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Abstract

Multistage stochastic programming (MSP) problems belong to a class of problems
that involve a sequence of decisions made over multiple time stages under uncertainty.
Many real-world problems can be effectively represented using MSPs. However, MSPs
pose challenges in optimization due to their inherent difficulty and complexity. In the
literature, Stochastic Dual Dynamic Programming (SDDP) has emerged as a powerful
and versatile methodology for solving MSPs. This thesis showcases the applications
of SDDP in handling sequential decision-making under uncertainty across various
domains.

We begin with a comprehensive introduction to MSPs, exploring their practical
applications and various solution approaches. Additionally, we trace the historical
development of SDDP from Benders’ Decomposition to its modern enhancements.

In Chapter 2, we conduct a comprehensive survey of the diverse applications of
SDDP in the literature. This includes an analysis of statistics on the prevalence of
SDDP usage in various domains. Moreover, a substantial focus is placed the most
common application of SDDP in the energy sector, particularly in hydro-thermal power
production scheduling. The chapter outlines compelling arguments for the prominence
of this specific application.

Chapter 3 introduces two valuable contributions: MSPLib, an open-source library
of problems and MSPFormat, a standardized data format designed for benchmarking
SDDP. MSPLib aims to facilitate the evaluation of computational performance
among different SDDP implementations. It offers a wide array of instances, from
real-world problems to synthetic variations with varying complexities. By incorporating
MSPFormat into the library, a unified and consistent representation of MSPs is provided,
further enhancing their usability and transferability.

In Chapter 4, we showcase an MSP application to the optimal location of COVID-19
vaccine facilities under the threat of natural disasters. We introduce a new algorithm,
named shadow price approximation (SPA), which aims at approximating the shadow
price of opening flood-prone vaccine facilities by tuning the parameters of a linear value
function approximation which is present in the objective function of base optimization
model. We also compare the performance of SPA against stochastic dual dynamic
integer programming (SDDiP). The chapter closes with a detailed account of this
model’s application in two cities of a developing country.

Moving on to Chapter 5, we introduce a novel problem class named the multistage
stochastic facility location problem under facility disruption uncertainty (MSFLPD).



This new class extends the classical stochastic capacitated facility location problem
to handle uncertainty arising from facility disruptions. We then present and compare
two solution algorithms tailored for addressing this problem: stochastic dual dynamic
integer programming (SDDiP) and shadow price approximation (SPA).
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Chapter 1

Introduction

Human beings are inherent decision-makers. Daily, we make simple choices, such

as determining the right bus time to ensure we arrive on time at work or school.

Yet, we also deal with more complex problems, like discerning the ideal investment

amount today to facilitate early retirement two or three decades down the line. The

latter captures two key problem elements we deal with in this thesis - uncertainty and

multiple stage planning. In the academic setting, multistage stochastic programming

is commonly adopted to address multiple stage planning or sequential decision-making

in the face of uncertainty, as it offers a structured framework for solving optimization

problems where randomness plays a significant role. Some examples include energy

production and scheduling problems, financial and investment management problems,

operations and supply chain management problems, to name a few. In the literature,

stochastic dual dynamic programming (SDDP) has emerged as a powerful and versatile

methodology for solving multistage stochastic programs (MSPs). This thesis showcases

the vast applications of SDDP in handling sequential decision-making under uncertainty

across various domains. We begin in this chapter with a comprehensive introduction

to MSPs, exploring their practical applications and various solution approaches.

Additionally, we trace the historical development of SDDP from Benders Decomposition

to its modern enhancements.



2 Chapter 1. Introduction

1.1 Multistage Stochastic Programs (MSPs)

Multistage stochastic programs (MSPs) are a set of programming problems dealing with

sequential decisions where at least one data process is stochastic or random. MSPs, in

their most general form, are formulated as

min
A1x1+C1y1≥b1

u⊤
1 x1 + v⊤1 y1 + E|ξ1 [ min

A2x2+B2x1+C2y2≥b2
u⊤
2 x2 + v⊤2 y2

+ ...+ E|ξ[T−1]
[ min
AT xT+BT xT−1+CT yT≥bT

u⊤
T xT + v⊤T yT ]]

(1.1)

where bt = bt(ξt) are the right-hand side vectors and At = At(ξt), Bt = Bt(ξt), and

Ct = Ct(ξt) are matrices of the appropriate dimensions, of which b1, A1, C1 are of known

deterministic values.

In this setting, the stochastic data process is revealed as time goes on. This

stochastic data process (ξ1, . . . , ξT ) is modeled so that ξ1 is deterministic and ξ2...ξT

will be divulged over time. The history of the stochastic data process up to time t

is represented by ξ[t] =(ξ1, . . . , ξt). The stochastic process is referred to as stage-wise

independent if ξt is independent of ξ[t−1] for t = 2, ..., T . Otherwise, if the conditional

distribution of ξt given ξ[t−1] is the same as ξt given ξt−1 for t = 2, ..., T , then it is

referred to as Markovian.

The decision variables in MSPs are categorized into two types: state variables x

and control variables y. State variables are variables used to describe the mathematical

‘state’ of a dynamical system. Intuitively, the state of a system xt at stage t sufficiently

describes the system’s characteristics to predict its future behaviour at time t+1, with

respect to some uncertainty. Consequently, this state of the system flows from stage

to stage until the end of the planning horizon T . Control variables yt, on the other

hand, are stage variables which the decision-maker decides upon and can control when

uncertainty is revealed at stage t. Additionally, the objective function consists of the

first stage deterministic function as well as nested expectation functions, or cost-to-go

functions of the subsequent stages.

The original complex Problem (1.1) can be reformulated as a dynamic program to
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leverage the Bellman principle of optimality of the form:

Vt(xt−1, ξt) = min
xt,yt
{u⊤

t xt + v⊤t yt + Vt+1(xt, ξt) : Btxt−1 + Atxt + Ctyt ≥ bt}, (1.2)

for t = 1, . . . , T where Vt+1(xt, ξt) is the expected value cost-to-go function,

Vt+1(xt, ξt) := E[Vt+1(xt, ξt+1)|ξt], (1.3)

with VT ≡ 0. The optimal value function at stage t, Vt(xt−1, ξt), is the optimal expected

objective value given state (xt−1, ξt), and assuming that optimal action will be taken at

each stage t. In this setting, we assume ξt to be stage-wise independent or Markovian.

Finally, we define the optimal policy as

π∗(xt−1, ξt) ∈ argminxt,yt{u
⊤
t xt + v⊤t yt + Vt+1(xt, ξt) : Btxt−1 +Atxt +Ctyt ≥ bt} (1.4)

for t = 1, . . . , T in set Π as the policy which specifies the decision to make for all

possible states regardless of which state at stage t. The main goal is to solve Problem

(1.1) identifying the optimal implementable policy π∗ which minimizes the objective

function.

1.1.1 Applications and Importance of MSPs in Real-world

Problems

Real-world applications of MSPs span a wide spectrum of fields, ranging from energy

(Gorenstin et al. 1992), finance (Dupačová & Kozmı́k 2015), operations (Nannicini et al.

2021), supply chain management (Tong et al. 2020), and natural disasters (Seranilla &

Löhndorf 2023). In these domains, decisions are often subject to uncertain factors such

as market and price fluctuations, demand deviations, and weather patterns, among

others. The incorporation of stochastic elements in MSPs aids the exploration of

multiple scenarios, capturing the exogenous uncertainties and enabling the assimilation

of policies that perform well across a range of possible outcomes.

For instance, in the energy sector, MSPs have been used to solve complex

problems related to renewable energy integration, specifically hydro-thermal power
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scheduling and generation, considering stochastic water inflows and fluctuating demand

patterns. Additionally, in finance, MSPs have found significant application in portfolio

optimization, asset allocation, and risk management. MSPs offer significant advantages

in producing robust investment portfolios capable of withstanding market volatilities

and sudden shocks.

In operations and supply chain management, where uncertainties are common,

MSPs have proven instrumental in optimizing production planning, inventory control,

and distribution schemes. Furthermore, in policy-making, MSPs have been exploited

to undertake problems in the allocation of resources, climate change mitigation, and

natural disaster preparedness.

Despite its effectiveness, the successful application of MSPs in real-world problems

does encounter challenges, such as computational complexities and data requirements.

Addressing these concerns remains a topic of continuing and growing research, with

efforts to advance efficient algorithms and data-driven techniques.

In this thesis, we focus on an in-depth exploration of MSPs and their effectiveness

in tackling difficult decision problems across various sectors through the well

renowned solution method - stochastic dual dynamic programming (SDDP). With

an understanding of its applications in different fields, we aim to shed light on the

promising benefits and limitations of SDDP, thereby laying the groundwork for its

future enhancements and broader implementation in real-world settings. Through this

thesis, we endeavor to contribute to the growing body of literature surrounding SDDP,

ultimately advocating for its wider adoption as a powerful methodology for addressing

uncertainty and optimizing decisions in complex, dynamic environments.

1.2 Overview of Solution Techniques for Multistage

Stochastic Programming Problems

In the literature, numerous methodologies have been attempted to successfully solve

MSPs. Among them, the most prominent approaches include transforming MSPs

into their deterministic equivalents, various decomposition strategies and scenario-tree

techniques, and the current state-of-the-art method, SDDP. In the following sections,
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we delve into each of these methodologies to gain a better understanding of their

capabilities and limitations.

1.2.1 The Deterministic Equivalent for Stochastic Programs

One common technique to solve a [multi-stage] stochastic program is to formulate and

solve its deterministic equivalent. If the planning horizon T is aptly short and the

number of scenarios S is not too large, the optimization Problem (1.1) can be solved

as its deterministic equivalent, explicitly formulated as

min u⊤
1 x1 + v⊤1 y1+

T∑
t=2

S∑
n=1

pnt (u
⊤
t x

n
t + v⊤t y

n
t ) (1.5)

s.t. A1x1 + C1y1 = b1 (1.6)

An
t x

n
t +Bn

t x
n
t−1 + Cn

t y
n
t ≥ bnt , ∀n ∈ S,∀t = 2, . . . , T (1.7)

xn
t , y

n
t = xz

t , y
z
t , ∀(n, z) ∈ S (1.8)

xn
t , y

n
t ≥ 0, ∀n ∈ S,∀t = 2, .., T (1.9)

where we assume that the uncertain parameter ξ follows a (finite) discrete

distribution or a discretized continuous distribution and that each scenario s at stage t

occurs with probability P (s) = pst , for all s ∈ S and
∑S

s=1 p
s
t = 1,∀t ∈ T . The objective

function (1.5) includes first stage cost terms added with the following periods and stage

scenarios with a given probability. Constraint (1.6) imposes the deterministic first

stage decision. Constraint (1.7) imposes the technology and recourse matrices indexed

by the sampled scenario s for every stage t = 2, . . . , T . Constraint (1.8) imposes the

non-anticipativity constraints - constraints that impose the condition that scenarios that

share the same history until a particular stage should also make the same decisions,

and do not anticipate future uncertainties. Constraint (1.9) define the domains of state

variable x and control variable y.

Nonetheless, MSPs are designed to capture longer planning horizons, mirroring

real-world problems. However, the size of the deterministic equivalent becomes

exceedingly large and difficult to handle as it grows exponentially in the number

of scenarios and the number of stages, leading to what is known as the
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curse-of-dimensionality. To address this challenge and find a computationally viable

solution, researchers have utilized decomposition and scenario-tree approaches -

techniques that offer a path towards converging to an optimal solution for Problem

(1.1).

1.2.2 Discretization, Scenario Trees, and Decomposition

Approaches

As highlighted in Section 1.1, the stochastic process ξ in the original Problem (1.1) can

fall into two categories: stage-wise independent (i.e., ξt is independent of ξ[t−1] for t =

2, ..., T ) or Markovian (i.e., the conditional distribution of ξt given ξ[t−1] is the same as

the distribution of ξt given ξt−1 for t = 2, ..., T ). Nonetheless, it is vital to acknowledge

that these stochastic processes can sometimes exhibit infinite dimensionality, especially

when the underlying distributions are continuous or (infinite) discrete, rendering them

intractable.

Discretization

Techniques to discretize stochastic processes with continuous distribution and stochastic

processes with infinite discrete distribution are employed to address this intractability

issue. Discretization methods transform these processes into finite-dimensional

representations, enabling feasible solutions to the multistage stochastic programming

problem. We can refer to a discretization of the true problem (1.1) as a discretized

problem.

Stage-wise independent stochastic processes can be discretized by the Sample

Average Approximation (SAA). SAA is a Monte Carlo simulation-based approach

that generates independent identically distributed random samples from the true

distribution, and the expected value function is approximated by the corresponding

sample average function. Kleywegt et al. (2002) show that under some mild regularity

condition, the optimal values and solutions of the SAA discretized problem converge

with probability one to the true problem, when sample size N is large enough. It is

important to note, however, that the required sample size N grows linearly with the
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dimension of the decision variables. Kleywegt et al. (2002) report that the convergence

rate depends on the conditioning of the problem, which in turn tends to diminish with

an increase in the number of decision variables.

For Markovian stochastic processes, two discretization approaches can be utilized

- via Markov chain discretization (MC) and via autoregressive time series (TS). In

MC discretization, we suppose that sample space of the Markovian random process

ξt at stage t is Ωt, with known ξ1 and Ω1 is a singleton. Furthermore, we suppose a

separation of Ωt, for t > 1, into a finite number of disjoint partitions Kt using optimal

quantization and where the partition means µtk, k = 1, ..., Kt or quantizers are solutions

of the problem

min
µt1,...,µKt

Eξ

{
T∑
t=2

min
k=1,...,Kt

||ξt − µtk||pp

}
, (1.10)

where || · ||p denotes p-norm with p ≥ 1. Given solution µt1, ..., µKt , we find a Voronoi

partition of the space associated with the respective means µtk, k = 1, ..., Kt, which serve

as nodes to form a discrete probability lattice (a recombined scenario tree, explained

further below). The objective is to create a lattice with minimal discretization error

which depends on the stagewise Wasserstein distance between the Markovian data

process ξt and its discretization. Three methods can then be used to solve 1.10 -

SAA, stochastic approximation algorithm (Bally & Pagès 2003), and robust stochastic

approximation approach (Nemirovski et al. 2009). Refer to Ding (2020) for further

details.

Modelling Markovian stochastic processes as an autoregressive TS is also another

approach. Suppose the uncertainty is only at the right hand side of the constraints,

i.e. ξt = bt. Further, suppose the process bt is modelled as a first order autoregressive

process, that is

ξt = η + Φξt−1 + ϵt, (1.11)

where vector ηt and matrix Φt are parameters of the first order autoregressive process,

estimated from the data, and ϵt is the vector error process. Following the conditions

above, we can view ϵt, now the underlying stochastic process, as stage-wise independent.

Therefore, SAA can be used as the discretization method. Löhndorf & Shapiro (2019)

present further details into discretizing stage-wise dependent stochastic processes and
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incorporating such techniques into SDDP.

Scenario Trees

Given the discretization techniques above, a common approach to represent a

discretized problem is through a scenario tree - an oriented graph consisting of

edges and nodes, where each node has a unique predecessor. By transforming the

infinite-dimensional stochastic processes into finite-dimensional scenario trees, with

appropriate discretization, we gain computational tractability and can efficiently explore

the potential decision paths under uncertainty. Figure 1.1 shows an example of a

scenario tree for T = 3 with two realizations. A special kind of scenario tree is a lattice.

Figure 1.1: A scenario tree for T = 3 with two realizations per stage.

A lattice is a recombined scenario tree where each node can have multiple predecessor

nodes. This is in contrast to a classic scenario tree which requires each node to have

a unique predecessor. Gorski (2017) explores the performances of classic scenario trees

and lattices in solving MSPs. Figure 1.2 shows an example of a scenario tree for T = 3

with two realizations.

The scenario tree structure lends itself well to formulation of a single large

optimization problem. However, utilizing decomposition strategies, such as the dynamic

programming reformulation in 1.2 and 1.3, remains a viable approach.
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Figure 1.2: A lattice for T = 3 with two realizations per stage.

By breaking down the problem into smaller subproblems using the scenario tree,

decomposition approaches can efficiently handle the exponential growth in the number

of scenarios as the number of stages increases. The scenarios are now organized into

decision stages and branches, allowing for more efficient solution methods and risk

analysis, while retaining the ability to capture the essence of uncertainty in MSPs.

In the literature, decomposition algorithms for solving MSPs are based on classical

Lagrangian and Benders decomposition.

Decomposition Approaches

In Lagrangian decomposition (LD), the variables x and y are duplicated so that each

scenario s has its own set of variables at each stage t. Non-anticipativity constraints are

added, imposing that decisions at stage t may depend only on the information available

until stage t. The scenario tree shown in Figure 1.1 can be modified as illustrated in

Figure 1.3.

In the modified scenario tree, the root node at stage t = 0 in Figure 1.1 is duplicated

for each scenario s ∈ S, and non-anticipativity constraints (depicted as red lines)

are included to ensure that the decisions in stage t = 0 are consistent across all

scenarios. Similarly, for stage t = 1, each node is duplicated once, and non-anticipativity
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constraints are introduced to ensure that scenarios with the same parent node in Figure

1.1 have identical decisions in stage t = 1. With this modified scenario tree, LD

Figure 1.3: An alternative scenario tree for T = 3 with two realizations per stage for
Lagrangian decomposition.

dualizes the non-anticipativity constraints and independently solve each scenario s.

The progressive hedging (PH) algorithm, introduced in Rockafellar & Wets (1991), can

be seen as a specific instance of the LD algorithm.

On the other hand, Benders decomposition (BD) techniques originated from the

decomposition method developed in Benders (1962) for solving mixed-integer linear

programming (MILP) problems. Subsequently, it was extended to solve two-stage

SP problems, called the L-shaped method, as pioneered in Van Slyke & Wets

(1969). Furthermore, this method was further extended to solve multistage stochastic

programming problems, as presented in Dantzig & Glynn (1990), known as the nested

Benders decomposition (NBD) algorithm.

However, like PH, NBD also has a drawback that necessitates solving an exponential

number of leaf nodes in a fullspace problem. To address this limitation, SDDP was

developed as a variant of NBD with scenario sampling and which allows cut sharing.
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As this thesis is focused on the applications of SDDP, the entire Section 1.3 is dedicated

to an in-depth discussion of the history and evolution of SDDP.

A notable distinction between LD and NBD, even though both utilize a full scenario

tree, is their decomposition approach. The former decomposes MSPs by scenarios, while

the latter does so by nodes. PH, on the other hand, stands out as an approach that is

not paired with sampling strategies like SAA. Unlike NBD, which adds constraints to

the subproblems at each node, PH replicates all scenarios. Consequently, NBD requires

less memory upfront but may need more later on as there are can be a lot of additional

constraints. This memory dynamic is not observed with PH. A detailed review and

discussion on main types of decomposition algorithms for two-stage SPs and MSPs is

presented in Escudero et al. (2017).

1.3 History and Evolution of Stochastic Dual

Dynamic Programming (SDDP)

Figure 1.4: Evolution of SDDP throughout the years.

SDDP’s origins can be traced back as far as 30 years before its conception in Pereira &

Pinto (1991). It began with the groundbreaking Benders decomposition (BD) (Benders

1962), initially designed for mixed integer-linear programming (MILP) problems. Over

time, it evolved and extended to handle two-stage stochastic programming problems

through the L-shaped method (Van Slyke & Wets 1969). Subsequently, the nested

Benders decomposition (NBD) (Dantzig & Glynn 1990) was introduced for multistage

stochastic programming problems. These progressive developments culminated in

the refinement of SDDP, offering significantly more efficient methods to solve MSPs.
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Figure 1.4 shows the evolution of the SDDP methodology throughout the years. In

the next sections, we take a closer look into every methodology contributing to the

development of SDDP, its advancements, and its current enhancement, stochastic dual

dynamic integer programming (SDDiP), which solves a more difficult class of problems

- multistage stochastic integer programs (MSIP).

1.3.1 Benders Decomposition (BD)

The BD algorithm (also named as row-generation or divide-and-conquer technique) is a

decomposition method developed in Benders (1962) for solving MILP problems of the

form

min
x,y
{u⊤x+ v⊤y|Ax+ Cy ≥ b, x ≥ 0, y ∈ N+}, (1.12)

where x and y are vectors of continuous and integer variables, respectively, A,C are

matrices, and u, v, b are vectors having appropriate dimensions. The basic idea is to

decompose the problem into two: a pure IP and a pure LP program, that may be solved

successively to arrive to a solution for (1.12) by adding additional cuts (called Benders

cuts). BD leverages the fact that two separate pure problems are more manageable to

solve than the original MILP problem.

BD initiates by rewriting Problem (1.12) in terms of the y variables [master problem

(MP)] as

min
y
{v⊤y + f(y)|y ∈ N+}, (1.13)

where f(y) is defined to be the optimal objective function value of

min
x
{u⊤x|Ax = b− Cŷ, x ≥ 0, }, (1.14)

for a fixed value of ŷ. Let us call (1.14) as the subproblem (SP). Now, let us associate

π as the dual variables for SP. Then, the dual of SP [DSP] is

max
π
{(b− Cy)⊤π|A⊤π ≤ u, π ≥ 0}. (1.15)

By strong duality, it holds that the objective value of SP is equal to that of the DSP.
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Since the feasible region of DSP formulation does not depend on the value of y, and

assuming this feasible region is not empty, it is then possible to enumerate all its extreme

points (π1
p, ..., π

S
p ) of the feasible region, where S are the numbers of extreme points and

extreme rays of (1.15) constraints.

For a given ŷ, (1.15) can be solved by finding an extreme point πn
p , which maximizes

the value of the objective function (b − Cy)(πn
p )

⊤. Based on this, (1.15) can be

reformulated as

min
πn
p

{θ|θ ≥ (b− Cy)(πn
p )

⊤, z ∈ R}, (1.16)

where θ ≥ (b − Cy)(πn
p )

⊤ are supporting hyperplanes called Benders cuts. Returning

back to the reformulation of MP, (1.13) can now be reformulated in terms of θ and y

variables by replacing f(y) with θ as

min
y,θ
{v⊤y + θ|θ ≥ (b− Cy)(πn

p )
⊤, y ∈ N, θ ∈ R}. (1.17)

With all of decomposition and transformations above, the classical BD algorithm is as

follows:

Step 0. Initialize a fixed value for y.

Step 1. Solve MP (1.17) and obtain a solution (ŷ, θ̂).

Step 2. Solve lower-bound LB = v⊤ŷ + θ̂.

Step 3. Solve DSP (1.15) with ŷ.

Step 4. Find an extreme point πn
p .

Step 5. Solve upper-bound UB = (b− Cy)(πn
p )

⊤.

Step 6. If UB ̸= LB, add Benders cutθ ≥ (b− Cy)(πn
p )

⊤ to MP (1.17)

Step 7. Repeat until UB = LB or an iteration limit is met.

Step 8. Obtain optimal values of decision variables x, y.
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1.3.2 L-Shaped Algorithm

The L-Shaped method, pioneered by Van Slyke & Wets (1969), is an extension of

Benders decomposition to solve stochastic programming (SP) problems of the form

min
x∈X

u⊤x+ Eξ min{v⊤y|T (ξ)x+Wy ≥ h(ξ), y ≥ 0} (1.18)

where ξ is a random variable having support Ξ ⊂ R and

X = {x ≥ 0|Ax ≥ b}. (1.19)

Assuming the random variable ξ is discretized with finite support Ξ = {ξ1, ..., ξS} and
P (ξ = ξn) = pn, then (1.18) is equivalent to

min u⊤x+
S∑

n=1

pnv
⊤yn

s.t. Ax ≥ b

T (ξn)x+Wyn ≥ h(ξn) ∀n = 1, . . . , S

x ≥ 0, yn ≥ 0 ∀n = 1, . . . , S

(1.20)

where the constraints have an L-shaped form or a dual block-angular structure.

Furthermore, we can decompose (1.20) as a two-stage SP, where the first-stage

problem is

min
x
{u⊤x+ E[V (x)]|Ax ≥ b, x ≥ 0} (1.21)

and V (x) is the optimal value of the second-stage problem

min
y
{v⊤yn|T (ξn)x+Wyn ≥ h(ξn), yn ≥ 0,∀n = 1, . . . , S} (1.22)

and its dual of the form

max
π
{π⊤

n (h(ξn)− T (ξn)x)|Wπ⊤
n ≤ q, πn ≥ 0,∀n = 1, . . . , S} (1.23)

with π as its dual variables.
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By strong duality, it holds that the objective value of (1.22) is equal to that of

(1.23). Furthermore, following Benders decomposition, we can formulate cuts (named

as optimality cuts) from the optimal dual solution (π̂n) of (1.23) of the form

θ ≥
S∑
n

pn(π̂n)
⊤(hn − Tnx), (1.24)

suppressing dependence of h and T to ξn for simplicity. The L-shaped algorithm iterates

between the first- and the second-stage problems discussed above, starting with a

relaxed first-stage problem which contains no cuts. Generally, two types of cuts are

added: optimality and feasbility cuts.

The classical L-shaped algorithm is as follows:

Step 0. Set j = 0 (v as iteration counter) and o, f = 0 (o, f as vectors containing

feasibility and optimality cuts).

Step 1. Set j = j + 1. Solve the relaxation of (1.21) by removing the second-stage

problem as

min u⊤x+ θ (1.25)

s.t. Ax = b (1.26)

Dlx ≥ dl ∀l = 1, . . . , f (1.27)

θ ≥ el − Elx ∀l = 1, . . . , o (1.28)

x ≥ 0, θ ∈ R (1.29)

where constraints (1.27) are feasibility cuts, constraints (1.28) are optimality cuts, and

(xj, θj) are optimal solution at iteration j. If no optimality cut is present, set θj = −∞
and do not consider in solving for xj.

Step 2. Check feasibility of optimal solution xj in the second-stage problem. If

infeasible, for each discrete realization ξn ∈ Ξ = {ξ1, . . . , ξS}, generate a feasibility cut
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by solving

min w′ = e⊤(z+n + z−n ) (1.30)

s.t. Wyn + z+n − z−n = hn − Tnxj (1.31)

yn ≥ 0, z+n ≥ 0, z−n ≥ 0 (1.32)

where e⊤ = (1, . . . , 1), until for some n, the optimal value w′ > 0. In such a case, we

let σj be the associated dual multipliers at iteration j and we generate a feasibility cut

where

Dl = (σj)
⊤Tn and dl = (σj)

⊤hn. (1.33)

Add the new feasibility cuts to (1.27) and return to Step 1. Otherwise, proceed to Step

3.

Step 3. Generate optimality cuts for feasible xj. For each discrete realization

ξn ∈ Ξ = {ξ1, . . . , ξS}, generate an optimality cut by solving

min w = v⊤yn (1.34)

s.t. Wyn = hn − Tnxj (1.35)

yn ≥ 0, ∀n = 1, . . . , S (1.36)

Let π̂n be the dual multipliers associated with the optimal solution of second-stage

problem n of type (1.35) and we generate an optimality cut where

El =
S∑

n=1

pn · (π̂n)
⊤Tn and el =

S∑
n=1

pn · (π̂n)
⊤hn. (1.37)

Let wj = el − Elxj. If θj ≥ wj, stop and xj is an optimal solution. Otherwise, return

to Step 1 and add the optimality cut

θj ≥ el − Elxj. (1.38)
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1.3.3 Nested Benders Decomposition (NBD)

NBD is an extension of the L-Shaped decomposition, designed to handle multistage

stochastic programming (MSP) problems. The fundamental idea behind NBD is to

decompose multistage problems into nested two-stage problems and recursively solve

them using L-Shaped decomposition over the entire tree structure (Dantzig & Glynn

1990).

Suppose we reformulate (1.1) in a recursive form, where the first-stage problem is

min
x1,y1
{u⊤

1 x1 + v⊤1 y1 + E[V2(x1, y1, ξ1)]|A1x1 + C1y1 ≥ b1, x1, y1 ≥ 0}, (1.39)

the intermediate stages t = 2, . . . , T − 1 at every node n ∈ S is

Vt(x
n
t−1, ξ

n
t ) = min

xn
t ,y

n
t

{un⊤
t xn

t +vn⊤t ynt +E[V n
t+1(x

n
t , y

n
t , ξ

n
t )]|An

t x
n
t +Cn

t y
n
t ≥ bnt−Bn

t x
n
t−1, x

n
t , y

n
t ≥ 0},

(1.40)

and the final stage T at every node n ∈ S is

V n
T (x

n
T−1, ξ

n
T ) = min

xn
T ,ynT

{un⊤
T xn

T+vTn⊤y
n
T |An

Tx
n
T+Cn

Ty
n
T ≥ bnT−Bn

Tx
n
T−1, x

n
T , y

n
T ≥ 0}, (1.41)

where x, y are state and control variables, respectively, where b are the right-hand side

vectors and A,B,C are matrices of the appropriate dimensions, of which b1, A1, B1, C1

are of known deterministic values, and the random variable ξ is discretized with finite

support Ξ = {ξ1, ..., ξS}.

Following the formulations in BD and L-shaped decomposition, we outline NBD

algorithm as follows:

Step 0. Set j = 0 (v as iteration counter), o, f = 0 (o, f as vectors containing

feasibility and optimality cuts).

Step 1. Set j = j + 1. Solve the relaxation of (1.40) by removing the cost-to-go
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functions V n
t (x

n
t−1, ξ

n
t ) as

min un⊤
t xn

t + vn⊤t ynt + θ (1.42)

s.t. An
t x

n
t + Cn

t y
n
t ≥ bnt −Bn

t x
n
t−1 (1.43)

Dn
l x

n
t ≥ dnl ∀l = 1, . . . , f (1.44)

θnt ≥ enl − En
l x

n
t ∀l = 1, . . . , o (1.45)

xn
t ≥ 0, ynt ≥ 0, θnt ∈ R (1.46)

where constraints (1.44) are feasibility cuts, constraints (1.45) are optimality cuts, and

(xn
tj, y

n
tj, θ

n
j ) are optimal solution at iteration j. If no optimality cut is present, set

θnj = −∞ and do not consider in solving for xn
tj, y

n
tj. Start with stage t = 1.

Step 2.1. Check feasibility of optimal solution xn
tj, y

n
tj in the second-stage problem.

If infeasible, for each discrete realization ξn ∈ Ξ = {ξ1, . . . , ξS}, generate a feasibility

cut

(σn
j )

⊤Bn
t x

n
t−1 ≥ (σn

j )
⊤bnt , (1.47)

where σn
j are the associated dual multipliers at node n and iteration j of the dual

problem to the relaxation in Step 1. If all the feasible problems have been solved to

optimality, i.e. no additional cut can be added with the incumbent decision xn
tj, y

n
tj from

the preceding stage) then ascend to parent, otherwise there is then a choice:

1. Ascend step: return to the parent node at stage t–1 and re-solve (as in Step 1).

2. Descend step: move down to children node at stage t + 1 of any feasible

sub-problems and solve (as in Step 1).

Step 2.2 If there are no infeasbile subproblems, generate optimality cut to parent

node. For each discrete realization ξn ∈ Ξ = {ξ1, . . . , ξS}, generate an optimality cut

by solving

θnj ≥ (π̂n)
⊤bnt − (π̂n)

⊤Bn
t x

n
t−1, (1.48)

where π̂n
j are the dual multipliers associated with the optimal solution at node n and

iteration j. If all subproblems have been solved before, then follow Descend step.

Otherwise, there are two options:
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1. Ascend step: return to the parent node at stage t–1 and re-solve (as in Step 1).

2. Descend step: move down to children node at stage t + 1 of any feasible

sub-problems and solve (as in Step 1).

Step 3. If θnj ≥ (π̂n)
⊤bnt −(π̂n)

⊤Bn
t x

n
t−1, stop and we have found an optimal solution.

Figure 1.5: MSPs viewed as a nested series of two-stage problems. (a) left, the root
node (t = 0) and successor nodes (t = 1), (b) middle, the successor node (t = 1) and
its children (t = 2) and (c) right, the third-level node (t = 2) and its leaf-node children
(t = 3).

Figure 1.5 shows how NBD deals with MSP as nested series of two-stage problems.

Ultimately, a crucial decision in the NBD is determining when to backtrack up the tree

and when to move downward. Thompson (1998) presents some sequencing heuristics

which can be helpful in making this decision. For example, fast-forward approach, aims

to traverse through the tree whenever possible. Another one is the fast-back approach

which aims to move back up the scenario tree as fast as possible. A combination of

both is called the fast-forward-fast-back approach. Another technique to augment teh

classical NBD is the Abridged Nested Decomposition (ANBD) algorithm presented in

Donohue & Birge (2006). ANBD involves sampling in the forward pass, where not all

solutions of the realizations sampled in every stage are explored but only a sample of

the solutions. Refer to Murphy (2013) for an in-depth tutorial to NBD.
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Figure 1.6: The scenario tree is traversed twice in every iteration (a) left, forward pass
using a sampled scenario, and (b) right, backward pass where cuts generated.

1.3.4 Stochastic Dual Dynamic Programming (SDDP)

Stochastic Dual Dynamic Programming (SDDP) is a methodology for solving MSPs

introduced in Pereira & Pinto (1991) and initially applied to address the long-term

Brazilian hydrothermal power scheduling problem. Similar to the Benders and nested

Benders decomposition algorithms, SDDP incorporates Benders cuts θ ∈ V – piece-wise

linear functions which approximate the expected cost-to-go functions of stochastic

dynamic programming. These cuts provide upper and lower bounds for the optimal

solution and are derived from the dual solutions of the problem at each stage.

The SDDP algorithm has two key steps - forward simulation and backward pass.

Given initial state x̄0, discretization Ωt and initial approximation of the cost-to-go

functions θt ∈ Vt, for t = 2, ..., T , we begin with forward simulation. In forward

simulation, we draw a sample scenario s ∈ Ω starting from stage t = 2 to final stage T .

At each stage t, decisions x̄t, ȳt are made based on the realized uncertainties of sample

scenario s ∈ Ω and the current approximations θ ∈ Vt of the future costs.

Then we proceed with backward pass. In backward pass, we refine the

approximations of the cost-to-go functions. Starting from stage T and working
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backward to the first stage t = 1, we compute the expected cost-to-go based on the

decisions made in the forward simulation. For each stage t, we solve each subproblem

j to determine the optimal decisions xt, yt and the corresponding optimal future

cost. Each subproblem j uses the current approximation of the cost-to-go functions

θ(xt) ∈ Vt+1(xt), so that each subproblem j is essentially a linear program. We obtain

the optimal value αtj and dual solutions βtj of the time-coupling constraints which

correspond to zt = x̄t−1 to create new cuts of the form θ(x) ≥ αt + βt(x − x̄t−1),

and update the approximation of the cost-to-go functions accordingly. Leveraging the

convexity of the cost-to-go functions, these cuts can be shared across different scenarios

as they are valid underestimators for the entire cost-to-go function in every stage t.

We do this iteratively until the lower bound and the policy value (upper bound)

converge or a stopping criteria is met. Figure 1.6 shows graphical scenario tree

representation of forward simulation and backward pass. Algorithm 1 shows the

classical SDDP algorithm implemented by Pereira & Pinto (1991), as taken from Ding

(2020).

One of the significant advantages of the SDDP algorithm is that it avoids the

curse-of-dimensionality associated with dynamic programming, as state discretization

is not necessary. Through a few iterations, the upper and lower bounds converge,

providing an optimal solution (or a near-optimal solution, based on a given tolerance).

This convergence makes SDDP an efficient and effective approach for solving large-scale

MSPs.

1.3.5 Enhancements of SDDP

The classical SDDP algorithm rests upon several assumptions for its effective

implementation. However, numerous refinements and advancements have emerged

in recent years, enhancing the original method. For example, the classical SDDP

assumes the MSP has a finite planning horizon. Shapiro & Ding (2020) shows how

to solve infinite planning horizon problems with what they call the periodic SDDP.

Another assumption of the classical SDDP is the block-diagonal structure of the

constraints of the MSP, i.e. only consecutive stages can be linked by constraints.

Shapiro (2011) and Löhndorf & Shapiro (2019) show that this can be overcome by
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Algorithm 1: Stochastic Dual Dynamic Programming

1 initialization: i = 1, LB = -∞
2 Given discretization Ωt = utj, vtj, Atj, Btj, Ctj, btj1≤j≤Nt , t = 2, ..., T
3 Given initial value x̄0

4 Given initial approximation of value functions: V0
t (.) =θ : θ(.) ≥ lt, t = 2, ..., T

5 while no stopping criterion is met do
6 (Forward Simulation)
7 for t = 1, ..., T do
8 if t > 1 then
9 draw a sample (utj, vtj, Atj, Btj, Ctj, btj) from Ωt

10 x̄t, ȳt = argmin u′
txt + v′tyt +Vi

t+1(xt) : Atxt +Btzt + Ctyt ≥ bt, zt = x̄t−1

11 Backward Pass
12 for t = T, ..., 2 do
13 for j = 1, ..., Nt do
14 Solve

min{u′
tjxt + v′tjyt +Vi

t+1(xt) : Atjxt +Btjzt + Ctjyt ≥ btj, zt = x̄t−1}
15 Get optimal value αtj and a dual solution βtj corresponding to

zt = x̄t−1

16 αt :=
1
Nt

∑Nt

j=1 αtj, βt :=
1
Nt

∑Nt

j=1 βtj

17 Vi
t ← θ ∈ Vi−1

t , θ(x) ≥ αt + βt(x− x̄t−1)

18 Policy Value =
∑T

t=1[γ
t−1(u′

tx̄t + v′tȳt)]
19 LB = min u′

1x1 + v′1y1 + γVi
2(x1) : A1x1 +B1z1 + C1y1 ≥ b1, z1 = x̄0

20 i = i+ 1

an appropriate state-space expansion. Risk-neutrality assumption of MSPs has also

been overcome in Guigues & Römisch (2012b), Guigues & Sagastizabal (2013), and

Shapiro et al. (2013a). Their contributions extend towards encompassing various

risk-averse problems. Another assumption of the classical SDDP is that the realization

of the stochastic data process is finite. Guigues (2016) shows convergence analysis over

infinite support to overcome such assumption. Finally, stage-wise independence of the

probability distribution of the stochastic process is one of the biggest assumptions of the

classical SDDP. This assumption creates a unique cost-to-go function per stage, which

is efficiently assessed through sampling-based methods, like SAA (Shapiro 2011), and

Philpott & Guan (2008) present a proof of its convergence. Nonetheless, Löhndorf
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& Shapiro (2019) introduce two approaches to overcome this assumption: (1) the

modelling of the random data process as an auto-regressive time series by adding state

variables to the model and (2) the use of Markov chain discretization of the random

data process.

Stochastic Dual Dynamic Integer Programming (SDDiP)

Since the release of SDDP in 1991, it has been extended to many techniques and

applications. Its extension to tackle multistage stochastic integer programs (MSIPs),

Stochastic Dual Dynamic Integer Programming (SDDiP), stands out as the primary

computationally tractable method to obtain both a statistical lower bound and an

optimal policy.

As with SDDP, SDDiP involves a reformulation of the MSIP into a dynamic

program. Key to this reformulation is the approximation of the cost-to-go

function by a convex piece-wise linear function which effectively overcomes the

curse-of-dimensionality often associated with traditional dynamic programming

methods, making the problem computationally tractable.

Under specific assumptions, SDDiP guarantees convergence to an optimal policy.

First, as with SDDP, SDDiP assumes that the stochastic parameters of the MSIP

have a discrete number of realizations. This discretization assumption facilitates the

handling of uncertainty, allowing for efficient exploration of the feasible solution space

over multiple scenarios. Second, all time-coupling state variables, which enter the state

space of the dynamic program, should be binary variables. By incorporating binary

variables, SDDiP ensures convergence to an optimal solution via Lagrangian relaxation.

In summary, SDDiP is an effective approach to tackle the complexities of the MSIPs

by formulating it as a dynamic program and leveraging piece-wise linear approximations

of the expected cost-to-go functions. Its convergence to an optimal policy, under the

specified assumptions, makes it a valuable tool. With its ability to obtain both lower

bounds and optimal solutions, SDDiP proves to be a versatile and efficient technique

for decision-making under uncertainty in a wide range of real-world applications.
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1.3.6 Contributions and organization

In Chapter 1, we delve into the formal introduction of MSPs, highlighting their

significance and applicability in addressing real-world problems. This chapter also

offers a panoramic view of solution techniques for MSPs, ranging from tackling its

deterministic equivalent to employing the SDDP methodology. Additionally, we

trace the history and evolution of SDDP, exploring from its inception in Benders

decomposition to its modern advancements.

In Chapter 2, we take a closer look into the multifaceted applications of SDDP

as documented in existing literature. An emphasis is laid on showcasing the extent

of SDDP’s adoption across different domains. We discuss further the predominant

utilization of SDDP in the energy realm, with a spotlight on hydro-thermal power

production planning. We also outline compelling arguments for the prominence of this

specific application. Finally, we move forward with some recommendations of other

domains and specific applications where SDDP can be potentially applied.

Chapter 3 introduces two valuable contributions: MSPLib, an open-source library

of problems and MSPFormat, a standardized data format designed for benchmarking

SDDP. MSPLib aims to facilitate the evaluation of computational performance

among different SDDP implementations. It offers a wide array of instances, from

real-world problems to synthetic variations with varying complexities. By incorporating

MSPFormat into the library, a unified and consistent representation of MSPs is provided,

further enhancing their usability and transferability.

Chapter 4 introduces two pivotal contributions to the stochastic programming

society: MSPLib and MSPFormat. MSPLib is an open-source library of problems,

designed to streamline the assessment of computational efficiency of different SDDP

implementations. Its repository ranges from real-world to synthetic problems of

varied complexities. Meanwhile, the integration of MSPFormat ensures a uniform and

coherent representation of MSPs. This standardization augments the usability and

interchangeability of the problems. We close this chapter by presenting numerical

results of benchmarking three SDDP implementations commonly used in the literature.

Moving on to Chapter 5, we showcase an MSP application to the optimal location of

COVID-19 vaccine facilities under the threat of natural disasters. We introduce a new
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algorithm, named shadow price approximation (SPA), which aims at approximating

the shadow price of opening flood-prone vaccine facilities by tuning the parameters of

a linear value function approximation which is present in the objective function of base

optimization model. We also compare the performance of SPA against stochastic dual

dynamic integer programming (SDDiP). The chapter closes with a detailed account of

this model’s application in two cities of a developing country.

In Chapter 4, we introduce a general model for a novel problem class named the

multistage stochastic facility location problem under facility disruption uncertainty

(MSFLPD). This new class extends the classical stochastic capacitated facility location

problem to handle uncertainty arising from facility disruptions. We then compare

two solution algorithms, SDDiP and SPA, in a numerical investigation solving famous

ORLib data instances.

Finally, we close with a conclusion and discussion of future work in Chapter 6.





Chapter 2

A Survey on the Applications of

Stochastic Dual Dynamic

Programming and its Variants

In Chapter 1, we are introduced to the world of SDDP - a widely recognized

methodology for solving large-scale multistage stochastic linear programming (MSLP)

problems. In this chapter, we delve deeper into the multitude of applications of

SDDP. The survey aims to contribute to the literature on SDDP within the realm

of applications. We systematically identify and analyze the various domains where

SDDP has been successfully employed to tackle MSP problems, with a particular focus

on real-world problems afflicted by the so-called curse-of-dimensionality. Furthermore,

we investigate the factors that have facilitated or hindered the adoption of SDDP in

specific application areas, shedding light on the limitations and potential barriers to its

widespread utilization.

2.1 Introduction

Modelling real-world problems through multi-stage stochastic programming (MSP)

presents considerable challenges, particularly when navigating extensive planning

horizons and uncertainty scenarios. Such problems frequently run into the



28 Chapter 2. A Survey on the Applications of SDDP

infamous curse-of-dimensionality, a phenomenon describing the exponential growth in

computational requirements as the dimensionality of a certain problem increases.

Enter Stochastic Dual Dynamic Programming (SDDP). Introduced in the seminal

work by Pereira & Pinto (1991), SDDP proposes a powerful solution to bypass many of

the obstacles associated with MSP problems, particularly the curse-of-dimensionality.

Rooted in the principles of dynamic programming and duality, SDDP decomposes an

MSP problem, iteratively approximating the expected cost-to-go functions without

needing to tackle the entire problem space at once. Consequently, what previously

seemed intractable becomes more computationally feasible, allowing practitioners to

address large-scale MSP problems in various sectors, from energy planning (Gorenstin

et al. 1992) to supply chain optimization (Tong et al. 2020).

The conception of SDDP marked a paradigm shift in the approach to sequential

decision-making under uncertainty. Previously, dealing with uncertainty often required,

on one hand, simplification and even relaxation of the problem. This potentially leads

to suboptimal solutions or ones that failed to mirror the full complexity of a real-world

problem. On the other hand, solving the entire scale of MSPs through a tedious

exploration and exploitation of the full scenario tree results to expensive computational

efforts. However, with SDDP, it became possible to retain much of the intricacies of

MSPs while still navigating through the expanse of uncertainties and stages.

Nevertheless, while SDDP is a powerful methodology, it still comes with its

challenges and limitations. Affected by factors ranging from computational restraints

to domain-specific nuances, SDDP still has a long way to solve even larger problem

instances mirroring real-world cases. Füllner & Rebennack (2021) present a more

in-depth tutorial-type review of the various improvements and enhancements of SDDP.

To appreciate the relevance of SDDP even further, it is imperative to consider the

current challenges faced by different industries worldwide. With increasing globalization

and competitiveness, where effects of decisions made today can cascade and amplify

over time, industrial applications highlight the invaluable utility of SDDP. For instance,

consider the domain of hydro-thermal power system planning, the premier application of

SDDP. Governments and private companies across the world harnessing this renewable

energy leverage SDDP to aid in their decision-making processes (Maceiral et al. 2018).
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Furthermore, as the eminence of SDDP continues to advance, its applications have

prospered across a wide array of applications. Nonetheless, a significant proportion of

the work in the literature is primarily focused within the field of energy planning. This

survey endeavors to explore the breadth and depth of the applications underlining the

significance of SDDP and its growing relevance in solving MSP problems.

Through this review, we aim achieve two goals. First, to provide a survey of the

practical applications of SDDP in the literature. We explore the literature through the

lens of these different applications. Second, we aim to present a compelling discussion

on the factors that have facilitated and, possibly, hindered to the adoption of SDDP

in specific application areas shedding light on the limitations and potential barriers

to its widespread utilization. As we delve deeper into the sphere of SDDP and its

applications, it is significant to understand not just where and how SDDP shines, but

also where it can falter and require supplemental schemes. This perspective is crucial

for both practitioners and researchers aiming to augment the boundaries of solving

MSP problems.

The remainder of the paper is organized as follows. Section 2.2 provides an overview

of the history, evolution, and technicalities of SDDP. Section 2.3 covers the literature

selection process. Section 2.4 constitutes one of the contributions of the paper and

discusses the main statistical findings from our literature survey. Section 2.5 discusses

various factors of adoption of SDDP in specific application areas. Section 2.6 contains

some concluding remarks and provides guidance as to future research directions.

2.2 Background

Before the inception of SDDP thirty years ago, the method drew upon a rich lineage of

inspirations and developmental precursors. In this section, we will briefly revisit three

pivotal stepping-stone methods that laid the foundation for the evolution of SDDP: (a)

Benders decomposition, (b) L-shaped method, and (c) nested Benders decomposition.
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2.2.1 Overview of the History and Evolution of SDDP

The origins of SDDP can be traced back from the groundbreaking method

developed by Jacques Benders (Benders 1962) - Benders decomposition method.

Benders decomposition method is a decomposition method for solving mixed integer

programming problems - optimization problems where some variables are constrained

to take real values and others only limited to integer values. The basic idea is to

decompose the problem into two: a pure linear programming problem [called master

problem (MP)] and a pure integer programming [called subproblem (SP)]. Benders

decomposition proceeds by solving MP and SP iteratively to arrive to a solution for

the overall problem by adding Benders cuts, some feasibility or optimality information

from the sub-problem to the master problem. The leverage of the algorithm is the fact

that two separate decomposed problems are more manageable to solve than the original

mixed problem. Notwithstanding the number of iterations to solve each subproblem,

this technique is still relatively quicker to arrive at the solution than solving the large

mixed integer programs.

Seven years later, Van Slyke & Wets (1969) expanded on this powerful algorithm

and introduced the L-Shaped method. L-shaped method is an algorithm to solve

stochastic programming problems – optimization problems where some, if not all, of

the problem parameters take stochastic or uncertain values. For L-Shaped method,

two-stage stochastic problems or stochastic linear problems with recourse are of interest

where an initial decision is made succeeded by a second decision which allows remedial

(recourse) action after an event have been observed to happen. Similar to Benders’

decomposition, L-Shaped method is based on adding additional constraints (or cuts)

to the original (in this case, first-stage) problem. These cuts ensure feasibility of the

first-stage decision to the second-stage problem and assurance to obtain an optimal

solution.

Finally, the nested Benders decomposition (NBD) algorithm from Birge (1985) is

an extension to L-Shaped decomposition such that the former proposes an algorithm

for multi-stage stochastic programming problems. The simple idea behind nested

Benders’ decomposition is the notion of decomposing multi-stage problems into nested

two-stage problems and recursively, then solving these with L-shaped method over the
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entire scenario tree structure. With the initial decision of the first-stage (root node),

succeeding second-stage sub-problems will be solved. Thereupon, the initial decision

will be viewed as a constant and the following stage nodes will become the first-stage

(root node) of its own problem. This will continue further until the end of the planning

horizon. As with L-shaped method, NBD solve the sub-problems with the current initial

decision and use these solutions to create feasibility and optimality cuts. This means

that parts of the problem of whichever stage of the tree can be solved as long as initial

decision of a preceding node exists. The drawback of NBD is that the scenario tree

grows exponentially in the number of stages and it becomes computationally expensive

for large instances.

2.2.2 SDDP Methodology and some extensions

SDDP is a straightforward methodology for solving MSP problems by approximating

the expected cost-to-go value functions of stochastic dynamic programming using

piece-wise linear functions. Similar to Benders decomposition algorithm, SDDP

algorithm incorporates Benders cuts – which are approximations of the second stage

(or the next consecutive stages in the case of a multi-stage problem) – into the first

stage (precedent or root) problem. These cuts provide upper and lower bounds for

the optimal solution and are derived from the dual solutions of the problem of the

succeeding stages.

As mentioned, one of the significant advantages of SDDP is its avoidance of the

curse-of-dimensionality associated with dynamic programming. With a few iterations,

the upper and lower bounds converge, providing an optimal solution (or a near-optimal

solution, based on a given tolerance). This convergence makes SDDP an efficient and

effective approach for solving MSPs (Philpott & Guan (2008), Girardeau et al. (2015),

and Guigues (2016)). The idea of SDDP stems from NBD but it includes the concept of

sampling. In each iteration, not all the scenarios of the stochastic data process scenario

tree will be explored but only a sample of those scenarios will be drawn and used. This

will significantly reduce the number of linear programs to be solved.

The vanilla SDDP algorithm rests upon several assumptions for its effective

implementation. However, numerous refinements and advancements have emerged in
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recent years, enhancing the original method. As an illustration, an extension to the

vanilla SDDP is the incorporation of stage-wise dependent uncertainty of the MSP.

The original SDDP limits the problem in consideration to have its random data process

stage-wise independent - the case where the uncertainty in different stages do not depend

on each other. In this case, the respective value functions of the dynamic programming

equations are independent of the data process. Löhndorf & Shapiro (2019) introduce

two approaches: (1) the modelling of the random data process as an auto-regressive

time series by adding state variables to the model and (2) the use of Markov chain

discretization of the random data process. Additionally, the pioneering works of Guigues

& Römisch (2012b), Guigues & Römisch (2012a), and Shapiro et al. (2013a) stand out

as the initial trio of papers that expanded upon the original assumption of risk neutrality

in MSP problems for SDDP. Their contributions extend towards encompassing various

risk-averse problems.

Furthermore, SDDP has been extended to tackle multistage stochastic integer

programs (MSIPs). Stochastic Dual Dynamic Integer Programming (SDDiP) stands

out as the primary computationally tractable method to obtain both a statistical lower

bound and an optimal policy (Zou et al. 2019). As with SDDP, SDDiP involves

a reformulation of the MSIP into a dynamic program. Under specific assumptions,

SDDiP guarantees convergence to an optimal policy. Like SDDP, SDDiP assumes

that the stochastic parameters in the MSIP follow a discrete distribution. A key

ingredient to SDDiP is the binarization of all time-coupling state variables, which

ensures convergence.

Finally, the evolution of SDDP remains an ongoing development, marked by

continuous refinement and enhancement. Recent efforts are focused on finding of

optimal policies quickly and extending its applicability to a wider array of real-world

problems.

2.3 Literature Selection and Analysis

We conducted a comprehensive database search for papers that apply, utilize, develop,

or enhance SDDP to primarily address optimization problems. The databases
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Figure 2.1: Evolution of number of published works over time.

examined included Emerald Insight, Scopus, JSTOR, and Web of Science which

included published journal articles until December 2022. We employed the keywords

”stochastic dual dynamic programming,” ”SDDP,” ”stochastic dual dynamic integer

programming,” and ”SDDiP.” Publications not written in English, as well as conference

proceedings and book chapters, were excluded from our consideration. Our approach to

filtering relevant publications began with an evaluation of the title. If deemed pertinent,

we proceeded to assess the abstract, followed by the introduction and conclusion.

Only if the paper still appeared relevant after this thorough review did we analyze

its entirety. This method led to the identification of 186 significant publications since

the release of the seminal paper on the subject in 1991. The collective works surveyed

are graphically illustrated in Fig. 2.1. These papers span 61 distinct journals, which are

itemized in Table 2.1, covering a spectrum of research domains. We further dissected

the significance of these scientific contributions by examining three primary research

questions:

1. In which specific optimization problems is SDDP employed, and within which

application sectors (e.g., energy, finance, operations management)?
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2. What are the key contributions of the research to SDDP (be it theoretical,

methodological, or other)?

3. How valuable is SDDP in efficiently resolving the identified problem?

Our survey unveiled several distinct fields of application. Predominantly, a significant

portion of the papers concentrates on problems within the energy sector. The Brazilian

hydro-thermal power system is a primary focus in this area. This problem manifests in

various iterations — different planning horizons, diverse geographical locations, and

a range of different random data processes, to name a few. A secondary line of

literature navigates challenges in the financial sector, such as portfolio optimization

and asset allocation. Operations management is another prominent domain addressed,

with a unique set of scientific works exploring problems like inventory, lot sizing, and

production. Additionally, certain studies venture into more specialized areas, delving

into matters related to disaster management and mining.

2.4 Literature Review and Findings

In this section, we provide an extensive analysis of various applications of SDDP as

found in the literature. This examination is structured into distinct subsections that

correspond to different fields of application. Notably, the field of energy applications,

with its broad scope, is itself subdivided into various domains for a more comprehensive

discussion. The distribution of works across these application areas is illustrated in

Figure 2.2. While some studies are inherently dedicated to a specific application field, a

significant number of papers span multiple domains. For instance, a work might address

an energy system application while also incorporating important financial aspects. In

such instances, we ensure that these papers are discussed and integrated into all relevant

subsections.

2.4.1 Energy

With reference to Figure 2.2, it is evident that the energy sector constitutes a majority

of the research works focused on SDDP. This section explores diverse domains within the
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Table 2.1: Classification of the papers according to the different journals.

Journal Number
European Journal of Operational Research 19
IEEE Transactions on Power Systems 14
Mathematical Programming 10
IEEE Transactions on Sustainable Energy 9
Journal of Water Resources Planning and Management - ASCE 9
International Journal of Electric Power and Energy Systems 9
SIAM Journal on Optimization 9
Electric Power Systems Research 7
Water Resources Research 7
Computational Management Science 7
INFORMS Journal on Computing 5
Annals of Operations Research 5
Computational Optimization and Applications 5
Operations Research Letters 5
Optimization and Engineering 4
Energy Policy 4
Operations Research 4
Energies 4
Others 50

energy sector - applications related to hydro-thermal power system, problems associated

with short-term economic dispatch and capacity expansion, the integration of various

renewable energy sources, and optimization problems arising in energy markets, trading,

and investments. Additionally, the integration of different energy storage systems and

the intricacies of grid management are also discussed thoroughly.

Hydro-thermal Power Production Problem

The hydro-thermal power production serves as a flagship problem application of the

development of SDDP. The central question in this domain revolves around the optimal

coordination between hydroelectric and thermal power generation sources to meet

demand while minimizing costs and maintaining reservoir storage, considering the

unpredictable nature of water inflows into hydroelectric reservoirs, and the fluctuating
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Figure 2.2: Distribution of research works across different application areas.

costs of thermal power generation. Managing these resources is crucial not just

for economic efficiency but also for maintaining overall system reliability. Given

the complexity arising from the multitude of reservoirs, interconnected systems, and

uncertainty of inflows, traditional deterministic methods often fall short in providing

practical solutions. This is where SDDP becomes invaluable.

Since the introduction of SDDP over 30 years ago, with the Brazilian interconnected

hydro-thermal power system serving as its premier case study, over 100 research

publications have been dedicated to addressing the hydro-thermal power production

problem using this method. The variations encountered within this domain typically

stem from differences in planning horizons, modifications in the uncertainty processes,

and diverse geographical contexts. Figure 2.3 presents the distribution according to

various geographical locations, while Figure 2.4 illustrates the distribution of research

works based on distinct planning horizons. A detailed breakdown, encompassing

planning horizons, geographical areas, and uncertainty processes related to the

hydro-thermal power production problem, can be found in Tables 2.2 and 2.3 in the

Appendix. For an in-depth discussion in this section, we categorize the literature
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Figure 2.3: Distribution of research works across different geographical locations for
hydro-thermal power production problem.

based on temporal scales, which offer more consistent comparisons due to the similar

objectives of the problems addressed. The distinct operational planning horizons are

as follows: (1) long-term operational planning, covering a span of 3 or more years with

monthly decision epochs; (2) medium-term operational planning, typically lasting 1 to 2

years with weekly or monthly decision epochs; and (3) short-term operational planning,

extending over hours or days.

Long-term Operational Planning. Long-term operation planning primarily

focuses on multi-annual horizons (3 or more years), usually with a monthly decision

epoch, ensuring that the system is resilient against seasonal variations and long-term

climate changes. The main objective of the solving this problem is to ensure strategic

reservoir storage decisions, ensuring that water resources are adequately maintained to

meet future demands.

Furthermore, with the seasonal uncertainty of water inflows, long-term planning

ensures that reservoirs maintain optimal levels especially in handling drought and

surplus events. This helps in preventing potential water shortages in dry periods and
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Figure 2.4: Distribution of research works across different planning horizons for
hydro-thermal power production problem.

avoids overflow during wet periods. This is the reason that all, if not majority, of

research works are devoted to understanding the inflow uncertainty. Sampling from

the historical values is one of the easy go-to methods in choosing realizations of inflow

uncertainty. Nonetheless, with the understanding that inflow has seasonal patterns,

forecasting techniques were also adapted to understand this random process. Various

aut-oregressive processes and the inclusion of non-linearities are among the prominent

techniques employed in this end.

Long-term planning also involves prediction of future energy demand. Some factors

that affect demand include population growth, industrial and local development, and

economic trends. Forecasting demand correctly aids in ensuring the optimal operation

of the system without frequent and costly re-adjustments. For example, works in

Shapiro & Cheng (2021), Raby et al. (2009), and Sauma et al. (2011) include demand

uncertainty in their models.

A phenomenon in the long-term operation planning of hydro-thermal power

production worth mentioning is the end-of-horizon effect. Policies derived from

optimization models do not necessarily ensure a sustainable and reliable energy supply

beyond the designated planning horizon. The reason being, optimal policies typically
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exhaust all energy reserves in the reservoirs at the end of the planning horizon. Thus,

most works consider doubling the planning horizon (using 10 years instead of 5 years)

in order to hedge from this phenomenon.

As mentioned, a more detailed breakdown, encompassing planning horizons,

geographical areas, and uncertainty processes related to the hydro-thermal power

production problem, can be found in Table in the Appendix.

Medium-term Operational Planning Medium-term operation planning serves

as a link between the expansive outlook of long-term operational planning and the

immediate requirements of short-term operational planning. Typically encompassing a

1 to 2-year planning horizon, medium-term operation planning operates with a monthly

or weekly decision epoch, allowing for a more granular view of the system’s operations

than long-term planning.

As hydro-thermal power systems cope with the unpredictability of inflows and other

uncertainties, medium-term operation planning offers flexibility in accommodating

issues that long-term operation planning usually overlooks. One example is the

incorporation of planned maintenance schedules to ensure that energy production and

distribution assets are kept at optimal levels. Additionally, medium-term operation

planning is significant in response to unexpected disturbances in the system like

technical malfunctions, sudden demand surges, or other external factors.

Furthermore, works for medium-term operation planning often include the

uncertainty of prices and costs. This provides producers, not only to be economically

profitable with their operations, but also to perform optimally in energy trading. For

example, the works in Kristiansen (2006), Löhndorf et al. (2013), de Matos et al.

(2015), Helseth et al. (2016), Rebennack (2016), Hjelmeland et al. (2018), Hjelmeland

et al. (2019), and Borges et al. (2022) include uncertainty in prices and costs for the

medium-term operation planning of hydro-thermal power system.

Water Resource Management Given the pivotal role of water resources in

hydro-thermal power systems, making strategic reservoir storage decisions is crucial

- ensuring that water reservoirs are optimally maintained, without compromising

the ability to meet future energy demands. Hence, in the operational planning for

hydro-thermal power production, the effective and sustainable management of these
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water resources is important.

Various research works have been directed towards understanding and optimizing

water resource management, particularly in the context of major river basins integral

to hydro-thermal power systems. Notably, African river basins have been the subject

of study, with Rougé & Tilmant (2016) looking at the Zambezi river basin, while Raso

et al. (2017) focus on Mananatili river basin. In Europe, the Iberian peninsula, a

significant hydro-thermal hub, is the subject of study in Pereira-Cardenal et al. (2016)

and Macian-Sorribes et al. (2017). Shifting to the Middle East, Rougé et al. (2018)

and Tilmant & Kelman (2007) explore the Tigris-Euphrates river basin considering

its pivotal role in the region’s energy landscape. Moreover, Treistman et al. (2020)

propose innovative synthetic inflow scenario generation techniques tailored to the El

Niño–Southern Oscillation, offering insights for the Brazilian hydro-thermal power

system.

Short-term Operational Planning - Economic Dispatch and Capacity

Expansion The smallest coverage of time horizon is the short-term operation planning

which zeroes in on daily or hourly scales. It focuses on fine-tuning generation schedules

to respond to daily demand variations. Two domains are included in this area -

economic dispatching and capacity expansion planning. The difference between the two

lies in the objectives of the operation and planning of any power systems. Economic

dispatch focuses on the short-term optimization of existing power generation units

to meet the current electricity demand at minimum cost. It aims to determine the

optimal output levels of each generator to match demands, while considering different

factors such as fuel costs, transmission constraints, and generator constraints. On the

other hand, capacity expansion planning deals with determining optimal additions or

retirements of power generation units to meet future demand.

The following works have made notable contributions to various aspects of

short-term economic dispatch problems: Chabar et al. (2006), Papavasiliou et al.

(2017), Stüber & Odersky (2020), Ding et al. (2021), Lan et al. (2022), and Pacaud

et al. (2021). Moreover, economic dispatch has been extended to incorporate additional

system dynamics. For instance, Lu et al. (2019) integrate energy reserves, while Street

et al. (2017) delve into ancillary services. Additionally, Fatouros et al. (2017) explore
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the operation of distributed energy resources.

Turning to generation expansion problems, researches and works encompass diverse

perspectives. da Costa et al. (2020) include reliability constraints using a stochastic

risk-averse approach, Ihsan et al. (2021) assess the performance of distributed hybrid

renewable power plants in both on-grid and off-grid contexts, and Rebennack (2014)

introduce the incorporation of emissions quotas as a critical factor.

Renewable Energy

With the significant attention that production planning for hydro-thermal power, a

prominent renewable energy resource, has gained in SDDP research, it is only natural

for similar focus to extend to other renewable energy sources. For instance, a couple

of works have broadened the scope of hydro-thermal power production problem to

incorporate additional renewable energy sources. As initiated in Raby et al. (2009)

wind farms have also been integrated into the hydro-thermal power transmission system.

Likewise, various other studies such as de Faria & Jaramillo (2017), Alvarez et al. (2018),

da Silva Fernandes et al. (2019), Scheben et al. (2020), and Morillo et al. (2020) explore

the coupling of hydro-thermal power and wind energy. Moreover, the integration of

wind energy production has also been linked with power grid management and storage

in Zéphyr & Anderson (2018), and with microgrid systems with storage in Guo et al.

(2020). Wozabal & Rameseder (2020) address uncertainty in wind energy production

for optimal bidding in the Spanish electricity market.

Other applications integrating renewable energy sources include the economic

dispatch problem with different renewable energy resource uncertainties as in Lu et al.

(2019) and in Papavasiliou et al. (2017) for storage. Bao et al. (2019) investigate the

optimization of renewable bioresources, and cogeneration biomass plants in Leocadio

et al. (2020). Finally, Pacaud et al. (2022) and Aaslid et al. (2022b) discuss a complex

combination of renewable energies and storage to optimize microgrids.

Energy Markets, Trading, and Investments

In addition to optimizing aspects such as planning, dispatch, and the expansion of

energy systems, another critical domain of optimization involves the financial facets of



42 Chapter 2. A Survey on the Applications of SDDP

energy – bidding, trading in energy markets, and investments. Energy markets present

challenges marked by fluctuating market-clearing prices, dynamic demand patterns,

and uncertain renewable energy production. Understanding energy market dynamics

provides a framework to optimize bidding strategies capable of robust adaptation to

these uncertainties. Trading strategies empower market participants to make real-time

decisions that balance profit maximization and risk aversion. Moreover, the use of

SDDP provides the ability to make dynamic and well-informed decisions.

The work in Bonnans et al. (2012) initiated this field of application by addressing

the optimal management of energy contracts. The model specifically provided bounds

on the local and global quantities to be traded, considering uncertainties in prices. This

is followed by Bruno et al. (2016) with a development of an MSP model to determine

optimal strategies for energy project investments with real options such as postponing,

hedging with fixed forward contracts and other sources.

Covering a range of optimal strategic bidding problems, Wozabal & Rameseder

(2020) and Shinde et al. (2022) delve into day-ahead and intraday bidding strategies

for electricity within a virtual power plant framework, incorporating renewable energy

sources. Steeger & Rebennack (2017) address a single-price maker strategic bidding

problem, backed by case studies involving El Salvador, Honduras, and Nicaragua.

Shifting focus to the domain of natural gas storage valuation, Löhndorf & Wozabal

(2021) investigate this problem through an asset-backed trading approach that takes

into account agents’ risk preferences.

In the context of emissions trading, Zapletal et al. (2022) introduce a multi-stage

planning approach involving carbon risk management and the innovative EU emissions

management scheme. Their study compares EUA futures (derivatives) and banking.

On a broader scale, Scheben et al. (2020) examine the impact of inflow randomness,

revealing that a substantial integration of energy storage devices and renewable energies

significantly influences electricity price structures within markets. This observation is

supported by a case study conducted in Norway.
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Energy storage systems

As the energy sector gravitates towards a more decentralized and renewable-centric

paradigm, energy storage devices have emerged as viable solutions in energy systems,

particularly in their ability to bridge the gap between intermittent energy production

and demand uncertainty. These devices, from advanced battery systems to pumped

hydroelectric storage, offer the capability to capture energy produced at a certain stage

and utilize it at a later stage. Within the context of energy, MSP models have been

instrumental to the optimal management and utilization of these storage devices become

predominant.

The integration of energy storage devices into management of energy systems

poses new challenges and opportunities, and their exploration in the literature is

relatively recent. Distributed energy storage modelled with MSPs were first addressed

in Gangammanavar & Sen (2016). Building on this, Zéphyr & Anderson (2018)

incorporate wind energy uncertainty considerations for power grids.

Furthermore, within the broader spectrum of grid management leveraging the MSP

framework, Asamov & Powell (2018) investigate energy storage in large transmission

grids, while Bhattacharya et al. (2016) and Aaslid et al. (2022b) focus on optimizing

energy storage in microgrids. Further advancements in microgrid systems is showcased

by Pacaud et al. (2022) and Hafiz et al. (2019b), with a particular emphasis on

integrating solar panels and batteries. Moreover, Guo et al. (2020) introduce a robust,

data-driven approach to optimizing microgrids that harness wind energy, and Aaslid

et al. (2022a) consider battery degradation.

Other applications of energy storage devices in energy include work in Ding et al.

(2021) illustrating the concept of virtual energy storage using distributionally robust

SDDP. On the matter of gas storage, Terça & Wozabal (2021), van Ackooij & Warin

(2020), and Löhndorf & Wozabal (2021) examine its pricing and valuation. Lastly,

Alvarez et al. (2017) discuss hydroelectric storage in conjunction with batteries, and in

Guan et al. (2018) concerning flood control applications.
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Grid management

Electrical grid management has also received quite an attention for SDDP application.

Works in Asamov & Powell (2018) and Yang & Nagarajan (2022) delve deep into

large power grid management. Ding et al. (2020) and Lara et al. (2020) extend this

with MSIP formulation solved by SDDiP. Additionally, Zéphyr & Anderson (2018)

incorporate wind energy and storage elements, while Hafiz et al. (2019a) discuss the

enhancement of grid resiliency against natural calamities.

Meanwhile, the realm of microgrid management, Bhattacharya et al. (2016), Ding

et al. (2021), Pacaud et al. (2022), Guo et al. (2020), Aaslid et al. (2022b), and

Aaslid et al. (2022a) expansively cover its synergy with energy storage devices. Diving

deeper into this area, Shi et al. (2019) explore the integration of varied distributed

energy resources within microgrids. Furthermore, Carpentier et al. (2020) present an

examination of an urban microgrid problem, while Pacaud et al. (2021) emphasize the

aspect of economic dispatching within these systems.

2.4.2 Finance

Within the realm of finance, the MSP framework seamlessly aligns with the challenges

of optimizing portfolio and asset investments. The seminal work presented in Dantzig &

Infanger (1993) offers a comprehensive introduction to modeling portfolio optimization,

commonly known in the literature as asset allocation, modelled as an MSP. A crucial

feature of multi-stage asset allocation models is the investor’s stage-wise capability to

recalibrate the portfolio, either by selling or purchasing specific assets, facilitating an

ongoing optimization process. The uncertainties of this problem often revolve around

the stochastic returns of the chosen investments, e.g., stocks and bonds, and the

associated borrowing costs incurred when a specified financial target is elusive. Asset

allocation problems, especially when considering large number of assets or over extended

time horizons, can exhibit high dimensionality which present a computational challenge

for SDDP method.

Furthermore, understanding the behaviour of investors is inherently challenging.

Investors naturally gravitate towards risk-aversion to effectively safeguard their
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investments, which also increases the difficulty of the problem. Homem-de Mello &

Pagnoncelli (2016) comprehensively address the formal introduction of risk measures

into MSPs, a methodology to which SDDP is easily adapted. Prior to this, three seminal

works incorporate risk-aversion into portfolio optimization using SDDP. Specifically,

Dupačová & Kozmı́k (2015) present a risk-averse MSP underpinned by a coherent

risk measure. In contrast, both Kozmı́k (2015) and Kozmı́k & Morton (2015) apply

a risk-averse formulation, but grounded in conditional value-at-risk as the risk metric.

Subsequent studies, including Guigues (2017), Valladão et al. (2019), Waga et al. (2022),

and Dowson et al. (2022b), built upon these foundational works.

The asset allocation problem has further evolved, embracing diverse contexts. Reus

& Prado (2022) delve into large-scale asset allocation, optimizing policies aligned with

user-defined (synthetic) indices. Silva et al. (2021) solve a dynamic asset allocation case

study underpinned by a data-centric prescriptive analytics framework. Meanwhile,

Tsang et al. (2022) put forth a distributionally robust multi-period portfolio model,

addressing ambiguity in asset correlations while maintaining fixed metrics for individual

asset return mean and variance.

From a technical perspective, asset allocation has also served as a platform to

demonstrate advancements in SDDP techniques. For instance, Guigues (2014) present

formulas that distribute optimality and feasibility cuts across nodes within the same

stage. Various SDDP variants were introduced by Guigues et al. (2020), Guigues (2020),

and Dupačová & Kozmı́k (2017), including regularized, inexact, and preprocessing via

scenario tree reduction, respectively. Guigues & Monteiro (2021) add to the discourse

with the stochastic dynamic cutting plane (StoDCuP) extension to SDDP. Bandarra

& Guigues (2021) outline the nuances of single-cut and multi-cut SDDP, coupled with

cut selection for asset allocation. Finally, Guigues (2021) tackle MSPs characterized by

an uncertain number of stages.

2.4.3 Operations Management

Outside of energy and finance, operations management also presents an intriguing

application area for SDDP. Domains within this sphere encompass inventory

management, production and manufacturing, and facility location, among others.
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In the realm of inventory management, variations of the classical problem have been

explored in references such as Parpas et al. (2015), Guigues (2017), Dowson et al. (2020),

Shapiro & Cheng (2021), Ávila et al. (2022), and Guigues et al. (2023). Lot-sizing

problems have also received attention. For instance, Ahmed et al. (2022) address a

capacitated version, Quezada et al. (2022a) discuss the uncapacitated variant, and

Thevenin et al. (2022) investigate a version incorporating component substitution.

Shifting the focus to production and manufacturing, several studies stand out.

Nannicini et al. (2021) tackle bike production with uncertain demand, incorporating

aspects of backlog and re-balancing. Yıldız & Sütçü (2022) work on optimal pricing

strategies for slow-moving items, while Tong et al. (2020) approach the challenges of

central kitchen production and distribution. The pastoral dairy farm planning has also

been delved into, with Dowson et al. (2019) and Dowson (2020) addressing specific

instances. Moreover, Dowson et al. (2022b) provide insights into a particular routing

problem.

2.4.4 Other areas and works

While energy, finance, and operations management dominate as the primary sectors

for SDDP application, emerging innovative problems are gaining attention as new

application areas. Notably, disaster management has begun benefiting from SDDP.

For instance, Angün (2015) employs SDDP to address short-term disaster management

and Hafiz et al. (2019a) harness SDDP to enhance grid resiliency against natural

disasters through distribution service restoration. Raso et al. (2019) also apply SDDP

for reservoir management—specifically focusing on drought and flood protection in the

upper Seine-Aube river system. Furthermore, in the mining industry, Reus et al. (2019)

leverage SDDP to devise optimal policies for more effective management of production

incidents.

Stochastic Dual Dynamic Integer Programming (SDDiP)

In the context of SDDiP, several studies stand out for their noteworthy contributions.

For instance, both Zou et al. (2019) and Ding et al. (2019) delve into problems
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surrounding airline revenue management. The classic OR problem of facility location

has also seen innovative applications in this domain. Yu & Shen (2022) explore a

variant of the capacitated facility location problem, introducing elements of demand

uncertainty. Meanwhile, Seranilla & Löhndorf (2023) not only implemented SDDiP

for a COVID-19 vaccine facility location instance but also contrast it with a newly

proposed methodology.

Additionally, Quezada et al. (2022b) venture into the complexities of

remanufacturing under uncertainty. Bakker et al. (2021) solve the problem of optimal

timing of investments in mature oil and gas fields in the presence of price uncertainty,

like a complex real options problem. For energy planning, Lara et al. (2020) and Hou

et al. (2021) present a model on electric power infrastructure planning under uncertainty

and Zou et al. (2018) solve a multi-stage stochastic unit commitment problem.

2.5 Discussion

In this section, we delve into the various factors that influence the adoption of SDDP

in certain application domains. Our goal is to highlight the challenges and potential

obstacles to its more widespread use. To provide a comprehensive perspective, our

conclusions draw from both the extensive literature review in Section 2.4 and engaging

discussions with prominent researchers in the SDDP and stochastic programming

field. Specifically, we have pinpointed four key factors that play a pivotal role in the

adoption of SDDP: (1) historical background, (2) state space limitation, (3) stage-wise

independence assumption limitation, and (4) data availability.

2.5.1 Historical background

The success of SDDP in addressing its flagship application, the Brazilian hydro-thermal

power production problem, in the seminal paper by Pereira & Pinto (1991), played a

significant role in its widespread adoption, largely in other energy-related applications.

Thus, in the broader academic and research communities, SDDP’s evident success on

this problem became a compelling narrative. This prompted a surge of literature on

the subject. Many researchers were drawn to the challenge of refining the method,



48 Chapter 2. A Survey on the Applications of SDDP

expanding its applications, or tailoring it for specific regional or technical nuances. This

is highlighted by the literature - from the year of SDDP’s inception in 1991 until 2016,

all published works in the energy sector that utilized SDDP were centered exclusively

on the hydro-thermal power production scheduling problem.

This historical synergy between SDDP and the energy sector has profoundly shaped

the trajectory of research and practical applications in this field. SDDP’s resilience

in handling large-scale, multi-stage stochastic optimization problems, a characteristic

that is often inherent in many problems in the energy sector underscores why a bulk of

literature on SDDP is anchored in this field of application.

Over time, as the challenges of the energy sector evolved and expanded, the

versatility of SDDP kept pace. It became the go-to methodology for many researchers,

leading to a wave of academic publications and practical applications. Its historical

successes in the energy sector spurred curiosity, experimentation, and eventually, a

prolific presence in scholarly discourse - even parallel sessions in conferences are devoted

to SDDP in the energy sector.

Currently, when reviewing literature related to optimization, in the context of

energy, the echoes of SDDP’s historical triumphs are indisputable. Unfortunately, while

it testifies to SDDP’s efficacy in energy-related applications, it has inadvertently created

a perception among some that SDDP is exclusively tailored for energy problems. This

misconception limit the exploration and adoption of SDDP in diverse fields, potentially

sidelining its benefits in contexts beyond energy.

2.5.2 State space limitation

At its core, SDDP is sophisticated and manages to solve intricate optimization problems,

and it has showcased exemplary efficiency. While SDDP undeniably holds merits in

solving many problems, its inherent limitations become more pronounced as the scale

and complexity of problems increase. A fundamental assumption of SDDP is that

consecutive stages should be linked by constraints via state variables - variables used

to describe the mathematical state of a dynamical system. Naturally, as a problem’s

dimensionality expands, so does the number of required state variables. Unfortunately,

SDDP’s efficiency diminishes when tasked with handling an extensive number of state
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variables and begin to face significant computational and convergence challenges.

For instance, the original flagship application on the Brazilian hydro-thermal power

production scheduling problem only has 4 state variables per stage corresponding to

the stored energy [water level] of each reservoir. This characteristic, in turn, has

raised concerns about its performance in vast state spaces, leading to its subdued

and limited utilization in other real-world problems. The limitations in handling vast

or high-dimensional state spaces can be a considerable deterrent for other problems.

High-dimensional problems are increasingly common in numerous fields and a method

that struggles with such scale naturally finds limited applicability. Consequently,

researchers might be inclined to explore alternative methods that better cater to

extensive state space requirements. Moreover, this state space limitation can sometimes

lead to suboptimal solutions or expensive computations, which are not always feasible

in real-world applications that demand both accuracy and efficiency. As a result, there

might be a preference towards methods that offer a more balanced performance across

various problem scales. While SDDP undeniably holds benefits and has proven valuable

in some problems, the concerns about its performance in extensive state spaces have

played a pivotal role in its adoption in other application areas.

2.5.3 Stage-wise independence limitation

Another fundamental assumption of SDDP is that the random data has to be stage-wise

independent - new information becoming available at the time of decision does not

depend on the history of the random process. This assumption, while simplifying

the computational complexity in certain cases, becomes conflicting in the context of

real-world applications. Many systems and processes, especially those of an economic,

financial, or natural nature, inherently possess temporal dependencies, making them

Markovian or semi-Markovian structure.

Additionally, the stage-wise independence assumption can limit the accuracy and

relevance of SDDP when applied to problems with evident temporal dependencies,

potentially resulting in sub-optimal solutions. Thus, there’s a risk of overlooking critical

dependence, which can lead to significant discrepancy in decisions derived from the

model. This limitation can deter researchers from utilizing SDDP in problems where
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capturing the dynamics of random data over time is crucial.

Nonetheless, to address this issue, the work by Infanger & Morton (1996) introduce

interstage dependencies for MSPs and Löhndorf & Shapiro (2019) extended this with

two approaches to include dependence of the random process - (1) to model the data

process as an auto-regressive process and to add the time series transition equations

and (2) another approach based on Markov Chain discretization of the Markovian data

process using optimal quantization. Nonetheless, the first approach is restricted only to

right-hand side uncertainty and linear cases, and the second approach, although allows

modeling any parameter as Markovian data process, has no convergence guarantees.

Hence, while SDDP holds significant potential in many optimization problems, the

stage-wise independence assumption tempered on its universal applicability, steering

its use toward more restricted domains.

2.5.4 Data availability

When a parameter of a on optimization problem is random or uncertain, trying to

understand the distribution of this parameter can be a daunting challenge. This

complexity is further highlighted especially if data is not readily available. The

availability, or lack thereof, of data not only impedes precise modeling but also limits

the accuracy and reliability of any derived solution. This phenomenon is universally

observed across any problems in the field of decision-making under uncertainty for

real-world applications. MSPs naturally falls into this category, where the success of

the model often depend on the data for uncertain parameters. Consequently, SDDP

methods, which operate under these conditions, might see restricted application in

practice due to the inherent challenges posed by data limitations.

2.5.5 Extensions and outlook

Provided the challenges and potential obstacles presented above, we remain optimistic

about SDDP’s potential to overcome current limitations and address more complex

problems. While its major applications have been in the hydrothermal energy sector,

finance, and operations management, here are some other domains and specific
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applications where SDDP can be potentially applied:

Healthcare: The healthcare domain is rife with many complex optimization problems.

This includes hospital resource allocation, optimizing treatment plans for chronic

illnesses over multiple periods, and surgery scheduling. The uncertainties

associated with disease spread, patient outcomes, and resource constraints make

SDDP a potential tool for driving productivity and efficiencies.

Disaster Preparedness and Response: Natural disasters, e.g., thunderstorms,

earthquakes, and volcanic eruptions, SDDP can be effective in optimizing resource

allocation for disaster preparedness and formulating real-time response policies as

events unfold.

Environmental Conservation: Optimization problems that involve habitat restoration,

wildlife protection, or pollution control over multiple periods, SDDP can help

devise policies that account for the uncertainties in ecological settings.

Urban Planning : City infrastructures are complex and interconnected. Whether it is

deciding on networks for public transportation, policies for waste management, or

land-use planning over different time horizons, SDDP has the potential to handle

these problems.

Telecommunications : As communication needs and technologies rapidly evolve, there

is a need to optimize network designs, resource allocations, and service over time.

SDDP can be a useful tool in making these decisions.

Education: Some common university and educational institution problems are course

scheduling, resource allocation (e.g., classrooms or laboratory facilities), and even

strategic decisions like opening new programs or campuses.

Marine and Fisheries Management : SDDP can be beneficial from optimizing fishing

schedules to route planning for marine vessels to avoid ecologically sensitive areas.
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2.6 Concluding Remarks

Since its inception in 1991, SDDP has, for over three decades, demonstrated a

phenomenal performance and is still regarded as one of the go-to methods to solve

MSPs. This survey presents a review of the practical applications of SDDP in the

literature. A total of 186 significant publications, from 1991 to 2022, were examined

from an in-depth search in multiple databases. Various advantages and challenges

associated with SDDP were examined to pave way for an in-depth exploration of the

literature, in the lens of these different applications.

While its applications span to various fields, the energy sector has notably emerged

as its predominant user, with approximately 76% of the articles reviewed deploying

the SDDP methodology. This is followed by finance, operations management, and

water resources domains. Delving deeper, the hydro-thermal power system production

surfaced as the predominant domain, constituting roughly 60% of the literature. This is

trailed behind by renewable energies, energy market, trading, and investments, energy

storage devices, and grid management applications. This analysis is further enriched

with an insightful discussion on the factors influencing the adoption of SDDP across

distinct application areas. We have identified four factors - historical background, state

space limitation, stage-wise independence assumption limitation, and data availability.

Finally, given the ongoing research aimed at augmenting, developing, and enhancing

SDDP, we remain optimistic about its potential to overcome current limitations and

address more complex problems faced by the state-of-the-art.



2.A Detailed reference classification 53

Appendix 2.A Detailed reference classification

Table 2.2: Reference classification (Hydro-thermal power production) - Brazil and
Norway

Location Operation Reference

Brazil Long-term Pereira & Pinto (1991), Gorenstin et al. (1992), Mello et al. (1997),
da Silva & Finardi (2003), Maceira & Damázio (2006), Homem-de
Mello et al. (2011), Zambelli et al. (2011), Guigues & Sagastizábal
(2012), de Matos & Finardi (2012), Shapiro et al. (2013a), Guigues
& Sagastizabal (2013), Pinto et al. (2013), Philpott et al. (2013),
Shapiro et al. (2013b), Guigues (2014), Calili et al. (2014), Maceira
et al. (2014), Oliveira et al. (2015), Brandi et al. (2015), de Castro
et al. (2015), De Matos et al. (2015), Ferreira et al. (2015),
Lohmann et al. (2016), Brigatto et al. (2017), Rego et al. (2017),
Soares et al. (2017), De Matos et al. (2017), Street et al. (2017),
de Faria & Jaramillo (2017), Brandi et al. (2017), Löhndorf &
Shapiro (2019), Van Ackooij et al. (2019), Shapiro & Ding (2020),
Machado & Bhagwat (2020), Treistman et al. (2020), Diniz et al.
(2020), Liu & Shapiro (2020), Street et al. (2020), Street et al.
(2020), Beltrán et al. (2020), Fredo et al. (2021), Machado et al.
(2021), Shapiro & Cheng (2021), Resende et al. (2021), Dowson
et al. (2022a), Larroyd et al. (2022), Ávila et al. (2022)

Medium-term Löhndorf et al. (2013),Maceira et al. (2014), de Matos et al. (2015),
Fredo et al. (2019), da Silva Fernandes et al. (2019), Treistman
et al. (2020), Machado et al. (2021), Beltrán et al. (2021), Guigues
et al. (2021), Siddig & Song (2022),Borges et al. (2022), Dornellas
et al. (2022), Pedrini & Finardi (2022)

Short-term Beltrán et al. (2021), Borges et al. (2022)

Norway Long-term Rotting & Gjelsvik (1992)

Medium-term Mo et al. (2001), Kristiansen (2006), Helseth & Braaten (2015),
Helseth et al. (2016), Hjelmeland et al. (2018), Hjelmeland et al.
(2019), Scheben et al. (2020), Helseth & Mo (2022), Helseth et al.
(2022)

Short-term - - -
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Table 2.3: Reference classification (Hydro-thermal power production) - Other locations

Location Operation Reference

New
Zealand

Long-term Duque & Morton (2020)

Medium-term Philpott & De Matos (2012), Philpott et al. (2018), Downward
et al. (2020), Dowson & Kapelevich (2021)

Short-term Pritchard (2015)

Central
America

Long-term Flach et al. (2010), Marques & Tilmant (2013), Rebennack (2014)

Medium-term Rebennack et al. (2011), Rebennack (2016), Steeger & Rebennack
(2017)

South
America

Long-term Raby et al. (2009), Sauma et al. (2011), Toledo et al. (2015),
Morillo et al. (2020), Morillo et al. (2022)

Canada Long-term Pina et al. (2017), Mbeutcha et al. (2021)

Medium-term Zhang & Ponnambalam (2005), Guan et al. (2018), Côté &
Arsenault (2019)

Nile
River

Long-term Goor et al. (2011), Kahsay et al. (2019), Tariku et al. (2021)

Iberian
Peninsula

Long-term Pereira-Cardenal et al. (2016)

Medium-term Macian-Sorribes et al. (2017), Leclère et al. (2020)

Senegal Long-term Espanmanesh & Tilmant (2022)

Medium-term Raso et al. (2017), Raso et al. (2020)

Turkey/Iran Long-term Tilmant et al. (2007), Tilmant & Kelman (2007)

Medium-term Poorsepahy-Samian et al. (2016)

China Short-term Li et al. (2022)

Others Medium-term Borges (2022), Cerisola et al. (2012)

Long-/Short-term Alvarez et al. (2017), Alvarez et al. (2018)



Chapter 3

MSPLib and MSPFormat: A Library Of

Problems and a New Standardized

Data Format For Benchmarking

Stochastic Dual Dynamic

Programming

In this chapter, we introduce two essential contributions: MSPLib, a comprehensive

library of multistage stochastic programming problems, and MSPFormat, a new

standardized data structure format for multistage stochastic programs. The main

objective of MSPLib is to facilitate the evaluation and comparison of computational

performance among different implementations of stochastic dual dynamic programming

(SDDP). The library encompasses a diverse range of instances, including real-world

problems and synthetic variations with varying levels of complexity. By incorporating

MSPFormat, we provide a unified and consistent representation of multistage stochastic

programs. We also test prevailing implementations of SDDP - including QUASAR,

SDDP.jl, and MSPPy.
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3.1 Introduction

Problem instances for benchmarking are a necessity for optimization researchers and

developers for empirical studies and proof of concepts. Currently, various problem

libraries are available for use: the ‘netlib’ repository for linear programming problems

(Browne et al. 1995), the Schittkowski library for non-linear programming (Schittkowski

1986), the ‘miplib’ library for mixed-integer linear programming (Gleixner et al. 2021),

and the more recent CMU-IBM Cyber-Infrastructure (Cyber-Infrastructure 2016) and

‘MINLPLib’ for mixed-integer non-linear programming problems (Bussieck et al. 2003).

Collections of optimal control problems are also readily available. The PROPT toolkit

in Matlab (Leek 2016) provides more than 100 test case problems across different

applications, complete with their corresponding results and computation times.

For stochastic programming, some efforts have been made by the Stochastic

Programming Society (SPS) (SPSociety 2012). Unfortunately, the problem instances

included in this collection primarily focus on synthetic problems of either single-

or two-stage stochastic (integer) programs. Consequently, multistage stochastic

programming (MSP) problems, which deal with sequential problems under uncertainty,

have been largely overlooked. However, with the proliferation of MSP algorithms,

there’s a pressing need for standardized test instances. One such prominent MSP

algorithm is the stochastic dual dynamic programming (SDDP) method, which showed

promising results in its initial application to hydrothermal scheduling problems and has

since been widely employed to address various MSP challenges. Unfortunately, there is

a noticeable lack of readily available libraries dedicated specifically to MSP problems.

This presents a valuable opportunity.

The goal of this work is three-fold. First, we introduce MSPLib, a benchmark

library of MSP problems which encompasses both large-scale, real-world problem

instances and smaller, synthetic ones, ranging from simple production problems to

the famous Brazilian hydro-thermal power production problem. We aim to provide

detailed description of these problems and their corresponding standard mathematical

formulations. Solutions – including first-stage solutions, and lower and upper bounds

gap – obtained by SDDP for these problems will also be provided. MSPLib benchmark

library is available online for easy access and utilization by the community. Additionally,
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we provide ready-to-use scripts to select MSP problems accompanied by some

comprehensive notes available at [https://github.com/bonnkleiford/MSPLib-Library].

The second goal is to introduce MSPFormat, our proposed standardized data

structure format for MSP problems. Compressed into the JavaScript Object Notation

(JSON) file format, MSPFormat separates the mathematical problem formulation

and the realizations of the stochastic processes in two distinct JSON files. The

recent endeavor to standardize the data structure format for MSP problems was

‘StochOptFormat‘, proposed by the creators of the SDDP.jl solver (Dowson & Garcia

2020). We present the details of the MSPFormat formulation in Section (3.3).

Lastly, we aim to benchmark and to test prevailing implementations of SDDP.

These implementations include QUASAR, a multi-stage stochastic programming solver

developed by Luxembourg-based consulting company QUANTEGO with Python,

MatLab, R, and Java interface (Löhndorf 2021); SDDP.jl, an open-source library in

Julia developed by Oscar Dowson and Lea Kapelevich (Dowson & Kapelevich 2021), and

MSPPy, an open-source implementation of SDDP from Georgia Institute of Technology

written in Python (Ding et al. 2019). We evaluate each solver’s performance based on

three criteria - time limit criterion, iteration limit criterion, and parallel processing

criterion.

3.2 Problem Classification and Variations

The MSPLib comprises both synthetic and real-world problems, all modelled as MSPs.

To provide a comprehensive understanding, let us take a closer look into the composition

of the MSPLib:

1. Synthetic Problems: These are generalized formulations of some classical

multi-stage (and two-stage) stochastic optimization problems. What enhances

their value is the incorporation of artificial data and parameters, which allow

easy adjustments to alter the problem’s characteristics.

Sources: These problems are sourced from textbooks (e.g., Birge & Louveaux

(2011), Kall et al. (1994), Wallace & Ziemba (2005), Prékopa (2013), Ross
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(2014)), tutorials (e.g., Shapiro & Philpott (2007) and Shapiro (2021)),

and current problem instances (e.g., SPSociety (2012)). Initially, they were

approached using the SDDP algorithm and/or other MSP algorithms.

Benefits: The advantage of synthetically crafted problems is that they allow

for adjustable complexity and difficulty levels. This offers a controlled

environment to gauge the efficiency and robustness of various SDDP

implementations. A prime example is the classical inventory problem with

stochastic demand, which has been enhanced to include lead time and lost

sales. This adjustment transforms the problem, making it more complex

and challenging to solve, as evidenced by increased number of iterations and

wider optimality gap.

2. Real-world Problems: These problems are sourced from various articles in the

literature where the SDDP algorithm was employed to solve the problem.

Benefits: It is essential to tackle real-world problems, as the SDDP algorithm

is particularly well-suited for large and complex problems. SDDP especially

excels when dealing with the curse-of-dimensionality.

3. MSIP Problems: These problems are sourced from various articles in the

literature where the problem is modelled as a multistage stochastic integer

program and where the SDDiP algorithm was employed to solve the problem.

Benefits: The class of MSIPs is also essential to tackle as many real-world

problems are modelled as such. The details of the MSIPs included in the

MSPLib are found in Appendix 1.1.3.

3.2.1 Problem variations and extensions

Tables 3.1, 3.2, and 3.3 show the problem instance charts. These charts provide in detail

the various problems inMSPLib with their unique instance variations and corresponding

specifications.

Every synthetic problem extends the original problem (Instance 0) formulation

in terms of number of stages (T ), problem size (indices I, J,K), and randomness of
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the problem. Extending planning horizons, increasing the scale of problem sizes, and

introducing diverse forms of randomness all contribute to creating more intricate and

challenging MSPs. Thus, the different variations and extensions to the original problem

formulation have been designed with these considerations. For every problem instance,

the problem instance charts also show the vector/matrix and location of the random

variable. For example, the randomness can occur in the right-hand side (b / RHS) and

the coefficients (A / Con Eff) of the constraints and the objective function (c / Obj Fun).

The difficulty level for each problem is based on SDDP’s convergence speed, measured

in both time (in secs) and number of iterations. Easy category problems converge, on

average, after 15 to 25 iterations, medium ones take 50 to 70 iterations, while difficult

problems require more than 80 iterations. Discretization of the random variables are

also shown, with easy category problems featuring the original number of samples

(SWI-D) or 100 and 200 scenario realizations per stage. In contrast, medium and

difficult category problems are discretized with 100, 200, and 300 scenario realizations.

On the other hand, the problem instance chart for the real-world problems,

shown in Table 3.3, show the specifications of each real-world problem, i.e, planning

horizons (timesteps), random variable and its corresponding type (i.e., SWI - stage-wise

independent uncertainty, Markovian - Markovian uncertainty, and AR - autoregressive

/ time series uncertainty), and the level of difficulty. We retain the original data,

parameters, model, and randomness / scenarios for the real-world problems from the

sourced literature.

The MSPLib adopts a systematic naming convention for instance numbering, which

aligns seamlessly with the online repository of MSPLib. Each filename is structured to

reflect the problem number, the instance number, and the level of discretization. To

illustrate, consider the file named ‘(01 2) 100.problem.json’. In this case:

- 01 denotes the specific problem, in this instance, the simplified hydrothermal

scheduling problem.

- 2 represents the instance number.

- 100 indicates that there are 100 discretized scenario realizations.
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This consistent naming convention is adhered to throughout the entirety of the library,

ensuring clarity and ease of reference for users.

3.2.2 Synthetic Problems

Table 3.1: Set of synthetic problems (01-05) with various instance flavors and
corresponding specifications



3.2 Problem Classification and Variations 61

Simplified Hydro-thermal Scheduling Problem

The seminal paper on SDDP primarily tested the algorithm on the Brazilian

hydro-thermal interconnected power system. Consequently, it is fitting to commence

with this problem. The goal of the Brazilian hydro-thermal interconnected power

system is to devise an operational strategy that, for each stage within the planning

period, produces electricity generation targets for every plant based on the states of the

system’s state.

In the simplified version of the problem, given deterministic marginal operating

costs for both a thermal and a hydro-power generator, the planner must determine a

generation quantity that satisfies known demand for each period within the planning

horizon. A reservoir, from which the hydro-power generator sources water, has a

maximum capacity. For the purpose of this problem, we assume this reservoir starts

at full capacity in the initial planning period. There’s also a provision for water to be

spilled, bypassing the turbine, to prevent over-topping of the dam.

The primary objective here is to identify an optimal policy that minimizes the

expected operation cost over the entire planning horizon. This cost comprises fuel

expenses and penalty costs for supply shortfalls. The principal stochastic component of

this problem arises from water inflow, which refers to the water entering the reservoir,

either from rainfall or river flow. These inflows are unpredictable and introduce the

main dilemma in hydro-thermal scheduling: the inclination to utilize water immediately

for cost-effective electricity generation versus the peril that future inflows might be

insufficient, potentially causing blackouts or necessitating costly thermal generation.

Variations of the simplified hydro-thermal scheduling problem within ‘MSPLib‘

encompass extensions in the planning horizon (T = 4, 10, 25, 50, 100), the introduction

of more data and parameter uncertainty (ξt = inflows, demands, and price), and an

increase in the discretization of the problem scenarios (S = 100, 200).

Airconditioning Production Problem

The air-conditioner production problem is a synthetic problem derived from the

Operations Research lectures of Anthony Papavasiliou (Papavasiliou 2014). The

problem presents a scenario where the manager of a manufacturing company aims to
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devise a production plan for air-conditioners over a given planning period T . The

company can function during an 8-hour standard working window or opt for an

unlimited overtime schedule, though the latter incurs additional costs. Air-conditioners

can be stored inter-monthly at a specific cost, and all demands must be satisfied at

every stage t. Variations of the air-conditioner production problem within ‘MSPLib‘

consist of extensions in the planning horizon (T = 3, 20, 50, 100), the introduction of

more data and parameter uncertainty (ξt = demands and price), and an changes in the

discretization of the problem scenarios (S = 100, 200).

Electricity Planning Problem

The electricity planning problem, derived from Louveaux (1988), is a 2-stage synthetic

problem. It revolves around determining the optimal capacity investment across various

power plants to fulfill the upcoming period’s electricity demands. Multiple power plants

are taken into account, each capable of operating in distinct modes. The subsequent

period’s demand for each mode must be satisfied. Constraints are imposed on the

budget as well as the minimum total capacity. Variations of the electricity planning

problem featured in MSPLib include: A fixed planning horizon (T = 2), an increasing

number of power plants (I = 4, 10, 20, 50, 100) and their respective operating modes

(J = 3, 5, 10, 30, 50), data and parameter variability (ξt = demand and price), and

expanded discretization of the problem scenarios (S = 100, 200).

Newsvendor problem

The newsvendor problem, cited from (Arrow et al. 1951), is a classical 2-stage stochastic

optimization problem, making it a fascinating study. Consider a scenario where a

newsvendor intends to purchase newspapers today and sell them tomorrow. The

objective is to determine the optimal quantity of newspapers the newsvendor should

procure today to maximize their profit. Tomorrow’s newspaper demand must be

fulfilled. Variants of the News-vendor problem within ‘MSPLib‘ encompass extensions

in the planning horizon (T = 2, 10, 20, 50, 100), introduction of greater data and

parameter stochasticity (ξt = demand and price) which includes both discrete and

continuous distributions, and increasing the discretization of the problem scenarios (S
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= 100, 200, 300).

Semiconductor Production Problem

The semiconductor production problem, as outlined in Ahmed (2002), describes a

scenario in which a wafer fabrication unit possesses various tool types that can process

different wafer types. Each wafer type undergoes a subset of distinct processing steps,

and these steps can be executed on one or multiple tool types. Given the time required

for these various processing steps, the tasks are to determine the quantity of each tool

type to be procured in every period, allocate the processing steps of each wafer type

to specific tool types during each period, and ascertain the production volume of each

wafer type within each period. Considering the parameters at hand: the cost of tool

types in each period, the penalty cost per unit shortage of each wafer type in every

period, the per-period capacity (measured in hours) of a single tool of each type, and

the per-period demand (quantified in wafer starts) for each wafer type, the overarching

goal is to minimize the combined costs of tool purchases and shortage penalties. The

semiconductor production problem instance variants in ‘MSPLib‘ include the planning

horizon (T = 4, 10, 20, 50, 100), adding more data and parameter stochasticity (ξt =

demand and price) including discrete and continuous distributions, and increasing the

discretization of the problem scenarios (S = 100, 200).

The Farmer’s Problem

The farmer’s froblem, as presented in Birge & Louveaux (2011), delves into a problem

where a farmer specializes in cultivating various crops, such as wheat, corn, and sugar

beets, over a designated acreage of land. The central problem involves deciding the

allocation of land for each of these crops. Beyond the standard technological, capacity,

and quota restrictions, the problem is further compounded by uncertainties stemming

from fluctuating crop yields — attributed to weather conditions — and the variable

market prices for each crop. The farmer’s problem instance variants in ‘MSPLib‘ include

the planning horizon (T = 2), adding more data and parameter stochasticity (ξt =

yields and prices) including discrete and continuous distributions, and increasing the

discretization of the problem scenarios (S = 100, 200, 300).
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Table 3.2: Set of synthetic problems (06-10) with various instance flavors and
corresponding specifications

Asset Management Problem

Similar to the farmer’s problem, the asset management problem, as introduced in

Birge & Louveaux (2011), applies stochastic programming to address financial planning

problems. In this context, an investment planner aims to accrue a specific fund over

the span of Y years. Starting with an initial investment of b, they have the option to

allocate these funds across I different investment vehicles. The primary objective is

to ensure the total exceeds the target amount of G by the end of the Y year period.
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However, the problem becomes intricate due to uncertainties associated with varying

returns on investments, such as stocks and bonds, and the variable percentage costs

incurred when borrowing to bridge any shortfall in achieving the G goal. In the

‘MSPLib‘ repository, the asset management problem offers various instance variants.

These include a planning horizon T = 4. Additionally, there is an enhancement in the

complexity of the problem with the addition of more data and parameter uncertainties,

represented as (ξt = returns and cost). These uncertainties cover both discrete and

continuous distributions. Furthermore, to provide a broader spectrum of scenarios, the

discretization of problem scenarios has been expanded with values such as (S = 100,

200, 300).

Generation Expansion Problem

Generation expansion problem addresses the challenge of making optimal decisions

regarding the timing and magnitude of power plant expansions. It aims to strategically

invest in electricity generation to cater to anticipated future demands. Over the years,

various iterations and extensions of this problem have been formulated to address

diverse problems related to investment, capacity, and expansion specifics. At its core,

the objective remains to determine the best technology investments that allow for

the necessary power plant expansion to satisfy electricity requirements. In ‘MSPLib‘,

the generation expansion problem presents multiple instance variants. These include

different planning horizons, represented as (T = 5, 10, 20, 50). The complexity

of the problem is further enhanced by introducing additional data and parameter

uncertainties, labeled as(ξt = demand and cost). These uncertainties span both discrete

and continuous distributions. Moreover, the range of scenario discretization has been

broadened, with values like (S = 100, 200, 300).

Flower Seller [or Perishability] Problem

The flower seller problem is an adaptation of the news-vendor problem. In this scenario,

a flower seller purchases flowers from a supplier for resale. These flowers are procured

before sales commence, and any unsold flowers at the day’s end are stored and sold

the following day as older inventory. However, any roses remaining in stock after this
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are discarded. The primary challenge for the flower seller is to ascertain the optimal

quantity of flowers to purchase each day to maximize profit and minimize waste. The

flower seller problem instance variants in ‘MSPLib‘ include the planning horizon (T

= 2, 10, 20), adding more data and parameter stochasticity (ξt = demands) including

discrete and continuous distributions, and increasing the discretization of the problem

scenarios (S = 100, 200, 300).

Inventory Planning Problem with Lead Time and Lost Sales

The classical inventory problem revolves around a company’s need to fulfill its customer

demands by deciding the quantity of products to purchase in each stage, all while

minimizing the combined cost of purchasing and inventory holding. This advanced

rendition of the problem incorporates a lead time for the ordering and receipt of acquired

products and lost sales. This addition of lead time heightens the problem’s complexity,

particularly as the lead time lengthens. The inventory problem with lead time instance

variants in ‘MSPLib‘ include the planning horizon (T = 20, 50, 100), adding more

data and parameter stochasticity (ξt = demands) including discrete and continuous

distributions, and increasing the discretization of the problem scenarios (S = 100, 200,

300).

3.2.3 Real-world problems

Brazilian Hydro-Thermal Power Planning Problem

The Brazilian interconnected power system was initially solved in the seminal SDDP

paper by Pereira Pereira & Pinto (1991). As described in the Simplified Hydro-thermal

Scheduling Problem above, the objective of the Brazilian Hydro-thermal Power System

Problem is to determine an operation strategy that, given the states of the system for

each stage of the planning period, produces electricity generation targets for each plant.

The optimal strategy should minimize the expected cost of the operation, composed of

fuel costs and penalty costs for supply failure, throughout the entire planning horizon.

In the original version, the behavior of the entire historical data of the random variable

(inflow) is disregarded - referred to as the stage-wise independent finite discrete problem.
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Table 3.3: Real-world problems with various instance flavors and corresponding
specifications

This is done to fully understand the underlying problem and become familiar with the

model.

Variants of Brazilian Hydro-Thermal Power Planning Problem

The original Brazilian interconnected power system planning problem has been

extended in Löhndorf & Shapiro (2019) which introduced two different approaches:

(1) an autoregressive time series approach, and (2) a Markov Chain discretization of

the random data process. In the time series approach, the random variable (inflow) is

considered, with a time series model fitted to its historical data. This approach adds

additional state variables and reformulates the problem into a stage-wise independent

format. On the other hand, the Markov chain discretization approach allows modeling
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of any parameter as Markovian data process. Thus, this allows usage of a much broader

range of stochastic models which may better represent the true process.

Production-Inventory with Intermittent Renewable Energy Problem

The Production-Inventory with Intermittent Renewable Energy Problem, as discussed

in Golari et al. (2017), seeks to determine the optimal production quantity, stock level,

and renewable energy supply for each period. The objective is to minimize the aggregate

production cost, which includes energy expenses. The model’s stochastic process focuses

on the intermittency of onsite wind and solar generation, as well as grid wind and solar

generation, at each power plant.

European Hydro-Thermal Power Planning Problem

This problem closely mirrors the formulation of the Brazilian Hydro-Thermal Power

Planning Problem, adapted to its European counterpart as discussed in Leclère et al.

(2020). The Électricité de France (EDF), the primary European electricity producer,

aims to plan energy production across a multi-period horizon that encompasses a

network of production zones at the European scale. Various countries, interconnected

through a network, exchange energy with their neighbors. Each country’s energy

demand must be met locally, but countries can also import energy from their neighbors.

Dairy Farm Production Planning Problem

The dairy farm production planning problem, taken from Dowson et al. (2019), aims

to maximize the net profit derived from selling milk produced by the dairy farm after

deducting the costs associated with purchasing supplementation, harvesting pasture,

and applying irrigation. This model amalgamates three distinct models: a grass growth

model, an animal model, and a milk price model. Collectively, they are referred to

as POWDer (milk Production Optimizer incorporating Weather Dynamics). After

assessing the farm’s state - which includes soil moisture, pasture cover, quantity of

stored grass, the number of milking cows, and the quantity of milk produced up

to that point - as well as the current realization of random variables like potential
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evapo-transpiration, the quantity of rainfall, and the milk price forecast, the farmer

must decide on the amount of irrigation to apply, the volume of pasture to harvest, the

number of cows to dry-off, and the quantities of grass (sourced from both pasture and

storage) and palm kernel to feed the cows throughout the entire seasonal year (which

spans 52 weeks).

Coordination in Multi-Market Bidding of Grid Energy Storage

Coordination in multi-market bidding of grid energy storage delves into the challenges

faced by a storage owner trading in a multi-settlement electricity market (Löhndorf &

Wozabal 2023). This market encompasses both an auction-based day-ahead segment

and a continuous intraday segment. In their stylized model, they demonstrate that a

coordinated policy, which reserves capacity explicitly for the intraday market, emerges

as optimal. Moreover, the deviation from a sequential policy grows in proportion to

the volatility of intraday prices and market liquidity. To address this, they devised

a multi-stage stochastic program tailored for day-ahead bidding and hourly intraday

trading, complemented by an apt stochastic price model.

Gas Storage Valuation Problem

The storage valuation problem addresses the challenges faced by a price-taking energy

trader in an incomplete market (Löhndorf & Wozabal 2021). This trader manages a

gas storage contract that grants the right to inject, withdraw, and store gas over a

specified time frame. Assuming that the injection and withdrawal limits are unaffected

by the storage level, the contract clearly defines the storage capacity limits. Notably,

while physical injection or withdrawal results in a marginal cost and an in-kind fuel

loss, storing natural gas does not entail any holding costs.

Capacitated Multi-Echelon Lot Sizing Problem with Component

Substitution

The integration of component substitution with lot-sizing under demand uncertainty

is a crucial topic. Consolidating the demand for components allows for risk pooling,
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leading to reduced operating costs. The problem explored in Thevenin et al. (2020)

holds significance not just within the production realm but also in the domain of

distribution planning. The paper introduces a stochastic programming formulation

tailored for static and dynamic uncertainty; this means setup decisions remain

unchanged, but decisions concerning production and consumption quantities are made

dynamically. Addressing the typical scalability challenges inherent to multi-stage

stochastic optimization, Thevenin et al. (2020) delves into the potential benefits of

stochastic dual dynamic programming (SDDP).

Integrated Management of Hydro-plant Cascade

Borges (2022) evaluates the integrated management of a cascade consisting of 3

hydro-plants over a span of 12 months. Each hydro-plant comprises a reservoir paired

with a downward-facing turbine. The interconnected nature of these hydro-plants is

facilitated by tubulations, ensuring that water discharged from one hydro-plant for

energy production is subsequently stored in the reservoirs of the other plants. Although

it is advantageous for profit-driven firms to generate energy during months with peak

prices, it is infeasible to focus production solely in the highest-priced month. This is

due to potential reservoir overflows or the imposition of environmental restrictions that

set minimum and maximum thresholds on daily water discharge volumes.

American Put Option Pricing

An American option is characterized by its early exercise feature, allowing the holder

to execute the option before its expiration date. Given this added flexibility, it’s

logical to anticipate that an American option would be valued higher than its European

counterpart, which lacks this feature. The early exercise becomes favorable when the

continuation (or time) value dips below the option’s intrinsic value. Consequently, at

each time interval, the option’s value is determined by the greater of these two values:

intrinsic or continuation. Yin et al. (2006) considers an example where the spot price

stands at 36, the strike price is set at 40, with a volatility of 0.2, an interest rate of 6%,

an expiration period of 1 year, and a time step of 0.02.
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3.3 MSPFormat: a new data format MSPs

A standardized data structure format for mathematical programs is essential for the

exchange of problem test sets used in benchmarking and algorithm testing. The oldest

and most widely used format for linear programming (LP) problems is the Mathematical

Programming System (MPS) file format from IBM (Orchard-Hays 1984). It has been

extended to the ’xMPS’ format to cater to non-linear programs (Halldorsson et al.

2000) and to Stochastic Mathematical Programming System (SMPS) file format for

stochastic programming (SP) problems (Gassmann 2005). Recently, a new standardized

data structure format LPs named ’MathOptInterface’ has been proposed (Legat et al.

2022). The same team also introduced the data structure format for SP and MSP under

the banner ’StochOptFormat’ Dowson & Garcia (2020). Our proposed MSPFormat is

our attempt to provide a new standardized data structure format for SP and MSP

problems. Like its predecessors, the primary objective of MSPFormat is to ensure easy

accessibility and transfer of mathematical models, especially catering to the users of

the MSPLib problem library in a simple, clear, and familiar manner. The MSPFormat

is serialized and compressed using the JavaScript Object Notation (JSON) format.

JSON, an open-source standard for file and data interchange, is frequently used for

data exchange across various computer languages. Given its widespread support,

parsing JSON files becomes straightforward across different platforms. The creation

of MSPFormat was motivated by the following objectives:

• To develop a format capable of describing problems with multiple decision periods,

a myriad of state and control variables, in a scalable way;

• To introduce a data file format having an intuitive and familiar architecture,

thereby facilitating the verification of both the mathematical model and the

stochastic process;

• To establish a standardized data format that distinctly separates the

mathematical model from the description of the stochastic process, specifically,

discretized samples for MSP problems;

• To craft a comprehensive format that supports various extensions of classic
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stochastic programming, such as multi-stage, integrality, and more;

• To maintain consistency across diverse implementations, ensuring smooth data

exchange and interoperability;

• To assist researchers and practitioners by eliminating the need for custom data

representations, allowing them to focus on advancing SDDP techniques.

In conclusion, it’s worth noting that for each problem instance in the MSPLib, we

propose two distinct data structures in JSON format: one for the mathematical model

and the other for the stochastic data process. Appendix 3.A.1 illustrates a sample

MSPFormat data structure for the mathematical model and for the stochastic data

process.

3.3.1 Sample Problem

To provide deeper insights into the structure of the MSPFormat, we present Problem

1 - Instance 0 (010) from the MSPLib - the simplified hydrothermal power production

problem.

For both thermal and hydro-power generators with given deterministic marginal

operations costs, we aim to determine the generation quantities, thermalgen and

hydrogen, and reservoir storage level volumet, to satisfy a known demand D across each

period t (with T = 3). The hydro-power generator draws from a reservoir with capacity

C, which is full at the start. We account for potential water spillages, hydrospill, to avoid

dam over-topping. The goal is to minimize the expected operational costs, including

fuel costs cf and supply failure penalties cp. The key stochastic component is water

inflow, affecting the trade-off between immediate water use for electricity generation

and saving for future uncertainties.

The full MSPFormat data structure mathematical model and stochastic data are in

Appendix 3.A.1.

3.3.2 Vocabulary

• State variables
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- A state variable capture the current state of the system. As the system

progresses through different stages, this state may change, influencing the

decisions made at each stage of the MSP.

- In our sample problem, the state variable is denoted as - volume. The

transition of this state variable from its value at the beginning of a stage

(termed incoming) to its value at the end of that stage (termed outgoing) is

determined by a series of constraints. The incoming state variable typically

reflects its value from the preceding stage. In our sample problem, it is

represented as volumet−1. On the other hand, the outgoing state variable

generally corresponds to its value in the current stage, represented as

volumet.

• Stage or Local variables

- A stage or local variable refers to a decision variable that is defined and

optimized for a specific stage in an MSP problem. This variable denotes the

decision made at that particular stage, based on the accumulated information

and uncertainties up to that point. The value of the stage variable may be

updated at each successive stage as new information emerges, especially

in response to stochastic or unpredictable events. Stage variables enable

adaptive decision-making, accounting for the evolving nature of uncertainties

across multiple stages. This adaptability often results in more robust and

optimal solutions in stochastic environments.

- In our sample problem, the stage variables are defined as hydro gent,

thermal gent, and hydro spillt. These variables are optimized exclusively

at the current stage t. Their values are not required for decision-making in

subsequent stages.

• Random variables

- A random variable represents an uncertain or stochastic parameter that evolves

over multiple stages. Typically, random variables are modeled using either

discrete or continuous probability distributions, which depict the likelihood



74 Chapter 3. MSPLib and MSPFormat

of each possible value the variable can assume. In the context of an MSP,

random variables may be present in the right-hand side of the constraints or

b, serve as parameters of the decision variables or the matrix A, or function

as parameters of the objective function represented by the vector c.

- In our sample problem, the random variable is inflow, which is found on the

right-hand side of the constraints. Following the description above, and

depending on the structure of the MSP, random variables can manifest in

three distinct areas within the MSPFormat:

– As the value of the “obj” key in the “variables” object;

– As the value of the “coefficient” key in the “constraints” object;

– As a value-pair in the “rhs” of the “constraints” object.

• Constraints

- Constraints are mathematical expressions that impose limitations or conditions

on the decision variables. Their purpose is to ensure that the

decision-making process produces feasible solutions, satisfying specific

requirements. Constraints capture various limitations or restrictions that

must be observed to obtain a valid solution to the decision problem.

- Within the MSPFormat, constraints are contained in the “constraints” object.

Every constraint has its dedicated object, comprising key-value pairs that

detail the constraint’s “name”, “type”, and the expressions on both sides of

the equation: “lhs” for the left-hand side expressions and “rhs” for right-hand

side expressions. In the “lhs”, each term specifies the “name” of the variable,

the “stage” where the variable appears, and its ”coefficient”. The “rhs”, on

the other hand, is structured as key-value pairs, wherein the key indicated

the operation (e.g., “ADD”, “MUL”, “EXP”, and “POW”), and its value (be

it a random variable or a resource availability). In the context of our sample

problem, there are two equality (“EQ”) constraints per stage, totaling six.

These correspond to (1) the state transition constraint and (2) the demand

constraint.
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• State and Successors

- Within the MSPFormat, each discretized sample of random variables for every

stage t is housed within its unique object. The ”state” object contains

key-value pairs representing each random variable. On the other hand, the

”successors” object contains key-value pairs that detail the successor state

of the random variable along with the corresponding transition probability.

- For our sample problem, every discretized sample of the random variable

inflow for every stage t exists as a separate object. The “state” object

contains inflow as key and its discretized sample as the associated value.

Concurrently, the “successors” object contains key-value pairs detailing the

successor state of inflow and the respective transition probabilities.

3.4 SDDP Implementations and Solvers

We benchmark three different SDDP implementations: QUASAR, SDDP.jl, and

MSPPy. The selection of these implementations was based on their prominence in

the field, ease of use, and accessibility.

QUASAR is a flexible, high-performance modeling system for formulating and

solving optimization problems with stochastic parameters. This system was developed

by the company Quantego. While QUASAR draws from published scientific research,

it also incorporates unique, unpublished features that contribute to scalability and

solution quality. The platform provides a documentation with code examples in

Java, Python, and MATLAB. QUASAR is available for commercial purchase, but an

academic license is also offered Löhndorf (2021).

SDDP.jl is an open-source library designed to solve MPSs using SDDP. This

library was co-developed by Oscar Dowson and Lea Kapelevich. Based on JuMP, an

algebraic modelling language in Julia, SDDP.jl offers users a high-level interface while

maintaining performance levels comparable to low-level languages implementations

Dowson & Kapelevich (2021).

MSPPy is a Python-based package that facilitates the construction, resolution,

and analysis of MSPs. It was developed by Lingquan Ding during his PhD dissertation
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titled ”Multistage Stochastic Programming” at the Georgia Institute of Technology,

under the supervision of Prof. Alexander Shapiro. MSPPy is available under the open

source Modified BSD (3-clause) license Ding et al. (2019).

3.5 SDDP Benchmarking Numerical Results

In this section, we present the benchmarking results for the three pre-selected SDDP

implementations: QUASAR, SDDP.jl, and MSPPy. Our evaluation focuses on their

relative performance across three distinct criteria by solving the problem instances in

MSPLib:

• Iteration Limit : This criterion evaluates how rapidly the implementation achieves

a given number of iterations and determines if the solution has converged by that

point.

• Time Limit : This stopping criterion assesses the optimality gap after a specified

time has elapsed, showing how quickly each implementation approaches an

optimal solution.

• Parallel Processing : This performance criterion examines the efficiency of each

implementation when parallel solving capabilities are utilized, especially when

solving the problem instances in MSPLib.

Furthermore, with the pre-classification of the problems in MSPLib based on their

relative difficulty, the evaluation criteria differ for each category:

• Testing criteria for Easy Category Problems:

– Each solver/implementation is set to its default settings, including

parameters such as the choice of solver, cuts selection and aggregation,

tolerances, etc.

– An iteration limit of 25 iterations is imposed per problem.

• Testing criteria for Medium Category Problems:
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– Iteration Limit: evaluated at 100 and 200 iterations.

– Time Limit: assessed at 10 and 60 seconds.

– Parallel Processing: performance evaluated using 1 and 32 processors.

• Testing criteria for Difficult Category Problems:

– Iteration Limit: evaluated at 100, 200, and 300 iterations.

– Time Limit: assessed at 30, 60, and 150 seconds.

– Parallel Processing: performance evaluated using 1 and 32 processors.

3.5.1 Solver Performances

Easy Category Problems

Figure 3.1: Relative performance of the three SDDP solvers for easy category problems
in MSPLib.
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In the MSPLib database, there exists a collection of 105 problem instances

that are distinctly categorized as easy problems. Specifically, the easy category

problems include the simplified hydrothermal scheduling problem (01), airconditioning

production problem (02), electricity production problem (03), 3 instances of the

newsvendor problems (04), semiconductor problem (05), 2 instances of the farmer’s

problem (06), 6 instances of the asset management problem (07), and 7 instances of

the generation expansion problem (08). It is important to note that each scenario

discretization correspond to a single problem instance.

A graphical representation of the results can be seen in Figure 3.1. One of the most

noteworthy observations from these results is QUASAR’s commendable performance.

It manages to efficiently tackle and successfully solve all the problem instances falling

under the easy category, all within an approximate time frame of 350 seconds. To

offer a comparative analysis, both MSPPy and SDDP.jl, while being competent solvers,

demonstrate a slightly lower performance for these specific problem instances. Within

the same 350-second window, they both are able to resolve about 65 instances. Digging

a bit deeper into their performance metrics, SDDP.jl finishes all the problem instances,

but it requires a more extended period, roughly 6,000 seconds. MSPPy, on the other

hand, needs even more time, taking around 12,000 seconds to complete all the easy

category problem instances.

While all three solvers ultimately achieve the end goal of solving the problems,

the disparity in the time taken highlights QUASAR’s superior performance for these

specific instances. When contrasted with MSPPy and SDDP.jl, QUASAR emerges as

a more time-efficient option for solving problem instances classified as easy within the

MSPLib.

Medium Category Problems

Within the MSPLib, there are 60 problem instances classified as medium difficulty.

These problems include 3 instances of the newsvendor problem (04), 8 instances of the

farmer’s problem (06), 4 instances of the asset management problem (07), 3 instances of

the generation expansion problem, and 2 instances of the flower seller problem (09), for

the synthetic problems. For the real-world problems, problems categorized as medium
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Figure 3.2: Relative performance of the three SDDP solvers for medium category
problems in MSPLib.

difficulty include production-inventory planning with intermittent renewable energy

(13), European hydropower scheduling problem (14), multistage dairy farm problem
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(15), capacitated multi-echelon lot sizing problem with component substitution (18),

integrated management of hydro-plant cascade (19), and American put option pricing

(20).

In Figure 3.2, QUASAR consistently surpasses the other two solvers in all

performance metrics. The upper subgraphs showcase the model build time, solve time,

and simulation time for each solver, based on iteration limit criteria set at 100 and 200

iterations. Although, the model building time remain largely consistent across all three

solvers, stark differences are evident in their solve times. QUASAR emerges as the

frontrunner, followed by SDDP.jl, with MSPPy bringing up the rear. The simulation

times of QUASAR and SDDP.jl are almost similar while MSPPy performs rather poorly.

The central subgraphs highlight the average bound gap and simulation time for each

solver, adhering to the time limit criteria of 10 and 60 seconds. Impressively, QUASAR

attains a more favorable average bound gap per instance than the others, with SDDP.jl

coming in second, followed by MSPPy.

Finally, the bottom subgraphs show the mean bound gap and simulation time for

each solver when considering the parallel processing criteria (utilizing either 1 or 32 core

processors). For a single-core processor, the distinctions in achieving the least mean

bound gap per instance among the three solvers are marginal. However, it is essential

to note that, at this juncture, SDDP.jl does not yet support parallel processing for

MSPFormat.

Difficult Category Problems

Within the MSPLib, there are 70 problem instances classified as difficult level. These

problems include 4 instances of the newsvendor problem (04), 8 instances of the farmer’s

problem (06), 4 instances of the asset management problem (07), 8 instances of the

flower seller problem (09), and the inventory problem with lead time and lost sales

(10), for the synthetic problems. For the real-world problems, problems categorized

as difficult level include the original Brazilian hydrothermal scheduling problem with

stage-wise independent uncertainty (11) and all its variants (12), coordination in

multi-market bidding of grid energy storage (16), and gas storage valuation problem

(17). Presently, only QUASAR can address (16) and (17) because of technical
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Figure 3.3: Relative performance of the three SDDP solvers for difficult category
problems in MSPLib.

challenges with the MSPFormat parser in SDDP.jl and the prolonged runtime of MSPPy

for the difficult-level problems. Consequently, (16) and (17) are omitted from the

benchmarking.

As in Figure 3.3, QUASAR still outperforms the other two solvers across all
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performance metrics. The uppermost subgraphs detail the model build time, solve time,

and simulation time for each solver based on the iteration limit criteria (set at 100, 200,

and 300 iterations). While the model build and simulation times are comparable for

all three solvers, significant disparities emerge when examining solve times. QUASAR

leads in performance, trailed by SDDP.jl and then MSPPy. The central subgraphs

present the average bound gap and simulation time for each solver, as dictated by the

time limit criteria (10, 60, and 150 seconds). Notably, QUASAR achieves a lower mean

bound gap per instance than its counterparts, with SDDP.jl trailing behind and then

MSPPy.

Finally, the bottom subgraphs show the mean bound gap and simulation time for

each solver when considering the parallel processing criteria (utilizing either 1 or 32 core

processors). For a single-core processor, the distinctions in achieving the least mean

bound gap per instance among the three solvers are marginal. However, it’s essential

to note that, at this juncture, SDDP.jl does not yet support parallel processing for

MSPFormat.

3.6 Conclusion

In this chapter, we introduce both MSPLib and MSPFormat. MSPLib is a library of

MSP problems designed to streamline the evaluation and benchmarking process for

various stochastic dual dynamic programming (SDDP) implementations. This library

encapsulates a wide array of instances, from real-world problems to synthetic variants,

each exhibiting distinct complexity levels. MSPFormat establishes a standardized data

format tailored for MSPs. By adopting MSPFormat, we pave the way for a consistent

and cohesive representation of MSPs. Additionally, we evaluate leading SDDP

implementations, namely QUASAR, SDDP.jl, and MSPPy. QUASAR outperforms the

other two solvers across all performance metrics - iteration limit criterion, time limit

criterion, and parallel processing criterion.

In this chapter, we delve into a comprehensive introduction of two instrumental

tools: MSPLib and MSPFormat. The MSPLib serves as a library housing an extensive

collection of MSP problems. Its primary objective is to simplify and make more efficient
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the process of evaluating and benchmarking various SDDP implementations. This

repository comprises a diverse range of instances. From intricate real-world problems

that resonate with practical applications to carefully crafted synthetic variants, the

library is designed to challenge SDDP implementations with varying degrees of

complexity.

On the other hand, the MSPFormat is an initiative that introduces a standardized

data format, crafted with MSPs in mind. The adoption of MSPFormat aims to foster a

uniform and systematic representation of MSPs, promoting clarity and compatibility.

Further into the chapter, we embark on a rigorous evaluation of some of the leading

SDDP implementations in the field: QUASAR, SDDP.jl, and MSPPy. Our results

indicate that QUASAR stands out distinctly, surpassing its counterparts in a various

of performance metrics. Whether we assess based on the iteration limit criterion, time

limit criterion, or even the intricate parallel processing criterion, QUASAR consistently

demonstrates superior performance. SDDP.jl trails behind in performance, followed by

MSPPy.
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Appendix 3.A Sample Problem in MSPFormat

3.A.1 Model and Lattice - Simple Hydro-thermal Power

Problem

1 {”version”:”MSMLP 1.1”,

2 ”name”:”Simple Hydrothermal

3 Scheduling Problem”,

4 ”maximize”:false,

5 ”variables”:[

6 {”name”: ”volume”,

7 ”stage”:0,

8 ”obj”:[0.0],

9 ”lb”:[0.0],

10 ”ub”:[200.0],

11 ”type”:”CONTINUOUS”},
12 {”name”:”thermal gen”,

13 ”stage”:0,

14 ”obj”:[50.0],

15 ”lb”:[0.0],

16 ”ub”:[”inf”],

17 ”type”:”CONTINUOUS”},
18 {”name”:”hydro gen”,

19 ”stage”:0,

20 ”obj”:[0.0],

21 ”lb”:[0.0],

22 ”ub”:[”inf”],

23 ”type”:”CONTINUOUS”},
24 {”name”:”hydro spill”,

25 ”stage”:0,

26 ”obj”:[0.0],

27 ”lb”:[0.0],

28 ”ub”:[”inf”],

29 ”type”:”CONTINUOUS”},
30 {”name”:”volume”,

31 ”stage”:1,

32 ”obj”:[0.0],

33 ”lb”:[0.0],

34 ”ub”:[200.0],

35 ”type”:”CONTINUOUS”},
36 {”name”:”thermal gen”,

37 ”stage”:1,

38 ”obj”:[100.0],

39 ”lb”:[0.0],

40 ”ub”:[”inf”],

41 ”type”:”CONTINUOUS”}
42 {”name”:”hydro gen”,

43 ”stage”:1,

44 ”obj”:[0.0],

45 ”lb”:[0.0],

46 ”ub”:[”inf”],

47 ”type”:”CONTINUOUS”},
48 {”name”:”hydro spill”,

49 ”stage”:1,

50 ”obj”:[0.0],

51 ”lb”:[0.0],

52 ”ub”:[”inf”],

53 ”type”:”CONTINUOUS”},
54 {”name”:”volume”,

55 ”stage”:2,

56 ”obj”:[0.0],

57 ”lb”:[0.0],

58 ”ub”:[200.0],

59 ”type”:”CONTINUOUS”},
60 {”name”:”thermal gen”,

61 ”stage”:2,

62 ”obj”:[150.0],

63 ”lb”:[0.0],

64 ”ub”:[”inf”],

65 ”type”:”CONTINUOUS”},
66 {”name”:”hydro gen”,

67 ”stage”:2,

68 ”obj”:[0.0],

69 ”lb”:[0.0],

70 ”ub”:[”inf”],

71 ”type”:”CONTINUOUS”},
72 {”name”:”hydro spill”,

73 ”stage”:2,

74 ”obj”:[0.0],

75 ”lb”:[0.0],

76 ”ub”:[”inf”],
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77 ”type”:”CONTINUOUS”}],
78 ”constraints”:[

79 {”name”:””,

80 ”type”:”EQ”,

81 ”lhs”:[

82 {”name”:”volume”,

83 ”stage”:0,

84 ”coefficient”:[1.0]},
85 {”name”:”hydro gen”,

86 ”stage”:0,

87 ”coefficient”:[1.0]},
88 {”name”:”hydro spill”,

89 ”stage”:0,

90 ”coefficient”:[1.0]}],
91 ”rhs”:[”inflow”,

92 200.0,

93 0.0]},
94 {”name”:””,

95 ”type”:”EQ”,

96 ”lhs”:[

97 {”name”:”hydro gen”,

98 ”stage”:0,

99 ”coefficient”:[1.0]},
100 {”name”:”thermal gen”,

101 ”stage”:0,

102 ”coefficient”:[1.0]}],
103 ”rhs”:[150.0]},
104 {”name”:””,

105 ”type”:”EQ”,

106 ”lhs”:[

107 {”name”:”volume”,

108 ”stage”:1,

109 ”coefficient”:[1.0]},
110 {”name”:”volume”,

111 ”stage”:0,

112 ”coefficient”:[−1.0]},
113 {”name”:”hydro gen”,

114 ”stage”:1,

115 ”coefficient”:[1.0]},
116 {”name”:”hydro spill”,

117 ”stage”:1,

118 ”coefficient”:[1.0]}],

119 ”rhs”:[”inflow”,

120 0.0]},
121 {”name”:””,

122 ”type”:”EQ”,

123 ”lhs”:[

124 {”name”:”hydro gen”,

125 ”stage”:1,

126 ”coefficient”:[1.0]},
127 {”name”:”thermal gen”,

128 ”stage”:1,

129 ”coefficient”:

130 [1.0]}],
131 ”rhs”:

132 [150.0]},
133 {”name”:””,

134 ”type”:”EQ”,

135 ”lhs”:[

136 {”name”:”volume”,

137 ”stage”:2,

138 ”coefficient”:[1.0]},
139 {”name”:”volume”,

140 ”stage”:1,

141 ”coefficient”:[−1.0]},
142 {”name”:”hydro gen”,

143 ”stage”:2,

144 ”coefficient”:[1.0]},
145 {”name”:”hydro spill”,

146 ”stage”:2,

147 ”coefficient”:[1.0]}],
148 ”rhs”:[”inflow”,

149 0.0]},
150 {”name”:””,

151 ”type”:”EQ”,

152 ”lhs”:[

153 {”name”:”hydro gen”,

154 ”stage”:2,

155 ”coefficient”:[1.0]},
156 {”name”:”thermal gen”,

157 ”stage”:2,

158 ”coefficient”:[1.0]}],
159 ”rhs”:

160 [150.0]}]}
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1 {”0”:
2 {”stage”:0,
3 ”state”:{”inflow”:0.0},
4 ”successors”:

5 {”1”:0.3333333333333333,
6 ”5”:0.3333333333333333,

7 ”9”:0.3333333333333333}},
8 ”4”:

9 {”stage”:0,
10 ”state”:{”inflow”:0.0},
11 ”successors”:

12 {”1”:0.3333333333333333,
13 ”5”:0.3333333333333333,

14 ”9”:0.3333333333333333}},
15 ”8”:

16 {”stage”:0,
17 ”state”:{”inflow”:0.0},
18 ”successors”:

19 {”1”:0.3333333333333333,
20 ”5”:0.3333333333333333,

21 ”9”:0.3333333333333333}},
22 ”1”:

23 {”stage”:1,
24 ”state”:{”inflow”:0.0},
25 ”successors”:

26 {”2”:0.3333333333333333,
27 ”6”:0.3333333333333333,

28 ”10”:0.3333333333333333}},
29 ”5”:

30 {”stage”:1,
31 ”state”:{”inflow”:50.0},
32 ”successors”:

33 {”2”:0.3333333333333333,
34 ”6”:0.3333333333333333,

35 ”10”:0.3333333333333333}},
36 ”9”:

37 {”stage”:1,
38 ”state”:{”inflow”:100.0},

39 ”successors”:

40 {”2”:0.3333333333333333,
41 ”6”:0.3333333333333333,

42 ”10”:0.3333333333333333}},
43 ”2”:

44 {”stage”:2,
45 ”state”:{”inflow”:0.0},
46 ”successors”:

47 {”3”:0.3333333333333333,
48 ”7”:0.3333333333333333,

49 ”11”:0.3333333333333333}},
50 ”6”:

51 {”stage”:2,
52 ”state”:{”inflow”:50.0},
53 ”successors”:

54 {”3”:0.3333333333333333,
55 ”7”:0.3333333333333333,

56 ”11”:0.3333333333333333}},
57 ”10”:

58 {”stage”:2,
59 ”state”:{”inflow”:100.0},
60 ”successors”:

61 {”3”:0.3333333333333333,
62 ”7”:0.3333333333333333,

63 ”11”:0.3333333333333333}},
64 ”3”:

65 {”stage”:3,
66 ”state”:{”inflow”:0.0},
67 ”successors”:{}},
68 ”7”:

69 {”stage”:3,
70 ”state”:{”inflow”:50.0},
71 ”successors”:{}},
72 ”11”:

73 {”stage”:3,
74 ”state”:

75 {”inflow”:100.0},
76 ”successors”:{}}}
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3.A.2 MSP Problem Formulations

Simplified Hydro-thermal Power Production Problem

min
T∑
t=1

cft ∗ thermal gent

s.t. volumet = volumet−1 − hydro gent − spillt + ξ, ∀t = 1, . . . , T

hydro gent + thermal gent = Dt, ∀t = 1, . . . , T

volumet = Ct, ∀t = 1, . . . , T

volume0 = 200,

volumet, hydro gent, thermal gent, spillt ≥ 0

(3.1)

where, t: indexes the stages (T = 3 planning horizon), volumet: reservoir storage level

at time t, thermal gent: thermal power generated at time t, hydro gent: hydropower

generated at time t, spillt: water spilled at time t, Dt: power demand at time t, Ct:

reservoir capacity at time t,

Airconditioning Production Problem

A manager of a factory seeks a production plan for producing air-conditioners over a

planning period T . During standard working hours, the factory can produce X units

per month at a deterministic cost of p/unit. Unlimited overtime can be scheduled,

however the cost increases to I per unit during those hours. In the first month, there is

a known deterministic demand of D units. However, in each of months two and three,

there is an equally likely demand of either ξ1 or ξ2 units. Air-conditioners can be stored

between months at a cost of S/unit, and all demands must be met.

min
T∑
t=1

xt + Iwt + Syt

s.t. xt ≤ X ∀t = 1, . . . , T

xt + wt + yt−1 − yt = dt ∀t = 1, . . . , T

y0 = 0, d1 = D1, d2, . . . , dT ≤ ξ

(3.2)
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Electricity Planning Problem

The following two-stage problem consists of determining the optimal capacity

investment in various P types of power plants so as to meet next period demands

for electricity. Four power plants are considered and they can operate in C different

modes j. The next period demand for each of the three modes are to be met. There is

a budget constraint and also a constraint on the minimum total capacity.

min
P∑
i=1

cixi +Q(x)

s.t.
P∑
i=1

aikxi ≤ b ∀k ∈ R

Q(x, ξ) =

min
P∑
i=1

C∑
j=1

pijyij

s.t.
C∑

j=1

yij ≤ xi ∀i ∈ P

P∑
i=1

yij ≤ ξ ∀j ∈ C

(3.3)

Newsvendor Problem

Suppose a newsvendor wants to purchase some newspaper today and sell it tomorrow

x. The demand for newspaper tomorrow, ξ, is uniformly distributed. The retail price

r, production cost p, and recycled value r of one newspaper are all deterministic. The

goal is to determine how many newspaper should the newsboy buy b today to maximize

profit.

max sx1 + ry1 − pb0

s.t. x1 + u1 = ξ

x1 + y1 = b0

bt, xt, yt, ut ≥ 0

(3.4)
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Semi-conductor Production Problem

Consider a wafer fab consisting of M tool types, that can process N types of wafers.

Each product (wafer type) goes through a subset of K processing steps, each of which

can be performed on one or more tool types. Let aijk denote the time (in hrs) required

by processing step k (1,...,K ) on wafer type j (1,...,N) on tool type i (1,...,M). We set

aijk = 0 if step k is not needed for wafer type j, and aijk = ∞ if step k is required for

wafer type j but cannot be performed on tool type i. Consider now a planning horizon

of T periods. Let us use variables xit, ujt, vijkt, and wjt, to denote the number of tool

type i purchased in period t (1,...,T), the shortage (in units of wafer starts) of wafer

type j in period t, the allocation of processing step k of wafer type j to tool type i

in period t, and the production of wafer type j in period t, respectively. In addition

to aijk, let us also consider the problem parameters αit, βjt, ci, and djt corresponding

to the (discounted) cost of tool type i in period t, the penalty cost of unit shortage in

wafer type j in period t, the per-period capacity (in hours) of one tool of type i, and

the per-period demand (in wafer starts) of wafer type j in period t, respectively. The

objective is to minimize total tool purchase costs and shortage penalties.

min
T∑
t=1

[
M∑
i=1

αitxit +
N∑
j=1

βjtujt]

s.t.
M∑
i=1

vijkt ≥ wjt ∀i, t ∈M,T

N∑
j=1

K∑
k=1

aijkvijkt ≤ ci ∀j, k, t ∈ N,K, T

wjt + ujt ≥ djt ∀j, t ∈ NT

xit, ujt, vijkt, wjt ≥ 0 ∀i, j, k, t ∈M,N,K, T

(3.5)

The Farmer’s Problem (Birge & Louveaux 2011)

Consider a European farmer who specializes in raising wheat, corn, and sugar beets

on his 500 acres of land. During the winter, the farmer wants to decide how much

land to devote to each crop. The farmer knows that at least 200 tons (T) of wheat
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and 240 T of corn are needed for cattle feed. These amounts can be raised on the

farm or bought from a wholesaler. Any production in excess of the feeding requirement

would be sold. Over the last decade, mean selling prices have been $170 and $150 per

ton of wheat and corn, respectively. The purchase prices are 40% more than this due

to the wholesaler’s margin and transportation costs. Another profitable crop is sugar

beet, which he expects to sell at $36/T; however, the European Commission imposes

a quota on sugar beet production. Any amount in excess of the quota can be sold

only at $10/T. The farmer’s quota for next year is 6000 T. Based on past experience,

the farmer knows that the mean yield on his land is roughly 2.5 T, 3 T, and 20 T

per acre for wheat, corn, and sugar beets, respectively. Furthermore, the farmer has

indeed experienced quite different yields for the same crop over different years mainly

be- cause of changing weather conditions. Most crops need rain during the few weeks

after seeding or planting, then sunshine is welcome for the rest of the growing period.

Sunshine should, however, not turn into drought, which causes severe yield reductions.

Dry weather is again beneficial during harvest. From all these factors, yields varying

20 to 25% above or below the mean yield are not unusual.

min
I∑

i=1

c⊤xi + EξQ(xi, ξ)

s.t.
I∑

i=1

xi ≤ 500

Q(xi, ξ) = min 238y1 − 170w1 + 210y2 − 150w2 − 36w3 − 10w4

s.t. ξ1x1 + y1 − w1 ≥ 200,

ξ2x2 + y2 − w2 ≥ 240,

w3 + w4 ≤ ξ3x3,

w3 ≤ 6000,

y, w ≥ 0,

(3.6)

where x1 = acres of land devoted to wheat, x2 = acres of land devoted to corn, x3

= acres of land devoted to sugar beets, w1 = tons of wheat sold, y1 = tons of wheat

purchased, w2 = tons of corn sold, y2 = tons of corn purchased, w3 = tons of sugar
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beets sold at the favorable price, and w4 = tons of sugar beets sold at the lower price.

Asset Management Problem (Birge & Louveaux 2011)

Suppose we wish to provide for a child’s college education Y years from now. We

currently have $b to invest in any of I investments. After Y years, we will have a

wealth that we would like to have exceed a tuition goal of $ G . We suppose that

we can change investments every υ years, so we have H = Y/υ investment periods.

For our this problem, we ignore transaction costs and taxes on income although these

considerations would be important in reality. We also assume that all figures are in

constant dollars.

min
∑
s

p(s)(qy(s)− rw(s))

s.t.
I∑

i=1

x(i, 1, s) = b, ∀s ∈ S

I∑
i=1

ξ(i, t, s)x(i, t− 1, s)−
I∑

i=1

x(i, t, s) = 0, ∀s ∈ S, t = 2, ..., H

I∑
i=1

ξ(i,H, s)x(i,H, s)− y(s) + w(s) = G,( ∑
s′∈St

J(s,t)

p(s′)x(i, t, s′)
)
−

( ∑
s′∈St

J(s,t)

p(s′)
)
x(i, t, s) = 0,

∀1 ≤ i ≤ I,∀1 ≤ t ≤ H,∀s ∈ S

x(i, t, s) ≥ 0, y(s) ≥ 0, w(s) ≥ 0,

∀1 ≤ i ≤ I,∀1 ≤ t ≤ H,∀s ∈ S

(3.7)

where J(s, t) = {s1, ..., st−1} such that s ∈ St
s1,...,st−1

.
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Generation Expansion Problem

Generation expansion aims to optimally choose the timing and levels of investments

to meet future demands of a given product. We illustrate the case of power plant

expansion for electricity generation: we want to find optimal levels of investment x of

generator i in a power plant to meet random future electricity demand D. We want

to minimize the cost of investment b, operation cost c, and penalty cost p of unmet

demand.

min
T∑
t=1

( I∑
i=1

bxit

)
ρt−1 + cgt + put

s.t. x0,t ≥ 0 ∀i ∈ I

I∑
i=1

xitCi ≥ gt ∀t ∈ T

ut ≥ Dξ − gt ∀t ∈ T

xit ≥ xit−1 ∀i ∈ I, t ∈ T

xjt ≤ xj+1t ∀j ∈ I − 1, t ∈ T

xit, ut, gt >= 0 ∀i ∈ I, t ∈ T

(3.8)

where xit = investment decision for generator i at stage t, gt = generation at stage t,

ut = unmet demand at stage t, Ci = capacity of generator i.

Flower Girl Problem

The flower girl problem is a variation of the news-vendor problem where a flower girl

buys flowers from a supplier at pR and sells them for pS. The flower-girl needs to buy

the flowers before she starts selling and whatever is left at the end of the day can be

stored to be sold the next day as old stocks. Any roses from the stock are thrown away.

The objective is to determine the number of flowers she should buy. ξt is the random

the demand at time t, It is the inventory at time t, Rt is the ordering decision, St is

the selling decision, Int is the amount of flowers put into storage in stage t, Outt is

the amount of flowers taken out of storage in stage t, Disct is the amount of flowers
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discarded in stage t, and b is the storage capacity available.

max pSS1 − pRR1 + E[pS
T−1∑
t=2

St − pR
T−1∑
t=2

Rt]

s.t. It+1 = cIt −Outt + Int −Disct, ∀t ∈ [1, ..., T − 1]

Outt +Rt−1 = St + Int, ∀t ∈ [2, ..., T ]

St ≤ min (It, ξt), ∀t ∈ [2, ..., T ]

It ≤ b, ∀t ∈ [2, ..., T ]

St, It, Rt ≥ 0, ∀t ∈ [2, ..., T ]

(3.9)

Inventory Planning Problem with Lead Time and Lost Sales

The classical inventory problem states that a company needs to satisfy demands of its

customer by determining the amount of products to buy in each stage while minimizing

the total cost of purchasing and holding inventory. In this more sophisticated version

of the classical inventory problem, we introduce lead time for ordering and receiving

bought products. The inclusion of lead time adds to the difficulty of the problem

especially as lead time increases.

max pssellt − pbbuyt − hIt

s.t. It = It−1 − sellt + buyt−LT , ∀t ∈ [2, ..., T ]

sellt ≤ ξ, ∀t ∈ [1, ..., T ]

sellt ≤ It, ∀t ∈ [1, ..., T ]

buyt ≤ b, ∀t ∈ [1, ..., T ]

It, sellt, buyt ≥ 0, ∀t ∈ [1, ..., T ]

(3.10)

ξt is the random the demand at time t, It is the inventory at time t, buyt is the ordering

decision, sellt is the selling decision, b is the maximum buying capacity, and LT is the

lead time of ordering to delivery.
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Figure 3.4: Real-world MSIP problems with various instance flavors and corresponding
specifications

3.1.3 Multistage Stochastic Integer Problems

These problems are sourced from various articles in the literature where the problem is

modelled as a multistage stochastic integer program and where the SDDiP algorithm

was employed to solve the problem. The class of MSIPs is also essential to tackle as

many real-world problems are modelled as such. Figure (3.4) show the problem instance

charts for MSIPs included in the MSPLib. Presently, although included in the MSPLib,

MSIPs are not included in the benchmarking for SDDP implementations.

Multi-stage Stochastic Unit Commitment Problem

The Unit Commitment Problem is one of the pivotal operational problems in power

systems. In Zou et al. (2018), a multi-stage, stochastic (MSUC) variation of this

problem is presented. MSUC aims to optimize the decision of the commitment schedule

of some generation units for a particular planning horizon. Given some deterministic

costs and a stochastic demand, the electricity load has to be satisfied as well as some

various physical constraints of the generators and the systems, such as generation

capacity, minimum up and down time, ramping limits, and the flow limit of transmission

lines.

Multistage Facility Location Problem

The facility location problems often involves uncertainties in input parameters such

as demands and costs, among others. Kim (2020) presents a problem related to
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models for facility location problems in the literature that include these characteristics.

These uncertainties are often modeled using either stochastic programming or robust

optimization, depending on whether probability distributions are known. (stochastic)

demand in each period is determined by the outcome of a series of binary events, where

the likelihood of outcomes is unknown.

Airline Revenue Management Problem

This problem is taken from Andris Moller, Werner Romisch, and Klaus Weber paper

titled “Airline Network Revenue Management by Multistage Stochastic Programming”

Möller et al. (2008). An airline company manages flights between three cities. In the

middle of the three cities, there is a hub serves as a transition point. The company

wants to determine the seat protection level for all itineraries, fare classes to maximize

the revenue over a planning horizon. Every stage corresponds to a departure date.

Cancellation rate is deterministic. Demand is random.

Combined Cooling, Heating, and Power (CCHP) System Scheduling

Problem

Combined Cooling, Heat, and Power (CCHP) system - a system producing electrical,

thermal, and cooling energies simultaneously - is seen as a reliable solution for its

resource energy efficiency increase and carbon and air pollutant emissions reduction

potentials. In order to further recognize these potentials for being more valuable, CCHP

must prove to be cost-effective in contrast to traditional systems. Seranilla (2019)

models an MSIP to solve for an optimal and cost-efficient operational strategy of a

CCHP system. The MSIP aims is to provide the optimal load factor - the utilization rate

of the CCHP - which minimizes the total operational cost of producing the electrical,

thermal, and cooling demands of the client. The MSIP was designed to linearize the

electrical and thermal efficiency functions of a CCHP, which is a quadratic equation,

by discretizing its corresponding load factor. A numerical study was conducted in a

data center in Italy to evaluate the proposed CCHP system model.



Chapter 4

Optimizing Vaccine Distribution in

Developing Countries under

Natural Disaster Risk

For many developing countries, COVID-19 vaccination roll-out programs are not only

slow but vaccination centers are also exposed to the risk of natural disaster, like

flooding, which may slow down vaccination progress even further. Policy-makers

in developing countries therefore seek to implement strategies that hedge against

distribution risk in order for vaccination campaigns to run smoothly and without delays.

We propose a stochastic-dynamic facility location model that allows policy-makers to

choose vaccination facilities while accounting for possible facility failure. The model is

a multi-stage stochastic variant of the classic facility location problem where disruption

risk is modelled as a binary multivariate random process - a problem class that has not

yet been studied in the literature.

To solve the problem, we propose a novel approximate dynamic programming

algorithm which trains the shadow price of opening a flood-prone facility on historical

data, thereby alleviating the need to fit a stochastic model. We trained the model

using rainfall data provided by the local government of several major cities in the

Philippines which are exposed to multiple flooding events per year. Numerical results

demonstrate that the solution approach yields approximately 30-40% lower cost than a
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baseline approach that does not consider the risk of flooding. Recommendations based

on this model were implemented following a collaboration with two large cities in the

Philippines which are exposed to multiple flooding events per year.

4.1 Introduction

The coronavirus pandemic of 2019 (COVID-19) demonstrated the vulnerability of

public health safety, with approximately 578 million cases and 6.4 million deaths

worldwide as of August 2022 (WHO 2022). The development of vaccines against

the virus substantially altered the course of the pandemic. As of August 2022, 12.3

billion doses of vaccines have been administered all over the world (WHO 2022). The

distribution of these vaccines posed major supply chain challenges for pharmaceutical

supply chains and local governments. Since most COVID-19 vaccines are produced and

distributed in developed countries, only limited and intermittent vaccine supply reached

non-producing, developing countries where vaccination roll-outs are already expected

to take longer than in developed countries.

The roll-out of COVID-19 vaccines was further delayed for reasons more than only

a restricted supply. Other factors like natural disasters continuously daunt these

countries, among them hydro-meteorological events (e.g., flooding, landslides, and

storm surges), seismic events (e.g., earthquakes), and volcanic eruptions. Particularly,

the absence of adequate infrastructure, catastrophe emergency preparedness, and

response systems makes developing countries more vulnerable to natural disasters

(Ritchie & Roser 2014) and puts vaccination campaigns in peril. For instance, in early

December 2021, Typhoon Rai hit central Philippines with catastrophic thunderstorms

missing year-end COVID-19 vaccination target due to delayed schedules and expired

vaccines (Philstar 2021). Similarly, in January 2022, deadly floods and landslides

caused by torrential rains hit the city of Sao Paulo, Brazil which cancelled the

scheduled COVID-19 vaccination campaigns (The Economist 2022). These factors drive

policy-makers in developing nations to seek decision support for planning for vaccination

campaigns as well as to preparing those campaigns against the risk of natural disaster

risk to prevent delays and ultimately save lives.
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In this article, we report on models and methods developed as part of Project

FALCON, which is a collaboration of the authors with the local government of Cagayan

de Oro in the Philippines, for planning the roll-out of the COVID-19 vaccination

campaign. Cagayan de Oro is a large city on the island of Mindanao that experiences

multiple torrential rains and flooding events every year (CDO 2022). Flooding poses a

serious threat for successfully orchestrating large-scale vaccination campaigns. The

optimal location of vaccination centers and allocation of recipients must therefore

account for facility failure due to flooding as well as the resulting cost of relocation

and redistribution.

The optimization problem underlying FALCON is a stochastic-dynamic facility

location model whose optimal decision policy chooses opening of vaccine facilities while

accounting for possible facility failure. The joint risk of facility failure is captured by a

multivariate binary random process. As the model entails solution of a high-dimensional

stochastic-dynamic program, FALCON uses approximate dynamic programming to

optimize the decision policy. Numerical investigations show a reduction of vaccination

roll-out operational cost of approximately 30-40% when compared to a greedy approach

that ignores the risk of flooding.

4.1.1 Literature Review

On modelling approaches

Choosing vaccination centers is essentially an instance of the well-known facility location

problem (FLP). The classic FLP aims at selecting facility locations to meet customer

demand, at minimal cost. See Owen & Daskin (1998), Melo et al. (2009), and Snyder

(2006) for literature reviews. FLP has also been invaluable in solving optimization

problems in healthcare and humanitarian logistics, including vaccine distribution. For

example, Bertsimas et al. (2022) discussed the location of COVID-19 mass vaccination

facilities in the United States. We refer the reader to Duijzer et al. (2018) for an

extensive literature discussion on vaccine supply chains and to Ahmadi-Javid et al.

(2017) for surveys on healthcare facility location.

Another important stream of literature is on emergency facility location (EFL)
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problems, i.e., optimization of facility locations in the face of natural disasters (Li

et al. 2011). Furthermore, EFL relates closely to another stream of literature on

reliable facility location (RFL) problems. RFL deals with optimal decisions considering

failure of a facility due to disruption (e.g., natural disasters, blackouts, fire, etc).

A comprehensive review is presented in Snyder et al. (2016). RFL models require

knowledge of the occurrence of disruptions which is a difficult undertaking in practice.

Thus, the majority of works on RFL models largely assume that the probability

distribution of disruptions is known. Nonetheless, the emergence of robust optimization

(RO) dealt with the limited information on the uncertainty of disruptions. For example,

Lu et al. (2015) introduce a model that allows disruptions to be correlated with

an uncertain joint distribution and minimize the expected cost under the worst-case

distribution with given marginal disruption probabilities. Lim et al. (2013) also tackled

facility location decisions with random disruptions and investigated the impact of

misestimating the disruption probability using a stylized continuous location model.

Additionally, recent work of Cheng et al. (2021) adopts a two-stage robust optimization

method, where facility location decisions are made here-and-now (first stage) and

wait-and-see (second stage) are entail reassigning customers after revealing information

on facility availability.

However, most papers in the literature only consider static and two-stage cases.

Furthermore, in contrast to the abundant studies on deterministic multi-period setting,

there are only a limited number of works that formulate facility location problems

as multi-stage stochastic programs, and all of them only consider stochastic demand

but not facility disruption. Some multi-stage formulations with stochastic demand are

presented in Nickel et al. (2012), Hernandez et al. (2012), and Albareda-Sambola et al.

(2013). To the best of our knowledge, there exist no prior work specifically on multistage

stochastic facility location with facility disruption that accounts for the risk of facility

failure.

On solution methodologies

We model the multistage stochastic facility location problem (MSFLP) under risk

of disruption as a multistage stochastic integer program (MSIP). MSIP is a general
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framework for sequential decision making under uncertainty, when the decision space

is high-dimensional, subject to various constraints, and randomness in parameters is

modeled by a general stochastic process. The class of MSIP problems are commonly

found in various fields such as energy, finance, operations, and logistics (Römisch

& Schultz 2001). Nonetheless, due to its inherent complexity, advances in solution

methodologies for MSIP problems are limited. Notable methods exploiting extensive

MSIP formulation include scenario decomposition (Chen et al. 2002), Lagrangian

relaxation (Nowak & Römisch 2000), and progressive hedging (Gade et al. 2016).

However, these techniques do not scale well with large problem instances.

Another strand of research considers reformulating MSIPs as stochastic-dynamic

programming problems. To be able to approximate the cost-to-go function via cutting

planes, a common approach taken by many authors lies in solving a relaxed version of

the problem using stochastic dual dynamic programming (SDDP) which is the current

state-of-the-art to solve linear MSPs. In this approach, integrality is respected during

forward passes but relaxed during backward passes of the algorithm, e.g., Löhndorf et al.

(2013) and Flach et al. (2010). Cerisola et al. (2012) utilized McCormick envelopes to

approximate the bilinear relationship between variables, and Abgottspon et al. (2014)

proposed locally valid cuts. An SDDP extension to solve general MSIP problems with

binary state variables is the stochastic dual dynamic integer programming (SDDiP)

introduced in Zou et al. (2019). Although it can solve MSIP problem exactly, SDDiP

limits the stochastic process to be stage-wise independent or, as extended in Löhndorf

& Shapiro (2019), to follow a discrete Markov chain.

The algorithm proposed in this work, named shadow price approximation (SPA),

proceeds with a more straightforward way by approximating the value function by a

linear function. Unlike in dynamic programming, SPA views the parameters of the

value function as tunable parameters of the resulting policy. Tuning parameters to

improve decision-making in the face of uncertainty is widely used in practice to make

deterministic optimization problems more robust against a variety of risks, for example,

safety stock and buffers in production planning (Inderfurth 1995), upper and lower

limits for water reservoirs to capture rainfall uncertainty (Nápoles-Rivera et al. 2015),

and slack time to buffer uncertainty in job completion (Burdett & Kozan 2015).
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Although parameterization date back to early 20th century in the statistics

community, Ghadimi et al. (2020) formally introduced and proposed parametric

cost function approximation (CFA) - a method that introduces parameterization of

problem parameters either to the objective function or the constraints of the embedded

deterministic model of a lookahead policy. In parametric CFA, random parameters

are replaced by their expected values. Naturally, these problems suffer from overly

optimistic decisions and introduction of tighter constraints provides a hedge against

uncertainty. For example, Perkins III & Powell (2017) tackled an energy storage

problem to show an improvement over the basic deterministic lookahead model, directly

demonstrating the success of applying parametric CFA approach.

While SPA relies on tunable parameters just like CFA, both algorithms work with

different model formulations. Parametric CFA chooses parameters of a lookahead model

whereas SPA chooses parameters of a linear value function approximation thereby

working with a decomposed form of the decision problem. Additionally, SPA allows

for bootstrapping random parameters from real, historical data, hence alleviating the

need to fit a statistical model before solving the optimization problem. Instead, SPA

relies on cross validation to test policy performance, which is a widely known technique

in machine learning. This data-driven approach is not suitable for parametric CFA, as

CFA requires some form of prediction model at each forward-step to set the parameters

of the look-ahead model.

4.1.2 Contributions

The contribution of this work is two-fold: first, the proposed stochastic facility location

model as well as the developed solution method are novel to the literature on facility

location planning as we further explain below. Second, the work contributes to the

practice of vaccine distribution, as Project FALCON provided the scientific background

to nudge the central government to accelerate vaccination roll-out. The implementation

of Project FALCON led to Cagayan de Oro City hitting the inoculation target and

having one of the highest vaccination rates in the Philippines by the end of Year 2021

(DOH-10 2022).

Our work advances the literature in both methodological and managerial directions.
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First, the multi-stage variant of the proposed facility location problem has not yet been

explored in the literature, specifically the integration of disruption risks due to natural

disasters. We close this gap by formulating the problem as a multi-stage stochastic

mixed-integer program that captures the risk of natural disaster disruption by a binary

random variable that affects the state of each facility across time. We then develop

an approximate dynamic programming formulation where the value function of the

underlying stochastic-dynamic program is approximated by a function that is linear

in the state variables. We show that the optimal upper bound of this approximation

only depends on the terms associated with facility state variables. To the best of our

knowledge, this is the first time that this problem class is studied.

Furthermore, we propose an algorithm that trains the parameters of the linear value

function approximation by minimizing an upper bound on the optimal objective value.

Since said parameters behave like shadow prices of the non-anticipatory constraints

of the multistage stochastic program, we refer to this algorithm as shadow price

approximation (SPA). Intuitively, SPA is is simpler than parametric CFA as it does not

require formulation of a lookahead model but merely adds a small set of parameters to

the objective function of each subproblem. Using observations of the random variables

as direct inputs of a deterministic model and the current parameters of the linear value

function approximation, going forward in time, each deterministic subproblem is solved.

This can be viewed as a single-stage optimization in a rolling-horizon approach. With

the realized upper bound and the current shadow price parameters, SAP proceeds with

a generic update function to produce a new set of parameters of the linear value function

approximation until a stopping criterion is met. The optimization model and solution

algorithm make up the computational core of the decision support tool that has been

developed for Project FALCON.

Although being motivated by COVID-19 vaccination efforts, our model is adequately

general to adapt to other settings. Additionally, given the data-driven nature of the

solution method, any other form of disruption can be considered, such as blackouts,

hurricanes, draughts, etc. The proposed algorithm also has two major advantages over

alternative solution approaches for this problem class: (1) it can be easily integrated

with gradient-based and stochastic search methods that are widely used in machine
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learning and global optimization; (2) the algorithm does not require formulation of a

stochastic model but merely needs access to independent time series that can also be

real data.

The remainder of the paper is organized as follows: Section 2 introduces the

multi-stage facility location problem under uncertainty of facility failure. Section 3

presents an introduction to the SPA algorithm which optimally solves the multistage

stochastic facility location problem. Section 4 demonstrates the application of the model

subsuming the details of integrating rainfall as the random parameter and solution

method to large cities in the Philippines. Section 5 summarizes the results and provides

an outlook of the research directions.

4.2 Model Formulation

We formulate the facility location model with risk of disruption due to natural

disaster as a multi-stage, discrete-time, stochastic-dynamic optimization problem. We

decompose the planning horizon T into a sequence of time stages t ∈ {1, ..., T}. We

define state variable uit ∈ {0, 1} such that uit = 1 if facility i ∈ {1, . . . , F} is open at

stage t, and uit = 0 otherwise. The transition of the state variable from its value at

the beginning of the stage to its value the end of the stage is governed by the series of

constraints and relationships we detail below. In addition, we observe a realization of

the random variable ξit ∈ {0, 1} such that ξit = 1 if the vaccine facility i at stage t fails

due to natural disaster and ξit = 0 otherwise.

After the observation of the state variable uit and the random variable ξit at the

beginning of each stage, the values of the decision (or control) variables need to be

determined. The control variables are xit ∈ {0, 1} (binary variable with value 1 if

vaccine facility i should be opened at stage t and 0, otherwise) and zijt (allocation of

vaccinating population of district j ∈ {1, . . . , B} to vaccine facility i at stage t if vaccine

facility i is open). We formulate the corresponding multistage stochastic facility location

problem (MSFLP) model under risk of facility disruption due to natural disaster in
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Problem (5.5) - (5.10).

min
T∑
t=1

F∑
i=1

(fitxit+
B∑
j=1

dijzijt) (4.1)

s.t. uit = uit−1(1− ξit) + xit, ∀i = 1, . . . , F, t = 1, . . . , T (4.2)

B∑
j=1

zijt ≤ Ciuit, ∀i = 1, . . . , F, t = 1, . . . , T (4.3)

F∑
i=1

zijt = Pjt, ∀j = 1, . . . , B, t = 1, . . . , T (4.4)

uit, xit ∈{0, 1}, ∀i = 1, . . . , F, t = 1, . . . , T (4.5)

zijt ∈ Z, ∀i = 1, . . . , F, j = 1, . . . , B, t = 1, . . . , T (4.6)

The objective function (4.1) is a straightforward minimization of the total cost function

which includes the fixed cost fit of opening vaccine facility i at stage t and the travel

cost dij from district j to vaccine facility i. We need to keep track of the state of vaccine

facility i as affected by random variable ξit across each stage through constraints (4.2).

If at stage t− 1 the vaccine facility i is closed [open] and we decide to open [close] it at

stage t, then xit = 1 [xit = 0], the state at stage t will now become uit = 1 [uit = 0].

Constraints (4.3) state that the total capacity Ci will be assigned to vaccine facility

i only if it is available and should at least be equal to the total number of vaccinating

population zijt in vaccine facility i from district j at stage t. Constraints (4.4) state that

the population Pjt of district j must be distributed to vaccine facilities i. Constraints

(4.5) and (4.6) show the decision variable domains.

Let us formulate a more general version of MSFLP which Problem (5.5) - (5.10) is

an instance of. As in Yu et al. (2021), we use bold typeface symbols to denote variable
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vectors and matrices. Thus, we rewrite MSFLP in the following vector-matrix form,

min
ut,yt

∑
t∈T

(v⊤
t ut +w⊤

t yt) (4.7)

s.t. ut = ut−1(1− ξt) + yt, ∀t ∈ 1, . . . , T (4.8)

Ayt ≤ ut, ∀t ∈ 1, . . . , T (4.9)

Byt = b, ∀t ∈ 1, . . . , T (4.10)

ut ∈ {0, 1}F , yt ∈ ZF×B
+ , ∀t ∈ 1, . . . , T (4.11)

where ut, yt = (xt, zt) are the state and control variables respectively, v⊤
t ,w

⊤
t represent

the cost function, and matrices A ∈ RF×B, B ∈ RF×B, and b ∈ RB correspond

to the coefficients of constraints (5.7) and (5.8). This allows a more general setting

to accommodate any extension and variant of the MSFLP, e.g., where the objective

function depends on ut in contrast to Problem (5.5) - (5.10).

Recall that random variable ξt ∈ {0, 1} takes the value 1 if the facility fails at stage

t or 0 if it does not. To facilitate the formulation of the dynamic program, we introduce

a scenario-path based notation. We take one possible path of realizations from the

beginning to the end of the planning horizon, and denote it as a scenario path ω, i.e.,

ξω = (ξω1 , . . . , ξ
ω
T ). (4.12)

Accordingly, we use uω
t and yω

t to denote the state and decision vectors at stage t

under scenario path ω. Since the number of realizations is finite, let Ω be the support

set of ω with each realization ω ∈ Ω having probability p(ω) such that∑
ω∈Ω

p(ω) = 1. (4.13)

See for example Huang & Ahmed (2009) who make similar assumptions.
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4.2.1 Multistage Stochastic Integer Program (MSIP)

Formulation

We formulate the multistage stochastic facility location problem (MSFLP) as a

multistage stochastic integer program (MSIP), with the form

min
u1,y1∈X1

{
v⊤
1 u1 +w⊤

1 y1 + Eξ[2,T ]|ξ[1,1]

[
min

u2,y2∈X2(u1,ξ2)

{
v⊤
2 u2 +w⊤

2 y2 + . . .

+ Eξ[T,T ]|ξ[1,T−1]

[
min

uT,yT∈XT (u1:T−1,ξT )

{
v⊤
TuT +w⊤

T yT

}]
. . .

}]}
,

(4.14)

where, for notation simplicity, ut and yt are the state variables and control (i.e.,

local or stage) variables respectively, v⊤
t and w⊤

t are the corresponding cost at time

t ∈ {1, . . . , T}, and Xt is the feasible set.

In this setting, the stochastic data process is revealed as time goes on. This

stochastic data process (ξ1, . . . , ξT ) is modeled where ξ1 is deterministic and ξ2, . . . , ξT

will be revealed gradually in time. Thus, the history of the stochastic data process until

stage t is given by

ξ[t] = (ξ1 . . . ξt). (4.15)

This formulation allows the decision at each stage to adapt to the realized

uncertainty up to that stage. Thus, by solving MSFLP, we get a policy on which

facilities should be opened for each possible scenario.

4.2.2 Dynamic Programming Reformulation

We can further formulate (4.14) as a dynamic programming (DP) recursion. The

optimal value function at stage t, Vt(ut−1, ξt), is the optimal expected objective value

given state (ut−1, ξt), and assuming that optimal action will be taken at each stage t.

Vt(ut−1, ξt) = min
ut,yt

{v⊤
t ut +w⊤

t yt + Vt+1(ut, ξt) : Btut−1 +Atut +Ctyt = bt}, (4.16)

for t = 1, . . . , T where Vt+1(ut, ξt) is the expected value cost-to-go function,

Vt+1(ut, ξt) := E[Vt+1(ut, ξt+1)|ξt], (4.17)
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with VT ≡ 0.

A common assumption is for ξt to be Markovian, i.e., the distribution of ξt+1 only

depends on ξt rather than the whole history of the data process. Most time series

process, such as autoregressive models, can be cast as Markov processes by a sufficient

state space expansion.

Finally, let us define the optimal policy as

π∗(ut−1, ξt) = argminut,yt
{v⊤

t ut +w⊤
t yt + Vt+1(ut, ξt) : Btut−1 +Atut +Ctyt = bt}

(4.18)

for t = 1, . . . , T in set Π as the policy which specifies the decision to make for all

possible states regardless of which state at stage t.

4.2.3 MSIP with Binary State Variables

Each subproblem of MSFLP given realized ξt at stage t is a deterministic mixed-integer

program. With this, we make the following assumption:

Assumption 4.1. The objective function z =
∑

t∈T (v
⊤
t ut +w⊤

t yt) in each realization

ξt is an affine function in ut and yt, and the constraint set Xt is a nonempty compact

mixed integer polyhedral set.

Mathematically, mixed-integer programs (MIPs) are non-convex. Therefore, given

integer local variables, the value functions Vt(ut−1, ξt) and expected cost-to-go functions

V t+1(ut, ξt) at stage t are both non-convex with respect to the state variables. Although

it is impossible to formulate convex polyhedral representations of the non-convex value

functions that are tight at the evaluated state variable values, real-valued function of

binary variables can be represented exactly by a convex polyhedral function. Zou et al.

(2019) also made similar assumption.

Remark 4.1. The value functions, Vt(ut−1, ξt), are convex in state variable ut ∈ {0, 1}
if the optimal values of

min
ut,yt

{v⊤
t ut +w⊤

t yt + Vt+1(ut, ξt) : Btut−1 +Atut +Ctyt = bt} (4.19)
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are convex in ut, which is inherent with the fact that if ut ∈ {0, 1} and ut is

the convex combination of a set of binary vectors, then ut is a binary vector, for t =

1, . . . , T .

4.2.4 Value Function Approximation

Recall that the value functions Vt(ut−1, ξt) represent the minimal cost assuming optimal

action will be taken at stage t. For tractable and small problems with a finite state

space, backwards dynamic programming can be used to compute the optimal value

function. However, as the number of states grows exponentially with the dimensionality

of the state space, many real-world problems become computationally intractable. For

this reason, a large body of research is dedicated to methods of approximate dynamic

programming (ADP) which aims at using functions of lower complexity to approximate

the true value function.

There exist numerous strategies for value function approximation, such as

aggregation with lookup tables, basis functions, neural networks, etc. See Powell (2007)

for an extensive treatment of the subject.

More sophisticated techniques, often aim at exploiting structure of the underlying

optimization problem. For example, stochastic dual dynamic integer programming

(SDDiP) - the state-of-the-art algorithm to solve MSIP problems advanced in Zou

et al. (2019) - approximates the convex piece-wise linear expected cost-to-go function

by a set of (cutting) hyperplanes obtained from subgradients of the subproblems in

stages t = 1, . . . , T of a set of sampled outcomes. However, the algorithm requires the

random process to be either stagewise-independent or to follow a discrete Markov chain

(Löhndorf & Shapiro 2019).

In this article, we pursue a much simpler strategy by approximating the value

function by a linear function. In what follows, we will demonstrate how to find

parameters of a linear value function approximation that not only finds a good solution

to the MSFLP but moreover provides practitioners with actionable insights of the risks

and benefits of opening a facility under risk of disruption.
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4.2.5 Linear Value Function Approximation

We propose to approximate the convex expected value function, Vt+1(ut, ξt) by a linear

function,

Vt+1(ut, ξt) ≈ V̄t+1(ut, ξt;λ
u
t ,λ

ξ
t ,βt) = λu⊤

t ut + λξ⊤
t ξt + βt, t = 1, . . . , T − 1,

(4.20)

with λu
t , λ

ξ
t as slope vectors and βt as intercept. The vector λu

t defines the marginal

future cost of opening a facility in period t. We will later refer to this as the shadow

price of opening a facility, as it accounts for the possible future price that needs to be

paid later for re-opening facilities in case of failure.

In most cases, calculating the value function is just means to an end. What we

are truly interested in is finding an approximation of the optimal policy π∗. The

approximate policy that corresponds to the linear value function approximation (4.20)

is given by

π̄(ut−1, ξ
ω
t ;λ

u
t ,λ

ξ
t ,βt) = argminu,y≥0{ v⊤

t ut +w⊤
t yt + V̄t+1(ut, ξ

ω
t ) :

Btut−1 +Atut +Ctyt = bt},
(4.21)

for t = 1, . . . , T , where ω ∈ Ω is a scenario path of a stochastic process with its

support set Ω.

With this policy, we can now define an upper bound on the optimal objective value

of the MSFLP,

z̄(π̄) = Eω∈Ω[1,T ]
[z̄(π̄)] (4.22)

where (suppressing the dependence of π̄ on λu
t , λ

ξ
t , and βt)

z̄(π̄) =
T∑
t

(
v⊤
t ut(π̄(ut−1, ξ

ω
t )) +w⊤

t yt(π̄(ut−1, ξ
ω
t ))

)
. (4.23)

If all we are interested in is finding parameters (λu
t ,λ

ξ
t ,βt) that provide the lowest

upper bound, we can further simplify the policy by removing the terms λξ⊤
t ξωt and βt

from the right-hand side of (4.20). This is supported by the following proposition.
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Proposition 4.1. For a linear value function approximation, V̄t(·;λu
t ,λ

ξ
t ,βt) that is

affine in state variables ut−1 and random variables ξt, it holds that the optimal upper

bound is independent of parameters λξ
t and βt.

Proof. By Equations (4.22) and (4.23), we obtain an upper bound z̄ by choosing

parameters of approximate policy π̄, i.e., slope vectors λu
t , λξ

t , and intercept βt.

Approximate policy π̄ is defined by state variables ut−1 and local variables yt as shown

in Equation (4.21). Now, let us denote

π̄′(ut−1, ξ
ω
t ;λ

u
t ,λ

ξ
t ,βt) = argminu,y{v⊤

t ut +w⊤
t yt + λu⊤

t ut + λξ⊤
t ξωt + βt︸ ︷︷ ︸

objective function offset

:

Btut−1 +Atut +Ctyt = bt}, ∀t = 1, . . . , T.

(4.24)

Random variable ξωt enters the approximate expected cost-to-go function V̄t+1(·) as
an offset to the objective function. Hence, it does not effect the optimal choice of ut−1

and yt in (4.24). Therefore, (4.24) can be simplified to

π̄′(ut−1, ξ
ω
t ;λ

u
t ) = argminu,y{v⊤

t ut +w⊤
t yt + λu⊤

t ut : Btut−1 + Atut + Ctyt = bt},
(4.25)

for t = 1, . . . , T , where the right-hand side is independent of λξ⊤
t and βt. Thus, for

any realization of random variable ξωt , policy π̄′ yields the same values. Accordingly, it

holds that

π̄′(ut−1, ξ
ω
t ;λ

u
t ) = π̄(ut−1, ξ

ω
t ;λ

u
t ,λ

ξ
t ,βt), ∀t = 1, . . . , T. (4.26)

Hence, by equivalence of approximate policies π̄ and π̄′, the upper bound z̄(π̄)

remains unchanged, and it follows that upper bound z̄(π̄) ≡ z̄(λu
t ), for t = 1, . . . , T , is

independent of parameters λξ
t and βt, which concludes the proof. □

Proposition 1 tells us that parameters λξ
t and βt do not influence the optimal upper

bound, which implies that we can set them to zero, effectively removing them from the

objective function. This enables us to simplify the functional form of the approximate

expected value function to

V̄t+1(ut) ≡ λu⊤
t ut, (4.27)

which is independent of the state of the stochastic process ξt, for t = 1, . . . , T .
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This claim is also supported in Powell (2007) where the notion of ‘post-decision

state variables’ is discussed as a basic strategy to overcome the curse-of-dimensionality.

Post-decision state variables are variables that capture the state of the system

immediately after a decision has been made but before new information (random event)

has arrived. Our linear value function approximation uses the post-decision state which

represent the state of the vaccination centers ut at the end of each period t, whereas

the pre-decision state would entail all decision variables of the sub-problem.

Furthermore, the removal of the dependency of the post-decision value on ξt

reduces the parametric search space, thereby improving algorithmic tractability. Since

Proposition 1 proves that the optimal upper bound is dependent only on ut, it implies

that we can set the parameters λξ⊤
t and βt to zero, effectively removing them from the

objective function thus reducing the search space to the domain of λu
t .

Remark 4.2. The proposed value function approximation grows linearly in the number

of time-coupling control variables and the number of stages, and its parameters have a

natural economic interpretation as approximations of the shadow prices (dual values)

of the time-coupling balance equations that connect subproblems of successive stages.

The notion of shadow prices is closely related to the dual solution of linear

programming problems which is used by dual dynamic programming algorithms to

construct approximations of the cost-to-go function, e.g., Pereira & Pinto (1991),

Shapiro (2011), De Matos et al. (2015). For example, in SDDP, an approximation

of the expected cost-to-go function is constructed using Benders’ cuts. That is, in each

stage t, the expected cost-to-go function is replaced by variable θt+1 and constrained

by the set of linear inequalities (which are supporting hyperplanes for V̄t+1(·) at ut),

θt+1 ≥ δ̄
⊤
t+1,kut + ḡt+1,k, (4.28)

for k = 1, ..., K, where K is the total number of cuts. The coefficient δ̄t+1,k =

E[δt+1(ξt+1)] corresponds to the dual solution of the time-coupling constraints, also

known as the shadow price, which defines the slope of cut k or its gradient δ̄
⊤
t+1,k, and

β̄t+1,k is the intercept of cut k. Thus, the approximate cost-to-go function is replaced

by θt+1 in the objective function. Equation (4.28) is included in the set of constraints.
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Mapping this into Proposition 1, the expected duals in SDDP correspond to the

shadow prices in SPA, i.e.,

δ̄
⊤
t+1,k ≡ λu⊤

t and ḡt+1,k ≡ βt ≡ 0. (4.29)

Hence, λu
t can be viewed as both the dual values (shadow prices) as well as the slope

vector of the proposed linear value function approximation.

4.3 Solution Method

In this section, we describe a policy approximation algorithm to solve MSFLP. As the

algorithm effectively searches for the shadow prices defined by the linear value function

approximation, we refer to this method as shadow price approximation (SPA).

SPA trains the approximate cost-to-go function, V̄t+1(ut−1, ξt), ∀t = 1, . . . , T , of

the stochastic-dynamic program by directly interacting with a simulation model of the

resulting policy.

4.3.1 Dynamic Programming Formulation

We start our exposition of SPA by introducing a reformulation of the MSFLP to a

dynamic program using linear value function approximation (4.27). Following the

reformulation defined in (1.2), the value function of the dynamic program with a linear

value function approximation is given by

V̄t(ut−1, ξt;λ
u
t ) = min

uit,xit,zijt

F∑
i

(fixit +
B∑
j

zijtdij)︸ ︷︷ ︸
Total Operations Cost

+
F∑
i

λu
itui︸ ︷︷ ︸

Shadow Price

s.t. uit = ui,t−1(1− ξit) + xit, ∀ i = 1, . . . , F, t = 1, . . . , T,

Eqs. (5.7)− (5.10),

(4.30)

for t = 1, . . . , T , where λu
iT ≡ 0,∀i = 1, . . . , F .



114 Chapter 4. Optimizing Vaccine Distribution in Developing Countries

The resulting parametric policy that uses this reformulation is given by

π̄(ut−1, ξt;λ
u
t ) = argminuit,xit,zijt

F∑
i

(fitxit +
B∑
j

zijtdij) +
F∑
i

λu
ituit

s.t. uit = ui,t−1(1− ξit) + xit, ∀ i = 1, . . . , F, t = 1, . . . , T,

Eqs. (5.7)− (5.10).

(4.31)

Given a set of slope vectors, λu = (λu
i,1, . . . , λ

u
i,T−1),∀i = 1, . . . , F , and a process of

facility site failures, ξω = (ξωi,1, . . . , ξ
ω
i,T ), ∀i = 1, . . . , F , where ω ∈ Ω is a scenario path

of a stochastic process with its support set Ω, we can now use this policy to obtain an

estimate of the upper bound z̄(λu). By sampling N scenarios of possible site failures,

ξ̂n = (ξ̂ni,1, . . . , ξ̂
n
i,T ),∀i = 1, . . . , F , and assuming time-coupling variable un

i,0 ≡ 0 where

i = 1, . . . , F and n = 1, . . . , N , we obtain

z̄(λu) = N−1

N∑
n=1

ˆ̄zn(λu), (4.32)

where

ˆ̄zn(λu) =
∑
t∈T

[
v⊤
t ut(π̄(u

n
t−1, ξ̂

n

t ;λ
u
t )) +w⊤

t yt(π̄(u
n
t−1, ξ̂

n

t ;λ
u
t ))

]
(4.33)

is a realization of the total cost for given slope vectors λu.

4.3.2 Shadow Price Approximation

For the MSFLP, we can view the slope vector λu as the shadow price of opening

facilities. Thus, it accounts for the possible future price that needs to be paid later

for re-opening facilities after failure due to natural disaster. Therefore, the objective of

SPA is to choose a slope vector that minimizes the upper bound,

λu∗ = argminλu z̄(λu). (4.34)

Unfortunately, the mapping λu 7→ ˆ̄z is noisy and not convex, which entails solution

of a non-convex, stochastic optimization problem that is known to be computationally
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intractable in its general form. We therefore cast SPA as a policy search strategy that

can be supported by any method that is suitable for unconstrained (derivative-free)

global optimization.

The shadow price approximation algorithm works as follows: first, we initialize

shadow prices before the first iteration, i.e., λu,0
t = 0, ∀t = 1, . . . , T . Then, at each

iteration n, we randomly select a scenario path (ξ̂
n

1 , . . . , ξ̂
n

T ) and, going forward in

time, we solve Problem (4.31) as a single-stage optimization problem that contains

information on the cost-to-go via the shadow prices. The information that we carry

from stage t− 1 to stage t are the state variables uit which then gets affected by ξ̂nit and

the local decisions xit. We do this until we reach the end of the planning horizon T .

With the obtained realized upper bound ˆ̄zn and parameters λu,n−1, the shadow price

is updated using a generic update function Un(·, ·), supported by a global optimization

method, that returns a new set of trial shadow prices λu,n. The notion of a generic

update function is introduced in Powell (2007) which allows flexibility on the choice

of the global optimization method. In Section 4.4.2, we briefly present a few global

optimization methods that were tested to aide SPA with solving the MSFLP.

Finally, at the end of iteration N , the algorithm returns the best slope vector λu,N

that minimize z̄. This procedure is summarized in Algorithm 2.

An advantage of SPA over conventional stochastic and dynamic programming

methods is that generating scenarios can be as simple as drawing a bootstrap sample

from historical data. Bootstrapping alleviates the need to develop a stochastic model

and effectively turns SPA into a data-driven approximate dynamic programming

algorithm. When scenarios are generated by drawing from the empirical distribution

of historical data, cross-validation and out-of-sample testing follow naturally. As such

techniques are well-known to data scientists and practitioners of machine learning, SPA

may be particularly attractive for the large pool of practitioners that are already familiar

with such paradigms.
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Algorithm 2: Shadow Price Approximation

1 Initialize λu,0
t = 0, ∀t = 1, . . . , T

2 Set initial state u0 ≡ 0 and n = 1

3 while n < N do

4 Draw scenario (ξ̂n1 , . . . , ξ̂
n
T ) from the stochastic process

5 for t ∈ {1, . . . , T} do
6 (un

t ,x
n
t , z

n
t ) ← argmin

{∑F
i (fitxit +

∑B
j zijtdijt) +

∑F
i λu,n−1

it uit :

Eqs (2)-(6)
}

7 end for

8 ˆ̄zn ←
∑

t∈T

[∑F
i (fitx

n
it +

∑B
j znijtdijt)

]
9 λu,n ← Un(ˆ̄zn,λu,n−1)

10 n← n+ 1

11 end while

12 Return λu,N

4.4 Case Study

This section presents the construction of the rainfall-to-flood susceptibility mapping

to incorporate the variability of rainfall as a random disruption parameter of the

overall MSFLP model. This also briefly introduces the geographical and climactic

characteristics of Cagayan de Oro City, a large city in the Philippines, which serves

as the study case for this work. Section 4.4.2 briefly introduces the three different

global optimization methods chosen to aid the SPA algorithm. Finally, we discuss the

numerical results in Section 4.4.3 and cross-validation in Section 4.4.4. We programmed

our solution approaches as single threaded applications in Python 3.7 with GUROBI

9.1.1 as the solver of the mixed integer linear program. All computations were carried

out on a Linux 4.15 server with an Intel Xeon Gold 2.10GHz processor and 256 GB

RAM.
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4.4.1 Rainfall-to-Flood Susceptibility Mapping

In most developing countries, like the Philippines, one of the most detrimental natural

disasters is heavy rainfall resulting in flooding. During the height of the COVID-19

pandemic, in addition to immediate hazards when heavy rainfall and flooding occurs,

the probability of vaccination facilities becoming unavailable and inaccessible increases.

It is for this reason that we chose flooding, which cause the facility failure, as the natural

disaster risk to hedge from for the MSFLP.

In this work, the risk of failure of a vaccine facility i at time t is highly dependent

upon its state uit as triggered by the random disruption variable ξit. Thus, it is

beneficial to know flooding event information of vaccine facility i. We constructed

rainfall-to-flood susceptibility (RTFS) mapping of the different vaccination facilities

F , where we combine real rainfall data with geo-spatial flood risk map data to infer

whether a site is accessible or otherwise. The RTFS mapping provides the information

for when the vaccination facility i becomes at risk of failure, i.e., closed and inaccessible,

due to flooding at time t. Figure 4.1 shows the overall flowchart for the construction of

the RTFS mapping.

Case Study: Cagayan de Oro City, Philippines

We performed numerical experiments on the data from a large city in the Philippines,

Cagayan de Oro City, which experience heavy rainfall multiple times a year. Cagayan

de Oro City is located along the northern central coast of Mindanao Island. As the

capital city of the Province of Misamis Oriental, it serves as a regional center and hub for

Northern Mindanao region. The city has an estimated population of more than 728,402

as of 2020 census and is the 10th most populated city in the Philippines, divided into

eighty (80) districts (locally, barangays).

Dividing the city traverses the Cagayan de Oro River, one of the major rivers in

Mindanao. This catchment discharges huge amount of water during a heavy downpour,

even more so since the city is classified with a tropical monsoon climate. The city’s

flat slope and swallowing of the channel as it approaches the delta poses flood risks

to the residents of the city. In the last twenty years, the city suffered heavy losses

due to flooding (Mabao & Cabahug 2014). Thus, appropriate mitigation measure is
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imperative especially for long-term projects like the COVID-19 vaccination campaigns.

As of July 2021, the local government unit of Cagayan de Oro opens three (3)

vaccination facility sites. These three vaccine facilities currently cater to the first

few delegations of the vaccination. As the COVID-19 vaccination campaign ramps

up, the city’s local government plans to open more vaccine facilities to expedite the

herd immunity goal of inoculating at least 70% of the total population. The roster of

candidate vaccine facilities F were pre-selected to adhere to the standards of Philippines’

Department of Health (DOH). The specifics of the RTFS mapping construction take

into consideration this Cagayan de Oro City as an example.

RTFS map construction

The Philippine Atmospheric, Geophysical, and Astronomical Services Administration

(PAGASA), the national meteorological and hydrological services agency of the

Philippines, provided us with twenty-one (21) years of daily rainfall (in mm) data from

year 2000 until 2020. The twenty-one years of data induce the different scenario cases

S for the rainfall-to-flood susceptibility (RTFS) mapping of the vaccination facilities

F . One general assumption of this work is the aggregation of rainfall on a weekly

Figure 4.1: Rainfall-to-Flood Susceptibility (RTFS) Mapping Flowchart

basis. Given the twenty-one years of daily rainfall data from PAGASA, we aggregated

one week of data following the fifty-two-week calendar year. Thus, the decision epoch t

considered for this work is weekly over an entire year of planning horizon T = 52 decision
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weeks. It then follows that the decision to open and close facility i dynamically changes

on a weekly basis. This assumption is carefully escalated to the local government unit

and policy-makers noting that any vaccine facility may be instantaneously opened or

closed in a chosen week.

To aggregate the daily precipitations into weekly periods, the maximum rainfall

amount of week t is taken to represent the aggregated rainfall amount of week t. This

implies that if the maximum amount of rain on week t surpasses the rainfall-to-flood

threshold, the vaccine facility i will be closed and inaccessible for the entire week t.

The rainfall-to-flood threshold is identified through a series of circumspect investigation

using disaster risk geo-spatial information system (GIS) and the official guidelines of

PAGASA on rainfall advisory and classifications.

GeoRisk Philippines led by the Philippine Institute of Volcanology and Seismology

(PHIVOLCS) created HazardHunterPH - an online GIS tool which generates indicative

hazard assessment reports on specified locations in the Philippines (PHIVOLCS &

DOST 2019). HazardHunterPH maps the entire Philippines and shows different layers

of geographical hazards, e.g., seismic (earthquakes), volcanic, and hydro-meteorological

(flood, landslides, and storm surges). Figure 4.2 shows a map of Cagayan de Oro City

with the overlaid flood hazard map. The different hues of violet represent the flood

susceptibility of an area ranging from Very High Susceptibility in darker hue to Low

Susceptibility in lighter hue. This signifies that if a vaccine facility i is located in a Very

High Susceptibility zone, vaccine facility i is easily flooded more than vaccine facilities

located in Low Susceptibility zones.

We also mapped the set of candidate vaccine facility sites F , as provided by the local

government unit, to distinguish the flood susceptibility of each site location shown in

Figure 4.2. For a more thorough investigation, a further examination is conducted with

the Engineering Resource Center of Xavier University - Ateneo de Cagayan, a leading

university of Cagayan de Oro City, on the flood susceptibility level of the routes leading

to the different facilities. The assumption on this further examination insinuates that

if routes leading to the vaccine facility i has a higher flood susceptibility level, the

chosen susceptibility level of facility i will be lifted to the next (higher) susceptibility

level. This alludes logically that even though vaccine facility i is not flooded, it will be
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Figure 4.2: Candidate vaccine facility sites of Cagayan de Oro City, Philippines with
overlaid flood hazard map

inaccessible due to the routes leading to it being flooded.

After assigning the prominent flood susceptibility level of each vaccine facility

site i, the rainfall-to-flood threshold is identified for each site. Nonetheless, the

rainfall-to-flood susceptibility (RTFS) mapping leaves room for modeling error. Thus,

we have created three conservativity scenario cases that vary the translation of

precipitation amounts to whether a facility is flooded or not. These scenario cases

are based on the prominent flood susceptibility level and the official rainfall advisories,

classification, and measurement of PAGASA (DOST-PAGASA 2019). The cases S =

{Low,Medium,High} are instituted from the different ranges of rainfall measurement.

Each case s take the level of conservativity of the ranges of rain measurement. High

conservativity case takes the minimum value, the Medium conservativity case takes the

median value, and the Low conservativity case takes the maximum value of the rainfall

measurement range. The inclusion of the different cases S parlays more robustness in

the decision-making process of the study. This would also allow a more encompassing
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solution to understand in depth the different plausibilities played by natural disasters.

The different RTFS mapping cases were transformed into zeros and ones to show

the value of the random variable ξit of each vaccine facility i at time t. Recall that

if a vaccine facility site i flooded at time t, i.e., ξit = 1, then the facility is disrupted

and unavailable, otherwise, ξit = 0. Each of these three different RTFS mapping

conservativity cases contain the twenty-one years scenarios with fifty-two weeks, one

for each decision epoch t of the entire planning horizon T .

Finally, it should be noted that the steps carried out on the construction of the

RTFS mapping for Cagayan de Oro City can be utilized to create RTFS mapping for

other cities in other developing countries. Thus, distinct differences on geophysical and

geographical characteristics of the city should be assessed thoroughly to provide more

conclusive inference on the decision planning. In Section 4.4.4, another large city in

the Philippines, General Santos City, served as a validation test data set for the SPA

algorithm and the construction of the RTFS mapping.

4.4.2 Global Optimization Methods

In this section, we briefly introduce three different global optimization methods used for

the numerical experiments of solving MSFLP using the SPA algorithm. Although, in

all fairness, the SPA algorithm may be aided by any global optimization methods, these

three methods and algorithms were chosen as they seem to perform well in the literature

in comparison to other methods. For the MSFLP, the global optimization method tunes

the shadow prices of flood-prone facilities, λu
it, iteratively through evaluations of the

objective function.

Stochastic Gradient Descent

Stochastic gradient descent (SGD) is an iterative method to optimize a differentiable

or subdifferentiable objective function (Bottou & Bousquet 2011). At large, it is a

stochastic approximation of the gradient descent algorithm, as it reinstates the actual

gradient, i.e., computed from the total set of data, by an estimate computed from a

subset of the data as randomly chosen. SGD aids notably in optimization problems with
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high dimension in reducing the computational strain which achieves faster iterations as

offset for a lower convergence rate.

We use SGD to find the best shadow cost λu
it of each facility i in each period

t. As the optimization problem is non-differentiable, we use the post-decision state

of each facility, uit, as the subgradient. The learning rate is set by the widely used

adaptive gradient algorithm (AdaGrad) - a popular enhancement to calculate step-sizes

dynamically (Ward et al. 2018). The performance of SGD to solve the MSFLP via SPA

is summarized in 4.4.3.

Bayesian Optimization

Bayesian Optimization (BayOpt) is an algorithm that optimizes objective functions

which are non-differentiable and expensive to evaluate (Pelikan et al. 1999). It is

befitting for optimization problems with continuous domains of around 20 dimensions

and is stochasticity-tolerant in function evaluations. BayOpt constructs a surrogate

for the objective function and quantifies the stochasticity in that surrogate using a

Bayesian machine learning technique, Gaussian process regression, and then uses an

acquisition function defined from this surrogate where decision to sample is made.

As a black box optimization algorithm, BayOpt views the MSFLP as a function,

with λu
it as function arguments and the resulting total cost as the (random) function

value. BayOpt iteratively tunes λu
it, and after a finite number of function evaluations

returns λu
it that minimize the function on average. For our numerical experiments, we

use the BayOpt implementation provided by Nogueira (2014).

Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

The covariance matrix adaptation evolution strategy (CMA-ES) is a powerful stochastic,

derivative-free, and population-based search method to solve difficult numerical

optimization problems, e.g., non-convex, non-smooth, noisy problems, etc. in

continuous domain. It is considered as the state-of-the-art in evolutionary computation

and adopted in multiple applications and fields. See Hansen (2006) for a detailed

review. CMA-ES optimizes a continuous black-box function, i.e., the problem’s

objective function, f : Rn −→ R by sampling from a non-stationary multivariate normal
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search distribution N (m(g), σ(g)2 , C(g)), with mean m(g), standard deviation σ(g), and

correlation matrix C(g). Here, the mean serves as the initial guess and the standard

deviation as initial trust region. The algorithm iteratively adjusts the parameters of

this distribution based on successful search steps.

Like the former two methods, we use CMA-ES to find the shadow cost of opening

a facility. However, for the algorithm to converge quickly, it is imperative to define a

good trust region by setting σ(g). In our setting, this is equivalent to setting step-size

σ parameter which is multiplied with the shadow cost. Online Appendix B shows the

sensitivity of changing the choice of step-size σ parameter on the convergence of the

algorithm and the quality of its solution. A good rule-of-thumb in choosing initial value

step-size σ parameter is also presented in online Appendix B. We use the package in

Hansen et al. (2019) for the numerical experiments.

4.4.3 Numerical Results

In this section, we show the results of the numerical experiments of employing SPA

with different global optimization methods to solve MSFLP with failure under risk

of flooding. We have provided the local government unit with a spreadsheet tool

containing vaccine facility information sheet, population information sheet, and distance

information sheet which we used for the numerical experiment. Online Appendix A

shows these three different spreadsheets. The RTFS mapping for Cagayan de Oro City,

discussed in Section 4.4.1, is also adopted.

Initialized with shadow prices λu,0 ≡ 0 tuned iteratively through the SPA algorithm,

Figure 4.3 shows the evolution of the optimal objective function value ˆ̄zn(λu), as

computed in Equation (4.33), for the three conservativity cases discussed in Section

4.4.1 using three global optimization methods.

It is notable that both global and derivative-free optimization methods, CMA-ES

and BayOpt, perform better than SGD. Both CMA-ES and BayOpt yield approximately

30-40% lower cost than a baseline approach that does not consider the risk of flooding,

i.e., where λu
it = 0,∀t = 1, . . . , T, i = 1, . . . , F , across the different conservativity cases..

With the deterministic approach where risk of flooding is neglected, the total cost of

the year-long vaccine distribution roll-out will be 47,678,488.81 (in Philippine Peso).
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Figure 4.3: Evolution of the objective function value in three different cases - Low
(top-left), Medium (top-right), and High (bottom) conservativity case for Cagayan de
Oro City using three global optimization methods.

On the other hand, there will be a savings of 15,661,805.95 (in Philippine Peso) when

we include the risk of flooding in the optimization model of the low conservativity case.

Without the inclusion of the risk of failure due to flooding, the chosen facilities will be

the same from the start until the end of the planning horizon.

Different parameters for both CMA-ES and BayOpt were investigated - varied

number of iterations (N = 10, 25, 50, 75, 100, 200, 500, 1000), various population size

and different M -values (M = 1, 1000, 5000, 30000, 50000, 100000, 200000, ..., 100000000)

for CMA-ES, and changing lower- and upper-bounds for BayOpt. We have observed

that the algorithm converged around N = 100 which prompted us to use N = 100

across the different scenario cases and the two different cities. The best parameter

configurations for both global optimization methods were tested multiple times to set

lower and upper 95% confidence interval as shown by the filled gaps in Figure 4.3 with



4.4 Case Study 125

the darker line as the mean.

Interestingly, the MSFLP solved by SPA with SGD does not constitute any decrease

of the objective function value across the three conservativity cases. The objective

function value maintains rather smoothly around an initial local optimum solution,

even with the use of AdaGrad step-sizes. We conjecture that the poor performance of

SGD is due to the non-convexity of the optimization problem, as our state variables,

ut, are binary, so that the resulting sub-gradients are misleading. There is an abundant

literature on various enhancements and improvements on the stochastic gradient descent

that might mitigate this issue, e.g., Khazaei & Powell (2018), Shuai et al. (2019), and

Ghadimi & Powell (2022), however, a deeper investigation is beyond scope and left to

future work. Nonetheless, this analysis demonstrates that basic SGD is not useful in

solving the MSFLP via SPA.

Figure 4.4: Chosen facilities when a) λu = 0 (left) and when b) λu = λu,N (right) for
Cagayan de Oro City.

Furthermore, Figure 4.4 shows the geographical maps of chosen optimal facilities

with and without hedging for the risk of disruption due to flooding of High

conservativity case. As demonstrated, our solution approach lead to a reduction of

30-40% of the overall vaccination roll-out operation cost in contrast to ignoring the risk

of natural disaster occurrence. Figure 4.4 shows that opening more facilities reduces

the total cost of the vaccination program of the city. The choice of opening facilities,

without hedging for the risk of flooding, may incur additional costs in the year-long
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vaccination campaign since these facilities will possibly be flooded. Thus, they need to

be re-opened multiple times across the planning horizon.

[a]

[b]

Figure 4.5: Heatmap of chosen facilities when a) λu = 0 and when b) λu = λu,N for
Cagayan de Oro City.

In Figure 4.4a (left), two out of six facilities are in the very high susceptibility

areas and two other facilities are in the moderate susceptibility areas. In contrast to

that, Figure 4.4b (right) shows that only one out of ten facilities are in the very high

susceptibility area and four are in the moderate to low susceptibility areas, and the rest

are in the safe areas.

Additionally, Figure 4.5 shows the heatmap of the average re-opening of each facility.

As observed, chosen facilities for policy when λu
it = 0, ∀t = 1, . . . , T, i = 1, . . . , F , Figure

4.5a tend to be re-opened more than the policy when λu
it = λu,N

it , ∀t = 1, . . . , T, i =

1, . . . , F , Figure 4.5b. Every time a facility is flooded and re-opened, a corresponding

cost is incurred. Thus, if there are more dark hues of violet in the heatmap for a policy,
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then more facilities are to be re-opened leading higher costs.

City 1

Instance SPA RunTime (s) SDDiP RunTime (s) Gap

Low 30572531.35 2626.2 34284648.51 2069.7 11.45%
Medium 33016231.32 2422.2 39246742.86 2244.3 17.24%
High 37550449.33 2556.8 41609220.07 2358.3 10.25%

City 2

Instance SPA RunTime (s) SDDiP RunTime (s) Gap

Low 16381368.74 382.6 21610651.43 606.6 27.52%
Medium 16920797.31 402.0 21978319.44 751.4 26.0%
High 20069987.71 386.4 22892157.47 897.7 13.14%

Table 4.1: Mean optimal objective function value comparison between shadow price
approximation (SPA) and stochastic dual dynamic integer programming (SDDiP)
algorithms for two cities (City 1 - Cagayan de Oro City and City 2 - General Santos
City) under three different susceptibility cases.

Moreover, given the data-driven characteristic of SPA, we used cross-validation to

avoid over-fitting. First, we executed 7-fold cross validation where the 21-year RTFS

data set was split into seven training sets. Then, we held out one subset at a time and

trained the algorithm on the remaining set to obtain λu,N
it , ∀t = 1, . . . , T, i = 1, . . . , F .

We then evaluated the model on the held-out subset using the obtained λu,N
it , ∀t =

1, . . . , T, i = 1, . . . , F . This step was repeated across all the different subset folds.

To assess the solution quality of our approach, we also solved the MSFLP problem

using the current gold standard in solving multistage stochastic integer programming

problems, stochastic dual dynamic integer programming (SDDiP). We use SDDiP with

so-called strengthened Bender’s cuts to obtain a tightened lower bound (Zou et al.

2019). This not only provides us with an implementable policy but also gives us an

optimality gap. We find that SPA is near-optimal and even outperforms the SDDiP

policy for all MSFLP instances. Table 4.1 reports the mean optimal objective function

value, run time, and gap between SPA and SDDiP algorithm for the two cities, City 1

- Cagayan de Oro City and City 2 - General Santos City (see Section 4.4.4 for further



128 Chapter 4. Optimizing Vaccine Distribution in Developing Countries

details), under study for all three susceptibility cases.

We refer the reader to Online Appendix C for a brief summary of SDDiP and further

numerical results on using it for solving the MSFLP problem.

Figure 4.6: Evolution of the objective function value in three different cases - Low
(top-left), Medium (top-right), and High (bottom) conservativity case for General
Santos City using three global optimization methods.

A more extensive collection of numerical experiments is left to future work. This

will involve different modelling choices and algorithmic parameters, e.g., N -iterations,

trust region, other gradient and gradient-free optimization methods, as well as more

extensive benchmarks against SDDiP, possibly considering recent enhancements, such

as the level bundle method and reformulations to obtain tighter cuts.

Finally, we were interested in how well our approach would perform on unseen data.

To achieve this, we tested our approach on data for another city in the Philippines,

General Santos City.
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4.4.4 Test/Validation Data Set: General Santos City

(Philippines) Instance

Akin to the first city, MSFLP solved with SPA algorithm yields lower cost,

approximately 30-40% lower, across the different cases, i.e., λu
it = 0, ∀t = 1, . . . , T, i =

1, . . . , F , for the second city. The evolution of the objective function value is shown in

Figure 4.6. Furthermore, Figure 4.7 shows the geographical map of chosen optimal

facilities with and without hedging for the risk of failure due to flooding of High

conservativity case.

Looking at Figure 4.7a (left), three vaccine facilities (Facilities 7, 11, and 25) are

chosen when the risk of flooding is not considered, i.e., λu
it = 0, ∀t = 1, . . . , T, i =

1, . . . , F . However, when hedging from flooding risks, eight new vaccine facilities

(Facilities 1, 3, 5, 8, 14, 18, 20, and 24) are chosen, shown in at Figure 4.7b

(right). Although this is counter-intuitive, the eight new vaccine facilities with policy

λu
it = λu,N

it , ∀t = 1, . . . , T, i = 1, . . . , F are less risky of flooding in contrast to the policy

without hedging from natural disaster risk. Thus, lesser cost is incurred following the

risk-averse policy.

Figure 4.7: Chosen facilities when a) λu = 0 (left) and when b) λu = λu,N (right) for
General Santos City.
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4.5 Conclusion and Outlook

In this chapter, we consider a multistage facility location model for vaccine distribution

which integrates the risk of disruption or failure of a vaccine facility due to natural

disaster, i.e., in our setting flooding. We solve the multistage stochastic facility location

problem (MSFLP) by introducing a new algorithm, named shadow price approximation

(SPA), which aims at approximating the shadow price of opening flood-prone vaccine

facilities. The SPA algorithm proceeds by tuning the parameters of a linear value

function approximation which is present in the objective function of base optimization

model. For parameter tuning, it resorts existing methods for global optimization. SPA

bootstraps sample paths from real, historical data as the random process and uses

them as direct inputs of a deterministic model. Thereby, SPA alleviates the need to fit

a stochastic model in contrast to most of stochastic optimization methods.

Our approach yields approximately 30-40% lower cost than a baseline approach that

does not consider the risk of flooding, across different rainfall-to-flood conservativity

cases. An interesting and counter-intuitive insight from the results show that not only

are vaccine sites opened in less flood-prone areas, but also more vaccine sites are being

opened by the risk-aware solution. This intently reduces, not only the total cost of

operation of the vaccination campaign of the city, but also of its duration. Without

considering the risk of failure, the chosen facilities would be the same from start to

end of the planning horizon, which would lead to facilities re-opening that are prone to

failure. To further benchmark the proposed modelling and algorithmic approach, we

compare the solution obtained by the state-of-the-art methodology to solve multistage

stochastic integer program - Stochastic Dual Dynamic Integer Programming (SDDiP).

Our analysis shows that our solution is near-optimal for the considered instances

and even outperforms the SDDiP policy. The policy produced by SDDiP is clearly

suboptimal as the convergence of the algorithm stalls leaving a gap of approximately

20%.

Cagayan de Oro, a large city in the Philippines, which is prone to multiple

flooding events per year, provided the data instance for the vaccination campaign costs.

Weather and rainfall data were provided by a government agency and an industrial

weather company. After having presented the results to the local government of the
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aforementioned city, our study was used as a basis to request for the independent

handling of the inoculation process of the city and be provided with more vaccine

supply in order to achieve herd immunity as fast as possible. The request was approved

by the Chair of the COVID-19 Vaccine Cluster of the Philippines and by the end of Year

2021, Cagayan de Oro City posted one of the highest vaccination rates in the country

and the highest in the region. To test the validity of the model and the solution method,

another large city in the Philippines was tested.

Finally, there are several interesting directions to investigate for future research.

Future work could look at various vaccine distribution modelling approaches, e.g.,

a model with endogenous vaccine demand, inclusion of specific vaccine storing

requirements, and arrival of vaccine supply. These approaches, although beyond the

scope of this work, can be beneficial in proactive planning for future pandemics.

Flooding is not the only natural disaster that occur in different nations; tornadoes,

storm surges, landslides, earthquakes, and volcanic eruptions daunt all countries and

can disrupt long-term vaccination campaigns and other projects. In a future work, we

may extend the formulation of the model to include other modelling approaches and

other sources of natural disasters to expand the scope further. Various gradient- and

gradient-free optimization methods and other algorithmic tuning choices may also be

investigated further to explore capabilities of the shadow price approximation algorithm.

Appendix 4.A Spreadsheet Tool for Data

Collection

Through a spreadsheet tool we have created as a data template, the local governments

of the two cities provided us with the necessary cost parameters, e.g., fixed cost fi to

open vaccine facility i, distance cost dij from vaccine facility i to district j, capacity Ci of

each vaccine facility i, and the vaccinating population Pj of each district j. Appendix

A shows screenshots of the spreadsheet tool given to the local government for data

collection.
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Figure 4.8: Spreadsheet Tool for Data Collection

Appendix 4.B How different values of the step-size

σ parameter affects the objective

function value

We tested different choices of tunable step-size σ parameter, starting with σ = 1 and

increasing the value incrementally to an upper bound of the shadow price which equals

the total expected cost when λu
it = 0 and more. The following figures show how different

values of the step-size σ parameter (x-axis) affects the objective function value (y-axis).

As seen, there are optimum values of the step-size σ parameter which coincide to fit,

the fixed cost of opening a vaccine facility i at time t, or higher.

A rule-of-thumb and starting point where the best step-size σ parameter values

which yield the lowest possible cost starts when step-size σ parameter is at least as

high as fi, the cost of opening facility i, or higher. When the step-size σ parameter
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value is less than the opening cost fi, there is less, even possibly, no change from when

λu
it = 0. The step-size σ parameter value, for obvious reasons, affects the tuning of λit

as step-size σ parameter serves as the mean value of cost of failure of facility i due to

a natural disaster.

Figure 4.9: Different values of the step-size σ parameter in relation to the objective
function value for City 1 (top) and City 2 (bottom) under three different susceptibility
cases - Low (left), Medium (middle), and High (right).

Appendix 4.C Stochastic Dual Dynamic Integer

Programming (SDDiP)

The only general purpose approach to obtain a lower bound and optimal policy

of the MSFLP that is computationally tractable is stochastic dual dynamic integer

programming (SDDiP). SDDiP requires reformulation of the MSIP as dynamic program

which it then solves through approximating the cost-to-go function by a convex

piece-wise linear function. SDDiP converges to an optimal policy under the following

assumptions: (1) random model parameters follow a discrete distribution and are

stagewise independent; and (2) all time-coupling decision variables that enter the state

space of the dynamic program are binary variables.
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The MSFLP fulfils the requirement of binary states naturally, i.e., uit is 1 if facility i

is open at time t and 0, otherwise. However, in order to enforce stagewise independence,

we randomly shuffle the discrete distribution of rainfall outcomes at each stage, thereby

destroying the serial dependence of rainfall from one period to the next. Although the

true problem has serial dependence, this will allow us to compare SPA with SDDiP,

the latter providing us with an analytical lower bound. Figure (4.10) show convergence

of the upper and lower bound of for the two cities used in the case study under three

different conservativity cases.

Figure 4.10: Upper- and lower-bound convergence performance of SDDiP algorithm
with SPA (CMA-ES) algorithm for the MSFLP problem for City 1 (top) and City 2
(bottom) under three different conservativity cases - Low (left), Medium (middle), and
High (right).

As can be seen from Figure 4.10, SPA outperforms SDDiP across all instances. Not

only does SPA provide a significantly better policy than SDDiP, we moreover see that

SDDiP clearly struggles with closing the gap between the analytical lower bound and

the statistical upper bound.

After N = 100 iterations and relatively similar running time, even with the use of

strengthened Bender’s cuts - these are valid and finite cuts where a general Benders’

cut is tightened by solving a nodal mixed integer program subproblem with its solution

equal to a basic optimal LP dual solution (Zou et al. 2019) - the upper and lower bound
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of SDDiP still exhibit a gap of approximately 20%. This result not only demonstrates

that SPA is able to find near-optimal solutions to the multistage stochastic facility

location problem but it is also evidence of the immense difficulty of this problem class.

Future work will explore a more extensive collection of numerical experiments

involving different modelling choices and various algorithm parameters, e.g., different

choice of basis function, step-size σ parameters, other gradient and gradient-free

optimization methods, as well as more extensive cross validation. It may also be

worthwhile to benchmark the solution against recent enhancements, e.g., new cut

families of the SDDiP methodology.





Chapter 5

Multistage Stochastic Facility

Location under Facility Disruption

Uncertainty

In Chapters 2 and 3, we explored the numerous applications of SDDP and discussed the

enhancements and improvements made to the algorithm, including the introduction of

SDDiP. Subsequently, in Chapter 4, we focus our discussion on a real-world application

of optimizing vaccine distribution in two urban cities in the Philippines during the

COVID-19 pandemic under natural disaster risk.

In this chapter, we present a general model for multistage stochastic capacitated

facility location to address uncertainty arising from facility disruptions. Facility

disruptive incidents, such as power outages, industrial accidents, transportation and

infrastructure problems, as well as natural catastrophes, can result in extended periods

of facility failures. We propose two solution algorithms for this problem class: (1)

stochastic dual dynamic integer programming (SDDiP), the a state-of-the-art algorithm

for solving multistage stochastic integer programs, and (2) shadow price approximation

(SPA), an algorithm that utilizes trained parameters of the linear value function

approximation to minimize an upper bound on the optimal objective value. Through

numerical investigations, we demonstrate that SPA consistently outperforms SDDiP,

i.e. identifies superior policies, across all tested instances from the literature.
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5.1 Introduction

Facility location problem (FLP) is a well-studied problem in operations research that

aims to optimally locate facilities in order to provide services to and satisfy demands of

customers. There have been many variants of the classic FLP to respond to the diverse

needs of different industries and firms; among them are location models in a continuous

space (Hunagund et al. 2022), stochastic location models (Correia & Saldanha-da Gama

2019), location of hubs (Alumur et al. 2021), healthcare facilities (Ahmadi-Javid et al.

2017), public sector facilities (Haase et al. 2019), and location for humanitarian logistics

(Trivedi & Singh 2018).

In this article, we consider facility location decisions accounting for facility

disruptions. Incidents like power outages, industrial accidents, problems with the

transportation infrastructure, and natural catastrophes disrupt facilities and may cause

facility failures (Cheng et al. 2021). The impact of these events and the probability

of their occurrences are difficult to estimate due to lack of high-quality historical data

(Cui et al. 2010). Facility location decisions are long-term and difficult to rectify.

Thus, it is important to take into account future disruption uncertainties to assure that

facility location decisions are sufficiently robust to avert significant costs in the future.

Figure 5.1 shows the timeline of a multistage stochastic facility location under facility

disruption uncertainty.

Although there exists a stream of literature covering this subject - reliable facility

location models - they only cover single- and two-stage models (Snyder et al. 2016).

Some disruptions may occur multiple times across the planning horizon and some

facilities need to be re-opened when disruptions are overcome. To the best of

our knowledge, the multistage case of facility location under facility disruptions has

only yet been explored in Seranilla & Löhndorf (2023). We present the multistage

stochastic facility location problem under facility disruptions as multistage stochastic

mixed-integer program (MSIP).

On solution methodology aspect, this problem class has only been recently tackled

due to its complexity and difficulty to solve. Stochastic dual dynamic integer

programming (SDDiP) is the current state-of-the-art to solve MSIP problems presented

in Zou et al. (2019). It requires MSIP to be reformulated as a dynamic program
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Figure 5.1: Timeline of a multistage stochastic facility location under facility disruption
uncertainty.

and can obtain an optimal policy that is computationally tractable. A more novel

technique is the shadow price approximation (SPA). SPA trains the parameters of a

linear value function approximation by minimizing an upper bound on the optimal

objective value. We present numerical results of these two approximate dynamic

programming algorithms to solve an instance of the MSFLP.

5.1.1 Multistage Stochastic Integer and Dynamic

Programming Formulations

We start by introducing a multistage stochastic mixed-integer problem (MSIP) with

the form

min
u1,y1∈X1

{
v⊤1 u1 + w⊤

1 y1 + Eξ[2,T ]|ξ[1,1]

[
min

u2,y2∈X2(u1,ξ2)

{
v⊤2 u2 + w⊤

2 y2 + . . .

+ Eξ[T,T ]|ξ[1,T−1]

[
min

uT,yT∈XT (u1:T−1,ξT )

{
v⊤T uT + w⊤

T yT

}]
. . .

}]}
,

(5.1)
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where ut is the state variable and yt is a local variable appearing only at stage t ∈ T , v⊤t

and w⊤
t are the corresponding cost at time t ∈ 1, . . . , T , and Xt is the feasible set. The

stochastic data process (ξ1, . . . , ξT ) is modeled where ξ1 is deterministic and ξ2, . . . , ξT

will be revealed gradually in time.

We can now write down the dynamic programming (DP) reformulation of (5.1). The

optimal value function at stage t, Vt(ut−1, ξt), is the optimal expected objective value

given state (ut−1, ξt), and assuming that optimal action will be taken at each stage t.

Vt(ut−1, ξt) = min
ut,yt

{v⊤t ut + w⊤
t yt + Vt+1(ut, ξt) : Btut−1 + Atut + Ctyt = bt}, (5.2)

for t = 1, . . . , T where Vt+1(ut, ξt) is the expected value cost-to-go function,

Vt+1(ut) := E[Vt+1(ut, ξt+1)|ξt]. (5.3)

We assume ξt to be Markovian, i.e. the distribution of ξt+1 only depends on ξt

rather than the whole history of the data process, with VT ≡ 0. Finally, let us define

the optimal policy as

π∗(ut−1, ξt) = argminut,yt
{v⊤t ut+w⊤

t yt+Vt+1(ut, ξt) : Btut−1+Atut+Ctyt = bt} (5.4)

for t = 1, . . . , T in set Π as the policy which specifies the decision to make for all

possible states regardless of which state at stage t.

5.2 Multistage Stochastic FLP under Facility

Disruption (MSFLPD) Formulation

Following the formulations above, we propose the multistage stochastic facility

location model under facility disruption uncertainty as a multi-stage, discrete-time,
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stochastic-dynamic optimization problem, as follows

min
T∑
t=1

(
F∑
i=1

fityit+
F∑
i=1

B∑
j=1

dijxijt) (5.5)

s.t. uit = uit−1(1− ξit) + yit, ∀i = 1, . . . , F, t = 1, . . . , T (5.6)

B∑
j=1

xijt ≤ Ciuit, ∀i = 1, . . . , F, t = 1, . . . , T (5.7)

F∑
i=1

xijt = Djt, ∀j = 1, . . . , B, t = 1, . . . , T (5.8)

uit, yit ∈{0, 1}, ∀i = 1, . . . , F, j = 1, . . . , B, t = 1, . . . , T (5.9)

xijt ∈ N, ∀i = 1, . . . , F, j = 1, . . . , B, t = 1, . . . , T.

(5.10)

We define binary variable yit ∈ {0, 1} to denote facility opening decision and integer

variable xijt to denote service level as the local variables. We also define binary variable

uit ∈ {0, 1} as our state variable to track the state of facility i ∈ F at stage t ∈ T .

We denote uit = 1 if facility i ∈ {1, ..., F} is open at stage t ∈ {1, ..., T}, and uit = 0

otherwise. In addition, we observe a realization of the random variable ξit ∈ {0, 1} such
that ξit = 1 if the facility i at stage t is disrupted and ξit = 0 otherwise.

The objective (5.5) minimizes of the total cost which includes the fixed cost of

opening facility i ∈ {1, ..., F} at stage t ∈ {1, ..., T} and the transportation cost dij

from demand point j ∈ {1, ..., B} to facility i ∈ {1, ..., F}. The local variable decisions

and transition of the state variable are governed by a series of constraints. Constraints

(5.6) keep track of the state of facility i ∈ {1, ..., F} as affected by random variable

ξit across each stage. Constraints (5.7) impose assigning of capacity Ci if and only

if facility i ∈ {1, ..., F} is open. Constraints (5.8) impose that the total demand Djt

of customer j must be fully satisfied. Finally, constraints (5.9) and (5.10) show the

decision variable domains.
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5.3 Solution Methods

We present two solution techniques to solve MSFLPD - stochastic dual dynamic integer

programming (SDDiP) and shadow price approximation (SPA).

5.3.1 Stochastic Dual Dynamic Integer Programming

(SDDiP)

SDDiP is an extension of the celebrated stochastic dual dynamic programming (SDDP)

method to solve MSIP problems (Zou et al. 2019). Unlike SDDP, SDDiP uses

Lagrangian relaxation to derive tight cuts of the cost-to-go functions of stochastic

mixed-integer problems. SDDiP guarantees to find the exact optimal solution of any

MSIP if the time-coupling decision variables that define the state of the dynamic

program are binary variables. This bodes well with MSFLPD’s binary state variables

uit - state of facility i ∈ {1, ..., F} at stage t ∈ {1, ..., T}.
Each iteration of SDDiP begins with sampling a subset of scenarios of the stochastic

process. Then, SDDiP proceeds by undertaking two key steps - forward simulation and

backward pass.

In the forward simulation, the algorithm draws a sample of random realization from

the stochastic process, (ξω2 , ..., ξ
ω
T ), for ω ∈ Ω, and then solves the subproblems at each

stage t of the dynamic program using the latest cutting plane approximation of the

cost-to-go function. Particularly, in every iteration k, the subproblem at stage t is of

the form:

V̄ k
t (ut−1

k, ξωt ) := min
uit,xijt,yit

F∑
i=1

(fiyit +
B∑
j=1

xijtdij) + V̄k
t+1(ut)

s.t. uit = ui,t−1(1− ξit) + yit, ∀ i = 1, . . . , F, t = 1, . . . , T,

Eqs. (5.7)− (5.10),

(5.11)

for t = 1, . . . , T , where ξωt is the ω uncertainty realization at stage t. Each forward

simulation, generates a sequence of sample decisions, ((uk
it, x

k
ijt, y

k
it))

T
t=1 that are made

based on the realized uncertainties of the sampled scenario (ξω2 , ..., ξ
ω
T ).
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The function V̄k
t+1(ut) is defined as a set of cutting planes (cuts) whose minimum

approximates the true expected cost-to-go function Vk
t+1(ut) from below. The function

can be expressed as a linear program which is given by

V̄k
t+1(ut) := min θt

s.t. θt ≥ Lt

θt ≥ N−1
t+1

Nt+1∑
j=1

(αlj
t+1 + (βlj

t+1)
⊤ut) ∀l ≤ k − 1.

(5.12)

The backward pass begins from the final stage T . Given the solution uk
T−1 from

iteration k and an uncertainty realization from {ξjT , 1 ≤ j ≤ NT}, let P kj
T (uk

t−1, ξ
ω
t , V̄k

t )

be a relaxation of the forward problem V̄ k
T (u

k
T−1, ξ

j
T , V̄

k+1
T ). Solving P kj

T (uk
t−1, ξ

ω
t , V̄k

t )

for each j produces a cut defined by θ(αlj
T , β

lj
T ) which is valid for the value function

VT (uT−1, ξ
j
T ). Then, the cuts θ(αlj

T , β
lj
T ) are aggregated obtaining (5.12) which is valid

for expected cost-to-go function Vk
T−1(uT−1). Furthermore, the lower approximation of

the expected cost-to-go function is updated from V̄k
T−1(ut) to V̄k+1

T−1(ut). Backward pass

then proceeds to stage T − 1. As the first stage computation is completed, and having

solved a lower approximation of the original problem, the optimal solution value of the

first stage problem t = 1 is a valid lower bound of the original problem.

SDDiP introduces a family of valid cuts, called Lagrangian cuts, which are able

to obtain strong duality for mixed integer programs. Like SDDP, SDDiP is also

sampling-based algorithm and exhibits favorable scalability on solving large-scale

problems. The limiting assumption of SDDiP, as with SDDP, is that the random

process has to be stagewise independent. Some techniques to incorporate stagewise

dependency are presented in Löhndorf & Shapiro (2019).

5.3.2 Shadow Price Approximation (SPA)

SPA is an approximation algorithm proposed in Seranilla & Löhndorf (2023). The

main idea of SPA is to train the slope of a linear value function approximation by

minimizing an upper bound on the optimal objective value that can be obtained via

Monte Carlo simulation. These slopes are similar to the notion of shadow prices of the
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non-anticipatory constraints that connect successive time periods - hence, the name of

the algorithm.

Choosing the slope vector that minimizes an upper bound on the optimal objective

value is effectively a nonconvex, stochastic optimization problem that is known to be

computationally intractable. Thus, SPA is cast as a policy search strategy that can

be supported by any method that is suitable for unconstrained (derivative-free) global

optimization.

Instead of developing a stochastic model, SPA only needs access to independent time

series, which can also be real data. SPA thereby interacts directly with a simulation

model of the resulting policy unlike many other approximate dynamic programming

techniques that rely on some form of backwards recursion. SPA can be easily integrated

with gradient-based and stochastic search methods which are widely used in machine

learning and global optimization.

The SPA algorithm, like SDDiP, undertakes two primary steps - forward simulation

and shadow price updating. The algorithm proceeds as follows:

Step 1. Initialize iteration n = 0 and shadow prices λu,0
t = 0, for every t = 1, . . . , T .

Step 2. At each iteration n, we randomly select a scenario path (ξ̂n1 , . . . , ξ̂
n
T ).

[*Forward simulation* ]

Step 2.1. Solve the dynamic programming recursion of the form

V̄ n
t (u

n
it−1, ξ

n
it;λ

u,n−1
it ) = min

un
it,x

n
ijt,y

n
it

F∑
i=1

(fiyit +
B∑
j=1

dijxijt) +
F∑
i=1

λu,n−1
it ui︸ ︷︷ ︸

Shadow Price

s.t. uit = ui,t−1(1− ξit) + yit, ∀ i = 1, . . . , F, t = 1, . . . , T,

Eqs. (5.7)− (5.10),

(5.13)

as a sequence of mixed-integer problems that encodes information on the cost-to-go only

via the slope vector of the linear value function approximation (the shadow prices).
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Step 2.2. Obtain realized upper bound ˆ̄zn as follows,

ˆ̄zn(λu,n−1
it ) =

∑
t∈T

[
F∑
i=1

(fityit(π̄
n(un

it−1, ξ̂
n
it;λ

u,n−1
it )) +

F∑
i=1

B∑
j=1

dijxijt(π̄
n(un

it−1, ξ̂
n
it;λ

u,n−1
it ))

]
,

(5.14)

a realization of the total cost for given slope vectors λu,n−1
it .

[Shadow price updating ]

Step 3. With the obtained realized upper bound ˆ̄zn and parameters λu,n−1
it , the

shadow price is updated using a generic update function Un(·, ·), supported by a chosen

global optimization method, that returns a new set of trial shadow prices,

λu,n
it ← Un(ˆ̄zn, λu,n−1

it ). (5.15)

Various choices of global optimization methods include, but are not limited to,

stochastic gradient descent Bottou & Bousquet (2011), covariance matrix adaptation

- evolutionary strategy (CMA-ES) Hansen et al. (2019), and Bayesian optimization

Nogueira (2020).

Step 4. At the end of iteration N , SPA returns a slope vector λu∗
it that

approximately minimizes z̄

λu∗
it ∼ argminλuN

it
ˆ̄z(λuN

it ). (5.16)

Step 5. To obtain an approximate upper bound of the optimal objective value, we

simulate the optimal policy z̄(λu∗
it )

z̄(λu∗
it ) = S−1

S∑
s=1

ˆ̄zn(λu∗
it ). (5.17)

Whether or not the chosen global optimization methods is able to find a good linear

approximation depends on the initial choice of parameters, the search region, as well

as the number of iterations, and is likely to be problem-specific. In the worst case, no

improvement over the (initial) greedy policy, with λu,0
t = 0, for every t = 1, . . . , T , is

possible. In the best case, the method selects the best linear approximation which is
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optimal if the true cost-to-go function is linear in the region of the state space that can

be reached by the optimal policy.

As we will see below, a linear approximation can produce near-optimal results for

the chosen problem. In which way this result extends to other problems remains subject

of future work.

5.4 Numerical Results

We present the results of employing both SPA and SDDiP to solve Problem (5.5)-(5.10).

The case instance chosen, with parameters shown in Table 5.1, is a multi-stage

adaptation of the capacitated facility location problem, drawing its test instances from

Beasley (1990), a renowned repository of test datasets spanning various facility location

and other OR problems. To include a greater depth of robustness in our model’s

testing and the deployed solution methodologies, different levels of disruptions were

synthesized. These disruptions are denoted by S = {Low, Medium, High} levels.

Additionally, in a bid to intricately gauge the algorithms’ performance, we designated

three incremental time limit criteria, represented as T = {300s, 900s, 1800s}, to serve

as benchmarks.

Table 5.1: Parameters used for the numerical investigation (taken from Beasley (1990).

Parameters Value
T - planning horizons 36, 52, 100
F - set of candidate facilities 16
B - set of customers 50
Cit - capacity 50
Djt - demand taken from Beasley (1990)
fit - fixed cost of opening a facility taken from Beasley (1990)
dijt - transportation cost taken from Beasley (1990)
ξit - facility failure (uncertainty) Randomly generated

[High-60%, Medium-40%, Low-20%]

The findings from our expansive numerical exploration of MSFLPD via SDDiP and

SPA are consolidated in Table 5.2. Distinct columns are reserved for various metrics,
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Table 5.2: Numerical investigation of MSFLPD using SDDiP and SPA.

Time Limit Criterion (×103)

Instance CAP44-A

Stages (T ) Runtime S SDDiP-LB SDDiP-UB SPA-UB GAP-1 GAP-2

36 300s High 138994.0 139445.4 139395.9 0.32% 0.28%
Medium 133262.4 134092.1 133518.0 0.62% 0.19%
Low 127614.4 128619.3 127614.8 0.78% 0.00%

900s High 138994.0 139170.1 139083.6 0.13% 0.06%
Medium 133262.3 134043.7 133518.0 0.58% 0.19%
Low 127614.4 128595.6 127614.8 0.77% 0.00%

1800s High 138994.0 139088.0 139020.6 0.07% 0.02%
Medium 133262.4 133763.6 133518.0 0.38% 0.19%
Low 127614.4 128421.1 127614.8 0.63% 0.00%

52 300s High 109354.0 110594.0 109857.0 1.13% 0.45%
Medium 100611.2 102174.4 101551.2 1.54% 0.93%
Low 92297.0 93850.3 92925.7 1.67% 0.68%

900s High 109354.0 110254.3 109857.0 0.82% 0.45%
Medium 100611.2 102422.7 101482.7 1.78% 0.86%
Low 92297.0 93978.7 92925.7 1.81% 0.68%

1800s High 109354.0 110340.3 109857.0 0.90% 0.46%
Medium 100611.2 102175.9 101449.5 1.54% 0.83%
Low 92297.0 93955.6 92925.7 1.78% 0.68%

100 300s High 89966.6 94229.2 93537.2 4.63% 3.89%
Medium 73972.8 78148.8 77173.9 5.49% 4.24%
Low 57089.1 63360.7 60764.9 10.41% 6.40%

900s High 89966.6 93848.1 93391.8 4.22% 3.76%
Medium 73972.8 78306.5 76756.4 5.69% 3.69%
Low 57089.1 62813.4 60764.9 9.55% 6.24%

1800s High 89966.6 93678.5 93411.5 4.04% 3.74%
Medium 73972.8 78308.7 76887.7 5.69% 3.86%
Low 57089.1 62813.3 60722.8 9.55% 6.17%

including SDDiP lower bounds (SDDiP-LB), SDDiP upper bound (SDDiP-UB), and

SPA upper bound (SPA-UB). The percentage gaps delineated represent the %-difference

between SDDiP lower bound and SDDiP upper bound (GAP-1), and the %-difference

between SDDiP lower bound and SPA upper bound (GAP-2). From our analysis,

SPA emerges as a more effective solution, consistently identifying superior policies for
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MSFLPD across all case instances. This observation persists even when strengthened

Benders cuts are employed for SDDiP - these are valid, finite cuts wherein a generic

Benders cut is augmented by solving a specific mixed integer program subproblem,

where the solution mirrors a basic optimal LP dual solution. Such results underscore

the inherent complexity and challenge posed by MSFLPD, especially when considering

risk failure.

5.5 Conclusion

In this chapter, we consider a multi-stage variant of the facility location problem

under facility disruption (MSFLPD). We model the problem as a multi-stage stochastic

mixed-integer program, and discuss two methods to solve the problem. The first

method is stochastic dual dynamic integer programming (SDDiP), and the second

method is the shadow price approximation (SPA) algorithm. While SDDiP is an exact

solution approach, it is also difficult to implement, whereas SPA is an approximation

method that is relatively easy to apply. We conduct extensive numerical experiments

to compare the performance of the two methods in solving the problem. We find that,

across all problem instances, SPA emerges as the more effective solution, consistently

identifying superior policies for MSFLPD than SDDiP. These results underscore the

inherent complexity and challenge posed by MSFLPD, especially when considering

facility disruption risk.
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Conclusion

In this dissertation, we delve into the applications of the state-of-the-art algorithm,

Stochastic Dual Dynamic Programming (SDDP), for solving MSPs. While MSPs offer

an effective means to represent many real-world challenges, their intrinsic complexity

often makes optimization formidable. Within extant literature, SDDP stands out as a

potent methodology adept at addressing MSPs. This thesis highlights the versatility

of SDDP in managing sequential decision-making across diverse domains, emphasizing

its capability in navigating uncertainty.

In Chapter 2, conduct a comprehensive survey of the diverse applications of SDDP

in the literature. This includes an analysis of statistics on the prevalence of SDDP

usage in various domains. Moreover, a substantial focus is directed towards the most

common application of SDDP in the energy sector, particularly in hydro-thermal

power production scheduling. This paper outlines compelling arguments behind the

prominence of this specific application, i.e., at least 75% of research work adopting the

SDDP methodology exploit this problem.

In Chapter 3, we introduce two valuable contributions: MSPLib, an open-source

library of problems and MSPFormat, a standardized data format designed for

benchmarking SDDP. MSPLib aims to facilitate the evaluation of computational

performance among different SDDP implementations. It offers a wide array of instances,

from real-world problems to synthetic variations with varying complexities. By

incorporating MSPFormat into the library, a unified and consistent representation of
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MSPs is provided, further enhancing their usability and transferability.

In Chapter 4, we introduce a novel problem class called the multistage stochastic

facility location problem under facility disruption uncertainty (MSFLPD). This new

class extends the classical stochastic capacitated facility location problem to handle

uncertainty arising from facility disruptions. We then present and compare two

solution algorithms tailored for addressing this problem: stochastic dual dynamic

integer programming (SDDiP) and shadow price approximation (SPA).

Finally, in Chapter 5, we showcase a specific instance of MSFLPD applied to the

optimal location of COVID-19 vaccine facilities under the threat of natural disasters.

We introduce a new algorithm, named shadow price approximation (SPA), which aims

at approximating the shadow price of opening flood-prone vaccine facilities by tuning

the parameters of a linear value function approximation which is present in the objective

function of base optimization model. SPA yields approximately 30-40% lower cost

than a baseline approach that does not consider the risk of flooding, across different

rainfall-to-flood conservativity cases. Finally, we provide a detailed account of this

model’s application in two cities of a developing country.

There are several promising avenues for future research. One notable direction is

the expansion of the MSPLib to accommodate problems stemming from the integer

enhancement of SDDP, known as Stochastic Dual Dynamic Integer Programming

(SDDiP). The realm of Multistage Stochastic Integer Programming (MSIP) presents a

class of intricate and intriguing problems. Leveraging our newly proposed solution, the

Shadow Price Approximation (SPA), in conjunction with SDDiP can yield substantial

benefits when addressing these problems. Incorporating MSIPs into the MSPLib can

foster further advancements in the SDDiP and SPA algorithms, enabling the inclusion

of more complex real-world problems. Additionally, considering other uncertainties in

the MSFLPD, such as demand, capacity, and costs, would present another exciting

avenue for future endeavors.
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