
WebAssembly Beyond the Web: A Review for the
Edge-Cloud Continuum

Sangeeta Kakati† and Mats Brorsson†

†Interdisciplinary Center for Security, Reliability, and Trust (SnT)
†University of Luxembourg, Luxembourg

E-mail:{sangeeta.kakati, mats.brorsson}@uni.lu

Abstract—The cloud computing environment has changed over
the past years, transitioning from a centralized architecture
including big data centers to a dispersed and heterogeneous archi-
tecture that incorporates edge followed by device and processing
units. This transformation calls for a cross-platform, inter-
operable solution, a feature that WebAssembly (Wasm) offers.
Wasm can be used as a compact and effective representation of
server-less functions or micro-services deployment at the cloud
edge. In heterogeneous edge settings, where various hardware
and software systems might be employed, this is especially
crucial. Developers can create applications that can operate on
any Wasm-compatible device without spending time worrying
about platform-specific challenges by using a common runtime
environment.

In this survey, we indicate the main challenges and op-
portunities for Wasm runtimes in the edge-cloud continuum,
such as performance optimisation, security, and interoperability
with other programming languages and platforms. We provide
a comprehensive overview of the current landscape of Wasm
outside the web, including possible standardization efforts and
best practices for using these runtimes, thus serving as a valuable
resource for researchers and practitioners in the field.

Index Terms—WebAssembly, Cloud computing, Edge comput-
ing, IoT, Heterogeneity, Runtimes

I. INTRODUCTION

WebAssembly (Wasm) was initially designed to run within

web browsers. A majority of the web browsers use just-

in-time (JIT) compilers to compile WebAssembly modules

to native code at run-time. As a consequence of its rising

demand in the recent years, Wasm has moreover paved its

way towards offering edge-cloud functionalities. This ideally

aids in reducing the size of the deployed code, making it more

efficient and faster to execute. Also, it can help to mitigate the

security risks associated with running code in shared hosting

environments. It has the ability to provide software developer-

friendly solutions to enable applications to run across the wide

range of accelerator hardware. One potential application of

Wasm in the edge-cloud continuum is in the deployment of

lightweight, portable applications that can run on a variety of

devices and platforms. Developers can create applications that

can be compiled to run on multiple architectures, including

CPUs and GPUs. The escalation of mobile and pervasive

computing has given way to the era of ubiquitous computing,

which means that, as intended, an increasing number of het-

erogeneous devices are being incorporated into our immediate

vicinity.

WebAssembly runtimes are software environments that can

execute Wasm binaries. These runtimes can be implemented

in various ways, including browser engines or standalone

runtimes that can be embedded in applications and can provide

an execution environment for Wasm codes; with features such

as memory management, security, and performance optimiza-

tions. They are also suitable for embedded systems, where

code size and performance are critical. Embedded Wasm

runtimes are typically used for IoT devices, microcontrollers,

and other use cases that require low memory overhead and

efficient execution. For instance, the Wasm micro runtime

(WAMR) is a popular embedded runtime for Wasm which is

designed to be highly optimized for embedded systems, with

a small binary size and low memory overhead.
Each runtime has its own strengths and weaknesses, which

is discussed thoroughly in this paper, depending on the

use case and programming language. WebAssembly is gain-

ing attention as a versatile technology that can be used

for performance-critical tasks in various contexts, including

cloud/edge computing, media processing, machine learning,

and IoT. As Wasm adoption continues to grow, we aim to

provide a comprehensive analysis of the prevalent state-of-

the art and the exploration of runtimes which is likely to

increase, making them a key area of focus for developers and

researchers alike.
Apart from contextually comprehending WebAssembly run-

times within the broader landscape, the motivation of this work

can be listed as follows:

• Summarising the latest research and development: With

the increasing demand for edge computing, the use of

Wasm outside the web has become an emerging topic

of research. This review paper provides an overview of

the current state-of-the-art, including the most prominent

Wasm runtimes presently accessible and how they are

being used in the edge-cloud continuum.

• Comparison of different runtimes: This paper can provide

a detailed overview of the progress in Wasm runtimes,

including their features, performance, and limitations, to

help researchers and developers choose the most suitable

runtime for their specific use case.

• Identification of research gaps: This survey can identify

gaps in the research on Wasm runtimes and highlight

areas that require further investigation. It can help guide

2023 3rd International Conference on Intelligent Technologies (CONIT)
Karnataka, India. June 23-25, 2023

979-8-3503-3860-7/23/$31.00 ©2023 IEEE 1

20
23

 3
rd

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 In

te
lli

ge
nt

 T
ec

hn
ol

og
ie

s (
C

O
N

IT
) |

 9
79

-8
-3

50
3-

38
60

-7
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
C

O
N

IT
59

22
2.

20
23

.1
02

05
81

6

Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

WasmTime Wasmer Wavm Wasm3 Wamr
Wasm

 benchmarks

WebAssembly

Background Related Work Runtimes Benchmarks Observations/
Gap AnalysisWasm&Features

WASI
WasmCloud
Compilers

Optimization, Features Challenges

Measuring
 performance
Applicability
Trade-offs

Execution modes

Fig. 1: Study overview

future research in the field and facilitate the development

of new and innovative WebAssembly runtime technolo-

gies.

• Usage in the cloud-edge environment: WebAssembly is

still a relatively new technology, many developers may

not be familiar with its capabilities and potential use

cases. This review paper can help to raise awareness of

Wasm and its potential applications outside the web, thus,

bridging the gap between academia and industry.

There is a need for researchers to have a reliable destination

in order to find all the most significant advancements in using

the WebAssembly runtimes for the edge-cloud environments,

considering that WebAssembly is still developing in its in-

fancy, and is growing in popularity. The goal of this paper

is to present a concise rational explanation for using each of

the existing WebAssembly runtimes. To be more specific, the

contribution of this paper are as follows:

1) To the best of our knowledge, this is the first exploratory

and comprehensive study on WebAssembly runtimes.

2) We present a thorough analysis of all the runtimes that

are presently in use and are being actively developed

and improved.

3) Researchers and those eager to make significant progress

with WebAssembly can use this survey as a starting

point and one-stop resource.

We have organized this survey according to Fig. 1.

II. BACKGROUND

WebAssembly is a binary encoding format. The binaries are

made to process promptly and be small. It can be represented

in WAT, a human-readable, precise text format. In contrast

to most native systems, Wasm globals, locals, function argu-

ments, and instruction results are all typed. Before being run,

binaries are formally type-checked. There are four basic types:

single and double precision floats, as well as 32- and 64-bit

integers (i32, i64) (f32, f64). There are no arrays or designated

pointers. Thus, during compilation, source-level formats are

simplified to these primitive types.

A. WebAssembly and its Features

Modules written in WebAssembly are run in a host environ-

ment. WebAssembly programs cannot, for instance, execute

I/O or access the network without the host environment.

Instead, this capability is offered by the host through func-

tions that the Wasm module can import (as discussed in the

subsequent section II-B). An overview of the WebAssembly

paradigm is shown in Fig. 2.

Source code

build --target wasm32-wasi

.wasm
01101011
10110101
00101100

Small binaries
Safe secure
Platform agnostic

Developer

wasmtime wasmer wasm3 wamrRuntimes

Hardware architecture

Cloud-edge continuum

1.

2.

3.

Cross platform
Reusing source code
Grouping targets as one target

Code System
resources

Fig. 2: Depiction of WebAssembly and WASI

B. WebAssembly System Interface: WASI

The WebAssembly System Interface (WASI), which is a

standard specifying a POSIX-like interface, allows Wasm

to communicate with the underlying operating system. It is

suitable for restricted settings, like IoT and peripheral devices,

because WASI has been intended to be concise and portable,

enabling the platforms to swiftly carry out the specifications.

Currently, it provides a collection of 46 functions that let

applications communicate with files, networks, and many other

operating system features. POSIX calls are smoothly converted

to WASI calls by well-known compilers for languages like C

and Rust. Additionally, WASI adheres to the idea of capability-

based security, a security model in which the Wasm runtime

must give access to each resource (such as a socket or file) in

order to create a sandbox.

C. Compilers

There are several compilation infrastructures that can be

used to compile codes to Wasm, including, LLVM (Low-

Level Virtual Machine), which is a widely used open-source

compiler infrastructure, Emscripten, which is a LLVM-based

toolchain that compiles C/C++ and other languages to Wasm,

Binaryen provides a set of tools to optimize and transform

Wasm code, and Rust(systems programming language) in-

cludes its own Wasm backend, making it easy to compile rust

code to Wasm. Among all these, LLVM is the most popular

that supports multiple programming languages and architec-

tures. To compile codes to WebAssembly, it uses the LLVM

WebAssembly backend, which generates WebAssembly binary

code from its intermediate representation (IR). The overview

of the workflow can be described as:

• The front-end of the supported language is used to

generate the LLVM IR. The front-end is responsible for

parsing the code, generating the IR, and performing some

language-specific optimizations.

• The LLVM optimization passes is used to optimize the

intermediate representation.

• The Wasm backend is utilized to generate the required

binary code from the optimized LLVM IR.

2
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

• Optionally, it also provides Wasm-opt, a tool from the

Binaryen project, to further optimize the Wasm code.

Wasm-opt performs a set of Wasm-specific optimizations

that can improve the performance and size of a code.

D. WasmCloud

WasmCloud is a distributed framework that enables the cre-

ation of portable business logic that can be executed anywhere,

from the edge to the cloud. It intends to eliminate redundant

boilerplate from the developer experience and reintroduce the

experience of creating distributed apps by making security the

default setting. An overview of WasmCloud is illustrated in

Fig. 3. It can run on any platform that supports a Wasm run-

time with WASI support, including Linux, MacOS, Windows,

and even embedded devices.

The runtimes are a key component of WasmCloud, as it is

responsible for executing Wasm modules. A brief working of

WasmCloud can be interpreted as:

WebAssembly modules: Developers can choose to code with

any of the computer programming language that can be com-

piled to WebAssembly, such as Rust or C++. These modules

are lightweight and can be easily shared between different

applications.

Hosts: WasmCloud hosts are runtime environments that can

load and execute Wasm modules. These hosts can run on

different platforms, such as linux, windows, or kubernetes.

Actors: Actors are instances of Wasm modules that are loaded

into hosts. Actors perform business logic and can call or

be called by capability providers and also communicate with

other actors.

Messaging: Actors communicate with each other using a

pub/sub messaging protocol. This protocol is designed to

be lightweight and efficient, making it ideal for distributed

systems.

Capability providers: Capability providers are natively com-

piled software modules running on the host that provide spe-

cific capabilities to actors. For example, a capability provider

could provide access to a database or a messaging system.

Control plane: The WasmCloud control plane is responsible

for managing the lifecycle of actors, hosts, and capability

providers. It also provides security and authentication mecha-

nisms to ensure that only authorized actors can communicate

with each other.

III. RELATED WORK

Although considerable progress has been made in We-

bAssembly in the recent years, there has been yet no sys-

tematic research providing a cumulative view and usage of

standard Wasm runtimes. In an early study, Jangda et al.

make an effort to comprehend how effectively Wasm binaries

work [1]. The research, however, is restricted to web browsers

and thus does not offer enough information about standalone

runtimes. Similarly, a study conducted by Yan et al. [2], aims

to comprehend how Wasm and JavaScript apps perform differ-

ently. The paper contrasted web browser execution efficiency,

for instance, in Chrome, Firefox, and Edge, WebAssembly

Wasm application runtime
- Secure messaging and

networking layer
- Allows microservices to

communicate with
each other.

Hosts

Clients

IoT

Server

Wherever wasm
executes

WasmCloud

Portable

Secured and scalable

Unified topology

Cababilities

Actors Self contained units
of code

Loaded dynamically
at runtime

Provides functionalities:

Database access
Networking
Encryption, etc.

Fig. 3: Characterisation and representation of WasmCloud

consumes noticeably more memory than Javascript. The reason

is evident since JavaScript has garbage collection, which

uses dynamic monitoring of memory allocations to decide

when to release memory that is no longer in use, whereas

Wasm uses a linear memory model and does not immediately

release memory. Similarly Wang narrowly concentrates on web

applications as opposed to a wide range of applications in

non-web domains [3]. Wang focuses less on the emerging

application of Wasm outside the web and instead, in a nutshell,

considers a single goal i.e., WebAssembly vs Javascript. In

another studym Wen and Weber present an OS to execute

Wasm applications in edge environments and contrasted their

results to native execution in Linux [4]. They claim to achieve

better execution speed when compared to native also including

the security features of Wasm.

Continuing in the WebAssembly continuum, Wang lever-

ages the gap of the previous works by including a more

detailed analysis of the standard Wasm runtimes [5]. The

five most common independent Wasm runtimes are covered

in this research. Additionally, a well-researched investigation

is followed resulting in a new benchmark suite namely,

WABench, which includes tools from established benchmarks

as well as whole applications from different areas. The idea

is to investigate performance efficiency of the standalone

Wasm runtimes. Wang examines how JIT compilers, AOT

compilation, and Wasm compiler optimizations would affect

the performance. According to the findings made, wasm-

time, wavm, and wasmer, which are JIT compilation-based

runtimes, performs better than wasm3 and wamr, which are

interpretation-based runtimes. This work can be considered as

a baseline for doing performance analysis since they have in-

tegrated a wide range of benchmarks to a single stop although

it lacks multi-architecture support as it targets only x86-based

architectures. In a nutshell, the paper made the following

3
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

observations: The performance slowdown of interpretation-

based runtimes is stable for both short- and long-running

benchmarks. For the JetStream, MiBench, and PolyBench

benchmark suites, the Cranelift JIT offers promising outcomes.

In all the benchmarks, WAVM uses large percentage of the

memory, and Wasm runtimes generally use more memory than

native ones for the whole applications.

Lehmann and Pradel describes the challenges of analyzing

Wasm programs, including the lack of debug information

and the difficulty of understanding the control flow of the

program [6]. To address this, they present a design and

implementation of framework named Wasabi, which provides

a number of features for dynamic analysis of Wasm programs.

It includes support for tracing and profiling, as well as features

for analyzing control flow and memory usage. Spies and

Mock analyse the performance and usability of Wasm in three

non-web environments: desktop, server, and IoT devices [7].

The authors conclude that Wasm has potential for use in

non-web environments, particularly in resource-constrained

environments where it can provide a lightweight alternative

to native code.

Lehmann et al. examine the degree of exploitability of

vulnerabilities in Wasm binaries and contrasts it to native

code [8]. The use of linear memory by the applications in

Wasm is thoroughly examined in terms of security. In another

work, Szewczyk et al. examine the performance of Wasm

and its bounds-checked memory access safety mechanism [9].

Their study extends four popular Wasm runtimes with modern

bounds checking mechanisms, evaluates their performance

compared to native compiled code on different instruction

set architectures, and demonstrates that performance-oriented

runtimes can achieve execution times within 20-35% of native.

While recent studies have shown that Wasm performs well

overall, Ménéntrey et al. claim to be the first to evaluate ”two”

set of architectures for WebAssembly [10]. Their objective is

to demonstrate that Wasm can execute code on a range of

devices for comparable tasks without experiencing substantial

performance overheads. They chose WAMR in AOT as the

”only” Wasm runtime because of its portability across OS

systems and restricted environments and compact size. The

benchmarks are first compiled using clang into Wasm format,

and then they are compiled once more beforehand into a native

format using the wamr compiler (i.e., wamrc). However, it

is hypothesized that Wasm is inherently slower than native

due to the growing register pressure, the larger code, the

additional branch lines, and in some instances, it is quicker

due to lower number of cache misses. Subsequently, they came

to the conclusion that some tasks are not optimally optimised

when first written in WebAssembly and further compiled again

to native code. Notwithstanding, it is the only work till now

to make a useful distinction of cross architecture support in

WebAssembly. A summary of the related literature is shown

in Table I.

Synthesis: The primary focus of this literature review is on

WebAssembly runtimes utilized beyond the web environment.

Our analysis will concentrate on the latest runtime technolo-

TABLE I: Literature studies in WebAssembly

Research objective Addressing WebAssembly
Analysing performance of WebAssem-
bly [1].

Analysis of Wasm compiled Unix appli-
cations inside the browser.

Performance of Wasm applications vs
javascript [2].

Comparison of WebAssembly JIT com-
pilers and javascript

WebAssembly study in the web [3]. JIT optimization of Wasm and javascript
in chrome

Analysing performance and portability
of WebAssembly for non web environ-
ments [7].

Current state of WebAssembly and its
system interface

Identifying performance gap by
analysing cranelift and llvm [11].

Proposal for designing WebAssembly
runtimes

Construction of a benchmark suite
(wabench) [5].

Evaluation of WebAssembly runtimes in
wabench

Vulnerabilities of Wasm vs native node
[8].

Security analysis of Wasm binaries

WebAssembly as a universal interface
for the cloud-edge continuum [10].

Benchmarking Wasm(PolyBench) in
x86 and arm.

An overview of implementation of
Wasm in the browsers [12].

Discussion on the development, design
and implementation experiences of We-
bAssembly.

Vulnerabilities in Wasm binaries [13]. Exploitation of WebAssembly with in-
secure source languages.

Proof of soundness in the type system
of Wasm [14].

Implementation of type checker and in-
terpreter.

Analyzing and understanding
WebAssembly codes at runtime
[6].

A dynamic analysis approach to ex-
amine the behavior of Wasm modules
during runtime, with a focus on security
analysis.

Investigate existing memory safety op-
erations in WebAssembly [15].

Enhance Wasm for improving memory
safety.

Feasibility of using Wasm to bring
seamless cloud-IoT integration [16].

WebAssembly runtime for resource con-
strained devices.

Introducing dynamic linking capabilities
to the Wasm platform [17].

A dynamic linking mechanism that al-
lows Wasm modules to be linked to-
gether at runtime (wasmtime).

Framework for developing and verify-
ing cryptographic web applications us-
ing WebAssembly [18].

Verification and implementation of cryp-
tographic protocols in Wasm.

Analysis of Wasm vs native in the spec
cpu benchmarks [19].

Performance measure of applications
compiled to Wasm in firefox and
chrome.

Use of Wasm runtimes in serverless
edge computing [20].

A prototype for Wasm execution using
the Fastly edge cloud platform and the
wasmtime WebAssembly runtime.

Design of an OS to run Wasm modules
natively [4].

Implementing a lightweight OS kernel
that can directly run Wasm modules in
edge devices.

gies employed in current research and development of Wasm.

IV. WEBASSEMBLY RUNTIMES OUTSIDE THE WEB

When WebAssembly is used outside the web, it typically

requires a runtime environment that is capable of executing its

modules. These runtime environments are often referred to as

WebAssembly engines or Wasm interpreters. It allows devel-

opers to write code in any language that compiles to WASM,

which can then be executed in a variety of environments,

including web browsers, servers, and standalone runtimes.

WebAssembly runtimes are the software components respon-

sible for loading, executing, and managing Wasm modules.

The WebAssembly System Interface (WASI) was designed

to provide a secure and portable interface between Wasm

modules and the underlying host system. WASI is supported by

several desktop runtimes, including wasmtime and wasmer. In

this literature review, we explored some of the popular Wasm

runtimes and their performance characteristics.

Wasmtime: Wasmtime is an open-source standalone We-

bAssembly runtime developed by Mozilla. It has a fast and

efficient Wasm execution engine and supports AOT and JIT

4
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

compilation. The engine is optimized for runtime performance,

memory usage, and security. It can be used as a standalone

runtime or embedded in other applications. Wasmtime also

includes support for WASI, allowing it to run Wasm modules

in a sandboxed environment. Some of the significant wasmtime

characteristics are:

• Compact: An easy-to-use standalone runtime that can be

expanded as requirements might change. It can be applied

to both large and small chips, servers and almost any

program can embed it.

• Fast: Perform high-resolution realtime machine coding;

compatible with Cranelift.

• Complement: Widespread developer and user community

support, compliant with Wasm test suite standards.

Wasmer: Wasmer is another popular WebAssembly runtime

like wasmtime, it supports multiple languages and includes

support for WASI. It is designed to be highly modular and

configurable, with support for pluggable compilers and sand-

boxing technologies. Some of the key wasmer features are:

• Pluggability: Able to operate with different compilation

frameworks.

• Efficiency: Able to run Wasm in a fully sandboxed

environment at near native speed.

• Complement: Widespread developer and user community

support, complying with Wasm test suite standards.

Lucet: Lucet was announceed on March 28, 2019. It is a

native WebAssembly compiler and runtime. Developers who

want to safely execute untrusted Wasm programs inside their

application have the option of using this less well-known

compiler/runtime. The maintenance has been currently shifted

to wasmtime.

Wavm: With a small amount of architecture-specific as-

sembly and LLVM IR generation code, the WAVM runtime is

primarily created in portable C/C++. WAVM has undergone

considerable testing and is compatible with X86-64 versions

of Windows, MacOS, and Linux. Although it has not been

routinely tested on other platforms, it is intended to operate

on any POSIX-compatible system. While AArch64 support

is still under development, addressing Wasm stack overflow

as well as partially out-of-bounds storage are two among the

frequently tracked issues of this runtime.

Wasm3: Wasm3 acknowledges the following as the ratio-

nale for choosing a ”slow interpreter” as opposed to a ”fast

JIT”: When speed is not the most important factor to consider;

with the interpreter approach, runtime executable size, memory

utilization, and startup latency can be improved. Security and

portability are much simpler to manage. While wasm3 has

several advantages, there are also some limitations that should

be considered:

• Limited memory management: Wasm3 currently does not

support dynamic memory allocation, which means that

memory must be allocated statically at compile-time. This

can lead to memory wastage and limit the scalability of

applications.

• Performance optimizations: Wasm3 is designed to be

lightweight and portable, which means that it does not

include many of the performance optimizations that are

available in other Wasm runtimes. This can lead to slower

performance in benchmarks and applications.

• Platform support: While it is designed to be portable, it

currently only supports a limited number of platforms,

thus limiting the types of applications that can be run on

wasm3.

Nonetheless, it is a promising runtime for WebAssembly,

but it currently has some limitations that should be

considered before using it for production applications.

Wamr: WebAssembly is also well-suited for embedded

systems, where code size and performance are critical. WAMR

is a lightweight and efficient Wasm runtime that is designed

to be easily embedded in resource-constrained environments,

such as IoT devices, microcontrollers, and other edge devices.

WAMR differs from other Wasm runtimes in its:

• Performance: It is designed to be highly efficient and

optimized for low-power devices. It has a small memory

footprint and fast startup time.

• iwasm VM core: Offers just-in-time, ahead of time com-

pilation, and Wasm interpretation.

• Size: Wamr is lightweight and has a small binary size.

This makes it ideal for running on devices with limited

memory and storage. It has a file size of 209 KB in AOT,

230 KB in interpretation based and 41mb in JIT based.

• Portability: The runtime is portable and can be easily

adapted to run on different platforms and architectures.

• Customizability: WAMR is designed to be highly cus-

tomizable, allowing developers to tailor the runtime to

their specific needs.

• Fast: It can run at near-native speed (AOT)

TABLE II: Runtime features in WebAssembly

Runtime Non web standards Language Compilation mode

Lucet WASI Rust AOT

wasm3 WASI, Custom C Interpreted

wasmEdge WASI C++ AOT, Interpreted

wasmer WASI, Wasm-c-api Rust, C++ JIT, AOT

wasmtime WASI, Wasm-c-api Rust JIT

wasmVM N/A C++ Interpreted

WAVM WASI C++, Python JIT

WAMR Wasm-c-api C Interpreted, AOT, JIT

A. OPTIMIZATION AND FEATURES

WebAssembly runtimes are becoming increasingly popular

due to their ability to run high-performance code in and outside

the web environments. Notwithstanding, there are several ways

to optimize the performance of Wasm runtimes, including:

1) Memory management: Optimizing memory management

can help reduce overhead and improve performance.

This includes minimizing the use of dynamic memory

allocation and using efficient memory allocation strate-

gies.

2) Hardware acceleration: Wasm runtimes can take advan-

tage of hardware acceleration characteristics such as

5
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

Single Instruction Multiple Data instructions and GPU

acceleration to improve performance.

3) Ahead-of-time (AOT) compilation: WebAssembly can

be compiled ahead of time to native code, which can

improve startup time and reduce runtime overhead.

4) Just-in-time (JIT) compilation: JIT compilation involves

compiling Wasm code at runtime, which can result

in significant performance improvements compared to

interpretation.

5) Code optimization: Optimizing the Wasm code itself

can result in significant performance improvements. This

includes techniques such as loop unrolling, function

inlining, and instruction scheduling.

6) Profiling and benchmarking: Profiling and benchmarking

can help identify performance bottlenecks and guide

optimization efforts.

7) Caching: Caching frequently used data and code can

improve performance by reducing the amount of time

spent loading data and compiling code.

B. EXECUTION MODES

A Wasm module can typically be run in one of three

compilation modes: Interpreter, Just-In-Time (JIT), or Ahead-

of-Time (AOT). The decision depends on the user’s preference

for resource usage, execution speed, etc. All three options are

supported by the WAMR runtime,

• AOT, which facilitates quick startup, exceptionally small

footprint, and results in almost native speed.

• Interpreter, which offers small memory usage, little

footprint, and comparatively slow. The two interpreters

present in WAMR are:

– Classic Interpreter: Currently, it is required to enable

source debugging.

– The Fast Interpreter: Precompiles the Wasm opcode

to internal opcode, running about two times as

quickly as the Classic Interpreter (CI), but using a

bit more memory than the former.

• JIT, it allows to run Wasm at almost native speed

while maintaining a platform-neutral distribution. How-

ever, compilation is expensive during implementation.

Furthermore, the two JIT layers supported by WAMR

are:

– LLVM JIT, has longer compilation time and faster

execution.

– Fast JIT: A JIT engine that is lightweight, has a tiny

footprint, starts up quickly, and better performance.

V. BENCHMARKS

In the current state of the art of experimenting WebAssem-

bly runtimes, the benchmarks used are predominantly based

on PolyBench and a few others are dicussed in section

V-A. The ongoing experiments of WebAssembly developed

by the Bytecode Alliance, a community of organizations and

individuals working together to advance the adoption and

development of WebAssembly and related technologies, has,

however, achieved significant improvement and addition, also

offering a benchmark suite called Sightglass.

These benchmarks are designed to evaluate a variety of

performance characteristics of a Wasm runtime, such as startup

time, memory consumption, and execution speed. They cover a

range of use cases, from concise mathematical computations to

more complex tasks like image processing and cryptography,

and are written in a variety of computer languages.

A. State-of-the-Art Benchmarks

After analyzing the most recent literatures in this field,

we could draw the conclusion that PolyBench, MiBench,

JetStream2, and an addition of whole applications are in

the status quo of benchmarking WebAssembly. Below is a

thorough explanation and analysis of the benchmarks:

• PolyBenchC: This collection of benchmarks contains

relatively small scientific computing kernels. The fact that

PolyBenchC is made to test low-level performance char-

acteristics like cache usage and memory access patterns

that might not be directly applicable to Wasm is one of

the major problems with utilizing it to evaluate Wasm.

Since Wasm is a greater level of abstraction than C, some

differences in performance are probably to be expected.

• MiBench: It includes benchmarks for tasks such as

digital signal processing, network routing, and security

algorithms. These tasks are important in embedded sys-

tems, but they may not be representative of the types of

workloads that Wasm is typically used for. However, it is

important to keep in mind that benchmarks only provide a

limited view of the overall performance of a system and

should be used in conjunction with other performance

analysis techniques.

• JetStream2: The JetStream2 benchmark contains several

tests that are specifically created to test the performance

of JavaScript in web applications and is mainly intended

to evaluate the performance of JavaScript engines in web

browsers. Furthermore, there are no tests specially created

to assess the performance of Wasm modules outside of a

web browser context. Therefore, it might not be the best

option for assessing Wasm’s performance in non-browser

contexts.

• Whole applications: This benchmark includes a set of

whole applications, for instance, face detection, mnist,

bzip2, whitedb, espeak and gnu chess. While this bench-

mark can be used to evaluate the performance of Wasm,

it is important to note that it may not be the best choice

in all cases. The WholeApplication benchmark typically

involves running a complete application, which can be

time-consuming and may not be feasible in all contexts.

Ultimately, the choice of benchmark will depend on the

specific use case and requirements of the system being eval-

uated. It may be necessary to use a combination of different

benchmarks to get a comprehensive view of the performance

of Wasm. Notwithstanding, there are other benchmark suites

that performs well in AOT mode evaluation of WebAssembly,

such as the Sightglass benchmark. These benchmarks are

6
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

designed keeping in mind the most recent advances in Wasm

runtimes and are likely to be more relevant and accurate for

evaluating the performance.

VI. OBSERVATION AND GAP ANALYSIS

Following a thorough review of all the benchmarks and cur-

rent runtimes, the results and inferences to be paid particular

attention are as follows:

1) Measuring WebAssembly Runtime Performance:
How do we deal with the runtime startup and teardown

cost while benchmarking WebAssembly?

a) Benchmark size: The size of the benchmark can

affect the startup and teardown cost. Large bench-

marks may take longer to execute and have ad-

ditional/overall time costs, whereas small bench-

marks might not accurately reflect the runtime

performance. Even though we might only need a

portion of the real execution time, the benchmark

is measuring a large percentage of setup time.

b) Instrumentation overhead: The process of measur-

ing the startup and teardown cost can itself intro-

duce overhead that affects the runtime performance

of the code.

c) Cold start vs. warm start: The startup cost of Wasm

code can be significantly higher than the runtime

cost due to the time required to load the code and

initialize the runtime.

Below we provide some rationals in order to overcome

the inference VI :

a) Identifying a benchmark that accurately reflects the

intended use case of the WebAssembly code.

b) The benchmark code is ought to be instrumented

to record startup and shutdown durations. Per-

formance timers or adding custom measurements,

for instance, measuring the time of an ”empty”

main program and subtracting it from the other

measurements.

c) Calculating the average startup and teardown times

for multiple runs of the benchmark to get a more

accurate measurement.

d) Repeating the benchmarking process with different

Wasm runtimes and compilers to compare their

startup and teardown times.

e) Using profiling tools to identify performance bot-

tlenecks and optimizing the Wasm code as needed.

f) To measure the cold start time: Measuring the

startup time for the first iteration of the benchmark;

and to measure the warm start time, measuring

the startup time for subsequent iterations after

the Wasm runtimes has been initialized, might

introduce beneficial results.

Also, it is worth noting that the exact tools and

techniques used to measure the startup and teardown

cost of WebAssembly benchmarking can vary depending

on the specific use case and platform being used.

2) Runtime Applicability
We initially started by examining the runtimes that

have recently been addressed in the literature and are

essentially under constant development. We whereupon

offered thorough review to investigating the runtimes

wasmtime, wasmer, and wamr. PolyBench, MiBench,

JetStream2, and Sightglass were used as benchmark

references for the conclusions drawn. Furthermore, there

are a number of queries and concerns that have to be

considered when utilizing these runtimes, including:

a) The variations in execution times between wasmer

and wasmtime, despite the fact that both runtimes

aim to provide almost identical performance ben-

efits.

b) Wamr offering faster processing times in AOT than

wasmer and wasmtime.

c) How to determine the usability of WAMR in de-

vices with limited resources when wamr in AOT

mode eliminates portability.

d) Although JIT runtimes can hold compiled code,

their performance is still slower than AOT.

e) The measured time in benchmarks, i.e., the need

to measure the wall clock time (benchmarks with

dominant sub-parts of code) or, time-stamping

(measuring start and finish time of section of

interest).

The following are some beneficial initiatives that could

potentially be considered for addressing the aforemen-

tioned concerns:

a) Since mean values are subject to outliers, taking

multiple measurements to calculate the median

would result in precise measurement of a bench-

mark.

b) Evaluating the efficiency of a runtime where some

codes must be measured in steady-state due to

the requirement to warm-up caches and hardware

structures, and can only be measured with time-

stamps after code warmup.

c) Making sure that the workload of the benchmark

is sufficient (i.e., execution time >1second) would

also aid in exact evaluation of a runtime.

3) Trade-off Between Different Execution Modes of the
Runtimes:
When AOT compilation can be used by the WebAssem-

bly runtimes for its:

a) Faster startup time: AOT compilation reduces the

startup time of Wasm code and can be especially

important for applications where fast startup times

are critical, such as games or interactive applica-

tions.

b) Better performance: AOT-compiled code can po-

tentially run faster than JIT-compiled code, as there

is no overhead associated with JIT compilation at

7
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

runtime.

However, this compilation can result to:

a) Limited portability: The code is less portable than

JIT-compiled code, as it is compiled for a specific

target platform and cannot be easily run on other

platforms without recompilation.

b) Longer build times: It can take longer than JIT

compilation, as the entire codebase needs to be

compiled before the application can be run.

To summarize, it is important to carefully design bench-

marks that accurately reflect the intended use case, and to use

tools that can accurately measure the startup and teardown

cost of the code. It is also necessary to run benchmarks on

multiple runtimes and compilers to get a complete picture of

the performance characteristics of the code.

VII. CONCLUSION

This research has demonstrated how WebAssembly can be

used as a compact and effective runtime environment for

serverless tasks or microservices deployment at the cloud-

edge. Wasm modules can be utilized for assembling the

function’s code and dependencies, allowing for simple and

swift deployment to the edge for low-latency processing.

Runtimes play a critical role in the performance and efficiency

of Wasm modules. The runtimes reviewed in this research

are considered for different aspects of WASM performance,

such as code size, runtime performance, memory usage, and

security. None of the recent related works have considered

the size of the binaries, especially [10], where wamr is the

only runtime considered and only wamr has a significant

difference in the binaries when compared to its interpretation,

fast interpretation, jit and aot based compilations. Another

emerging aspect while evaluating WebAssembly is to consider

the startup time, which has not been addressed significantly in

the literature. In this paper, in contrast to previous research, we

have provided an exclusive state-of-the-art of WebAssembly

and its performance evaluation in terms of the various runtimes

introduced. Beginning with the introduction of WebAssembly

and then proceeding through its runtimes, we have highlighted

the current challenges and a set of viable remedies. Developers

and academicians can use this article as a resource whilst

discovering WebAssembly, and selecting a suitable runtime

for their specific use cases, and to understand the constraints

it imposes.

ACKNOWLEDGMENT

This work has been partly funded by the Luxembourg Na-

tional Research Fund (FNR) under contract number 16327771

and has been supported by Proximus Luxembourg SA.

REFERENCES

[1] A. Jangda, B. Powers, E. D. Berger, and A. Guha, “Not so fast: Ana-
lyzing the performance of webassembly vs. native code.,” in USENIX
Annual Technical Conference, pp. 107–120, 2019.

[2] Y. Yan, T. Tu, L. Zhao, Y. Zhou, and W. Wang, “Understanding the
performance of webassembly applications,” in Proceedings of the 21st
ACM Internet Measurement Conference, pp. 533–549, 2021.

[3] W. Wang, “Empowering web applications with webassembly: are we
there yet?,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1301–1305, IEEE, 2021.

[4] E. Wen and G. Weber, “Wasmachine: Bring the edge up to speed with a
webassembly os,” in 2020 IEEE 13th International Conference on Cloud
Computing (CLOUD), pp. 353–360, IEEE, 2020.

[5] W. Wang, “How far we’ve come–a characterization study of standalone
webassembly runtimes,” in 2022 IEEE International Symposium on
Workload Characterization (IISWC), pp. 228–241, IEEE, 2022.

[6] D. Lehmann and M. Pradel, “Wasabi: A framework for dynamically ana-
lyzing webassembly,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, pp. 1045–1058, 2019.

[7] B. Spies and M. Mock, “An evaluation of webassembly in non-web
environments,” in 2021 XLVII Latin American Computing Conference
(CLEI), pp. 1–10, IEEE, 2021.

[8] D. Lehmann, J. Kinder, and M. Pradel, “Everything old is new again:
Binary security of webassembly,” in Proceedings of the 29th USENIX
Conference on Security Symposium, pp. 217–234, 2020.

[9] R. Szewczyk, K. Stonehouse, A. Barbalace, and T. Spink, “Leaps
and bounds: Analyzing webassembly’s performance with a focus on
bounds checking,” in 2022 IEEE International Symposium on Workload
Characterization (IISWC), pp. 256–268, IEEE, 2022.

[10] J. Ménétrey, M. Pasin, P. Felber, and V. Schiavoni, “Webassembly as
a common layer for the cloud-edge continuum,” in Proceedings of the
2nd Workshop on Flexible Resource and Application Management on
the Edge, pp. 3–8, 2022.

[11] Z. Wang, J. Wang, Z. Wang, and Y. Hu, “Characterization and impli-
cation of edge webassembly runtimes,” in 2021 IEEE 23rd Int Conf
on High Performance Computing & Communications; 7th Int Conf on
Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf
on Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), pp. 71–80, IEEE, 2021.

[12] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web ar:
A promising future for mobile augmented reality—state of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
pp. 651–666, 2019.

[13] A. Hilbig, D. Lehmann, and M. Pradel, “An empirical study of real-
world webassembly binaries: Security, languages, use cases,” in Pro-
ceedings of the Web Conference 2021, pp. 2696–2708, 2021.

[14] C. Watt, “Mechanising and verifying the webassembly specification,”
in Proceedings of the 7th ACM SIGPLAN International Conference on
certified programs and proofs, pp. 53–65, 2018.

[15] C. Disselkoen, J. Renner, C. Watt, T. Garfinkel, A. Levy, and D. Ste-
fan, “Position paper: Progressive memory safety for webassembly,”
in Proceedings of the 8th International Workshop on Hardware and
Architectural Support for Security and Privacy, pp. 1–8, 2019.

[16] B. Li, H. Fan, Y. Gao, and W. Dong, “Bringing webassembly to
resource-constrained iot devices for seamless device-cloud integration,”
in Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, pp. 261–272, 2022.

[17] N. Mäkitalo, V. Bankowski, P. Daubaris, R. Mikkola, O. Beletski,
and T. Mikkonen, “Bringing webassembly up to speed with dynamic
linking,” in Proceedings of the 36th Annual ACM Symposium on Applied
Computing, pp. 1727–1735, 2021.

[18] J. Protzenko, B. Beurdouche, D. Merigoux, and K. Bhargavan, “Formally
verified cryptographic web applications in webassembly,” in 2019 IEEE
Symposium on Security and Privacy (SP), pp. 1256–1274, IEEE, 2019.

[19] A. Jangda, B. Powers, A. Guha, and E. Berger, “Mind the gap:
Analyzing the performance of webassembly vs. native code,” arXiv
preprint arXiv:1901.09056, 2019.

[20] P. Gackstatter, P. A. Frangoudis, and S. Dustdar, “Pushing serverless
to the edge with webassembly runtimes,” in 2022 22nd IEEE Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid),
pp. 140–149, IEEE, 2022.

8
Authorized licensed use limited to: University of Luxembourg. Downloaded on October 16,2023 at 08:13:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

