
Cost-Effective Scheduling for Kubernetes in the
Edge-to-Cloud Continuum

Samuel Rac
SnT, University of Luxembourg

Luxembourg
samuel.rac@uni.lu

Mats Brorsson
SnT, University of Luxembourg

Luxembourg
mats.brorsson@uni.lu

Abstract—The edge to data center computing continuum is the
aggregation of computing resources located anywhere between
the network edge (e.g. close to 5G antennas), and servers in
traditional data centers. Kubernetes is the de facto standard
for container orchestration. It is very efficient in a data center
environment, but it fails to give the same performance when
adding edge resources. At the edge, resources are more limited,
and networking conditions are changing over time.

In this paper, we present a methodology that lowers the costs of
running applications in the edge-to-cloud computing continuum.
A cost-aware scheduler enables this optimization. We are also
monitoring the Key Performance Indicators of the applications
to ensure that cost optimizations do not impact negatively their
Quality of Service. In addition, to ensure that performances are
optimal even when users are moving, we introduce a background
process that periodically checks if a better location is available
for the application. To demonstrate the performance of our
scheduling approach, we evaluate it on a vehicle cooperative
perception use case, a representative 5G application.

Index Terms—Cloud computing, Edge computing, Scheduling,
Container Orchestration, Resource allocation, 5G, Kubernetes

I. INTRODUCTION

Edge computing is a paradigm that brings computing capabil-
ities closer to the sources of data. Edge computing helps to
reduce network delays and bandwidth usage, and to improve
security and privacy by keeping the data local. Therefore, to
use edge resources, application developers need tools to deploy
software effortlessly at the edge.

The data center to the edge computing continuum is the
aggregation of resources located in both traditional data cen-
ters and at the edge of the network. An application can run
on any node from the computing continuum, however, the
geographical position of a node changes the delays with end-
users. Thus, an application scheduler for the edge-to-cloud
continuum should consider more parameters than one for a
traditional data center. In a data center, the network topology
is horizontal, every node has direct access to the other nodes
with high bandwidth and low latency. Networking conditions
with edge nodes are different. The delays and the available
bandwidth are different from node to node. Also, network
conditions can evolve over time; the network is more likely
to be congested due to more limited bandwidth, or the delays
can change if a user is moving. Edge nodes should not be
chosen only for their processing capabilities but also for their

geographical location; the location of a node modifies the
delays with end users.

Deploying applications in the cloud-to-edge computing
continuum should be easy for developers [1]. Application
developers should define requirements (e.g. CPU, memory,
delays, and other Service Level Objectives) instead of static
locations. Otherwise, it will not be possible to scale up the
application if it is placed manually by developers. Deploying
at the edge should be seamless, as easy as it is when deploying
applications in traditional data centers.

Edge computing can help reduce the costs of deploying an
application. Cloud providers offer their resources as Every-
thing as a Service (XaaS) [2]. Therefore, the customers pay
only for the resource they use. E.g. customer pays an hourly
rate for the server they use. In addition, cloud providers also
charge for the traffic that goes outside of their data centers.
Deploying network-intensive applications at the edge saves the
outgoing network costs; data stays local and traffic between
the edge and the data center is not charged.

We propose a scheduler to lower the costs of deploying
applications in the cloud-to-edge continuum. To make appli-
cation deployment easy and as close as possible to industrial
standards, we implement our methodology as a Kubernetes
scheduler plugin [3] based on network requirements and costs.
Any containerized application can be deployed using our
scheduler. To reduce the costs of running applications, we want
to leverage local data processing to save bandwidth costs.

When end-users (e.g. a phone, a vehicle, or a camera con-
nected to an application hosted in the computing continuum)
are moving, the delay to connect or communicate with a
service of the application may become longer. This means
that the optimal location of a service may vary over time. We
need to be able to move services automatically when users are
moving, otherwise, the Quality of Service (QoS) will deterio-
rate. Therefore, we also propose a rescheduler to monitor the
application and trigger service migration, when needed. Our
rescheduler is a background process that periodically checks
costs and KPIs to identify better nodes on which a service can
be deployed. If the rescheduler detects an improvement, it will
migrate the service pod1 automatically. Also, when a cheaper

1A pod is the smallest schedulable unit in Kubernetes, containing at least
one container



Fig. 1. The Edge-to-Cloud Computing Continuum - Computing resources are
in blue and green.

resource becomes available, the rescheduler can detect it and
move the associated service to reduce the costs (provided the
QoS is not negatively affected).

We make the following key contributions in this work:
1) Design and implementation of a cost-aware Kubernetes

scheduling plugin.
2) Design and implementation of a network-aware resched-

uler to keep application placement decisions optimal
when end users are moving.

3) Demonstration of our scheduling methodology perfor-
mance on a realistic 5G use-case using cooperative
perception for autonomous vehicles.

From our experiments, we have verified that our custom
scheduler for initial placement can achieve in most cases about
15% lower costs than the default Kubernetes scheduler and
that with the rescheduler more than 20% cost reduction can
be achieved.

The rest of the article is organized as follows. Section II
presents the relevant background and motivation. Then we
present the relevant related work in section III. Our scheduling
methodology is exposed in section IV and in section V
we present our evaluation methodology which is based on
a vehicular cooperative perception workload running on a
Kubernetes cluster. Finally, we present our conclusions and
future work directions in section VI.

II. BACKGROUND AND MOTIVATION

A. Background

We define the edge-to-cloud computing continuum as the
aggregation of servers located at the edge of the network and
those in traditional data centers (cloud). The edge nodes are
servers located at the edge of the network, outside of the data
centers, e.g. near 5G base stations. Fig. 1 represents such an
edge-to-cloud-computing continuum. The blue servers are the
cloud nodes, and the green ones are the edge nodes.

End-users (e.g. vehicles, phones, cameras, or smart sensors)
are connected to services hosted in the computing continuum.
The end-users may be connected directly to cloud centers or
to an edge node. Some end-users can be mobile and in this
case, their closest node is changing over time.

We are considering distributed applications, made of ser-
vices, to be deployed on this cloud-to-edge computing con-

tinuum. A service can run on an edge node as well as on a
cloud node. A scheduler maps the services to the nodes. The
rescheduler is a background process that can update a service
allocation. It can move a service to another node in the cluster.

B. Motivation

There are many use cases of AI software running at the
edge that can motivate the need for a scheduler for the whole
cloud to edge computing continuum.

For example, analyzing a crowd during a demonstration
using body-worn cameras. These cameras can simply record
the scene, or they can enable advanced features like estimating
the number of participants or detecting dangerous individuals.
Using AI this information can be extracted from the video
streams in real-time and be quickly reported to police officers.

However, the computing capabilities embedded in the cam-
eras are limited, they cannot process the video stream anal-
ysis; the application should run outside of the cameras. The
application can be executed in a traditional data center, but
communication costs will apply and could be expensive for
many high-resolution video streams. The AI application can
also run at the edge, on a server, or in a micro data center
located close to the 5G base stations. The video streams would
be processed locally and communication costs will be lower.
Only extracted information would go to the traditional data
centers.

The challenge is to identify which is the best server to
host the video stream analysis application. Also, body-worn
cameras are moving. The optimal server selection evolves over
time, this issue should be addressed as well.

C. Proposed solution

We think that Kubernetes is one of the best candidates
for orchestrating applications over the whole cloud-to-edge
continuum. Kubernetes is the de facto industrial standard for
container orchestration. It is not only limited to Docker con-
tainers [4] but it can manage any container following the Open
Container Initiative (OCI) specification [5]. Using standard
containers is important to ensure compatibility with most of
the different hardware (e.g. with different CPU architectures)
we can find in this computing continuum. Also, it is easier
for the industry to adopt this technology if they can continue
using the same containers they already have.

However, Kubernetes is not yet ready for orchestrating re-
sources over the whole cloud-to-edge continuum. The default
scheduling approach of Kubernetes is to spread the containers
over the cloud, choosing the least allocated server. This is good
practice in a traditional data center as it avoids server overload.
But this is not applicable to edge nodes. The geographical
location of the servers is important to have low delays. It is
therefore not possible to efficiently place applications in the
whole computing continuum if not considering the networking
resources.

We can use the Kubernetes scheduler framework [3] to
implement an ad hoc scheduling methodology for the edge-
to-cloud computing continuum. The scheduling framework is



easy to extend, every scheduling stage is defined in a plugin.
We can write new plugins to replace the default ones.

There are four main scheduling stages in the kube-
scheduler: filter, score, normalize score, and reserve. The
scheduling pipeline first selects an unallocated pod (i.e. a
set of containers, the atomic schedulable unit in Kubernetes)
from the scheduling queue. Then, un-schedulable nodes (e.g.
reserved nodes, control plane only, out of resources, etc.)
are filtered and removed from the possible nodes. After the
filtering stage, the remaining nodes are scored and the scores
are normalized between 0 and 100. Normalization is necessary
to get an averaged score when using many scoring plugins. The
node with the highest score is selected and reserved for the
pod. If two nodes get the same score, one of them is randomly
selected.

Our solution is twofold: a custom initial placement (CIP)
method and a rescheduler (RS).

The custom initial placement method assigns unscheduled
services to nodes. To select which node will host a service,
we rank the nodes using both their costs and their delays with
other nodes. In the scope of this study, the cost is the money
paid to a cloud provider to run a service. Other quantities such
as energy (to power the servers and the network equipment)
can also be considered and minimized using this methodology,
which we will do in future work. Checking the delays with
other nodes helps to reduce the end-to-end latency of an
application and ensure the quality of service.

The rescheduler is a background process that re-evaluates
the initial placement decision of the services and moves
the services to different nodes if it finds a better solution.
The optimal solution is changing over time, users can be
moving, or new resources may become available. Using the
rescheduler ensures keeping the costs low by taking new
placement decisions; moving the services to a cheaper node if
it is possible.

III. RELATED WORK

In this section, we present some research related to the
scheduling of services in the edge-to-cloud continuum. In this
study, we define the scheduling of services as the mapping
of a service to a server where it can run. We organize the
different scheduling methodologies into three categories: cost-
aware, network-aware, and QoS-aware scheduling.

a) Cost-aware scheduling: Lai et al present a cost-aware
scheduler in [6]. They are using a heuristic approach (most
capacity first) to maximize the number of allocated edge users
while minimizing the number of necessary servers at the edge.
In this work, there is no mechanism to move applications when
end-users are moving. In addition, scheduling on edge nodes
is outside of the scope of this study.

The authors of articles: [7], [8] present approaches to reduce
costs by improving the Kubernetes scheduler. However, their
main interest is in cloud computing and cannot be extended
over the whole continuum without additional work. Li et al. [7]
present a meta-heuristic-based scheduler that minimizes the
energy costs of CPU, RAM, and network usage in addition

to the networking costs of offsite nodes. They also propose
a rescheduler to monitor changes in business requirements.
This study only focuses on the cloud environment, where
computing resources and resources are mostly homogeneous
(e.g. same kind of server hardware, same latency between the
nodes). Also, the scheduling decision does not consider any
latency requirements. Zhong et al. [8] propose a scheduling
methodology that reduces the number of allocated Virtual
Machines when using the Kubernetes Autoscaler to lower the
instance costs. To save costs, they propose to use a background
process that checks if it is possible to shut down a server
and migrate its pods to another node. They try to maximize
resource utilization to save costs. This approach would have
a limited impact on the scope of edge computing, node
geographical location is an important parameter to consider in
order to lower latency or reduce backhaul networking costs.
In addition, this work does not consider the costs of the traffic
going outside of data centers. Outgoing traffic is expensive
when a network-intensive application is not deployed in the
same location as its end users.

b) Network-aware scheduling: Kaur et al. [9] present a
scheduling algorithm that minimizes inter-service communi-
cation delays. It relies on two heuristic approaches: a greedy
and a genetic algorithm. This study makes the assumption
that data traffic between the services of the application is
known. It is not the case in practice with most applications.
It would require additional work to specify or learn the data-
traffic pattern. This limitation makes their approach difficult
to use with real applications. Also, this study does not use
any background process to monitor the movements of the
end-users at the edge. Marchese et al. have proposed using
a rescheduling mechanism [10]–[12]. In [10], they present
a network-aware scheduler plugin and a descheduler that is
checking if a node with a better score can be found. The
proposed scoring method is not effective for initial placement.
It relies on the input from previous data traffic that is null at
the initialization. It is worth mentioning that our scheduling
approach is not based on this work, we independently built
similar experimental setups (based on common open-source
software).

In [11], the authors present a network-aware scheduler
plugin to extend the InterPodAffinity module from their pre-
vious work. Their approach automatically updates the static
Kubernetes manifest with real-time data collected from the
cluster. In addition, they are using a Kubernetes controller
that updates the manifests and triggers rolling updates if an
improvement can be found. However, initial placement is not
as good as the default approach in some cases. They need a
few iterations or a larger workload to be better than the default
approach.

Wojciechowski et al. [12] present a data traffic-aware sched-
uler that minimizes inter-node communications. This study
does not handle the case of moving user equipment. Also,
it does not consider latencies between the nodes.

In [13], Toka presents a latency-aware scheduler that max-
imizes resource utilization at the edge. He also introduces a



rescheduler that can improve application placement over time.
However, the inter-service data traffic is not considered in this
work.

c) QoS-aware scheduling: Mattia and Beraldi [14]
present a reinforcement learning based scheduling approach
that improves the stability of the frame rate of AR/VR appli-
cations. The experimental results are limited to a simulation,
applying this methodology on a real Kubernetes would require
a large dataset for the training stage.

Polaris scheduler is presented in [15]. It is an SLO-aware
(Service Level Objective) scheduler that considers many net-
work metrics. The authors extend many Kubernetes scheduler
plugins (pre-filter, filter, and score) to consider the topology
of the cluster, the dependencies of the services, and the
SLOs. However, no rescheduling mechanism is presented
in this study. Also, the long computing time for placement
is a problem in a dynamic environment where application
placement needs to be often reevaluated. In [16], Orive et
al present a scheduling approach to minimize the application
end-to-end (E2E) latency and maximize E2E reliability. They
propose an architecture to define the application requirements.
Their Kubernetes scheduler plugin uses these requirements to
score the nodes. Nautilus [17] is a run-time system that maps
micro-services to nodes based on communication overhead,
resource utilization, and IO pressure.

None of the approaches above use a rescheduling mecha-
nism.

IV. SCHEDULING METHODOLOGY

In this section, we are presenting an overview of the opti-
mization problem we are solving. Then, we present the algo-
rithms for i) the scheduler scoring plugin, and ii) the resched-
uler. Finally, we expose how we implement this scheduling
methodology on a Kubernetes cluster.

A. Optimization problem overview

This study presents a scheduling methodology that mini-
mizes the cost of deploying applications in the cloud-to-edge
computing continuum. We are considering two different kinds
of costs: i) computing costs and ii) networking costs.

Computing cost is the price to pay to use a server from a
cloud provider. It is usually charged by hour or month and
depends on the characteristics of the machine. In this study,
we make the assumption that every node in the computing
continuum is using the same pricing policy: an hourly rate
that depends only on the characteristics of the instance. Note
that we are not labeling the edge nodes as special nodes; all the
nodes are the same for the scheduler. Only the instance charac-
teristics (e.g. processors, memory, geographical location) and
its networking capabilities (e.g. delays with other machines,
available bandwidth) matter for the scheduling decision.

Networking cost is the price to pay to send data over the
network. This price depends on the quantity of data sent and
its destination. Data traffic is not charged for machines in the
same data center. However, if data goes outside of the data
center to the edge, then, traffic is charged. Also, if edge data

Fig. 2. Scheduling workflow: Custom Initial Placement (yellow), Rescheduler
(orange)

is processed locally, no additional network cost is charged.
However, if data traffic is sent to a data center, then network
traffic is charged.

Our optimization objective is to find a tradeoff between pay-
ing computing capabilities and networking costs. Depending
on the workload characteristic it can be cheaper to deploy the
application in a data center or at the edge. E.g. it is cheaper to
deploy a network-intensive workload at the edge where data
is produced rather than in a data center.

Fig. 2 presents a high-level view of the scheduling workflow.
The first part details the initial placement stage where the
scheduler assigns an unallocated pod to a node. Then, the
rescheduler periodically checks in the background if a better
node can be found for this pod.

B. Service initial placement

The objective is to associate the unallocated pods from the
scheduling queue with a node in the edge-to-cloud computing
continuum. The first step is to build a list of nodes where the
pod can run. We remove from that list the nodes that cannot
host the pod (e.g. reserved for the control plane, not enough
resources). Then, the nodes are scored and the best one is
selected to host the pod.

Algorithm 1 describes our node scoring method. The objec-
tive is to find an initial location for deploying a pod. We run
the scoring method for each schedulable node. The scoring
method sorts the nodes using the networking delays and their
price (i.e. the hourly price paid to use a server). To improve
the end-to-end latency and lower the networking costs (saving
bandwidth) we chose a node close to the connected services.

Nodes that are close to connected services get a higher
score. To reduce the distance between a pod and the connected
services, we defined a list of these services for each pod:
pod.dependencies. Then, we get a list of the nodes where these
services are deployed. If the service is not deployed yet, we do
not add the server to the list. Once the server list is built, we
evaluate the delays between these servers and the evaluated
node. If the delay is lower than α, we add β to the final score
(α is a delay distance in ms and β is a score modifier.). The
more connected services in a radius of α the higher the score.



Algorithm 1 Scheduler: Scoring
Require: α > 0, β > 0, Pod, Node

ns ← 0 ▷ Node score
for service in Pod.dependencies do

λ← GetLatency(Node, service)
if λ < α then

ns ← ns + β
end if

end for
ns ← ns +

1
Node.Price

return ns

To lower the deployment costs, we add the inverse of the
node price to the final score. The lower the node price, the
higher the score.

The value of α and β should be chosen regarding the cluster
characteristics. α should be chosen relative to the values of the
delays between the nodes. β should be chosen relative to the
values of the inverse of the node price.

In every case, this algorithm is selecting a node for the pod
to deploy. If two nodes get the same score, one is randomly
selected by the scheduler.

C. Service rescheduling
The rescheduler is a background process that periodically

checks if a better node is available to host a pod. We build the
service rescheduler for two main reasons: i) the best location
for a service varies over time (e.g. node availability changes
depending on the current load, end-user are moving), ii) we
can use data collected when the service is running to improve
the scheduling decision (e.g. we can estimate data traffic which
is not possible at the initial placement stage since this data is
unknown at that stage). If the rescheduler finds a better node
for a pod, it will migrate the pod to the better node.

Algorithm 2 describes the rescheduling process. This func-
tion is called periodically. The algorithm iterates over every
workload pod in the cluster. The first step of this algorithm
is to estimate the current cost of the evaluated pod. This
evaluation includes the computing and networking costs. Then,
all of the other schedulable nodes are evaluated in the same
way, at the end we keep the node with the best score. If it
is the same as the original one there is nothing to do, if it is
a different node, the rescheduler will migrate the pod toward
this node.

Estimation of networking costs is key in this algorithm.
Computing costs are easy to evaluate, they are static and
known. However, networking costs depend on each service
behavior and are not known a priori. Using the monitoring
setup described in IV-D, we can consult how much data was
sent to which destination. Using this information, we can
estimate future data usage and networking costs.

D. Implementation on Kubernetes
In this section, we detail how we implement the above-

described methodology to make it usable on a Kubernetes
cluster with any containerized workload.

Algorithm 2 Rescheduler: Background routine
for pod in WorkloadPods do

podc cost ← podCPU× pod.node.Price
podn cost ← GetNetwCostEstimation(pod.node)
bestscore ← podc cost + podn cost

bestnode ← pod.node
for node in SchedulableNodes do

podc cost ← podCPU×node.Price
podn cost ← GetNetwCostEstimation(node)
nodescore ← podc cost + podn cost

if nodescore < bestscore then
bestscore ← nodescore
bestnode ← node

end if
end for
if pod.node ̸= bestnode then

pod.MigrateTo(bestnode)
end if

end for

For the custom initial placement we use the scheduler plugin
framework, [3], which we have extended with our scoring
plugin for initial placement.

The Rescheduler is implemented as a Go application run-
ning in a dedicated pod. We are using the Kubernetes and
Prometheus libraries to collect all the necessary information.
The traffic estimation is using linear regression. Future work
can investigate more complex prediction methods to address
different workloads.

To migrate a pod, the rescheduler updates its deployment
manifest. This automatically triggers a rolling update with no
downtime to the service. A new pod is deployed on the best
node and when it is up the old pod is deleted.

We are using open-source tools, [18], [19], to monitor the
state of the cluster and collect Key Performance Indicators
(e.g. end-to-end latency).

V. EVALUATION

In order to demonstrate the potential and effectiveness of
our approach, we have devised a workload that mimics the
computational need and communication of a real vehicular co-
operative perception application. This workload is a distributed
application consisting of multiple services which are deployed
in a real Kubernetes cluster in a public cloud. We control the
latencies between nodes to emulate a cloud-edge continuum
infrastructure. We have then done some experiments to evalu-
ate the custom initial placement (CIP) and rescheduling (RS)
algorithms in a realistic environment.

A. Experimental Methodology

We build an experimental cluster using public cloud re-
sources. We use Virtual Machines (VMs) to have cluster nodes
with different characteristics (e.g. different number of proces-
sors and amount of memory), and we add artificial delays
between them to simulate the physical distances between the



Fig. 3. Experimental cluster infrastructure graph

nodes. The details on how this is done can be found in our
previous work [20]. We deploy a Kubernetes cluster using
all these nodes. In this infrastructure, only the delays are
emulated, we deploy the Kubernetes cluster on real nodes.

Fig. 3 shows the infrastructure graph of the experimental
cluster with all nodes and delays between them. Our exper-
imental cluster includes one node for the control plane and
one for the monitoring tools. A workload cannot be deployed
on these two nodes. The edge and data center (DC) nodes are
hosting the services of the workload. End-user nodes host the
end-user application workload. In real life environment, end-
user nodes can be replaced by dedicated equipment such as a
smartphone or a car.

The difference between edge and DC nodes is the geo-
graphical location and the available resources. The nodes are
AWS instances. The edge nodes have 4 CPUs and 16 GiB of
memory. Other nodes have 8 CPUs and 32 GiB of memory.

B. Workload: Vehicular cooperative perception

The vehicular cooperative perception workload leverages
computer vision to help detect nearby vehicles. As described
in [21], vehicles are sharing videos they record with their
cameras to improve global knowledge of the positions of all
nearby vehicles. Knowing the positions of close vehicles is
helpful for drivers that cannot see others in their blind spot.
Also, this technology is important for self-driving vehicle
implementation where perception is a major challenge. Getting
accurate positions of surrounding vehicles helps to reduce the
collision risk.

We implement a synthetic workload that mimics the be-
havior of the above-described application. The originally de-
scribed application is a monolith. We break it into three
services that we can deploy anywhere in the computing contin-
uum. By splitting the application we can include vehicles with
limited computing resources; the services that cannot run on
these vehicles can be hosted at on a server at the edge or in a
data center. Also, we can place the component that aggregates
the data from multiple vehicles in a central location.

Three services compose the workload application. The vehi-
cles generate a video stream and send it to a feature extractor
(FE). The FE extracts the features from the video stream and
sends it to a feature fusion (FF). FF merges the features to get

Fig. 4. Workload architecture: Workload pods and the nodes where they can
run

accurate positions of the vehicles. Finally, the FF broadcasts
the positions to nearby vehicles.

In our experiments, we have two kinds of vehicles: the ones
with embedded computing capabilities (e.g. GPU) and the ones
without them. The vehicles without computing capabilities
send video-stream to the FE. The vehicle with computing
capabilities sends features (already extracted) directly to the
FF.

Fig. 4 shows the interactions between the Vehicle, Feature-
Extractor (FE), and Feature-Fusion (FF) services. There are
three different kinds of nodes in our experiment: Data-Centre
(DC), Edge (E), and End-User (EU). End-user nodes are
hosting the vehicles only. The vehicles cannot be deployed
on different nodes. Vehicles without GPU are sending a video
stream to the FE. Vehicles with GPU are sending the features
directly to the FF. FE and FF services can run only on Edge
or DC nodes.

There is only one instance of FF for the whole experiment,
it aggregates the features from all of the vehicles. There are
many vehicles, and each of them without a GPU is connected
to one FE. We suppose that the vehicles are connected to
the same network as the other services. However, the network
delays depend on the geographic location of the vehicles.

For this workload, an end-user node represents a neigh-
borhood or a 5G cell area where vehicles can go. In the
experiment, vehicles are moving from one end-user node to
another over time. A json configuration file defines all the
movements of the vehicles when they are starting up or
shutting down when they are moving from one area to another.

We benchmark the original application to build our synthetic
workload. Table I summarizes the parameters we use to con-
figure our application. This application is using CPU instead
of GPU. Future work may adapt this scheduling approach to
consider accelerators such as GPU or FPGA. In this synthetic
application, the CPUs are running a load generated by the
stress-ng tool [22]. Services send randomly generated data
over the network using the sizes defined in Table I.

C. Evaluation on a Kubernetes cluster

In this section, we evaluate our scheduling methodology
on a Kubernetes cluster. We present the costs and the end-
to-end (E2E) latency of the vehicular cooperative perception
workload when using the Kubernetes default scheduler and
our methodology to place the services.



TABLE I
COOPERATIVE PERCEPTION WORKLOAD CHARACTERISTICS

Parameter Value

Processing time (FF) 100 µs
Processing time (FE) 100 µs
Frames size 731kB
Features size 64 kB
Frame rate 35 FPS

We define a scenario where 2 vehicles are embedding a GPU
(to extract the features locally) and 3 vehicles use a feature-
extractor (FE) deployed in the computing continuum. There is
one feature-fusion (FF) instance for all the vehicles.

We evaluate this scenario using three scheduling ap-
proaches. Baseline: the default Kubernetes scheduler. Custom
Initial Placement (CIP): the initial placement algorithm de-
scribed in section IV-B. CIP + Rescheduler (CIP+RS): the
initial placement algorithm in addition to the rescheduling
methodology described in section IV-C.

For each approach, we are testing different cluster configu-
rations. Table II summarizes the experimental parameters and
defines the different experiments. Experiments 1 to 3 test dif-
ferent α parameters and experiments 4 and 5 explore different
node costs. Since the experiments are run on real machines
there is significant variability between each execution and
therefore we repeat each experiment ten times and use the
average value in the figures here.

TABLE II
COOPERATIVE PERCEPTION WORKLOAD CLUSTER PARAMETERS

Experiment DC cost Edge Cost Network cost α β

(per CPU) (per CPU) (per GB) (ms)
1 0.0472 0.0472 0.01 20 1000
2 0.0472 0.0472 0.01 15 1000
3 0.0472 0.0472 0.01 40 1000
4 0.0472 0.0944 0.01 20 1000
5 0.0944 0.0472 0.01 20 1000

For every experiment, we measure the total costs of running
the workload. The total costs are the sum of the computing
and networking costs.

In addition to the costs, we also record the end-to-end
latency (E2E latency) of each experiment. This is a key
performance indicator (KPI) to check if the quality of service
varies when performing cost optimization. The E2E latency is
the duration between the time when a frame is recorded and the
time when the vehicle receives the corresponding positions of
the nearby vehicles. This value aggregates the network delays
between each service, the duration required to send the video
stream and the features, the processing time for extracting
the features, the time to fusion the features, and the time to
broadcast the positions.

Fig. 5 presents the average of the total costs. The total costs
are normalized to the baseline approach. Error bars represent
the 95% confidence interval. The lower the costs the better.

Fig. 6 shows the 95th percentile of the end-to-end latency
for the different experiments. We can use this figure to ensure

Fig. 5. Average of total costs for each approach: Baseline, Custom Initial
Placement, and CIP + Rescheduler. Costs are normalized to the baseline
approach

Fig. 6. 95th percentile of the end-to-end latency for each approach: Baseline,
Custom Initial Placement, and CIP + Rescheduler.

that the Quality of Service remains at the same level.
By analyzing the node allocation of the services over

time, we observe that the baseline approach is choosing data
center nodes in most situations. Data center nodes have more
computing resources, they are the least allocated nodes. The
CIP and the CIP+RS approaches use both edge and data center
nodes (it depends on the cluster configuration).

Experiments 1 to 3 use different values of α. The CIP and
the CIP+RS approaches show lower costs than the baseline
approach. The CIP+RS provides an improvement of around
20%. According to the confidence intervals, the CIP+RS costs
are significantly lower than the baseline approach. In these
three experiments, the computing cost is the same for all kinds
of nodes. Therefore computing costs are the same for every
approach. The total costs can be lower only if the networking
costs are lower because the computing costs are constant.
The CIP and the CIP+RS get lower total costs because they
managed to get smaller networking costs.

In experiment 4, the edge nodes are twice as expensive
as the data center nodes. By analyzing the allocation of the
services, we observe that most of the services are deployed



in data centers. Data center nodes are the best solution in
this configuration. The three approaches are all choosing data
center nodes, therefore the results are very similar.

In experiment 5, the data center nodes are twice as expensive
as the edge nodes. When using our methodology, the services
are mostly placed at the edge. The CIP and the CIP+RS
achieve an improvement of around 40% compared to the
baseline approach. They are significantly lower.

For each experiment, the E2E latency is similar for every
approach. Even if our methodology is lowering the costs, the
E2E latency is not impacted, and this KPI remains the same.
However, due to huge optimization in experiment 5, the CIP
approach gets higher costs. This approach chooses only edge
nodes that are cheaper and have low latency, but the vehicles
are moving and the services stay at the same location. This
location at the edge is too specific and provides higher E2E
latency. Using a central location like a data center may help
to avoid this issue. To benefit from the cost optimization of
using edge nodes, we need to use the rescheduler to keep the
same quality of service.

The results show that we can have lower costs when running
the same services with the same end-to-end latency. Our
scheduling methodology can lower the costs of deployment of
the edge-to-cloud computing continuum. However, to ensure
lower costs it is better to use the rescheduler in addition to
our initial placement approach.

VI. CONCLUSION

We propose a cost-effective scheduling methodology that
can lower the costs of deploying applications while keeping
the same quality of service. This scheduling methodology
works for clusters that aggregate resources from traditional
data centers and the servers located at the edge of the network.
We implement our scheduling methodology on a Kubernetes
cluster and we demonstrate its benefits using a realistic
workload: a vehicular cooperative perception. Experiments on
this workload show that using our approach reduces costs by
20% to 40% compare to the default Kubernetes scheduler for
the same quality of service. Also, it is possible to use our
methodology with any containerized workload.

In the future, we want to investigate ways to extend this
methodology to improve initial service placement. We think
that the knowledge from previously deployed instances of a
service can be used to get better results. Furthermore, we
would like to see how our methodology can be used to
optimize other metrics such as energy consumption.

ACKNOWLEDGMENT

This work has been partly funded by the Luxembourg Na-
tional Research Fund (FNR) under contract number 16327771
and has been supported by Proximus Luxembourg SA.

REFERENCES

[1] S. Rac and M. Brorsson, “At the edge of a seamless cloud experience,”
arXiv preprint arXiv:2111.06157, 2021.

[2] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu,
“Everything as a Service (XaaS) on the Cloud: Origins, Current and
Future Trends,” in 2015 IEEE 8th International Conference on Cloud
Computing, Jun. 2015, pp. 621–628, iSSN: 2159-6190.

[3] Kubernetes, 2023. [Online]. Available:
https://kubernetes.io/docs/concepts/scheduling-eviction/scheduling-
framework/

[4] Docker, 2023. [Online]. Available: https://www.docker.com
[5] L. Fondation, 2023. [Online]. Available: https://opencontainers.org
[6] P. Lai, Q. He, J. Grundy, F. Chen, M. Abdelrazek, J. G. Hosking, and

Y. Yang, “Cost-Effective App User Allocation in an Edge Computing
Environment,” IEEE Transactions on Cloud Computing, pp. 1–1, 2020,
conference Name: IEEE Transactions on Cloud Computing.

[7] H. Li, J. Shen, L. Zheng, Y. Cui, and Z. Mao, “Cost-efficient
scheduling algorithms based on beetle antennae search for containerized
applications in Kubernetes clouds,” The Journal of Supercomputing, Feb.
2023. [Online]. Available: https://doi.org/10.1007/s11227-023-05077-7

[8] Z. Zhong and R. Buyya, “A Cost-Efficient Container Orchestration
Strategy in Kubernetes-Based Cloud Computing Infrastructures with
Heterogeneous Resources,” ACM Transactions on Internet Technology,
vol. 20, no. 2, pp. 15:1–15:24, Apr. 2020. [Online]. Available:
https://dl.acm.org/doi/10.1145/3378447

[9] K. Kaur, F. Guillemin, V. Q. Rodriguez, and F. Sailhan, “Latency
and network aware placement for cloud-native 5G/6G services,” in
2022 IEEE 19th Annual Consumer Communications & Networking
Conference (CCNC), Jan. 2022, pp. 114–119, iSSN: 2331-9860.

[10] A. Marchese and O. Tomarchio, “Network-Aware Container Placement
in Cloud-Edge Kubernetes Clusters,” in 2022 22nd IEEE International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), May
2022, pp. 859–865.

[11] ——, “Extending the Kubernetes Platform with Network-Aware
Scheduling Capabilities,” in Service-Oriented Computing, ser. Lecture
Notes in Computer Science, J. Troya, B. Medjahed, M. Piattini, L. Yao,
P. Fernández, and A. Ruiz-Cortés, Eds. Cham: Springer Nature
Switzerland, 2022, pp. 465–480.

[12] L. Wojciechowski, K. Opasiak, J. Latusek, M. Wereski, V. Morales,
T. Kim, and M. Hong, “NetMARKS: Network Metrics-AwaRe Kuber-
netes Scheduler Powered by Service Mesh,” in IEEE INFOCOM 2021
- IEEE Conference on Computer Communications, May 2021, pp. 1–9,
iSSN: 2641-9874.

[13] L. Toka, “Ultra-Reliable and Low-Latency Computing in the Edge with
Kubernetes,” Journal of Grid Computing, vol. 19, no. 3, p. 31, Jul.
2021. [Online]. Available: https://doi.org/10.1007/s10723-021-09573-z

[14] G. P. Mattia and R. Beraldi, “Leveraging Reinforcement Learning for
online scheduling of real-time tasks in the Edge/Fog-to-Cloud computing
continuum,” in 2021 IEEE 20th International Symposium on Network
Computing and Applications (NCA), Nov. 2021, pp. 1–9, iSSN: 2643-
7929.

[15] T. Pusztai, S. Nastic, A. Morichetta, V. C. Pujol, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Polaris Scheduler: SLO- and Topology-
aware Microservices Scheduling at the Edge,” in 2022 IEEE/ACM 15th
International Conference on Utility and Cloud Computing (UCC), Dec.
2022, pp. 61–70.

[16] A. Orive, A. Agirre, H.-L. Truong, I. Sarachaga, and M. Marcos,
“Quality of Service Aware Orchestration for Cloud–Edge Continuum
Applications,” Sensors, vol. 22, no. 5, p. 1755, Jan. 2022, number:
5 Publisher: Multidisciplinary Digital Publishing Institute. [Online].
Available: https://www.mdpi.com/1424-8220/22/5/1755

[17] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo, “Adaptive Resource
Efficient Microservice Deployment in Cloud-Edge Continuum,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 8, pp.
1825–1840, Aug. 2022, conference Name: IEEE Transactions on Parallel
and Distributed Systems.

[18] Prometheus, 2023. [Online]. Available: https://prometheus.io/
[19] Bloomberg, 2023. [Online]. Available:

https://github.com/bloomberg/goldpinger
[20] S. Rac, R. Sanyal, and M. Brorsson, “A cloud-edge continuum ex-

perimental methodology applied to a 5g core study,” arXiv preprint
arXiv:2301.11128, 2023.

[21] R. Xu, Z. Tu, H. Xiang, W. Shao, B. Zhou, and J. Ma, CoBEVT: Cooper-
ative Bird’s Eye View Semantic Segmentation with Sparse Transformers,
Jul. 2022.

[22] C. I. King, 2023. [Online]. Available:
https://github.com/ColinIanKing/stress-ng


