=a'-u Wwhere the contour of

integration passes above the pole, obeying the Landau

rule. To move in (14) to the standard coordinates it is

necessary to change variables ; zzﬁzn. Thus, to

Re Dy (a,2,1) =P |
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calculate p,, for a cyclotron harmonic n, the evaluation

of the series in A can be reduced to the 1-D integral
(11) and then to the principal value of the integral (14).

2. CALCULATION OF THE FULLY
RELATIVISTIC PLASMA DIELECTRIC
TENSOR ELEMENT ¢, FOR 1=3

Since all elements of D, are of the same type and
differ only in weighted multipliers, it is sufficient to

describe in detail the computation of the tensor element
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D,, for the harmonic n=1. Let us demonstrate

applications of the formulae (11) for calculations of this
element for the branch N <1. From (11) one can
numerically evaluate |mp, with the desired accuracy
using a standard program for computing a nonsingular
1-D integral over a finite interval for arbitrary value of
the parameter 2.

The Hermitian part of the component p,, can also

be evaluated numerically from the |mp,, using one of

Kramers-Kronig formulas (17), linking Hermitian and
anti-Hermitian parts of an integral of Cauchy type
defined on the real axis and obeying the Landau rule of
passing the pole above it [6]. To move to the standard
coordinates in (17) it is necessary to make the change
z =2+/az,. Thus, calculation of the element p,,, which

is equivalent to the evaluation of the series in 4 in the
expression (2), can be reduced to the calculation of the
principal value of (17). Introducing in (17) the notations
—-ImD,(a,a" —u,u)/z=f(u) and b=a"-z one will have
the following integral of Cauchy type

Ff(u)du

Re D,,(a,z, u)=P
-([ u-b

(15)

For the evaluation of the singular integral (15) for the
case b>0 it was used the following non-singular
integral form which was used earlier for evaluating of
exact relativistic PDFs for the case N, <1 [6]

f(u)du f(2b u)du b (fQu)- f(2b u))du (16
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Indeed, the first integral on the right-hand side is not
singular, since the constant b does not belong to the
integration interval. In the second integral in the same
part, the constant b is the right-hand end of the
integration interval [0,b], but it can be shown that for

u—b the integrand (f(u)- f(20-u))/(u—b) —2f'(b), that
is, it is finite at a point b, and hence there is no
singularity at this point either.

For the case b <0, the point b also does not fall into
the integration interval [o,oo] and hence the integral on
the left-hand side of (6) is not singular and hence

+00
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It remains to consider the case b=0 in (17). But in
this case, for u—o0 the integrand function f(u)—o0 as

well, since |mp, (aa’,;)=0 (see (3)) and therefore
f(u)/u— f"(0), according to Lompital rule, and the
singularity at u=0 on the right in (17) is also absent.
Fig. 1 shows the graph of the anti-Hermitian and
Hermitian parts of the element p(k,z, ) Of the fully
relativistic tensor obtained with the use of expressions
(4), (5) with relative accuracy 107 . Calculations were
carried out for the following plasma and wave
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parameters: A=3,
N,=03. These dependences are qualitatively very

similar to the analogous dependences for the anti-
Hermitian and Hermitian parts of the exact relativistic
plasma dispersion function for plasma and waves with
the same parameters.

electron temperature T, = 20keV ,

0.03 =
Dll

0.02 =

0.01 —

Fig. 1. The real and imaginary tensor components D,,
for longitudinal refractive index, N, =0.3 and
temperature T, = 20 keV

For the case N,>1 a scheme for calculation p of

the relativistic plasma dielectric tensor remains very
similar previous one except for some features. First,
instead of integrals of Cauchy type, all the elements of
the tensor are expressed in terms of Cauchy integrals
and are smoother analytic functions that do not contain
branch points as in the previous case. We will calculate
the element D, on the basis of the calculation technique

used to calculate fully relativistic PDFs for the case
N, >1 [6]. The 1-D integrals in the first formula of (10)

are not singular, and therefore ones can be calculated
with desired precision for arbitrary value of the
parameter /. Their calculation completes the first step
of the two-step numerical procedure.

The Hermitian part of p, can also be numerically
evaluated from the imaginary part on the base (11)
using one of Kramers-Kronig formulas [6]. A change to
the standard coordinates, usual in the non-relativistic
case, can be made in (7) through the relation 7 = 2\/52n.

Introducing in the formula (17) the notations
ImD,,(a,t,u)/ z=p(t) and b=z one will have the
following typical Cauchy integral

(18)

+00
o(t)dt
Re D, (a,z,u)=P | m———.
11( ) J;O t—b

For the exact evaluation of the singular integral (18) it
was used the following non-singular integral form
which was used earlier for evaluating of exact
relativistic PDFs for the case N, >1 [6]

S Ffwdu P f(@b-u)du, (19

ReDll(a,z,y)_P_L[ b _I b (19)
where the contour of integration passes below the pole.
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Fig. 2. The same as Fig. 1, but for N=1.1 and
temperature T, = 40 keV

Fig. 2 shows the graph of the anti-Hermitian and
Hermitian parts of the element Dy; of the fully
relativistic tensor obtained with the use of expressions
(18), (19) with accuracy 10™°. Calculations were carried
out for the following plasma and wave parameters:
electron temperature T, = 40 keV, A = 3, Nj=1.1.

CONCLUSIONS

1. The 1-D integral form for the fully relativistic
plasma dielectric tensor is presented. This form is
suitable for exact numerical applications for the value of
the parameter A>1.

2. This form is interesting for applications to study
electron Bernstein waves in the ECRF range in
thermonuclear plasmas and to study arbitrary fast and
slow ECRF waves in hot astrophysical plasmas.

3. In a similar way, it can be obtained the similar
exact 1-D integral form of the fully relativistic plasma
dielectric tensor for ions.
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MOJHOCTBIO PEJSITUBUCTCKHUI MOAXO0/1 K TEOPUM MEUIEHHBIX U IVIASMEHHBIX
SIP BOJIH

C.C. ITasnos, F. Castejon

HpeunaraeTcs[ HOBasA TOYHAsA OJJTHOMEPHAA MHTCTpajbHasA Q)opMa JJIA BBIYUCJICHUS MMOJTHOCTBIO PEIIATUBUCTCKOTO

TEH30pa IUAJIEKTPUIECKOI MPOHUIIAEMOCTH IJIa3MBI.

HOBHICTIO PEJSTUBICTCHKHM X1 O TEOPII MOBLJILHUX I IIJIA3SMOBUX
ELIP XBUJIb

C.C. Ilasnos, F. Castejon

[IporonyeThcs HOBa TOYHA OJHOMIpHA iHTerpaigbHa (opMa Uil OOYHMCICHHS ITOBHICTIO PEJISITHBICTCHKOTO

TEH30pa JAieNIEeKTPUYHOT IIPOHUKHOCTI IIa3MHU.
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