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Abstract—Feature engineering on financial records for
bankruptcy prediction has traditionally relied significantly on
domain knowledge and typically results in a range of financial
ratios but with limited complexity and feature utilization due
to manual design. It is often a time-consuming and error-prone
procedure, confined to the domain experts’ experience, without
taking into account the characteristics of different data sets.
In this paper, we propose an automated feature engineering
approach to generate effective, explainable, and extensible model
training features. The experiments have been conducted using
a publicly available record of financial statements submitted
to the Luxembourg Business Registers. This approach aims to
improve bankruptcy prediction for professionals who may not
possess the necessary engineering expertise or efficient data.
The experimental results suggest that the proposed approach
can provide valuable features for model training and in most
of the cases, the model’s outcomes outperforms predominantly
as compared to the traditional approaches and the well-known
approaches the models, thus can provide valuable features for
model training.

Index Terms—Automatic feature engineering, Bankruptcy pre-
diction, Credit risk, Imbalanced data

I. INTRODUCTION

Bankruptcy prediction models, whether based on financial
experts or machine learning methods, are typically built on
financial ratios [5]. While financial ratios have been demon-
strated to have the ability in bankruptcy prediction [2], the
range of these values can vary across different companies and
sectors, making it challenging for credit analysts to make the
decision. Additionally, financial statements can have different
formats and accounting subjects, which further complicates the
calculation of these ratios. Furthermore, not all companies can
provide their complete historical data to calculate financial.
This phenomenon often holds for small and medium-sized
enterprises (SMEs). They cannot provide complete financial
statements due the nature and/or maturity of their business,
which leads to the inability to calculate financial ratios and to
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complete risk assessments, leading to a high level of declined
credit requests [15].

This paper is inspired by the above-described constraints,
thus, proposing and evaluating a novel automatic feature en-
gineering approach, specifically suited for financial statements.
The goal is to generate features to improve the quality of the
input data for bankruptcy prediction, which is an important
asset for credit requests of companies lacking the proper
financial history and data. We also recreated the financial ratio
approach [13], [19], [21], [30] and other representative feature
generation approaches [14], [20] , and validated our solution
design using published bankruptcy prediction models. Our
results show that our automatic feature engineering approach
not only performs significantly better to models based on
financial ratios, but also outperforms other feature generation
approaches. Our solution design resulted in the implementation
of the automatic feature engineering method and algorithm 1.

In short, our contributions are:
• A novel automatic feature engineering algorithm replac-

ing domain expert feature engineering in the business
scenario,

• An implementation of the automatic feature engineering
method algorithm ,

• A comparative study of some well known bankruptcy
prediction models and different feature generation ap-
proaches using real data from Luxembourg Business
Registers, and

• A performance evaluation of the impact of automatic
feature engineering for bankruptcy prediction.

II. RELATED WORK

With the development of machine learning and deep learn-
ing, plenty of studies have attempted to make a breakthrough
by applying new models into bankruptcy prediction, and
directly use well-calculated financial ratios to find the most
predictive model and make predictions [4], [6], [9], [10], [22],
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[25]. In the early stage of applying machine learning methods
for bankruptcy prediction, logistic regression [2] was once the
most widely-used model in predicting bankruptcy. Even today,
many financial institutions still adopt the logistic regression
as the primary approach for building the credit scorecards
because of its interpretability and stability [27] [23]. However,
the results of using learning techniques have been shown to
be contradictory at times, for instance, [22] and [4]. These
discrepancies are due to the fact that machine learning models’
results are highly dependent on the input data, whereas the
financial data of firms, especially of SMEs, used to predict
credit risk and bankruptcy are often unstructured and incom-
plete [18].

We aim to build a discipline-wide research of bankruptcy
prediction, and complement it with this machine learning
approach to improve the performance by focusing on input
data. Our engineering exercise is considered from multiple
viewpoints [3], since bankruptcy prediction is in the hand
of different stakeholders (i.e. creditor and borrower) with
different, often not well-aligned requirements and financial
incentives. Taking commercial interest for solution design is
well-documented in [7], which goes beyond technologically
driven requirement elicitation and analysis of stakeholders. It
recognizes the necessity of a commercially-driven requirement
elicitation, and defines an ontology that allows, among others,
conceptualizing the fundamentals of valuation principles of
economic transactions. Authors in [8] provides a conceptual
model to guide alignment of domain-specific requirements in
order to achieve shared understanding among stakeholders for
a solution design. Our analysis is predominantly inspired by
these works, as our goal is to elicit stakeholder-specific data
variables to enhance traditional bankruptcy prediction, which
can then become input variables of implementable instructions.
Thus, we choose to apply automatic feature engineering to en-
hance domain experts’ analysis in an explainable and effective
method.

One direction of automatic feature engineering is feature
interaction, which is extensively applied in the area of rec-
ommendation systems. There are plenty of explorations on
automatic feature engineering to improve the performance
of predicting click-through rate, such as the Factorization
Machine (FM) [12], DeepFM [14], AutoInt [29], and Aut-
oFIS [31] each of which build the extensive feature interac-
tions to obtain a good result of the model. However, these
methods are more suitable for the highly sparse categorical
data and the business scenario of recommendation systems.
Moreover, these features are deeply integrated with the deep
learning models and therefore it is not meaningful to just take
out the features as such. Furthermore these features typically
lack interpretability. As financial business use-cases usually
pay great attention to explainability, our approach takes this
into account and addresses this issue.

The other direction is feature combination, of which deep
feature synthesis (DFS) [20] is one of the most well-known
algorithms. The overall idea is to arrange the original data
in tables and to combine them with a greedy algorithm to

search the whole feature space using SQL-like statements
like "select...join...group by". An advantage of DFS is that
it is interpretable which can give users a clearer insight into
the business and it is good at handling relational data. The
limitation of this method is that it will generate all the features
according to the manual setting of the hyperparameters regard-
less of whether they are useful or not. It just implement the
aggregation functions on the features so it cannot generate the
features with the necessary depth. Additionally, modeling with
redundant features can be costly and may lead to unfavorable
outcomes. There are still some benefits of the DFS method and
we use a variant of it by introducing a feature selection process
based on feature importance to overcome this limitation.

Luo et al. [26] proposed the AutoCross method to generate
an explainable feature set based on a beam search algorithm
and it also proved to be effective on real world datasets. The
authors treated all the original features as categorical features
and they split the numerical features into bins in order to turn
them into categorical features. In our case, the raw data comes
from financial statements which are all numerical. This may
lead to losing information from the raw data if we discretize
the numerical data into categorical data.

Inspired by above-mentioned work, we propose an auto-
matic feature engineering (AFE) algorithm to construct the
features specifically targeting raw numerical data.

III. METHODOLOGY AND SOLUTION DESIGN

A. Overview for Automatic Feature Engineering

Fig. 1 illustrates the entire process of automatic feature
engineering (AFE) from raw financial records to a derived
feature set for bankruptcy prediction. The first step involves
pre-processing the raw data for feature construction, where
we cope with extreme values by replacing infinity with finite
extremes, and treat missing values as zero due to accounting
subjects. Before proceeding to the next step, we determine
the hyperparameters k1 and k2, representing the number of
features selected from feature aggregation and feature crossing
respectively, as well as batch_size representing the number
of feature pairs resulting from one iteration of the first feature
crossing round.

Feature generation process consists of two independent
parts: aggregation and crossing. In the feature aggregation
process, we generate the features by the aggregation method at
one time and then select the most valuable ones. While feature
crossing process consists of a loop of feature crossing and
feature selection, new features are generated by the crossing
method followed by the same selection criteria of feature
aggregation. Subsequently, if the new generated feature set
does not meet the termination condition, feature crossing
continues. Otherwise, it stops and then we obtain the derived
feature set by combining the outcomes from crossing process
with the features generated by aggregation process.

B. Feature generation

For feature aggregation, we calculate statistical descriptive
indicators for features of each company over n years and



Fig. 1. Pipeline for automatic feature engineering process

use them as new features. Specifically, the maximum value
(max), the minimum value (min), the sum (sum), the average
(mean), the standard deviation (std), and the percentage
change (pct_change) between the current and the previous
year are used as the descriptive indicators. We adopt the feature
importance from lightGBM to evaluate a feature’s contribution
for identifying the targets because of its fast and efficient
computation, high reliability, and strong interpretability [24].
Top k1 features are kept as a part of the final feature set.

For the first round i = 0 of feature crossing, as in (1),
we have (f1f2 · · · fn) representing the n features from the
input dataset and S0 representing the derived feature set
after the first round of feature combination. The symbol ⊙
represents four basic operands addition (+), subtraction (−),
multiplication (∗), and division (/), which aims to mimic the
experts calculating financial ratios on each feature pair. Taking
one element (f1⊙f2) as an example, this represents four value
of new features (f1 + f2), (f1 − f2), (f1 ∗ f2), (f1/f2).

S0 =
(
f1 f2 · · · fn

)T ⊙
(
f1 f2 · · · fn

)
=


(f1 ⊙ f1) (f1 ⊙ f2) · · · (f1 ⊙ fn)
(f2 ⊙ f1) (f2 ⊙ f2) · · · (f2 ⊙ fn)

...
...

. . .
...

(fn ⊙ f1) (fn ⊙ f2) · · · (fn ⊙ fn)

 (1)

Succeeding to this, we follow the feature selection process.
We unfold the feature set S0 and put the new derived features
into a LightGBM classification model to obtain their feature
importance. We choose top k2 features aligned with the results
as the input features to the next feature generation round.
Meanwhile, we add these k2 features to the final feature set
for the prediction model.

For the next rounds i > 0, as in (2), we have Si as the new
derived feature set. We then repeat the steps mentioned above
and we will have k2 new generated features for each order
until it meets the termination condition. The detailed steps of
automatic feature engineering is shown in the algorithm 1.

Si =

k features from S0︷ ︸︸ ︷(
fa fb · · · fk

)T ⊙
(
f1 f2 · · · fn

)
=


(fa ⊙ f1) (fa ⊙ f2) · · · (fa ⊙ fn)
(fb ⊙ f1) (fb ⊙ f2) · · · (fb ⊙ fn)

...
...

. . .
...

(fk ⊙ f1) (fk ⊙ f2) · · · (fk ⊙ fn)


(2)

C. Termination condition

The algorithm for feature engineering offers two termination
options. The first option is a maximum iteration limit for the
feature generation loop to prevent infinite feature generation.
This limit can be manually defined and it is set to the number
of input features by default, allowing each feature to cross
with every other feature once.

The other is automatic termination. As shown in algorithm
1, for every round of feature generation we train a LightGBM
model to make the prediction on new generated features,
and then compare the AUC value of current round with the
previous round. If the AUC of current round is larger than
the previous round, it represents that new generated features
improves the performance of the prediction model so these
features should be kept and added to the final feature set.
If the AUC of current round is smaller than previous round,
it indicates that new generated features cannot improve the
prediction model so feature generation process should stop.

In our case, we adopt the default number of the maximum
feature generation loop and also the automatic termination to
achieve the minimal manual intervention and get the derived
feature set.

IV. EXPERIMENTS

To validate the performance, we conduct experiments based
on our case data, which we described in Section II. The time
period of our data is from 2011 (the earliest annual data
available via LBR) to 2021, and it includes records of both
bankruptcies and well-operating companies. We construct nine
data sets with different historical periods (1-year, 2-year,. . . ,
and 9-year) to cover all time spans from 2011 to 2021. The
n from 1 to 9 years means that the data contains balance
sheets from n consecutive years of each company. The target
label corresponds to the business status (bankrupt or non-
bankrupt) of each company in the year after n consecutive
years. The descriptive statistics of our datasets listing the
number of positive samples (bankrupt companies), negative
samples (non-bankrupt companies), positive rate (bankruptcy
rate), the feature sizes of AFE approach and raw data per each
historical period is shown in Table I.



Algorithm 1 The Automatic Feature Generation Process
Definitions:
Fraw: Input parameter. A vector with the original features in the raw
data,
D: Input parameter. A random selection of rows from 70% of raw
pre-processed data, also as the training data for the prediction models,
k = the number of highest ranked features,
batch_size = the number of feature pairs in each batch,
fx ⊙ fy = operation that yields a set of four values:
fx + fy, fx − fy, fx ∗ fy, fx/fy ,
AUC = area under receiver operating characteristic curve,
AggIndicators(data, ∗arg) is a function to generate the descriptive
indicators ∗arg of each feature in data,
TopFeatures(model, FC, k) is a function to rank the Feature
Candidate set (FC) based on the feature importance calculated from
model, and keep the top k.
lgb: LightGBM model.
Returns:
F = Constructed feature set

1: function AFE(Fraw, D)
2: Fagg ← AggIndicators(Fraw, ∗arg) ▷ ∗arg: a set of

operations max, min, sum, mean, std, pct_change
3: FC ← Fagg

4: FSagg ← TopFeatures(lgb(D[FC]), FC, k1)
5: n0 ← |Fraw|
6: n_batches← n2

0/batch_size
7: Fcross ← FT

raw ⊙ Fraw ▷ See (1)
8: FS0 ← ∅
9: for b← 0, n_batches− 1 do

10: FC ← Fcrossed[batch]
11: FSb ← TopFeatures(lgb(D[FC]), FC, k2)
12: ▷ Selecting all features in a batch and keep the top k
13: FS0 ← FS0 ∪ FSb

14: end for
15: FS1 ← TopFeatures(lgb(D[FS0]), FS0, k2) ▷ Select the

k top most important feature pairs
16: AUC0 ← 0
17: for i← 2, n0 − 1 do
18: Fcross ← FT

raw ⊙ FSi−1

19: FC ← Fcrossed

20: FSi ← FSi ∪ TopFeatures(lgb(D[FC]), FC, k)
21: AUCi ← Calculate_AUC(lgb(D,FSi))
22: if AUCi <= AUCi−1|reached_limit(i) then
23: return FSi

24: end if
25: end for
26: F ← FSagg ∪ FSi

27: end function

TABLE I. SUMMARY OF SUB-DATASETS

Dataset Negative Positive Positive
Rate

Num of
AFE

Features

Num of
Input

Features
1-year 31528 4351 12% 42 64
2-year 28570 3271 10% 58 128
3-year 26029 2348 8% 50 192
4-year 23783 1675 7% 34 256
5-year 21664 1133 5% 66 320
6-year 19689 737 4% 50 384
7-year 17560 440 2% 50 448
8-year 15036 229 2% 58 512
9-year 7913 88 1% 50 576

Hyperparameters of AFE approach can be chosen to fit the
characteristics of different input data. The choice of hyper-
parameters involves a trade-off between model performance,
training time, and resource consumption. We explore hyper-
parameters for 1-year, 2-year, and 3-year datasets to optimize
the performance. We need to set k1 and k2 for selecting top
features from the feature aggregation and feature crossing
processes, as well as batch_size to prevent running out of
memory during feature generation. k1 and k2 directly affect
the number of features selected for the bankruptcy prediction
model. After experiments on k1 varying from 5 to 50, k2
varying from 2 to 20 and batch_size varying from 100 to
512800, we set k1 to 15, k2 to 8 and batch_size to 30,000
for optimal model performance.

A. Comparison with feature sets generated by other methods

a) Financial ratios: Financial ratios are created and
designed based on domain experts experience. Due to the
limitation of lack of cash flow and profit & loss statements, we
can only replicate 10 financial ratios based on the top 20 most
frequently used financial ratios in bankruptcy prediction as
discussed in [13] and 8 financial ratios from other studies[19],
[21], [30]. The considered financial ratios are depicted in Table
II. The variables marked ⋆ are derived from [13] and the ones
marked † comes from[19], [21], [30].

TABLE II. THE SET OF FINANCIAL RATIOS USED IN THE PAPER
Variable Financial Ratios Description

f1⋆ current ratio current assets ÷ current liabilities
f2⋆ debt to equity debt ÷ equity

f3⋆ working capital to total
assets

(current assets-current liabilities) ÷
total assets

f4⋆ total liabilities to total
assets total liabilities ÷ total assets

f5⋆ equity to total assets equity ÷ total assets

f6⋆ quick ratio
(cash + marketable securities +
accounts receivable) ÷ current

liabilities

f7⋆ current assets to total
assets current assets ÷ total assets

f8⋆ cash to total assets cash ÷ total assets

f9⋆ cash to current
liabilities cash ÷ current liabilities

f10⋆ long term debt to
equity long term debt ÷ equity

f11† total assets growth rate
(total assets of current year - total

assets of previous year) ÷ total assets
of previous year

f12†
quick assets to total

assets
(current assets-inventory-prepaid

expenses) ÷ total assets

f13†
current assets to
current liabilities current assets ÷ current liabilities

f14†
(cash or marketable
securities) to total

assets

(cash + marketable securities) ÷ total
assets

f15† total debt to total assets debt ÷ total assets
f16† equity to fixed assets equity ÷ fixed assets

f17†
current assets to total

liabilities current assets ÷ total liabilities

f18†
short-term liabilities to

total assets short-term liabilities ÷ total assets

First, we compare the performance of the representative
bankruptcy prediction models, which are trained by the fea-
tures generated by financial ratios and AFE, then we evaluate
the prediction contribution of the features from these two
different approaches.



b) DeepFM: DeepFM [14] is a prominent approach from
the area of recommendation systems. It was improved from
the factorization machine(FM). DeepFM model contains two
parts, FM and DNN. FM model extracts low-order features
and DNN model extracts high-order features so it can learn the
low- and high-order feature interactions simultaneously. The
output is the sum of the FM part and the DNN part as in (3).
Since the input is the raw features and FM and DNN share
these features, the training for DeepFM model is fast. Our
focus here is on the results obtained using the default setting
of DeepFM, rather than fine-tuning the model. It is a blackbox
model so we can not get the exact features that generated by
DeepFM and it returns the prediction as the model result.

ŷ = sigmoid(yFM + yDNN ) (3)

c) Deep feature synthesis: We also compare our ap-
proach with deep feature synthesis(DFS) mentioned in Sec-
tion III. We deploy the featuretools package and set
seven primitives: "sum","std","max","skew","min","mean" and
"trend". These primitives are what we can have according to
the input data. We compare DFS with AFE approach in two
ways. One is to keep all the features that generated by DFS.
The other is to select the same number of features from DFS
as in AFE approach. This two-way comparison is to show
the redundant features generated by DFS and the necessity of
feature selection.

1) Models for evaluating different feature generation ap-
proaches: We evaluate the effectiveness of the features gen-
erated by two approaches by comparing the performance of
the representative models trained from the features generated
by these two approaches. Each of the nine datasets (1-year,
2-year,. . . and 9-year) are divided randomly into training and
testing sets with the ratio of 7:3. Then we train the models
mentioned below on these nine datasets. The following are the
representative bankruptcy prediction models and their settings:

a) Logistic Regression (LR): It uses the sigmoid function
to transit the result from linear model to classification result.
[2] applied this model to make bankrupt prediction and it is
widely used in this area. In this study, we use the LR function
of Scikit-learn package (version 1.0.1), setting the C = 0.1
and class_weight=’balanced’.

b) Random Forest (RF): It is a typical bagging ensemble
model which performs well in the classification task. [17]
compared RF with LR in individual credit risk prediction and
the result showed that RF outperforms LR. In this study, we
use the RF function of Scikit-learn package (version 1.0.1),
setting the max_depth=2 and n_estimators = 10.

c) LightGBM (LGB): It is an improved model based on
extreme gradient boosting (XGBoost) and also a representative
model of a boosting ensemble model [24]. [28] compared
several models to predict bankruptcy and LightGBM is the
best among all the models. In this study, we use the LightGBM
package (version 3.2.2) and the Gridsearch method to find the
best parameters for learning rate, max depth and number of
leaves. We keep other parameters in default setting.

d) Multilayer perceptron (MLP): Inspired by the study
[32], [33], we build a MLP model with four hidden layers.
We use the ReLU function as the activation function and the
dropout rate is 0.3. The loss function is the cross entropy and
the learning rate of 0.01. We implemented the MLP model
using PyTorch (version 1.10.0).

B. Feature performance indicators for comparing feature con-
tribution

We evaluate the performance of features by feature im-
portance and information value. We conduct feature impor-
tance ranking and calculate the information value by the
LGBMClassifier() function with default parameters of
lightgbm package on the combination dataset of features
created by different approaches. We set the option of "im-
portance_type" to "split" to calculated the importance, which
is a split-based method. Feature importance is generally
used to evaluate the contribution of each features in model
training [11]. The higher the rank, the larger effect it has
on the model. Information value is an indicator that can
be used to measure the predictive power of an independent
variable [1]. A higher information value means the feature
has more predictive power. We adopt this indicator to evaluate
features’ performance because it is widely used in feature
selection of credit risk assessment in the financial industry.
It can be calculated as following [16]:

IV =

n∑
i=1

(
Gi

G
− Bi

B
) ∗ ln Gi/G

Bi/B
(4)

where n is the number of bins of each feature, Gi and
Bi represent the numbers of negative and positive samples of
bin i, G and B are the total number of negative and positive
samples in the population.

V. RESULTS AND DISCUSSION

A. Comparison with financial ratios

1) Model performance: Fig. 2 shows the performance of
mentioned models trained on automatic feature engineering
(AFE) and financial ratios (FR) from Table II. The x-axis of
the figure represents nine datasets. The y-asis represents the
improvement of AUC from models trained by AFE compared
to AUC from models trained by FR. We can see that the
models trained by AFE have the outstanding advantages over
the models trained by FR. In total, AFE outperforms FR in 35
out of 36 cases. Therefore, the models using automatic feature
engineering approach has a better ability to predict bankruptcy
under these scenarios.

2) Feature performance: We evaluate the contribution of
each feature by putting them in the same bankruptcy prediction
model. Fig. 3 shows a comparison of the feature importance
between the features found by the AFE algorithm and the
financial ratios. It is clear that the features created by AFE
have higher rank than the features created by FR for all the
nine datasets, which also implies why models on AFE tend to
perform better.



Fig. 2. AUC improvement of AFE compared to FR on each dataset

Fig. 3. Feature importance of AFE and FR on each dataset

Fig. 4 shows the information value, which indicates that
most features created by AFE have higher information values
than features created by FR approach among all datasets
except for the 3-year dataset. Although the medium IV of 3-
year features from AFE is slightly lower than 3-year features
from FR, the 1st quartile of features from AFE is still larger
than 3-year features from FR, which means AFE essentially
contribute features with higher IV and could result in a better
model performance. Hence, we can draw the conclusion that
features created by AFE have better performance than features
created by FR based on the results of both feature importance
and information value.

Fig. 4. Information value of features in AFE and FR on each dataset

B. Comparison with DeepFM

We compare the performance of the four models with the
AUC of DeepFM result. From Table III, it shows that auto-
matic feature engineering have the absolute advantages over all

the nine datasets by all the four models. AUC of DeepFM for
nine datasets are all between 0.6 and 0.7. But for LightGBM
model on AFE, the AUC could reach more than 0.85 on 1-
year and 2-year dataset and around 0.8 on other datasets,
which is an impressive improvement compared to DeepFM.
We also notice that LightGBM model on AFE have a better
performance than logistic regression model and random forest
on AFE. This is because not only the LightGBM model has
effective predictive capabilities but also the hyperparameters
are chosen based on the LightGBM model.

TABLE III. AUC OF MODELS TRAINED ON AFE AND DEEPFM

Dataset AFE DeepFMLR RF LGB MLP
1-year 0.7466 0.7940 0.8713 0.7658 0.6352
2-year 0.7542 0.7867 0.8589 0.7833 0.6502
3-year 0.7574 0.7725 0.8458 0.7872 0.6443
4-year 0.7797 0.7964 0.8474 0.8090 0.6560
5-year 0.6640 0.7517 0.8206 0.7292 0.6256
6-year 0.6734 0.8103 0.8257 0.7360 0.6303
7-year 0.6444 0.7693 0.7997 0.7120 0.6062
8-year 0.7722 0.7636 0.8038 0.7141 0.6262
9-year 0.7693 0.8207 0.8301 0.7993 0.6762

C. Comparison with deep feature synthesis

We compare automatic feature engineering with deep fea-
ture synthesis in two ways. Fig. 5 shows the comparison where
we keep all the features generated by DFS. The x-axis of
the figure represents nine datasets. The y-axis represents the
improvement of AUC of models trained on AFE compared
to AUC of models trained on DFS. From this figure, we can
see that the models trained on AFE have a clear advantage
over the models trained on DFS with all the features. We also
identified that logistic regression model trained on AFE lacks
to provide favorable results compared to random forest model
and LightGBM model. This means that features generated by
AFE performs well on the tree models rather than the linear
models. We can consider this as the result of adopting the tree
model to select features during the process of the automatic
feature generation approach. In a nutshell, AFE outperforms
DFS with all features in 28 out of 36 cases, indicating that
it is still advantageous to use AFE features than DFS when
training models.

Fig. 5. AUC improvement of AFE compared to DFS with all the features on
each dataset

Fig. 6 is the comparison when we select the same number of
features from DFS as in AFE approach. The result is similar to



the Fig. 5. In summary, AFE outperforms DFS with selected
features in 28 out of 36 cases. For some cases, DFS with
selected features have better results than DFS with all features,
which indicates that it is beneficial for model performance to
drop the redundant features when training models.

Fig. 6. AUC improvement of AFE compared to DFS with the selected features
on each dataset

D. Comparison with raw data

To prove the necessity of feature engineering for the fi-
nancial statements, we compare our approach with the raw
data from financial statements. Because the data from financial
statements are all numerical, we implement the same data pre-
processing steps to handle the extreme values and the missing
values as we adopt in automatic feature engineering.

The comparison of raw data and automatic feature engineer-
ing can be found in Fig. 7. The AFE have higher AUC in most
of cases and at the same time, AFE has less advantage on the
logistic regression models but in total AFE outperforms raw
data with selected features in 26 out of 36 cases, which means
feature engineering indeed improves the predictive ability of
the features for model training.

Fig. 7. AUC improvement of AFE compared to raw data on each dataset

E. Explainability and Extensibility

1) Explainability: All features created by the AFE algo-
rithm take the form of simple arithmetic expressions. Taking
the AFE feature with the highest feature importance from 1-
year data set as an example: (fid_321+fid_322), where each
term fidx is the name of one of the original numerical features
taken from the financial statement of a company. fid_321
and fid_322 represents the profit or loss of the current and
previous year respectively. The sum of these two numbers

shows the profit or loss of recent two years, which can be
considered as an important factor that is related to the business
status of a company.

2) Extensibility: For this particular solution design and
experiment we adopted seven operands for the aggregation
process and four operands for the crossing process. The
automatic feature engineering process, however, could be
extended by adding more operands for both the aggregation
and crossing. It depends on the users to decide the number of
operands, based on the available data set.

VI. CONCLUSION

In this paper we presented an automatic feature engineering
approach to enhance bankruptcy prediction of companies that
lack sufficient data due to incomplete financial statements
for traditional risk assessment. Our design is centred around
generating features for prediction improvement based on real-
world financial statements. The results of our research shows
that the models trained on features generated by automatic fea-
ture engineering outperform the models trained, among others,
on features generated by the traditionally used financial ratios.
Our research thus implies that automatic feature engineering
can generate effective features for model training, which
is an especially useful enhancing effect for the bankruptcy
prediction and risk assessment of companies lacking sufficient
data in a traditional crediting setup, such as SMEs. The pre-
sented results form the first completed phase of a longer time
horizon. The case study, and thus our data is concentrating
on the Luxembourgish market, thus potentially describe a
biased sampling profile. Luxembourg is a small-scale economy
within the European Union, with focal industry concentration.
Therefore, we aim at geographically extending our data set
in order to steer our solution design toward generalizability.
As a direct consequence, our future work includes collecting
more qualified samples, and running follow-up experiments to
check if our conclusions remain valid across different markets.
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