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Abstract

INTRODUCTION: At the Alzheimer’s Association’s APOE and Immunity virtual con-

ference, held in October 2021, leading neuroscience experts shared recent research

advances on and inspiring insights into the various roles that both the apolipoprotein

E gene (APOE) and facets of immunity play in neurodegenerative diseases, including

Alzheimer’s disease and other dementias.

METHODS: Themeeting brought togethermore than 1200 registered attendees from

62 different countries, representing the realms of academia and industry.

RESULTS: During the 4-day meeting, presenters illuminated aspects of the cross-talk

betweenAPOE and immunity, with a focus on the roles ofmicroglia, triggering receptor

expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor

necrosis factor α [TNFα]).
DISCUSSION: This manuscript emphasizes the importance of diversity in current

and future research and presents an integrated view of innate immune functions in

Alzheimer’s disease as well as related promising directions in drug development.
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1 INTRODUCTION

The two well-established hallmark pathologies of Alzheimer’s dis-

ease (AD)—extracellular plaques of aggregated amyloid beta (Aβ)
and intraneuronal tangles of hyperphosphorylated, aggregated tau—

characterize all cases of AD and have been shown to play a direct

role in AD-related neurodegeneration.1–3 However, there is evidence

that the precise mechanisms that lead to the development of char-

acteristic AD pathology may differ among individuals. Less than 1%

of individuals who develop AD have an early-onset form of the dis-

ease that is solely due to mutations in genes involved in Aβ processing,
including amyloid precursor protein (APP), presenilin 1 (PSEN1), and

presenilin 2 (PSEN2).4,5 In an effort to discover mechanisms that

lead to AD in the remaining 99% of individuals who have a sporadic

form of the disease that most often results in late-onset AD (LOAD),

researchers have used genome-wide association studies (GWASs) and

whole genome/whole exome sequencing (WGS/WES) studies to iden-

tify more than 30 AD-related risk loci.6 Among gene variants that are

associatedwith an increased risk for LOAD,more thanhalf are linked to

immune cell function. To date, the strongest known genetic risk factor

for LOAD is the apolipoprotein E (APOE) ε4 variant,7–9 which, during

the past decade, has been hypothesized to play a role in AD largely

through its immunomodulatory functions.10 The triggering receptor

expressed onmyeloid cells 2 (TREM2), which is expressed bymicroglia

in the central nervous system (CNS), likely plays a significant role in

THE immunomodulatory functions of APOE, and genetic studies show

that rare TREM2 variants are among important risk factors for AD.

In turn, microglia play a principal role in the neuroinflammation that

accompanies the accumulation of Aβ during earlier stages of disease,
as well as immune dysregulation that modulates disease progression

throughout the course of AD.11 Building on a foundation of established

and strongly suspected roles of APOE, TREM2, microglia, and immune

changes in AD, current research focuses on understanding these roles

while identifying new intricately linked biological/pathophysiological

mechanisms and pathways, with the goal of determining how themod-

ulation of one or more of these components might be effectively

targeted in drug development.(Supporting Information)

2 APOLIPOPROTEIN E BIOLOGY

Apolipoprotein E (apoE) is the primary transporter of lipids and choles-

terol in the brain and plays critical roles in both the metabolism of

lipoproteins and the redistribution of cholesterol. Because of these

functions, apoE has long been a focus of research related to atheroscle-

rosis and cardiovascular disease.12 Outside of the CNS, apoE is gen-

erated primarily by the liver, whereas in the brain, apoE is produced

mainly by astrocytes. In the brain, microglia and neurons also are capa-

ble of generating apoE during times of stress.13,14 Although a primary

function of apoE is to reduce intracellular cholesterol levels by efflux-

ing lipids, it also plays integral roles in theoverall health of thebrain and

in the progression and development of Alzheimer’s disease (or AD).

Three apoE isoforms affect the extent towhich its functions are exe-

cuted, and are characterized by varying risks for the development of

RESEARCH INCONTEXT

Systematic Review: The role of the apolipoprotein E gene

(APOE) and immunity in neurodegenerative diseases, includ-

ing Alzheimer’s disease and other dementias, is an active and

growing area of research. The authors of this article report

updates and advances in research presented at the APOE

and Immunity virtual conference, held in October 2021.

Interpretation: There have been strides in research identify-

ing the cross-talk betweenAPOE and immunity, with a special

focus and emphasis on the roles ofmicroglia and components

of inflammation, emphasizing the importance of diversity in

current and future research, and presenting an integrated

view of innate immune functions in Alzheimer’s disease as

well as related promising directions in drug development.

Future Directions: Research and advances into understand-

ing both APOE and immunity in neurodegenerative diseases

is needed to improve our understanding of brain diseases.

These and other topics will be explored in two individual

conferences, Immunity and APOE, both hosted in March

2023.

AD. APOE ε3, which is present in ≈78% of the general population, is

the most common of the three and is considered the standard “base-

line” or “control” allele in AD research.15 The APOE ε4 allele, which is

present in ≈14% of the general population, significantly increases the

risk of developing AD relative to APOE ε3, such that APOE ε4 homozy-

gotes are known to have the greatest risk forAD,with an estimated10-

to 15-fold increase in risk in Caucasian populations (risk varies by race

and ethnicity). The APOE ε2 allele, which is present in ≈9% of the gen-

eral population and in about 5% of all individuals with AD, is associated

with a lower risk of the development of AD comparedwith theAPOE ε3
allele,16 and also is associated with increased longevity.17

Compared with APOE ε3, APOE ε2 has a decreased affinity with low-
density lipoprotein receptor (LDLR) and is associated with a type-3

hyperlipoproteinemia that is observed in individuals carrying theAPOE

ε2 allele. APOE ε4 is associated with an increased ability to bind lipids,

but because of reduced proteolytic activity can lead to an increase in

lipoproteins and cholesterol.15,18 A growing body of literature points

to the ε4 allele as a driver of many types of AD-related neuropathol-

ogy, including impaired regulation of cholesterol and fatty acid levels

in the brain, damage to blood–brain barrier integrity, reduced cerebral

glucose uptake, and impaired insulin signaling in the brain.19–22

2.1 APOE genotype and glucose metabolism

Metabolic disorders, such as insulin resistance and type 2 diabetes,

increase the riskof dementia andhave in commonwithADawide range

of pathologic features, including inflammation, increased oxidative

stress, and vascular dysfunction.23 Many studies suggest that APOE
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ε4 may reduce insulin signaling, in part by impairing the recycling of

the insulin receptor.19 APOE status plays an important role in cerebral

glucose metabolism during aging, even in the absence of neuropathol-

ogy. Glucose metabolism is reduced in individuals with at least one

copy of APOE ε4 compared with noncarriers.21,22 Changes in cerebral

glucose metabolism that occur in APOE ε4 carriers begin many years

before theemergenceofAD-related symptoms, as evidencedby reduc-

tions in cerebral glucose utilization on fluorodeoxyglucose positron

emission tomography (FDG-PET) imaging, which reflect decreased

neuronal activity and/or synaptic dysfunction.24 More recent studies

indicate thatbrain glucosehypometabolism is associatedwith impaired

glycemic control in the periphery in cognitively healthy subjects.25 In

carriers, increased levels of glucose during midlife are linked to more

severe AD-related pathology at autopsy, particularly with regard to

neurofibrillary tangles in themedial temporal lobe.26

In a study published in 2017, Nielsen and colleagues explored

the extent to which peripheral APOE levels affect cognition, gray

matter volume (GMV), and cerebral glucose metabolism in an isoform-

dependent manner. During the study they discovered important sex-

related differences, such that women had higher plasma levels of

total apoE and apoE e4 compared with men.27 They also found that

higher ratios of apoE e3/e4 were negatively associated with cerebral

metabolic rate of glucose (CMRgl) and GMV. Their findings pointed

toward a potentially important role of peripheral apoE levels with

regard to modulating brain health, and also offered potential insights

into the higher risk for AD amongwomen.27

In a more recent study (of the same cohort) conducted by Edlund

and colleagues, plasma insulin and glucose levels were obtained for

the previously studied 128 cognitively healthy apoE e3/e4 individuals

to determine the extent to which apoE is linked to peripheral glucose

metabolism, and in turn to glucose metabolism in the brain.28 The

investigators determined that lower plasma apoE e3 levels were asso-

ciated with higher plasma glucose but not with insulin in men and in

individuals with a body mass index (BMI) greater than 25. Negative

correlations were found between plasma glucose and CMRgl in the

left prefrontal and bilateral occipital regions of the brain. The authors

suggested that these associations may have functional implications

because glucose levels were in turn negatively associated with neu-

ropsychological test scores. They concluded that plasma apoE e3 but

not apoE e4 may be involved in insulin-independent processes that

govern plasma glucose levels. They noted that higher plasma glucose,

which has a deleterious effect on brain glucose metabolism, was asso-

ciated with lower plasma apoE levels in APOE ε3/ε4 individuals. An

important implication is that higher plasma glucose and lower apoE

levels may be a potentially harmful combination that may lead to an

increased risk for AD.28

2.2 Relationship between APOE ε4 status and
C-reactive protein in AD

Inflammation has been observed consistently in brain tissue from

patients with AD [see 3.0 Inflammation]. Evidence of inflammation has

been indicated by the presence of morphologically active microglia

and astrocytes and increased extracellular complement factors, as well

as cytokines and other inflammatory proteins, and elevated levels of

inflammatory proteins both inside the brain as well as outside in indi-

viduals with AD. C-reactive protein (CRP), for example, plays a key role

in the systemic response to inflammation, and plasma CRP has been

evaluated as a potential biomarker for AD.29 However, elevated blood

CRP level is associated with an increase in AD risk only in APOE ε4
carriers.30,31

In a recent study, Tao and colleagues examined the interactive

effects of both plasma CRP and APOE genotype on cognition and a

range of AD biomarkers.32 The study used data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), including APOE genotype,

plasma CRP concentrations, diagnostic status (diagnosis of mild cogni-

tive impairment [MCI], and dementia related toAD),Mini-Mental State

Examination (MMSE) scores, Clinical Dementia Rating (CDR) score,

cerebrospinal fluid (CSF) concentrations of Aβ42, total tau (t-tau) and

phosphorylated tau (p-tau), and amyloid (AV45) PET imaging. Among

566 ADNI participants, 274 (48.4%) did not have an ε4 allele, 222

(39.2%) had one ε4 allele, and 70 (12.4%) had two APOE ε4 alleles. Tao

and colleagues found that elevated CRP was associated with lower

MMSE scores at baseline and at 12-month follow-up, but only among

participants who had two APOE ε4 alleles. They also found that two

APOE ε4 alleles and elevated plasma CRP together were associated

with increased CSF levels of t-tau and p-tau. Among ADNI individuals

who had no APOE ε4 allele, elevated CRP was associated with reduc-

tions in CSF t-tau and p-tau, and these effects were more pronounced

at 12-month follow-up. The authors concluded that CRP released dur-

ing peripheral inflammation could be a mediator of APOE ε4–related
ADneurodegeneration and could, therefore, potentially serve as adrug

target for AD.

2.3 APOE and neuroinflammation

In an effort to explore some of the underlying mechanisms by which

APOE ε4 affects AD risk, and to expand on previous findings regarding

its role in impaired inflammatory responses, a recent study examined

the effect of APOE genotype on inflammatory profiles in AD brains.11

The study’s investigators analyzed frozen brain tissue from the supe-

rior and middle temporal gyrus from APOE ε3/ε3 and APOE ε4/ε4
participants with AD pathology, and APOE ε3/ε3 participants without

AD pathology to examine how apoE isoforms affect the neuroinflam-

matory state of the brain both with and without AD.11 The NanoString

HumanNeuroinflammationPanelwasused todetermine the transcript

levels of 757 inflammatory related genes, and immunohistochemistry

of P2RY12 was performed to assess microglial activation. The study

found that pathways related to neuroinflammation were impaired in

APOE ε4/ε4 individuals with AD compared with APOE ε3/ε3 individ-

uals with AD, and that the expression of genes related to microglial

activation (SALL1), motility (FSCN1), epigenetics (DNMT1), and others

showed altered expression in the former group. The study’s findings

suggest that APOE ε3 can become responsive to pathology and brain
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changes, although it can result in a potentially harmful long-term

inflammatory response, whereasAPOE ε4 causes aweakened response
to pathology.Overall, the study indicated that apoE isoforms do appear

tomodulate the immune response toAD-type pathology in the brain.11

3 NEUROINFLAMMATION AND CELLS
MEDIATING CNS IMMUNE SURVEILLANCE

Neuroinflammation is a response of the innate immune system in

the CNS which involves the activity of microglia and astrocytes in

combination with their secreted cytokines, chemokines, and altered

homeostatic functions, which together play a central role in an early

phase of AD pathogenesis.33 The primary mediators of inflammatory

mechanisms associated with AD are microglia and astrocytes— cells

that also are responsible for neural transmission and critical synaptic

remodeling.34

A number of longitudinal studies showed that microglial activation

and AD-related inflammation in the CNS occur years before the onset

of AD-related symptoms.35,36 Other studies have demonstrated a

durable link between neuroinflammation and amyloid and tau accumu-

lation in the brains of individuals with AD.37,38 Although neuroinflam-

matory responses of microglia and astrocytes may precede Aβ plaque
deposition, these responses are exacerbated with the accumulation of

Aβ during the pathogenesis of AD and also modulate later stages of

the disease, at turns either ameliorating disease or exacerbating it, in a

complex, dynamic process. One study suggested that neuroinflamma-

tion may even precede amyloid aggregation, as older APOE ε4 carriers

with normal AD biomarkers had increased CSF levels of proteins

associated with inflammation.39 A fluctuation between pro- and anti-

inflammatory states typically occurs in patients during early stages

of AD, and it has been hypothesized that as the disease progresses,

the inflammatory phenotype becomes more homogeneous.40,41 Neu-

roinflammation also occurs during normal aging.42 However, chronic

neuroinflammation is capable of inducing neuronal injury and/or death

by producing toxic substances such as reactive oxygen species (ROS)

and nitric oxide (NO), or by promoting the phagocytosis of neurons

by activated microglia. Activated microglia can engage in cross-talk

with astrocytes, and provoke reactive astrocytes to directly kill neu-

rons by means of secreted neurotoxic factors—as recently reported

these include long-chain saturated fatty acids that are trafficked in

apoE-containing lipoparticles.43 Bothmicroglia andastrocytes, the two

primary components of the innate immune system, also have various

effects on the accumulationofAβ and taupathology, in addition to their
direct effects on neuronal viability.

3.1 Other immune cells of the CNS

Although it is well established that disease progression in AD involves

inflammation associated with the activation of innate immune cells,

the role of adaptive immunity in AD is less well understood. In

recent years, animal studies involving the depletion of B cells, T cells,

and NK cells have strongly suggested that adaptive immunity exerts

an important influence on AD progression.44,45 These studies have

revealed that there is significant cross-talk among cells involved in

innate immune responses—primarily mediated by microglia in the

CNS—and cells involved in adaptive immunity, which until recently

were believed to be derived primarily from peripheral circulation.46

The loss of cells from adaptive/peripheral immune cell populations by

means of genetic ablation, for example, has been shown to alter the

activation of microglia, increase neuroinflammation, and hasten amy-

loid pathogenesis.44 Findings from other studies have suggested, in

contrast, that B-cell depletionmight be used therapeutically.45

Because a better understanding of the function of all cells involved

in CNS immune surveillance, in both the physiological and pathologi-

cal states, may facilitate the discovery of new therapeutic targets for

the treatment of neurological diseases, recent research has sought to

provide detailed answers to questions regarding the origin and devel-

opment of different types of immune cells in the brain.46,47 One such

study led to the surprising finding that the mouse meninges contain a

source of B cells that are supplied not by the blood but from bonemar-

row in the skull.47 Using sophisticated techniques involving parabiosis

and bone marrow chimeras, Brioschi and colleagues47 discovered a

lymphopoietic niche in the meninges—a reservoir for B cells that orig-

inate in skull bone marrow and travel to the meninges by means of

tiny vascular corridors in the bone. These B cells, which have never

had contact with peripheral blood, reside in such reservoirs until they

are needed in response to injury or neuroinflammation. By means of

single-cell RNA sequencing, investigators were able to determine that

awide range of B cells at various stages ofmaturity were located in the

meninges, including immature cells that express the immunoglobulin

M (IgM) receptor on their cell surfaces. Such findings suggest that the

meningesmay be an areawhere immature B cells can be uniquely “edu-

cated” by CNS antigens, in contrast to B cells from the periphery, which

might be inclined to attack brain-specific antigens. In similar research

also conductedatWashingtonUniversity,Kipnis andcolleaguesdiscov-

ered that skull bone marrow is also a key source of CNS immune cells

that determines when and to what extent immune cells in the brain

are derived from these sources,46 how such cells may differ function-

ally from blood-derived cells, and how the source of immune cells in

the brain may change during aging or in the context of various CNS

diseases.

4 MICROGLIA, ASTROCYTES, AND AD-RELATED
NEURODEGENERATION

Microglial cells, myeloid cells that arise from early embryonic yolk-

sac progenitors, are the primary macrophages of the brain and play a

critical role in neuroinflammation in the CNS.48 Microglia survey the

brain in an effort to detect disruptions from homeostasis (e.g., injury,

infection, disease, and so on) and subsequently work to clear debris

and resolve disruptions, and in turn maintain an optimal microen-

vironment. Microglia can respond to virtually all foreign entities in

the brain, most of which have been categorized as danger-associated
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molecular patterns (DAMPs) or pathogen-associated molecular pat-

terns (PAMPs).49 In the presence of Aβ, microglia become activated,

surround plaques, and attempt to phagocytose Aβ and prevent fur-

ther spread of plaques.50 An excessive accumulation of Aβ can lead

to microglial cell death, and can increase inflammation and lead to

the recruitment of more microglia, thus perpetuating an inflammatory

cascade.47 In addition, reactivemicroglia can releasemolecules such as

tumor necrosis factor-a (TNFα) and interleukin 1β (IL-1β) among many

other cytokines and complement components that can either directly

recruit additional microglia to cause damage to surrounding tissue,51

alter neuronal function, or act as a seed to drive reactive inflammatory

responses in adjacent cells like astrocytes.52,53

A number of recent studies have demonstrated that, when in the

disease-associated state, microglia can increase the expression of

APOE.54–57 Accordingly it is important to explore whether microglial

apoEmay be amajor source of amyloid-plaque-associated apoE,57 and

whether efforts to induce a disease-associated state in microglia may

possibly increaseplaque-associated apoEand in turnAβ aggregation.58

4.1 Using single-cell technologies to identify
diverse reactive glia phenotypes in AD

In AD and in other neurodegenerative diseases, many heterogeneous

sub-states of reactive microglia and astrocytes have been observed in

the brain. Traditionally, attempts were made to classify these cells into

binary types: proinflammatory phenotype, involving a reduction in the

release of neurotrophic factors and an exacerbation of inflammation

and cytotoxicity; and anti-inflammatory phenotype, characterized by

displays of anti-inflammatory cytokines, an increase in the expression

of neurotrophic factors, and a range of signals involved in protection or

repair processes. However, the advent and application of high through-

put single-cell sequencing technologies in recent years has found a

binary definition of reactive microglia/astrocytes to be incorrect and

that many sub-states exist. In addition to heterogeneity within and

across different disease/injury contexts, evidence from experimental

studies suggest that phenotypic switching can occur in response to

various stages of disease and/or degrees of disease severity.59

Single-cell RNA-sequencing technologies are being used to improve

our understanding of microglia and astrocytes and to ascertain their

changing gene-expression profiles, their involvement in various path-

ways, and the epigenetic mechanisms that may be driving these

cells—with the goal of improving future efforts to modulate disease

by targeting these entities. A rapidly expanding collection of new

tools are now available that enable rapid and cost-effective sequenc-

ing of individual cells, and new approaches for isolating, targeting,

and establishing cultures of these cells in vitro.60–63 These new tools

are providing novel insights into the functions of microglia and astro-

cytes during normal development, as well as during the early initiation

and later progressive stages of many chronic neurodegenerative dis-

eases. A key aim is to create models that integrate both cell types, and

to reveal how they communicate and are able to integrate functions

throughout the brain. Accordingly, current efforts are underway to

obtain microglia and astrocyte surface proteomes and secretomes and

to integrate these data with other multi-omics data sets (e.g., involving

transcriptomics, epigenetics, and proteomics).

Efforts to identify more diverse subtypes/profiles of microglial cells

are pointing increasingly to far greater complexity in human cells

compared with animal cells64–66; however, only the most subtle of

differences are reported across species for astrocytes. Although astro-

cyte isolation and culture have been successful in both rodents63

and humans, similar successes with microglia have been limited. An

important challenge has stemmed from the observation that removing

microglia from the CNS microenvironment leads to rapid alterations

in gene expression,67–69 and the creation of an ex vivo state of

microglia has been particularly problematic.62 In some studies, for

example, researchers have accidentally assigned a biological relevance

to microglial states that do not exist in situ. This was historically a

problem for the in vitro study of astrocytes/microglia as well, because

early methods for culture relied on serum addition, which has been

reported to irreversibly alter the gene expression and function of

both astrocytes and microglia; however, recent serum-free methods

have circumvented this problem.53,61,63,67 It is important to note that

cholesterol, which is likely trafficked in apoE-containing lipoparticles

in vivo.67 Caveats still remain, however, as microglia and astrocytes

grown in culture, even in the absence of reactivity-inducing serum

components, are likely not fully recapitulating their in vivo coun-

terparts (e.g., morphologies of culture astrocytes are very basic and

lack the complex bushy tertiary and quaternary processes seen in

vivo). One should not discount the power of such culture-based sys-

tems, however, as the high fidelity investigation of single functional

interactions, or the role of cell–cell communication in homogeneous

populations (either of homeostatic or reactive sub-states) is difficult

to the level of impossible in vivo, due in large part to the extreme

heterogeneity of both cell types at both homeostatic62,70–72 and AD-

associated reactive states.65,73,74 What remains a bottleneck for the

understanding of cellular heterogeneity is twofold: a lack of sub-state-

specific culture systems to study the functional changes that occur;

and second, a lack of genetic diversity in functional testing to deter-

mine if apoE isoform may alter not only gene expression differences

but also key homeostatic functions like lipid delivery, synaptogenesis,

and phagocytosis, among others. The investigation of these putative

altered functionswill beparticularly importantmoving forward—as the

astrocyte–microglia communication in AD seems particularly altered

given the APOE-TREM2 interactions already reported bymany groups.

5 TREM2 AND APOE

Research focused on the microglial receptor known as triggering

receptor expressed on myeloid cells 2 (TREM2) has increased recog-

nition of the importance of microglia in AD, particularly because a

number of mutations in TREM2 increase the risk for AD.75 TREM2 is

present on myeloid-derived cells such as microglia, macrophages, and

osteoclasts and responds to a wide range of entities including apop-

totic cells, Aβ, and lipoproteins. In individuals without AD pathology,
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this receptor protein enhances the rate of phagocytosis in microglia

and macrophages, and regulates inflammatory signaling, as well as

myeloid cell number, proliferation, and survival. TREM2 plays a role in

the pathogenesis of AD bymodulatingmicroglial functions, such as the

production of inflammatory cytokines, in response to Aβ plaques and
tau tangles. When TREM2 is absent, amyloid pathology is enhanced

during the early stages in models of AD, and during the later stages

this tendency is increased further with the loss of the ability to clear

Aβ through phagocytosis. TREM2 variants contribute to AD pathogen-

esis in part by decreasing the phagocytic ability of microglia, and by

interfering with the proinflammatory response of these immune cells.

In AD, TREM2 appears enriched in microglia that surround neuritic

plaques. In mouse models that lack TREM2, microglia are unable to

move toward Aβ plaques. Growing evidence suggests that the timing

of TREM2 expression is key—a finding that likely has important impli-

cations for drug development [see 8.1]. Studies have indicated that

although TREM2 is critical for the clearance of early Aβ plaques and
the slowing of cognitive decline during early stages of AD, expres-

sion of TREM2 during later stages of disease progression could have

disadvantageous long-term consequences.

5.1 APOE and TREM2 interactions

In a recent study, Fitz and colleagues investigated how APOE and

TREM2, two major genetic risk factors for AD, affect microglial

response to Aβ.76 First, by applying shotgun lipidomics they com-

pared the phospholipid content of human brain and nativemouse apoE

lipoproteins and established that there is an apoE isoform–specific

phospholipid signature. Overall, the native apoE e3 lipoproteins were

more lipidated and had a higher level of negatively charged phos-

pholipids compared to apoE e4, which may represent differences in

potential lipid-activation signals. Using preclinical AD mouse models,

they demonstrated that apoE e3 lipoproteins, in contrast to apoE e4,

prompted faster microglial migration toward injected Aβ, facilitated
Aβ uptake, and ameliorated damaging effects of Aβ on cognition. In

vivo two-photon imaging of mouse brains clearly demonstrated that

the apoE e3 lipoproteins caused microglia to gravitate toward Aβ and
surround the injection site more robustly compared with the apoE

e4, which can act as a protective mechanism decreasing the spread

of Aβ. This observation is in agreement with the authors’ previous

publication.77 Here they showed in Apoe ε3 expressing AD model

mice, microglia establish a more complete barrier around small senile

plaques ,which restricted plaque growth compared to Apoe ε4 express-
ing and Trem2−/- mice. This emphasizes the importance of the early

response by microglia to amyloid pathology, which is apoE isoform

as well as Trem2 status dependent.77 Bulk and FACS sorted RNA-

sequencing demonstrated that, compared with cortical infusion of

apoE e4, infusion of apoE e3 lipoproteins led to the upregulation of

higher proportion of genes linked to activatedmicroglia response. This

upregulation wasmost pronounced inmicroglia that have engulfed Aβ,
suggesting that apoE e3 could initiate a stronger response bymicroglia

to Aβ than apoE e4. In single-cell RNA-sequencing analysis, microglia

of wild-type (WT) versus Trem2−/− injectedwith apoE e3 or e4 lipopro-

teins were grouped in homeostatic and activated microglia clusters.

Overall, for all active clusters, they observed a higher number of dif-

ferentially expressed genes between WT versus Trem2−/- in the mice

injected with apoE e4 rather than with apoE e3. This suggests that

apoE e4 lipoproteins compared to apoE e3 are less prepared to with-

stand TREM2 deficiency particularly in the presence of Aβ. Again, this
is similar to their previous findings, where they observed twice asmany

differentially expressed genes when comparing Apoe ε4 versus Apoe ε3
ADmodel mice than their Trem2−/− counterparts, even with increased

amyloid pathology in bothApoe ε4–expressingmice.77 The authors also

showed that, in vitro, the lack of TREM2 decreases Aβ uptake only

by APOE e4-treated microglia, thus suggesting an important inter-

action between TREM2 and apoE isoform. Their results support the

hypothesis that the phospholipid signatures of native apoE e3 lipopro-

teins trigger a more rapid phenotypic and transcriptional response of

microglia to Aβ than apoE e4 in ameliorating the deleterious effects of

Aβ.

6 BIOMARKERS

Current research aims to discover the impact of a range of factors

that may affect AD pathology, such as APOE genotype and measures

of inflammation/inflammatory proteins, and how such factors may

influence disease progression, possibly long before the emergence

of clinical symptoms. Further investigation of such factors, including

the associations between AD biomarkers and fluid levels of apoE (in

plasma),78 may reveal new information about the sequence of events

that leads to AD, may provide more detailed information about the

influence of gender and racial differences on disease progression [see

7.0 DIVERSITY], and in turn may improve the ability to identify targets

for effective therapies.

Building on earlier studies that have demonstrated that apoE plays

a role in modulating concentrations of CSF Aβ1-42 (Aβ42) in patients

with AD-related cognitive decline, recent studies evaluated how the

effect of apoE on CSF Aβ42 varies by age and also aim to understand

the potential association between apoE and the onset of preclinical

AD.79 In one study that examined a large cohort of cognitively healthy

individuals from nine clinical research centers, APOE genotypes and

CSF Aβ42 concentrations were obtained for cognitively healthy indi-

viduals between the ages of 17 and 99.79 The investigators found

that CSF concentrations of Aβ42 were lower in APOE ε4 carriers com-

pared with non-carriers in a gene dose-dependent manner, and that

the effect of apoE e4 on CSF Aβ42 was age dependent. Homozygous

APOE ε4 carriers showed a steady decline in CSF Aβ42 concentra-

tions with increasing age throughout the entire age span examined in

the study. The study showed that individuals with the APOE ε4 allele

start to exhibit a decrease in CSF Aβ42 concentration almost a decade

before APOE ε4 non-carriers. Homozygous APOE ε4 carriers were

believed to deposit Aβ42 during all of the ages examined in the study.

The authors suggest that there may be an APOE ε4-dependent period
of early alterations in amyloid homeostasis, when amyloid slowly

 15525279, 2023, 6, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13020 by C

ochrane L
uxem

bourg, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



KLOSKE ET AL. 2683

accumulates,which several years later, in conjunctionwithother down-

stream pathological events, such as tau pathology, may translate into

cognitive decline. Another study found no effect of APOE genotype on

CSF Aβ42 concentration in people younger than 35 years of age, cor-

roborating that the associations observed are not due to any direct

effects of apoE isoforms on CSF concentrations of Aβ42, but are

more likely explained by earlier onset of Aβ accumulation in APOE ε4
carriers.80

With the availability of a growing number of plasmabiomarker tests,

an important question is whether APOE genotype might be used to

improve the performance of fluid biomarkers for ADpathologies. Stud-

ies that examined this question so far had conflicting results or found

thatAPOE genotype information does not improve the predictive value

of robust CSF biomarkers.39,81 For plasma Aβ42/Aβ40 ratio, however,

information on age and APOE genotype improves the diagnostic per-

formance of the test. To date, researchers have proposed that an ideal

biomarker should accuratelymeasure changes inADpathology (e.g., Aβ
or tau) regardless of APOE status.

6.1 Using CSF proteomics to examine roles of
apoE and components of immunity in AD

One avenue bywhich researchers are attempting to better understand

heterogeneity among individuals with AD is through the applica-

tion of CSF proteomics. Because CSF contains thousands of proteins,

the concentrations of which can vary considerably among individu-

als with neurodegenerative disease, CSF proteomics have been used

in efforts to detect AD subtypes that reflect individual differences in

pathophysiological processes across the AD disease spectrum.

In a recent study examining data from two large independent AD

cohorts, theEuropeanMedical InformationFramework forAlzheimer’s

Disease Multimodal Biomarker Discovery (EMIF-AD MBD) and the

Alzheimer’s Disease Neuroimaging Initiative (ADNI), investigators

found 705 proteins (77%of 911 tested) whose concentrations differed

in individuals with AD, compared with controls (who were defined as

having normal CSF amyloid and tau and normal cognition).82 Using

these proteins, it was possible to identify three distinct AD subtypes

with characteristic patterns of pathophysiology, one of which had a

distinct pattern of innate immune system activation. This subtype

was characterized by higher levels of proteins that—in both cohorts—

pointed to involvement of the innate immune system, as well as

oligodendrocyte development. Individuals comprising the subtype 2

population had, for example, high levels of proteins associated with

complement pathway activation, which may play a role in neuronal

injury inAD, because complement proteins can accumulate at synapses

and tag these for phagocytosis by activated microglia. The authors

noted that biological processes that characterize subtype 2 seem to be

associated with activated microglia, which may contribute to neuronal

dysfunction, or may be associated with the activation or dysregula-

tion of astrocytes. The team concluded that subtype 2 individuals may

potentially benefit from therapeutic strategies that target microglia

and astrocyte activation.

6.2 A hypothesis-driven approach to pro- and
anti-inflammatory proteins in Alzheimer’s disease

Neuroinflammation has been strongly associatedwith AD, and as such,

efforts have been made to obtain discrete CSF measures of inflamma-

tory proteins for both diagnostic and prognostic purposes; however,

such discrete measures may fail to account for overlapping disease

pathways and the relationships between them. In recently published

work by Hu and colleagues, 15 CSF proteins that reflect microglial

and T-cell functions were measured across diagnostic categories in

382 participants from ADNI, as well as for participants from two inde-

pendent cohorts. The researchers demonstrated that higher levels of

proteins related to soluble tumor necrosis factor receptor 1 (sTNFR1)

are associated with a reduced risk of conversion to dementia in peo-

ple with MCI related to AD, whereas higher soluble TREM2 levels are

associatedwith a slower decline in the dementia stage of AD. The team

demonstrated that these inflammatory proteins are capable of provid-

ing prognostic information independent of established ADmarkers.83

An important implication of this research is that CSF-based prog-

nostic biomarkers might complement core AD diagnostic biomarkers

in the very early stages of AD and provide additional prognostic infor-

mation at an early stage of disease. The authors note that other

investigators also examined CSF inflammatory proteins in AD, includ-

ing sTNFR1, sTNFR225, and TREM2.With the large sample size drawn

from ADNI and two additional cohorts, the team was able to detect

extraordinarily consistent principal components (PCs) and PC families

across all cohorts, even when biomarkers within the same PC were

derived from different cell types.

7 ENSURING DIVERSITY IN APOE AND OTHER
AD-RELATED RESEARCH

Research that examined interrelationships amongAPOE, cognitive per-

formance, morbidity, and mortality has focused mainly on populations

with European ancestry.84–86 However, conclusions drawn from such

studies do not adequately reflect the diversity of individuals who may

be at risk for AD. A recent examination of the international distri-

bution of APOE alleles drawn from public databases around the world,

as well as ancient DNA samples, for example, provided a number of

insights into the nature of human longevity that also shed light on

the importance of ensuring diversity in AD research.87 This study

emphasizes the importance of exploring APOE variability, as well as

the variability of other longevity and AD-related genes, with vital

consideration of population-specific cultural and ecological traits to

“disentangle” the pathway from genotype to phenotype for the pur-

pose of improving the interpretation of APOE-related data in different

populations. In an effort to learn more about overlooked contribu-

tions to AD phenotypes, a number of studies in recent years examined

the effects of APOE alleles and other AD-associated genetic variants

on cognition, with an emphasis on potentially important implications

related to differences in race/ethnicity and sex/gender among study

participants.88,89
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2684 KLOSKE ET AL.

7.1 Examining AD-related sex and gender
differences

Building on the knowledge that sex can be a key modifier of neu-

rological disease outcomes,90,91 a number of recent studies have

more closely examined sex-specific influences on neurodegenerative

diseases. In a recent study of sex-specific differences, for example,

Kodama and colleagues examined differences in microglial response

to tau pathology that exist between male and female mice.92 Because

previous studies revealed that sex differences in microglial gene

expression and functions could be observed in young adult mice,

were likely more pronounced in the aging brain, and that microR-

NAs (miRNAs) regulate immune networks in microglia, the authors

determined whether microglial miRNAs are expressed in and func-

tion in a sex-specific manner. After performing miRNA sequencing

(miRNA-seq) on microglia isolated from brains of adult mice and

inducing and evaluating changes in the transcriptomes of male and

female microglia, the authors found that they expressed different

miRNA patterns, both at baseline and in the context of tauopathy.

Furthermore, they discovered that the loss of miRNAs resulted in

sex-dependent consequences on the microglial transcriptome and tau

pathogenesis. The authors concluded that microglial miRNAs are key

contributors to sex-specific phenotypes and noted that a better under-

standing of microglial miRNA function could aid in the identification

of novel molecular networks that may contribute to neurological

diseases.

In a recent study exploring sex differences in humanswith regard to

associations betweenAPOE andCSFmeasures of tau, Babpour-Mofrad

and colleagues built on earlier research that revealed stronger associ-

ations between APOE ε4 and CSF tau levels among women compared

with men, and suggested that APOE may play a role in modulating

risk for neurodegeneration in a sex-specific manner, particularly in

amyloid-positive individuals.93 Mofrad and colleagues obtained CSF

Aβ42, t-tau, and p-tau at threonine 181 (p-tau 181) levels from 1801

participants with probable AD dementia (n = 937), MCI (n = 437), and

subjective cognitive decline (n = 427). The authors found that among

APOE ε4 carriers, sex differences in CSF p-tau, that is, higher levels in

females, are more apparent during early stages of disease, but that for

APOE ε4 non-carriers, females are more evident in advanced disease

stages. Based on their findings, the authors concluded that the effect

of APOE ε4 on sex differences in CSF biomarker levels vary depending

on disease stage in individuals with AD.94

These and other recent studies examining sex differences (bio-

logical differences such as chromosomal gonadal or hormonal differ-

ences) and gender differences (psychosocial and cultural differences

between men and women, including access to education and occu-

pation) suggest that both sex and gender play an important role

in the development and progression of neurodegenerative diseases,

including AD. Continued investigation and understanding of both

sex- and gender-specific risk factors, as well as factors that may be

protective for AD, will be essential for developing and evaluating suc-

cessful individualized interventions for the prevention and treatment

of AD.95

7.2 Examining differences in race/ethnicity

Agrowing body of research is examining the established and suspected

differences in risks for AD and related dementias (ADRDs) among vari-

ous racial and ethnic populations to better understand the diagnostic

and prognostic implications of these differences, as well as implica-

tions for treatment, future research, and for the design of clinical trials.

An important goal is to determine the degree to which elevated risk

for and incidence of ADRD in various populations can be explained

by genetic differences, or by psychosocial/environmental differences,

racism, or by complex interactions between environmental and genetic

factors.

A recent study,96 for example, examined psychosocial contribu-

tors to ADRD risk among non-Latinx Black older adults, who are

known to have an elevated risk of ADRDs compared with non-Latinx

White adults.97,98 The study examined data obtained from 221 non-

Latinx Black older adults who were participants in the Washington

Heights-Inwood Columbia Aging Project [WHICAP],98,99 a longitu-

dinal, community-based study of aging and dementia in northern

Manhattan. Participants completed multiple measures of discrimina-

tion at a single time point and structural magnetic resonance imaging

(MRI) scans at two time points. Both everyday discrimination and life-

time discrimination were assessed, and MRI outcomes included both

hippocampal and white matter hyperintensity volumes. This infor-

mation was used to estimate associations between the measures

of discrimination and each MRI outcome over a period of 4 years.

The study’s investigators found that lifetime racial discrimination was

associated with lower initial hippocampal volume, and that every-

day racial discrimination was associated with a faster increase in

white matter hyperintensity volume over time. The investigators con-

cluded that racial discrimination is likely detrimental for brain aging

among non-Latinx Black older adults, and that it may contribute to the

disproportionate dementia burden among this population.

In an effort to evaluate racial differences in TREM2, a key immune

mediator in AD, another recent study examined the levels of CSF

soluble TREM2 (sTREM2) and compared the frequency of associ-

ated genetic variants in groups of individuals who self-reported their

race as African American (AA) or non-Hispanic White (NHW).89 Data

were obtained from 91 AAs and 868 NHWs who were participants in

the Knight Alzheimer Disease Research Center (ADRC) cohort, which

includes one of the largest groups of AA in AD research for which

both CSF biomarker and genetic data have been collected. The cohort,

which consists of community-dwelling older adults, includes partici-

pants both with and without cognitive impairment who are enrolled

in research studies of memory and aging at Washington University

in St. Louis. The study examined concentrations of CSF biomarkers,

including sTREM2, as a function of race. The investigators found that

CSF sTREM2 levels were lower in the AA group compared with the

NHWgroup, and that AAsweremore likely to have TREM2 coding vari-

ants, which were associated with lower CSF sTREM2. AAs also were

less likely to carry the rs1582763 minor allele, located near MS4A4A,

which was associated with higher CSF sTREM2. This study’s findings

were replicated in an independent cohort of 23 AAs and 917 NHWs.
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The investigators concluded that the lower CSF sTREM2 levels among

AAs compared with NHWswere likely related to the greater tendency

for AAs to have genetic variants associated with lower CSF sTREM2

levels. These findings suggest that race may be associated with risk

for genetic variants that influence AD-related inflammation, as CSF

sTREM2 reflects TREM2-mediated microglial reactivity, a critical step

in the immune response to amyloid plaques.89

In response to findings from several publications that have revealed

weak and inconsistent associations between APOE alleles and cogni-

tive decline, MCI, and ADRDs in Latinx populations, despite higher

rates of these disorders among Latinos compared with non-Latino

Whites, a recent study determined whether these inconsistencies

might be explained by ancestry-specific genetic effects.88 The study’s

investigators examined associations between APOE alleles and sig-

nificant cognitive decline, as well as MCI, in 4183 Latinos, com-

prising six distinct background groups—Cuban, Dominican, Mexican,

Puerto-Rican, South-American, and Central American—and explored

the degree to which continental genetic ancestry (e.g., European,

African, or Amerindian) likelymodified these associations. Participants

were selected from the Hispanic Community Health Study/Study of

Latinos (HCHS/SOL), a population-based longitudinal cohort study of

16,415U.S.Hispanic/Latinoadults enrolledat four field centers (Bronx,

New York; Chicago, Illinois; Miami, Florida; and San Diego, Califor-

nia). Data obtained from the participants included anthropometry,

biospecimens, information about AD-related risk/protective factors,

and the results of four cognitive tests. The study found that APOE ε4
was associated with an increased risk of significant cognitive decline,

with the strongest association among Cubans. APOE ε2 was associated
with a decreased risk of MCI in Puerto Ricans. The study concluded

that Amerindian genetic ancestry protects against the risk of sig-

nificant cognitive decline conferred by the APOE ε4 allele, and the

study’s authors indicated that future studies are needed to identify

Amerindian genetic variants that may interact with the APOE ε4 allele,

as well as the nature of these interactions, with the goal of developing

genetic measures for predicting significant cognitive decline and MCI

in Latinos withmixed ancestry (of varying proportions).88

7.3 Examining diverse cohorts in AD prevention
studies

Studies that have indicated higher rates of AD among AAs compared

with non-Hispanic Whites (or nHWs) have raised important questions

regarding possible differences in etiology that may be responsible

for these differences. In an effort to estimate the incidence of AD

among AAs and NHWs across all available studies, Steenland and col-

leagues conducted a meta-analysis of six relevant population-based

studies and based on their calculations found that the incidence of

ADwas 64% higher for AAs compared with NHWs.100 They suggested

that the higher incidence for AAs might be explained by a combina-

tion of biological, psychological, and socioeconomic influences.100 The

authors noted, for example, that AAs have higher rates of hyperten-

sion, obesity, and diabetes compared with NHWs, and that all of these

comorbidities have been linked to AD. The authors also cited studies

indicating that vascular risk factors such as hypertension may acti-

vate neuroinflammatory responses and influence the levels of amyloid

in the brain. Steenland and colleagues noted that these variables, as

well as depression and stress, could be acting as confounders. The

authors indicated the need for further research to confirm hypothe-

sized biological, psychological, and socioeconomic factors, which may

have important implications for the development of future treatments

and for more accurate assessment of the public health burden of AD in

the United States.

In related research conducted 1 year earlier, Wharton and col-

leagues designed a study to assess the effect of modulating the

renin-angiotensin system (RAS) on the conversion to AD and cognitive

decline in people withMCI, as well as effects of the permeability of the

blood–brain barrier (BBB) and race on apotential relationship between

the RAS and AD.101 The researchers followed individuals receiving

antihypertensive medications who had MCI at baseline and who had

cognitive assessments during at least two follow-up visits to assess

conversion to AD as well as cognitive and functional decline. Among

all participants, 488 were receiving RAS-acting antihypertensive med-

ications. The team found that users of RAS-acting medications were

less likely to convert to AD and also demonstrated slower decline on

the CDR Sum of Boxes (CDR-SOB) and Digit Span Forward, compared

with nonusers. BBB-crossing RAS-acting medications were associated

with slower cognitive decline on the CDR-SOB, the MMSE, and the

Boston Naming Test. The investigators found that RAS-acting medica-

tions were more likely to be associated with cognitive benefits among

African Americans, compared with Caucasians. In addition to show-

ing that people prescribed RASmedications were less likely to convert

to AD, the study suggested that the BBB permeability of the medica-

tions may help explain cognitive benefit, and that African Americans

are more likely to benefit from RAS modulation than Caucasians. The

results of the study provided a strong rationale for trials investigating

RASmodulation during prodromal stages of AD.

8 TARGETED THERAPIES

Research in recent years that has examined the cross-talk between

APOE and immunity has pointed to a number of promising directions

for drug development. Of particular interest to AD researchers are

early pathomechanistic alterations that occur along the AD continuum

and contribute to the development of neuroinflammation, pathologic

changes in immune signaling, and the progressive accumulation of Aβ
and tau, which might be targeted for the prevention or early-stage

treatment of AD.

8.1 Modulation of protective TREM2-dependent
microglial functions

A growing body of research ranging from human genetics and

biomarker studies to human tissue/postmortem studies suggest the

 15525279, 2023, 6, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13020 by C

ochrane L
uxem

bourg, W
iley O

nline L
ibrary on [21/11/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



2686 KLOSKE ET AL.

value of investigating novel therapeutic strategies that enhance

aspects of microglial function, such as innate immune signaling and

immunometabolism, for the treatment of AD. In particular, GWASs and

studies examiningTREM2signaling suggest thatTREM2mayhaveben-

eficial functions in the CNS, that loss of TREM2 function increases

the risk for AD, and that TREM2 modulation and/or activation might

be used to prevent the onset or slow the progression of sporadic

AD.102–104

Among the best-described approaches to themodulation of TREM2

activity are those involving agonist antibodies that are capable of acti-

vating receptor signaling and enhancing the protective function of

microglia. Four TREM2 agonistic antibodies—antibodies 1 and 2 (gen-

erated by R&D Systems and by Amgen, respectively), AL002c,105 and

4D933—enhance survival of microglia and macrophages under low

macrophage colony-stimulating factor (M-CSF) conditions.106 These

antibodies have a number of shared characteristics, including a ten-

dency to bind in similar or overlapping sites within the stalk region of

TREM2.107 They also share the ability to stimulate both the prolifera-

tion and survival of myeloid cells. Moreover, all of these antibodies are

characterized by dual mechanisms of action, such that each is capable

of promoting TREM2 signaling by means of the cross-linking of sur-

face TREM2,which stimulates phagocytosis and the removal of cellular

debris, and also is capable of inhibiting TREM2 shedding.106,107

Evidence that TREM2 plays a role in supporting the compaction

of amyloid plaques and the clustering of microglia around amyloid

plaques, which in turn helps to reduce plaque-associated neuritic

pathology,106,108,109 suggests that TREM2 agonist antibodies might be

used to successfully target amyloid accumulation. Indeed, the AL002c

and 4D9 antibodies have been tested to determine whether they

affect amyloid accumulation in the brain of transgenic AD mouse

models.105,107,110 Although neither AL002c nor 4D9 has a tendency to

increase clustering of microglia around amyloid plaques, 4D9 reduces

the halo of amyloid plaques when administered to an APP knock-in

mouse model. Two studies also established that both AL002a and 4D9

are capable of enhancing microglial phagocytosis of Aβ as well as of

myelin debris.107,111

A growing number of studies suggest that sTREM2 in CSF also

may be an important target for TREM2 agonist antibodies.112 Stud-

ies of sTREM2 in CSF have provided insights into disease pathogenesis

in AD through the examination of the sequence of microglia activa-

tion relative to Aβ deposition and tau aggregation.112 Recent studies

also suggest that sTREM2 may have non-cell autonomous protective

functions and that changes in various physiological conditions and/or

disease states can affect levels of sTREM2 inCSF.112 For these reasons,

sTREM2 is undergoing evaluation as a therapeutic biomarker as well

as a target for TREM2 antibodies.105,112 One antibody, 4D9, efficiently

binds sTREM2 in CSF when administered at high doses (50 mg/kg) in

the periphery, which correlates with an increase in total TREM2 levels

in the brain.107 This finding suggests that 4D9 is capable of achiev-

ing target engagement in the CNS in vivo, although further research

will be required to determine the exact mechanisms that mediates the

increase of soluble or cell-surface TREM2 in the CNS. One hypothe-

sis is that by blocking shedding activity, 4D9 may increase cell-surface

TREM2, and in turnmay prevent its degradation and clearance.

As TREM2 antibodies undergo further development, researchers

will need to address a number of important safety considerations.

Because TREM2 antibodies affect a wide range of microglial subpop-

ulations and dynamic microglial states in the brain, it will be critical

to ensure that therapeutic efforts achieve a balance between ben-

eficial and harmful effects of immune activation. Current efforts to

use profiling data obtained with single-cell and single-nucleus RNA-

seq technologies to better understand the diversity of sub-populations

of microglia and their functions may eventually enable more com-

prehensive assessments of all microglia-targeting therapies.106 Also

important will be efforts to determine the effects of TREM2 ago-

nist antibodies on bone as well as on lung, liver, spleen, and

peripheral adipose tissues. Further work will be required before

an optimal therapeutic molecular signature and optimal functional

outcomes of treatment with TREM2 agonistic antibodies can be

determined.

8.2 APOE-modifying therapies

A major current avenue of drug development research involves iden-

tifying and targeting the factors through which APOE and its variants

influence the development of AD, with the aim of discovering whether

theprotectiveeffects of someAPOEgenotypesmightbeused to reduce

the probability or delay the onset of developing AD.

It is well established thatAPOE, the strongest risk factor among sus-

ceptibility genes for late-onset AD, has three common alleles (APOE

ε2, ε3, and ε4) that give rise to six genotypes (APOE ε2/ε2, ε2/ε3, ε3/v3,
ε2/ε4, ε3/ε4, and ε4/ε4). Particular APOE alleles, including APOE ε2 and

the recently described APOE Christchurch mutation, are associated

with a reduced risk of developing AD and other neurodegenerative

disorders.113,114 In contrast, and compared with the most common

APOE ε3/ε3 genotype, each copy of the APOE ε4 allele is associated

with a higher risk of AD dementia and with a younger age at demen-

tia onset, such that APOE ε4 homozygotes are subject to the greatest

risk, whereas either one or two copies of the APOE ε2 allele is asso-

ciated with a lower risk of AD and an older age of dementia onset.

APOE variants may have an even greater impact on the develop-

ment and potential treatment and prevention of AD than previously

thought—due in part to the likelihood that earlier studies underes-

timated the influence of the APOE genotype because they include

neuropathologically misclassified cases and controls.115–117

In one recent study, Reimanand colleagues established thatAPOE ε2
homozygotes have an exceptionally low likelihood of AD dementia.114

The study demonstrated an exceptionally low likelihood of develop-

ing AD dementia among APOE ε2 homozygotes in a large population of

clinically and neuropathologically confirmed individuals and controls.

Moreover, the investigators provided updated information for each of

the six common APOE genotypes with regard to the differential risk

for developing AD and demonstrated a stronger association of APOE

genotypes on the development of AD dementia than previously esti-

mated. The study further supported known effects of APOE genotypes

on standardmeasures of neuritic Aβ plaque and tau tangle severity and
suggestedprogressively protective effects onBraak stage for genotype
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groups (such thatAPOE ε3/ε4< ε2/ε4< ε3/ε3< ε2/ε3< ε2/ε2) compared

with APOE ε4/ε4 homozygotes.

Other recent findings further stressed the importance of clarifying

factors through which APOE and its variants account for differential

risks for AD. In a recent study, Arboleda-Velasquez and colleagues,

determined that a Colombian PSEN1 E280A mutation carrier who did

not develop MCI until their mid-seventies (nearly three decades after

the median age of MCI onset among these carriers) had two copies

of the rare APOE ε3 Christchurch (R136S) mutation.113 This APOE ε3
Christchurch homozygote demonstrated resistance to ADAD despite

having the highest amyloid plaque burden among members of her kin-

dred (evidence of the overproduction of Aβ42 for more than 20 years).

Despite PET and CSF evidence of high Aβ plaque burden, the same

individual had PET evidence of limited tau tangle burden and neurode-

generation, which supports the idea that APOE variants have effects

on the development of AD that go beyond plaque burden. This idea

is further supported by evidence in other human and animal studies

that APOE variants likely have differential effects other than amyloid

plaque deposition, such as effects on Aβ aggregation and plaque mor-

phology, Aβ-mediated neuroinflammatory changes, tau propagation,

and neurodegeneration.

Although these studies strongly suggest that apoE and its associ-

ated molecular pathways may be particularly attractive therapeutic

targets, additional research will be needed to clarify the mechanisms

linking APOEwith risk for AD. It will be particularly important to deter-

mine whether APOE variants contribute to differential AD risk due to

a toxic gain of function, which might suggest the benefit of an APOE

gene silencing treatment, or due to a toxic loss of function, whichmight

suggest the benefit of increasing apoE function. Reiman and colleagues

have proposed early-phase trial strategies in which these possibili-

ties might be tested in p-tau+ and NfL+ APOE ε4 homozygous (as

determined by CSF or plasma).

Gene editing treatments, including gene-silencing antisense

oligonucleotide and RNA interference treatments already in devel-

opment, and apoE protein-reducing or -modifying treatments are

among currently proposed strategies that might safely and sufficiently

replicate the protective effects of APOE ε2/ε2 genotypes to prevent

or delay the clinical onset of AD. A key challenge will be to inform

the efficacy of AD-modifying treatments in early phase clinical trials

with satisfactory endpoints. Among theragnostic endpoints that

are currently considered promising for APOE-modifying treatments

are CSF and plasma p-tau (e.g., p-tau181, 217, and 231), which are

indicators of Aβ-mediated tau pathophysiology, and CSF and plasma

neurofilament light (NfL), which are indicators of neuronal injury

and/or degeneration.

8.3 Targeting chronic inflammation and soluble
TNF

Neuroinflammation is one of the earliest pathologic mechanisms

that occurs during the development of AD, which typically begins

decades before the onset of clinical symptoms [see 3.0 Neuroinflam-

mation]. Although clinical trials that investigated compounds with

anti-inflammatory properties have failed to achieve primary endpoints,

current studies point to a continued strong therapeutic rationale for

pursuing such treatment strategies.

Numerous studies of animal models of AD, as well as longitudinal

human studies, suggest that TNF is an attractive therapeutic because

it plays an important role in early proinflammatory processes that

take place during preclinical stages of AD.118,119 Many studies found

that elevated TNF levels are associated with both MCI and AD.35,118

TNF is released throughout the course of AD, by reactive microglia

and infiltrating peripheral immune cells, and to a lesser extent reac-

tive astrocytes and stressed neurons. One suggested initiator of this

TNF increase is increased levels of extracellular Aβ120; however, given
that TNF increases are reported in several neurodegenerative dis-

eases without Aβ, it is also likely that other non-AD specific drivers

of cytokine increase are equally responsible. TNF also can trigger γ-
secretase activity, which causes an increased synthesis of Aβ peptides,
and in turn a further increase in the release of TNF.118 It has been

hypothesized that this feedback loop contributes to excessive levels

of TNF-α that in turn lead to Aβ synthesis, the inhibition of phagocy-

tosis of Aβ by microglia, and neuronal loss.118 TNF, along with other

cytokines released by immune cells under inflammatory conditions

in the early stages of AD, can drive reactive astrocyte sub-states—

either those that are neurotoxic,43,52 or some with putative protective

functions.70 TNF also increases insulin resistance and related cognitive

decline in AD.121

Although insulin impairment and inflammation are characteristic

features of both type 2 diabetes and AD, until recently the shared

molecular and signaling interactions underlying these features were

not well understood. Recently investigators explored the disruption

of metabolite processing in both insulin impairment and neurodegen-

erative conditions such as AD.122 Specifically, they investigated how

soluble tumor necrosis factor signaling (solTNF) affects the integra-

tion of peripheral immune signals and metabolic feedback signals in

states of energy overload and insulin insensitivity. These researchers

found that a high-fat, high-carbohydrate diet (HFHC) diet in wild-type

C57BL6/J mice affects central insulin signaling and immune-metabolic

interactions in a solTNF-dependent manner, which is accompanied

by disruption in sociability and inflammatory gene networks in the

brain. They also found that selective solTNF neutralization can reduce

diet-induced insulin impairment, and identified solTNF as a potential

target for therapeutic intervention for lowering AD risk in inflamma-

tory states, findings that have implications for individuals with type-2

diabetes at higher risk for development of AD.

In November 2019, INmune Bio launched a phase 1b, proof-of-

biology trial of a protein biologic, known as XPro1595, which targets

and selectively neutralizes the soluble form of inflammatory cytokine

TNF, in 18 patients with clinically diagnosed AD. Participants, who

were required to have evidence of inflammation (elevated blood CRP,

hemoglobin A1c, high erythrocyte sedimentation rate [ESR], or carry

at least one APOE ε4 allele), received weekly subcutaneous injections

of 0.3, 0.6, or 1.0, mg/kg XPro1595 for 3 months. In addition to report-

ing that the drug was safe, INmune Bio reported a dose-dependent
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reduction in biomarkers of neuroinflammation and neurodegeneration

acrossmultiplemeasures andmodalities at 12weeks that continued to

improve in the six patients who remained on drug for 6 to 12 months.

A proof-of-concept Phase 2 study in mild AD patients with biomark-

ers of inflammation is currently underway to further explore whether

these biological changes in response to treatment can lead to clinical

improvement (ClinicalTrials.gov Identifier: NCT05318976).

9 CONCLUSION

At the 2021 APOE and Immunity virtual conference, the APIOE and

Immunity research communities demonstrated an enthusiastic com-

mitment to advancing the interrelated fields of APOE and Immunity.

This meeting was marked by a strong collaborative spirit and ded-

ication to deepening our understanding of all aspects of APOE and

Immunity biology and their interconnected relationships.

The Alzheimer’s Association is committed to supporting dementia

researchers around the globe. Currently, the Alzheimer’s Association

has over $310million invested in 950projects in 48 countries on 6 con-

tinents. TheAssociation supports researchers acrossdementia science,

including projects that advance our understanding of new treatment

strategies, and that improve our understanding of AD, help to improve

care and support for individuals with dementia and their families, and

help further our knowledge of brain health and disease prevention.

In 2023, the Alzheimer’s Association is hosting two conferences to

build upon the momentum of this APOE and Immunity virtual con-

ference. AAIC Advancements: APOE will be held in St. Louis Missouri

in March of 2023; and AAIC Advancements: Immunity will be held in

Boston, Massachusetts in March of 2023. It is hoped that both confer-

ences will attract new talent and funding to the field, while fostering

greater awareness of this high-impact research.
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