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Abstract—To enable an intelligent, programmable and multi-
vendor radio access network (RAN) for 6G networks, consider-
able efforts have been made in standardization and development
of open RAN (O-RAN). So far, however, the applicability of
O-RAN in controlling and optimizing RAN functions has not
been widely investigated. In this paper, we jointly optimize
the flow-split distribution, congestion control and scheduling
(JFCS) to enable an intelligent traffic steering application in O-
RAN. Combining tools from network utility maximization and
stochastic optimization, we introduce a multi-layer optimization
framework that provides fast convergence, long-term utility-
optimality and significant delay reduction compared to the state-
of-the-art and baseline RAN approaches. Our main contributions
are three-fold: i) we propose the novel JFCS framework to
efficiently and adaptively direct traffic to appropriate radio
units; ii) we develop low-complexity algorithms based on the
reinforcement learning, inner approximation and bisection search
methods to effectively solve the JFCS problem in different time
scales; and iii) the rigorous theoretical performance results are
analyzed to show that there exists a scaling factor to improve the
tradeoff between delay and utility-optimization. Collectively, the
insights in this work will open the door towards fully automated
networks with enhanced control and flexibility. Numerical results
are provided to demonstrate the effectiveness of the proposed
algorithms in terms of the convergence rate, long-term utility-
optimality and delay reduction.

Index Terms—Open radio access network, intelligent resource
management, traffic steering, reinforcement learning, resource
sharing.
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Fig. 1: O-RAN Alliance reference architecture and workflow [3],
with Non-RT and Near-RT RICs. A base station is disaggregated to
CU, DU and RU.

I. INTRODUCTION

With the great success of mobile Internet, fifth generation
(5G) cellular networks have been standardized to meet com-
peting demands (e.g. extremely high data rate, low-latency
and massive connectivity) and proliferation of heterogeneous
devices. However, the existing “one-size-fits-all” 5G archi-
tecture lacks sufficient intelligence and flexibility to enable
the coexistence of these demands [1]. As we move towards
6G, the latest frontier in this endeavor is open radio access
network (O-RAN) by disaggregating RAN components and
opening up interfaces, which is considered today the most
promising approach to revolutionize the wireless technology
from “connected things” to “connected intelligence” [2]–[4].
O-RAN is expected to fully enable programmable, intelligent,
interoperable and multi-vendor RAN [5].

Fig. 1 illustrates the high-level O-RAN Alliance reference
architecture [3], where the “black” parts and interfaces are
defined by the 3rd Generation Partnership Project (3GPP),
while the “orange” parts and interfaces are defined by O-
RAN Alliance. O-RAN initiatives were developed to split
the RAN into the radio unit (RU), distributed unit (DU)
and centralized unit (CU), allowing for the interoperability
of open hardware (HW), software (SW) and interfaces (e.g.
O1, A1 and E2) [3], [4]. The O-RAN architecture typically
has three main layers (or loops), including the management,



control and function layers as illustrated in Fig. 1. In particular,
the management layer takes place in non-real-time (Non-RT)
over 1 s (second) with orchestration, automation functions and
trained artificial intelligence (AI) and machine learning (ML)
models. The control layer is executed in near real-time (Near-
RT) between 10 ms and 1 s to provide functions like radio
resource management (RRM), quality-of-service (QoS) man-
agement and interference management. Finally, the function
layer provides the RAN optimization of a timescale below 10
ms, such as scheduling, power control and radio-frequency
assignment, etc. The function layer (CU, DU and RU) is
also connected to the Non-RT RIC through the O1 interface
for periodic feedback, aiming to fully enable autonomous
and self-optimizing networks. Two important parts introduced
in O-RAN are Non-RT RAN intelligent controller (Non-RT
RIC) and Near-RT RIC that allow to access RRM functions.
The former enables AI/ML workflow for RAN components
and RRM like traffic steering (TS) as well as policy-based
guidance of applications in Near-RT RIC, while the latter is
embedded with the control/optimization algorithms of RAN
and radio resources [5]–[8].

A. Motivation
Yet the existing research efforts on O-RAN in the academic

community are isolated, providing only tailored solutions to
problems at either the physical or higher layers [9]–[12]. On
the other hand, ML-based approaches (e.g. [9], [10], [12]–
[15]) often ignored periodic feedback loops and assumed
that the RAN information is available at SMO to perform
resource allocation and RAN management, making a fully
automated network impractical. The understanding of how O-
RAN could help improve network performance by controlling
data traffic and optimizing RAN functions remains rather
limited in the literature. In this paper, we aim to fill this gap
by conducting an in-depth analysis of the multi-layer design
between the physical and higher layers and developing low-
complexity algorithms for network control, scheduling and
resource allocation in different time scales. We also analyze
their impact on the throughput and delay performances in the
6G O-RAN context.

In light of the above discussions, this paper focuses on
designing the TS control to intelligently direct the user traf-
fic through a group of RUs, taking into account available
resources and users’ service requirements. To fully realize
the potential performance of the TS scheme, O-RAN allows
customization of user-centric strategies, multi-path routing
and multi-connectivity as well as proactive optimization of
network parameters through RICs. However, the problem
becomes more challenging in the O-RAN setting due to several
complicating factors: i) the traffic demand of user equipements
(UEs) often varies over time, and the complete information of
the RAN layer is indeterminate at the time of optimization
algorithm execution. Hence, the policies and control decisions
at the service management and orchestration (SMO) must
be adapted to the variation of data traffic; ii) the total data
traffic is distributed unevenly to RUs due to different downlink
(DL) throughput capabilities, causing high queueing delay;
and iii) the strong correlation between congestion control and

scheduling optimization influences the optimal choice of flow-
split distribution of data traffic across all RUs. In addition,
the deployment of fully automated networks is an intricate
problem in O-RAN that calls for intelligent, scalable and self-
organizing strategies for a holistic multi-layer optimization
framework. In this regard, reinforcement learning (RL) plays
an important role in achieving long-term utility optimization.
To the best of our knowledge, the TS optimization problem for
O-RAN as outlined above has not been thoroughly addressed
in the literature.

B. Main Contributions
In this paper, we consider a practical scenario where the

complete information of the RAN layer is not available at
the beginning of each time-frame. Instead, we assume that
only their expected values are available to approximately
measure queueing delay. An interesting question naturally
arises: How does the incomplete information of user traffic
demands affect the optimal choices of the TS scheme? To
answer this question and address the challenges above, we
introduce a holistic multi-layer optimization framework that
jointly optimizes the flow-split distribution, congestion control
and scheduling (called JFCS). The proposed framework effec-
tively characterizes the complex interactions between layers
(e.g. flow-split selection, congestion control rate and power
allocation). In summary, we make the following three key
contributions:

• We propose a novel JFCS framework to efficiently and
adaptively direct traffic to appropriate RUs. Our frame-
work not only generalizes the classical queue-length-
based congestion control and scheduling (QCS) method
[16], but also provides a synergy between RL, QCS and
updated network state information, and thus enabling a
closed-loop control of the TS in the O-RAN context.

• To ensure the practicality and scalability, we identify
inherent properties of the JFCS problem and propose
an intelligent resource management algorithm to solve
it effectively by leveraging the stochastic optimization
framework [17]. In particular, by exploiting the historical
system information accumulated from the previous time-
slots, an RL process is developed to build the smoothed
best response while maximizing the long-term utility for
each data-flow under arbitrary changes in traffic demands.
Given the updated queue-length vector and the optimal
flow-split distribution, two low-complexity algorithms
are developed to effectively solve the short-term power
control optimization subproblem in an iterative fashion,
enabling network operators to quickly respond to in-
creased demand and changing network conditions.

• Given a scaling factor ϕ to minimize the Lyapunov drift
[18], the theoretical performance results are analyzed to
show that the queueing network is stable. In addition, the
expected divergence in queue-length and the optimality
gap of congestion control rate still scale as O(

√
ϕ)

and O(1/
√
ϕ), respectively. Thus, there always exists a

scaling factor to balance utility-optimality and latency.

We numerically evaluate the performance of the proposed
framework. Results show that the proposed framework can im-



prove network resource utilization significantly while achiev-
ing fast convergence and long-term utility-optimality, com-
pared to state-of-the-art approaches.

C. Paper Organization and Mathematical Notation
The remainder of this paper is organized as follows. The

related work is discussed in Section II. In Section III, we first
introduce the network model and then present the problem
formulation. The proposed JFCS framework and its solutions
are provided in Sections IV and V, respectively. Section VI
presents the key theoretical performance results of the JFCS
framework. Numerical results are given in Section VII, while
Section VIII concludes the paper.

Mathematical notation: Throughout this paper, matrices and
vectors are written as bold uppercase and lowercase letters,
respectively, while the scalar number is denoted in lowercase.
hH is the Hermitian transpose of vector h. The notation x ∼
CN (0, σ2) implies that x is a circularly-symmetric complex
Gaussian random variable with zero mean and variance σ2.
‖ · ‖ stands for the vector’s Euclidean norm. C and R denote
the sets of all complex and real numbers, respectively. Finally,
E{·} denotes the expectation of a random variable.

II. RELATED WORK

Multi-layer (a.k.a. cross-layer) optimization for traditional
cellular RAN architectures has been extensively studied in the
literature (see e.g., [19] and references therein). For example,
Tang et al. [20] studied a multi-layer resource allocation
problem to minimize the overall system power consumption
in a cloud-RAN (C-RAN), which jointly optimizes the service
scaling, remote radio head selection, and beamforming. In
[21], a joint design of virtual computing and radio resource
allocation was proposed. It was shown that this approach
can efficiently allocate the virtual computing of the baseband
unit (BBU) pool to achieve load balancing among users with
significantly reduced power consumption. These problems
are often solved by the difference of the convex algorithm
due to the combinatorial nature and strong coupling between
optimization variables. To address this challenge, graph theory
techniques were introduced in [22] and [23] to effectively
solve the jointly coordinated scheduling and power optimiza-
tion problem in C-RAN. Recently, the multi-layer network
coding was also investigated in [24]–[26], taking into account
the rate heterogeneity of different users to remote radio
heads. In general, these existing works only optimized radio
resources, while other factors at higher layers (e.g. congestion
control and routing) were overlooked, making guaranteed
multi-layer QoS for O-RAN infeasible. In addition, the non-
causal statistical knowledge of traffic demands is required to
model queue states, which is again impractical.

So far, there have been only a few attempts to study the
applicability of the O-RAN architecture. Kumar et al. [9]
proposed an automatic relation (ANR) approach to manage
neighbour cell relationships by leveraging ML techniques,
hence improving gNodeB (gNB) handovers. The work in [13]
introduced an intelligent user access control algorithm based
on deep reinforcement learning, aiming to maximize the over-
all throughput and avoid frequent handovers. The authors in

[10] developed an RL-based dynamic function splitting which
is shown to be able to effectively decide the O-RAN’s function
splits and reduce operating costs. Based on the Working Group
(WG)-2 AI/ML specifications of the O-RAN Alliance, Acu-
mos framework and open network automation platform were
introduced in [11] to generate AI/ML models to be deployed
in RIC modules and monitor the designed workflow, respec-
tively. Motalleb et al. [14] developed an iterative algorithm
to jointly optimize service-aware baseband resource allocation
and virtual network function activation, thus achieving better
data rate and lower end-to-end delay. Very recently, a deep
reinforcement learning-based intelligent session management
for ultra-reliable and low latency communications (URLLC)
was proposed in [15] to allocate resources for serving current
and new sessions more efficiently. However, these studies did
not reveal any observable information about the RAN layer to
SMO via periodic feedback loops. Thus, RICs in these studies
were unable to monitor RAN in a timely manner to enable
their management automation within O-RAN.

In traditional RAN architectures, the TS solutions are typ-
ically determined by users’ radio conditions of a serving cell
while treating signals from neighboring cells as interference
[27]. The authors in [28] proposed a distributed TS scheme
through edge servers, where the matrix-based shortest path
selection and matrix-based multipath searching algorithms
were developed to dynamically determine the optimal paths
for traffic steering. The work [29] developed a data-driven
AI-powered TS xApp to maximize the throughput of all UEs
through the selection of the NR serving cell. Very recently,
Kavehmadavani et al. [30] showed that a dynamic multi-
connectivity (MC)-based TS scheme can help steer traffic
flows towards the most suitable cells based on user-centric
conditions. In addition, the flow split for each user was purely
determined by the RUs’ capacity in delivering user traffic
demands, resulting in a very suboptimal solution. However,
this work did not embed AI/ML solutions in Non-RT RIC
within the O-RAN architecture and assumed that all network
information is available at Near-RT RIC to optimize radio
resource allocation.

Different from all the above works and others in the
literature that focus on a single layer, we propose a fully
multi-layer optimization framework that captures interplays
between the physical and higher layers, enabling proactive
optimization of network parameters through RICs with pe-
riodic feedback loops. This holistic multi-layer optimization
framework guarantees the long-term utility-optimality with far
less latency than state-of-the-art approaches, opening the door
towards fully automated networks with enhanced control and
flexibility.

III. NETWORK MODEL AND PROBLEM FORMULATION

A. Network Model
As shown in Fig. 2, we consider an O-RAN architecture

with one CU, I DUs and J RUs, where each DU connects
to multiple RUs for cost-effective deployment. Let us denote
by I , {1, 2, · · · , I} the set of DUs. We consider a downlink
multi-user multiple-input single-output (MU-MISO) system,
where J RUs simultaneously serve the set K , {1, 2, · · · ,K}
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of K = |K| single-antenna UEs. The j-th RU served by
the i-th DU is referred to as RU (i, j), which is equipped
with Mi,j antennas. The total number of RUs’ antennas is
thus MΣ =

∑
∀(i,j)Mi,j . The set of RUs served by DU i

is denoted by Ji , {(i, 1), · · · , (i, Ji)} with |Ji| = Ji and∑
i∈I Ji = J . The total set of RUs is denoted as J , ∪i∈IJi.

We assume that the midhaul (MH) link between the CU and
DU and fronthaul link between the DU and RU have sufficient
capacity (i.e., high-speed optical ones), so that the transmission
latency from CU to RUs and queueing latency at CU and DUs
are negligible.

We consider that the system operates in a discrete time-
frame indexed by t ∈ [1, 2, · · · , T ], which corresponds to
one large-scale coherence time with a duration of Tc, as
illustrated in Fig. 3. Each frame is divided into Tf time-slots
of equal duration τ = Tc/Tf , where the time-slot is indexed
by ts = tTf + s with s ∈ {1, 2, · · · , Tf}. At CU, there
exist K independent data-flows, each of which is intended
for one UE. The CU splits the data-flow of UE k, say flow k,
into multiple sub-flows which are possibly transmitted through
the set of paths and then aggregated at this UE [31], [32],
so-called “traffic steering”. For data-flow k, we denote by
Pk , {(i, j)}∀(i,j)∈J the set of path states, including queue
states and routing tables. To improve the system throughput,
a subset of separate paths in the set Pk (i.e., via neighboring
RUs indexed by (i, j)) should be appropriately selected. Let
us denote by ck[t] ,

[
ci,jk [t]

]
(i,j)∈Pk

the flow-split selection

(action) vector for data-flow k in time-frame t, i.e., ci,jk [t] = 1
if path (i, j) ∈ Pk (i.e., via RU (i, j)) is selected to transmit
data of flow k; otherwise, ci,jk [t] = 0. We let βi,jk [t] ∈ [0, 1]
be the fraction of data-flow k which is routed via path
(i, j) in time-frame (state) t by selecting action ci,jk [t], where∑

(i,j)∈Pk β
i,j
k [t] = 1. The global flow-split decision is de-

noted by B[t] , {βk[t],∀k
∣∣∑

(i,j)∈Pk β
i,j
k [t] = 1,∀k}, where

each column flow-split vector βk[t] ,
[
βi,jk [t]

]T
(i,j)∈Pk

∈ RJ
corresponds to the flow-split vector of data-flow k.
1) Wireless Channel Model and Downlink Throughput

The large-scale fading coefficients are assumed to be in-
variant within one frame Tc, while the small-scale fading
components with a low degree of mobility are assumed
to be unchanged during time-slot ts with duration of τ
and vary independently in the next time-slot. For example,
the large-scale fading coefficients may stay invariant for a
period of at least 40 small-scale fading coherence inter-
vals for indoor scenarios [33]. The channel vector between
RU (i, j) and UE k ∈ K in time-slot ts is denoted by
hi,jk [ts] ∈ CMi,j×1, which follows the Rician fading model
with the Rician factor κi,jk [t]. In particular, hi,jk [ts] is mod-

eled as hi,jk [ts] =
√
ξi,jk [t]

(√
κi,jk [t]/(κi,jk [t] + 1)h̄i,jk [t] +√

1/(κi,jk [t] + 1)h̃i,jk [ts]
)

where ξi,jk [t] represents the large-

scale fading; h̄i,jk [t] and h̃i,jk [ts] ∼ CN (0, I) are the line-of-
sight (LoS) and non-LoS (NLoS) components, which follow
a deterministic channel and Rayleigh fading models, respec-
tively. We let H[ts] ,

[
h1[ts] · · ·hK [ts]

]
∈ CM×K denote the

channel matrix between all RUs and UEs in time-slot ts where
hk[ts] ,

[
(hi,jk [ts])

H
]H
∀i,j ∈ CM×1 corresponds to the channel

vector between RUs and UE k.
Let us denote by xi,jk [ts] and wi,j

k [ts] ∈ CMi,j×1 a unit-
power data symbol and a linear beamforming vector transmit-
ted from RU (i, j) to UE k in time-slot ts, respectively. The
received signal at UE k in time-slot ts can be written as

yk[ts] =
∑

(i,j)∈Pk

(hi,jk [ts])
Hwi,j

k [ts]x
i,j
k [ts]

+
∑

k′∈K\{k}

∑
(i,j)∈Pk′

(hi,jk [ts])
Hwi,j

k′ [ts]d
i,j
k′ [ts] + ωk[ts] (1)

where ωk[ts] is the additive white Gaussian background
noise (AWGN) with power N0. The downlink achievable
rate (bits/s) of UE k from RU (i, j) in time-slot ts can be
written as ri,jk (w[ts]) , W log2

(
1 + γi,jk (w[ts])

)
, where W

is the system bandwidth and the signal-to-interference-plus-
noise ratio (SINR) γi,jk (w[ts]) is given by γi,jk (w[ts]) =
|(hi,jk [ts])

Hwi,j
k [ts]|2/Φi,jk (w[ts]) with

Φi,jk (w[ts]) ,
∑

(i′,j′)∈Pk\{(i,j)}

|(hi
′,j′

k [ts])
Hwi′,j′

k [ts]|2︸ ︷︷ ︸
Intra-user interference

+
∑

k′∈K\{k}

∑
(i,j)∈Pk′

|(hi,jk [ts])
Hwi,j

k′ [ts]|
2

︸ ︷︷ ︸
Inter-user interference

+N0 (2)

and w[ts] ,
[
(wi,j

k [ts])
H
]H
k∈K,(i,j)∈Pk

being the vector em-



bracing all the beamformers. The overall effective data rate
of data-flow k (or UE k) can be computed as rk(w[ts]) =∑

(i,j)∈Pk r
i,j
k (w[ts]). Then, for each H[ts] and a given βk[t],

we define the instantaneous achievable rate region under
beamformer w[ts] as

CH[ts] ,

{
rk(w[ts]),∀k

∣∣∣∣∣
rk(w[ts]) =

∑
(i,j)∈Pk

ri,jk (w[ts])∑
k∈K
‖wi,j

k [ts]‖22 ≤ P i,jmax,∀(i, j)

}
(3)

where P i,jmax denotes the transmit power budget of RU (i, j).
We note that the achievable rate ri,jk (w[ts]) is upper bounded
by ri,jk (w[ts]) ≤ W log2

(
1 + P i,jmax

∥∥hi,jk [ts]
∥∥2

2
/N0

)
for a

limited transmit power budget P i,jmax, leading to rk(w[ts]) <
∞,∀k, t.
2) Queueing Model

As illustrated in Fig. 2, each RU maintains a separate
queue for each UE. Let Ak[t] (bits/s) be the total rate of
data arriving at RU destined for UE k in time-frame t with
mean E{Ak} = Āk. We assume that Ak[t] is random and
upper bounded by a finite constant Amax, such as Ak[t] ≤
Amax < ∞,∀k, t, and unknown at the beginning of time-
frame t. As a result, the queue-length of data-flow k at RU
(i, j) in time-slot ts evolves as follows: qi,jk [ts+1] =

[
qi,jk [ts]+

βi,jk [t]Ak[t]τ − ri,jk (w[ts])τ
]+

, where [x]+ , max{0, x}. By

q[ts] ,
[
qi,jk [ts]

]T
k,(i,j)

and following [18], a queueing network
is stable if the steady-state total queue-length remains finite,
such as

lim sup
ts→∞

E{‖q[ts]‖1} <∞. (4)

B. Problem Formulation
Let r̄k , lim

ts→∞
1
ts

∑ts
`=1 rk(w[`]) denote the long-term

average rate of data-flow k. Each UE k is associated with a
utility function, denoted by Uk(r̄k). To facilitate the analysis
presented later, we make the following assumption to the
utility function [18], [31], [34], [35].

Assumption 1. The utility function Uk(·) is assumed to satisfy
the following conditions
• Uk(·) is twice continuously differentiable, increasing, and

strictly concave.
• There exist positive constants 0 < ψ < Ψ <∞, such as
ψ ≤ −U ′′k (r̄k) ≤ Ψ,∀r̄k ∈ [0, r̄max], with r̄max being
the maximum long-term average rate of any data flow.

Our goal is to maximize the network utility function∑
k∈K Uk(r̄k), subject to the probabilistic delay constraint,

achievable rate region and queue-stability constraint. Based on
the network utility maximization (NUM) framework, the joint
flow-split distribution, congestion control and scheduling op-
timization problem (JFCS) can be mathematically formulated
as

JFCS : max
β,r̄,w

∑
k∈K

Uk(r̄k) (5a)

s.t. lim sup
ts→∞

E{‖q[ts]‖1} <∞ (5b)

rk(w[ts]) ∈ CH[ts],∀ts, k ∈ K (5c)
βk[t] ∈ B[t],∀t, k ∈ K (5d)

Prob
(qi,jk [ts]

Āk
≤ d̄k

)
≥ εk, ∀ts, k, (i, j) (5e)

where β ,
[
βT
k

]T
k∈K and r̄ ,

[
r̄k
]T
k∈K. Constraint (5e) ensures

different minimum outage delay requirements for sub-flows,
where d̄k and εk (0 � εk ≤ 1) are the maximum allowable
average delay and the required reliable communication for
each UE, respectively. It is stated that the probability of
qi,jk [ts]

Āk
≤ d̄k (i.e. UEs’ maximum allowable delay) should be

greater than or equal to a certain positive constant εk. This
probabilistic constraint is used to tackle the randomness and
variability of the arrival rate while maintaining a certain level
of performance.

Remark 1. It is clear that problem (5) needs to be executed in
different time scales (i.e., over the long-term scale t at Non-RT
RIC and the short-term scale ts at Near-RT RIC), as shown
in Fig. 3. In particular, the global flow-split vector β[t] is
only updated once per time-frame t to reduce computational
complexity and information exchange, as well as to ensure a
stable queueing system. On the other hand, the beamforming
vector w[ts] and the instantaneous achievable rate r[ts] are
optimized based on the real-time effective CSI H[ts] in time-
slot ts, adapting to dynamic environments.

IV. JFCS-BASED NETWORK UTILITY OPTIMIZATION

A. Tractable Form of the JFCS Problem (5)
Challenges of Solving JFCS Problem (5): We can observe

that constraint (5c) is nonconvex while (5e) is a nonconvex
probabilistic constraint, generally making problem (5) NP-
hard. In addition, the expectations in the constraints cause
the stochastic nature of the problem, which cannot be solved
directly. The classical optimization approaches, such as suc-
cessive convex approximation (SCA) [36], are often applied to
solve the optimization problems of nonconvex and determinis-
tic constraints. However, the stochastic SCA-based algorithms
can no longer guarantee a feasible and (sub)-optimal solution
of all subsequent time intervals (TTIs) due to the dynamics of
the physical layer at small timescales. The flow-split decisions
mainly rely on the previous states updated by the RAN
layer. Towards practical applications, an efficient and adaptive
solution to the long-term subproblem of (5) is necessary to
achieve high QoE for all UEs in every TTI.

Let us start by transforming problem (5) into a more
tractable form. Towards a safe design, we consider the re-
placement of constraint (5e) by its deterministic constraint.
From the basic property of probability, we can rewrite (5e) as
Prob

(
qi,jk [ts] ≥ Ākd̄k

)
≤ 1 − εk. It follows from the well-

known Markov inequality [37] that Prob
(
qi,jk [ts] ≥ Ākd̄k

)
≤

E{qi,jk [ts]}/Ākd̄k, yielding∑t

`=1
βi,jk [`]Ākτ − (1− εk)Ākd̄k −

∑ts−1

`=1
ri,jk (w[`])τ

≤ ri,jk (w[ts])τ, ∀ts, k ∈ K, (i, j) ∈ Pk (6)

where each queue-length is always non-negative. We note that
(6) is a relaxed constraint of (5e), which implies that any



feasible of the former is also feasible for the latter but not
vice versa due to the Markov upper bound on the outage
probabilities.

To facilitate the following optimization, we introduce con-
gestion control variables a[ts] ,

[
ak[ts]

]T
k∈K, satisfying

āk − r̄k ≤ 0,∀k, where āk , lim
ts→∞

1
ts

∑ts
`=1 ak[`]. Problem

(5) is then rewritten as

max
β,ā,r̄,w

∑
k∈K

Uk(āk) (7a)

s.t. (5b), (5c), (5d), (6) (7b)
āk − r̄k ≤ 0,∀k. (7c)

We also introduce a new auxiliary queue-length vector
q̂[ts] ,

[
q̂k[ts]

]T
k∈K, where q̂k[ts+1] =

[
q̂k[ts] + ak[ts]τ −

rk(w[ts])τ
]+

to associate constraint (7c) with a penalty
function and ak[ts] ∈ [0, Amax]. We define the total queue
backlog of all UEs in time-slot ts as L[ts] = 1

2

(∑
k∈K∑

(i,j)∈Pk
qi,jk [ts]

2

τ2 +
∑
k∈K

q̂k[ts]
2

τ2

)
, which is the quadratic

Lyapunov function [17], [38]. For given (q[ts], q̂[ts]), the
Lyapunov drift from time-slot ts to ts+1 is given as ∆L[ts] =
L[ts+1] − L[ts]. To guarantee joint network stability and
penalty minimization (i.e., (5b) and (7c) hold true), we adopt
the drift-plus-penalty procedure [17] to minimize the drift of
a quadratic Lyapunov function and rewrite (7) as

max
β,ā,r̄,w

ϕ
∑
k∈K

E{Uk(ak[ts])} − E{∆L[ts]} (8a)

s.t. (5c), (5d), (6) (8b)

where ϕ is a scaling factor to balance two objective functions.
We now show that constraint (7c) holds with equality at
optimum by introducing the following lemma.

Lemma 1. For each data-flow of UE k, the optimal congestion
control rate is equal to the optimal long-term average service
rate, i.e., ā∗k − r̄∗k = 0,∀k.

The proof Lemma 1 is straightforward by examining the
Karush–Kuhn–Tucker (KKT) complementary slackness condi-
tion over the increasing and strictly concave objective function
Uk(·),∀k.

B. Overall Intelligent Resource Management Algorithm
To solve problem (8) in different time scales, we now

decompose it into three subproblems. To do so, we consider
a worst-case design by developing an upper bound of ∆L[ts]
for given (q[ts], q̂[ts]). From the inequality ([x]+)2 ≤ x2 and
(x+ y)2 − x2 = 2xy + y2, we have

∆LUB[ts] ,
∑
k∈K

∑
(i,j)∈Pk

qi,jk [ts]

τ

(
βi,jk [t]Ak[t]− ri,jk (w[ts])

)
+
∑
k∈K

q̂k[ts]

τ

(
ak[ts]− rk(w[ts])

)
+B[ts] ≥ ∆L[ts] (9)

where B[ts] , 1
2

∑
k∈K

∑
(i,j)∈Pk

(
βi,jk [t]Ak[t] −

ri,jk (w[ts])
)2

+ 1
2

∑
k∈K

(
ak[ts] − rk(w[ts])

)2
is the

summation of the second moments of the arrival and service
processes. Following [17] and [31], we consider that B[ts] is

Algorithm 1: Intelligent Resource Management Algorithm
for Solving JFCS Problem (5), compliant with O-RAN

Initialization: Set t = 1 and select a positive scaling factor ϕ.
Initialize βk[1] =

1
|Pk|

[1, · · · , 1] and all queues are set to be
empty: qi,jk [11] = 0 and q̂k[11] = 0, ∀(i, j), k.

Main Loop:
1: for each frame t = 1, 2, · · · , T do {/*Long-term scale t*/}
2: Flow-Split Distribution: Given {q[t− 1],A[t− 1]}, CU

splits data-flows of all UEs based on the optimal flow-split
decisions β∗[t] by solving L-SP at Non-RT RIC:

max
βk[t]∈B[t],∀k

∑
k∈K

Lk[t].

3: for each time-slot ts = tTf + s with s ∈ {1, · · · , Tf} do
{/*Short-term scale ts*/}

4: Congestion Controller: Given the queue-length vector
q̂[ts], solve S-SP1 (12) to obtain the optimal congestion
control variables:

a∗k[ts] = min
{
U
′−1
k

( q̂k[ts]
ϕτ

)
, Amax

}
, ∀k.

5: Weighted Queue-Length-Based Scheduler: Given the
queue-length vector q̂[ts] and the flow-split distribution
β∗[t], each RU (i, j) ∈ Pk schedules the service rate
ri,jk (w[ts]) for UE k ∈ K by solving S-SP2:

max
r[ts],w[ts]

∑
k∈K

q̂k[ts]

τ
rk(w[ts]), s.t. (5c), (6).

6: Queue-Length Updates: Queue-Lengths are updated as

qi,jk [ts+1] =
[
qi,jk [ts] + βi,j

k [t]Ak[t]τ

− ri,jk (w[ts])τ
]+
, ∀k, (i, j)

q̂k[ts+1] =
[
q̂k[ts] + ak[ts]τ − rk(w[ts])τ

]+
, ∀k.

7: Set s = s+ 1
8: end for
9: Update {q[t],A[t]} := {qi,jk [t], Ak[t]}k,(i,j) to Non-RT

RIC.
10: Set t = t+ 1
11: end for

finite and bounded by B̄ for all ts, i.e., E{B[ts]
∣∣q[ts], q̂[ts]}

≤ B̄. As a result, problem (8) is simplified to

max
β,ā,r̄,w

ϕ
∑
k∈K

E{Uk(ak[ts])} − E{∆LUB[ts]} (10a)

s.t. (5c), (5d), (6). (10b)

Long-term subproblem (L-SP): The flow-split distribution
subproblem at time-frame t is given as

L-SP : max
βk[t]∈B[t],∀k

∑
k∈K

Lk[t] (11)

where Lk[t] =
∑

(i,j)∈Pk
qi,jk [ts]

τ

(
ri,jk (w[ts]) − βi,jk [t]Ak[t]

)
.

Although problem (11) is a linear program in β, it cannot be
solved directly by standard optimization techniques because
Ak[t],∀k are incompletely known at the beginning of time-
frame t.

Short-term subproblems (S-SPs): The congestion control
subproblem at time-slot ts is

S-SP1 : max
a[ts]≥0

∑
k∈K

(
ϕUk(ak[ts])−

q̂k[ts]

τ
ak[ts]

)
(12)



which is an unconstrained convex problem. The optimal
solution of (12) exists and is unique that is a∗k[ts] =

U
′−1
k

( q̂k[ts]
ϕτ

)
,∀k, where U

′−1
k (·) denotes the inverse function

of the first derivation of Uk(·). Given the optimal solution
β∗[t], the short-term power control optimization subproblem
(i.e., the weighted queue-length-based scheduling) at time-slot
ts is given as

S-SP2 : max
r[ts],w[ts]

∑
k∈K

q̂k[ts]

τ
rk(w[ts]), s.t. (5c), (6). (13)

The overall intelligent resource management algorithm for
solving the JFCS problem (5) is summarized in Algorithm
1, where the solutions of subproblems will be provided next.

V. PROPOSED ALGORITHMS FOR SOLVING SUBPROBLEMS

We are now in a position to solve L-SP (11) and S-SP2 (13)
in different time scales. The optimality of the latter depends
heavily on the optimal flow-split decisions, which often require
a prior knowledge of the statistical information of all possible
paths at Non-RT RIC. However, the assumption of complete
information is unrealistic due to the dynamic environment and
the data collected from the RAN layer being only updated to
Non-RT RIC only on the long-term scale. In this work, at
time-frame t we aim to exploit historical system information
accumulated from the previous time-slot, which can be used to
build the smoothed best response in maximizing the long-term
utility for each data flow.

A. Reinforcement Learning Algorithm for Solving L-SP (11)

The flow-split decision βk[t] in problem (11) can be es-
timated separably by minimizing Lk[t]. This implies that
the larger the queue-length qi,jk [ts], the lower the flow-split
decision value βi,jk [t] to guarantee fairness among all RUs
(i, j) ∈ Pk (i.e., to avoid large queue-lengths qi,jk at some
RUs in the next time-slot ts+1). Let us denote

ui,jk [t] ,
qi,jk [ts]

τ

(
ri,jk (w[ts])− βi,jk [t]Ak[t]

)
as the instantaneous utility observation of data-flow k at time-
frame t when selecting path (i, j) ∈ Pk. The total utility
observation of data-flow k, denoted by uk[t], is thus

uk[t] =
∑

(i,j)∈Pk

ui,jk [t]. (14)

However, it is unable to build a smoothed best response based
on ui,jk [t] as it is not revealed at the beginning of time-frame
t. Inspired by [39], we denote ûi,jk [t] as the estimated utility
of data-flow k at time-frame t when selecting path (i, j). In
addition, the actual utility observed by data-flow k at time-
frame t, denoted by ūk[t], is given as ūk[t] = uk[t−1], which
is based on feedback from Near-RT RIC at time t − 1. By
initializing ûi,jk [1] = 0, the estimated utility of data-flow k is
updated for action ck[t] = ci,jk [t] as follows:

ûi,jk [t] = ûi,jk [t− 1] + ηu[t]1{ck[t]=ci,jk [t]}
(
ūk[t]

− ûi,jk [t− 1]
)
, ∀t > 1 (15)

where ηu > 0 is the decreasing step size (i.e. the learning rate),
which is often decreased over time to guarantee convergence.
Naturally, ûi,jk [1] is initialized as ûi,jk [1] = 0 for t = 1. The
indicator function 1{x=y} = 1 (resp. 0) if the condition x = y
is true (resp. false).

Next, we denote θ̂k[t] , [θ̂i,jk [t]](i,j)∈Pk as the estimated
regret vector of data-flow k, where each element is updated
for action ck[t] = ci,jk [t] as

θ̂i,jk [t] =θ̂i,jk [t− 1] + ηθ[t]1{ck[t]=ci,jk [t]}
(
ūk[t]

− ûi,jk [t]− θ̂i,jk [t− 1]
)
, ∀t > 1 (16)

with θ̂i,jk [1] = 0 and ηθ[t] being the learning rate. In order
to achieve high performance in the long term, the L-SP
must balance exploration and exploitation processes. We note
that trying all possible actions to choose the best paths (e.g.
the exhaustive exploration) can offer the highest payoff, but
with the cost of slow convergence and even computationally
prohibitive. During the exploitation process, playing an action
associated with the highest estimated utility in (15) will
likely result in a very sub-optimal solution. To make this
tradeoff more efficient, let us define the best response function
β̂[t] = f(θ̂[t]) as

f(θ̂[t]) := argmin
βk[t]∈B[t]

{
h
(
β[t]

)
−λ

∑
k∈K

∑
(i,j)∈Pk

βi,j
k [t]θ̂i,jk [t]

}
. (17)

Here λ is the so-called trade-off factor (a.k.a. Boltzmann
temperature) and h

(
β[t]

)
denotes the regularization function.

We note that when λ→ 0, it leads to uniform probabilities of
all actions, i.e. βi,jk [t] = 1/|Pk|,∀(i, j) ∈ Pk. For λ→∞, the
second term in (17) will dominate the best response function
and then the actions associated with the highest estimated
regret will be selected [39].

Regularization function: The regularization function al-
lows to learn the best paths that maximize its own performance
and stabilize the flow-split decisions. The solutions to problem
(11) lie in the unit simplex for each data-flow. Therefore, we
adopt the Gibbs-Shannon entropy as the regularization func-
tion, i.e. h

(
β[t]

)
=
∑
k∈K

∑
(i,j)∈Pk β

i,j
k [t] ln

(
βi,jk [t]

)
, which

is K-strongly convex. Substituting h
(
β[t]

)
into (17), we have

f(θ̂[t]) := argmin
βk[t]∈B[t],∀k

{∑
k∈K

∑
(i,j)∈Pk

βi,jk [t] ln
(
βi,jk [t]

)
− λ

∑
k∈K

∑
(i,j)∈Pk

βi,jk [t]θ̂i,jk [t]
}
. (18)

The function f(θ̂[t]) is convex and separable for each βi,jk [t].
By solving the following equation

∂f(θ̂[t])/∂βi,jk [t] = ln
(
βi,jk [t]

)
+ 1− λθ̂i,jk [t] = 0

we have

βi,jk [t] = f(θ̂i,jk [t]) = exp
(
λθ̂i,jk [t]− 1

)
.

To ensure
∑

(i,j)∈Pk β
i,j
k [t] = 1,∀k (i.e. the unit simplex for

data-flow k), we normalize f i,jk (θ̂k[t]) through the exponenti-



ated mirror function as

f i,jk (θ̂k[t]) =
exp

([
λθ̂i,jk [t]− 1

]+)∑
(i′,j′)∈Pk exp

([
λθ̂i

′,j′

k [t]− 1
]+)

=
exp

(
λ
[
θ̂i,jk [t]

]+)∑
(i′,j′)∈Pk exp

(
λ
[
θ̂i
′,j′

k [t]
]+) . (19)

As a result, the estimated value of each element of flow-split
vector βk[t] is updated for all actions with the regret as

βi,jk [t] = βi,jk [t− 1] + ηβ [t]
(
f i,jk (θ̂k[t])− βi,jk [t− 1]

)
(20)

for t > 1, where βk[1] = 1
|Pk| [1, · · · , 1] and ηβ [t] is the

learning rate. The three-step reinforcement learning procedure
includes (15), (16) and (20), which do not require expensive
computations and projection to the feasible space.

Convergence properties: The convergence conditions for
the three-step reinforcement learning procedure are given as
follows:

lim
T→∞

∑T

t=1
ηu[t] = +∞ & lim

T→∞

∑T

t=1
η2
u[t] < +∞

lim
T→∞

∑T

t=1
ηθ[t] = +∞ & lim

T→∞

∑T

t=1
η2
θ [t] < +∞

lim
T→∞

∑T

t=1
ηβ [t] = +∞ & lim

T→∞

∑T

t=1
η2
β [t] < +∞

lim
t→∞

ηθ[t]

ηu[t]
= 0 & lim

t→∞

ηβ [t]

ηθ[t]
= 0. (21)

This implies that the learning rates must be decreased over
time to guarantee the convergence of the proposed three-step
RL procedure. The detailed proof of a multiple-timescales RL
algorithm can be found in [39], [40]. Following the same
arguments as those in [39] and the conditions in (21), the
three-step RL procedure in (15), (16) and (20) converges to
the optimal solution with the positive trade-off factor λ > 0,
satisfying lim

t→∞
βk[t] = β∗k, ∀k ∈ K.

B. Proposed Algorithm for Solving S-SP2 (13)
Given the optimal flow-split distribution of data-flow k,

β∗k[t], we denote by P∗k [t] the set of selected path states in
time-frame t, which only includes ci,jk [t] = 1 with (i, j) ∈ Pk.
In this section, we present two low-complexity transmission
designs for w, namely maximum ratio transmission (MRT)
and zero-forcing beamforming (ZFBF), and then develop low-
complexity iterative algorithms for their solution.
1) MRT-Based Transmission Design

Each RU (i, j) performs MRT beamforming (a.k.a. channel-
mathched beamforming) using local CSI as wi,j

k [ts] =√
pi,jk [ts]√
νi,jk [ts]

hi,jk [ts], ∀(i, j) ∈ Pk[t] and k ∈ K, where νi,jk [ts] ,

‖hi,jk [ts]‖22 and pi,jk [ts] is the transmit power coefficient allo-
cated to UE k from RU (i, j) in time-slot ts. The correspond-
ing SINR is rewritten as

γi,jk (p[ts]) =
pi,jk [ts]ν

i,j
k [ts]

Φi,jk (p[ts])
(22)

where Φi,jk (p[ts]) ,
∑

(i′,j′)∈Pk[t]\{(i,j)} p
i′,j′

k [ts]ν
i′,j′

k [ts] +∑
k′∈K\{k}

∑
(i,j)∈Pk′ [t]

pi,jk′ [ts]
|(hi,jk [ts])

Hhi,j
k′ [ts]|2

νi,j
k′ [ts]

+N0 is lin-

ear in p[ts] ,
[
pi,jk [ts]

]
k∈K,(i,j)∈Pk

. As a result, the short-
term power optimization problem (13) with MRT reduces to
the following problem:

max
p[ts]

∑
k∈K

q̂k[ts]

τ
rk(p[ts]) (23a)

s.t. R̄i,jk [ts] ≤ ri,jk (p[ts])τ, ∀k, (i, j) (23b)∑
k∈K

pi,jk [ts] ≤ P i,jmax, ∀(i, j) (23c)

where rk(p[ts]) =
∑

(i,j)∈P∗k
ri,jk (p[ts]) with ri,jk (p[ts]) ,

W log2

(
1 + γi,jk (p[ts])

)
, and R̄i,jk [ts] ,

∑t
`=1 β

i,j
k [`]Ākτ −

(1− εk)Ākd̄k −
∑ts−1

`=1 r
i,j
k (p[`])τ.

Problem (23) is nonconvex due to the nonconcavity
of ri,jk (p[ts]). We will now apply the inner approxima-
tion (IA) method to effectively solve (23) in an iterative
manner. Following from inequality (A.2) in Appendix A
with v = pi,jk [ts]‖hi,jk [ts]‖22 and z = Φi,jk (p[ts]), the
global concave lower bound of ri,jk (p[ts]) at the updated
feasible point p(n)[ts] found at iteration n, denoted by
r
i,j(n)
k (p[ts];p

(n)[ts]), is given as

ri,jk (p[ts]) ≥ ri,jk (p(n)[ts])−W log2 e

[
γi,jk (p(n)[ts])

− 2
νi,jk [ts]

√
p
i,j(n)
k [ts]

√
pi,jk [ts]

Φi,jk (p(n)[ts])
+ γi,jk (p(n)[ts])

×
pi,jk [ts]ν

i,j
k [ts] + Φi,jk (p[ts])

p
i,j(n)
k [ts]ν

i,j
k [ts] + Φi,jk (p(n)[ts])

]
:= r

i,j(n)
k (p[ts];p

(n)[ts]) (24)

with r
i,j(n)
k (p(n)[ts];p

(n)[ts]) = W log2

(
1 + γi,jk (p(n)[ts])

)
.

As a result, we successively solve the following inner convex
approximate program of (23) at iteration n:

max
p[ts]

∑
k∈K

q̂k[ts]

τ
r

(n)
k (p[ts]) (25a)

s.t. R̄i,jk [ts] ≤ ri,j(n)
k (p[ts];p

(n)[ts])τ, ∀k ∈ K, (i, j) (25b)∑
k∈K

pi,jk [ts] ≤ P i,jmax, ∀(i, j) (25c)

and update the feasible point p(n)[ts] until convergence, where
r

(n)
k (p[ts]) =

∑
(i,j)∈P∗k

r
i,j(n)
k (p[ts]; p

(n)[ts]). The proposed
iterative procedure to solve (13) is summarized in Algorithm
2. An initial feasible value for p(0)[ts] to start Algorithm 2
is easily found by successively solving the following simple
convex program:

max
p[ts]

% , min
∀k,(i,j)

{
r
i,j(n)
k (p[ts];p

(n)[ts])τ − R̄i,jk [ts]
}

(26a)

s.t.
∑
k∈K

pi,jk [ts] ≤ P i,jmax, ∀(i, j) (26b)

until reaching % > 0.
Convergence and complexity analysis: The convergence

of an IA-based algorithm is already provided in [41]. In
particular, Algorithm 2 generates an improved solution after
each iteration, which converges to at least a local optimal



Algorithm 2: Proposed Iterative Algorithm for Solving
(13) with MRT-Based Transmission Design
Initialization: Set n := 1 and generate an initial feasible

value for p(0)[ts] to constraints in (25)
1: repeat
2: Solve (25) to obtain the optimal transmission power

p∗[ts]
3: Update p(n)[ts] := p∗[ts]
4: Set n := n+ 1
5: until Convergence
6: Output: p∗[ts] = p(n)[ts] and

wi,j,∗
k [ts] =

√
pi,j∗k [ts]√
νi,jk [ts]

hi,jk [ts], ∀k, (i, j).

solution of (13) when n→∞. The worst-case of per-iteration
complexity of Algorithm 2 is O

(√
c(v)3

)
by the interior-point

method [42, Chapter 6], where c = KJ + J and v = KJ
are the numbers of linear constraints and scalar variables,
respectively.

2) ZFBF-Based Transmission Design

To make ZFBF efficient and feasible, the number of an-
tennas of each RU (i, j) is required to be larger than the
number of UEs, i.e. Mi,j > K, ∀(i, j) ∈ J , to cancel the
inter-user interference transmitted by this RU. In addition, the
system bandwidth is equally allocated to each RU (i, j), i.e.
W i,j = W/J , to completely remove the intra-user interference
and interference caused by other RUs. Under the proposed
ZFBF technique, beamformer wi,j

k [ts] at RU (i, j) is designed
to satisfy (hi,jk′ [ts])

Hwi,j
k [ts] = 0,∀k′ ∈ K \ {k}. We denote

by Hi,j
−k[ts] ,

[
hi,j1 [ts] · · ·hi,jk−1[ts] hi,jk+1[ts] · · ·hi,jK [ts]

]
∈

CM×(K−1) the channel matrix from RU (i, j) to UEs,
except UE k. Let Vi,j

k [ts] ∈ CMi,j×(Mi,j−K+1) be the
null space of (Hi,j

−k[ts])
H. We can then write wi,j

k [ts] =

Vi,j
k [ts]w̃

i,j
k [ts], where w̃i,j

k [ts] ∈ C(Mi,j−K+1)×1,∀k, (i, j)
are the solutions to the ZFBF-based problem. By defining
ν̃i,jk [ts] , ‖(h̃i,jk [ts])

H‖22 with h̃i,jk [ts] , (hi,jk [ts])
HVi,j

k [ts] ∈
C1×(Mi,j−K+1), we can equivalently express w̃i,j

k [ts]

as w̃i,j
k [ts] =

√
p̃i,jk [ts]

(h̃i,jk [ts])
H

√
ν̃i,jk [ts]

, where p̃[ts] ,[
p̃i,jk [ts]

]
k,(i,j)∈Pk

are the solutions to the following problem:

max
p̃[ts]

∑
k∈K

q̂k[ts]

τ
rk(p̃i,jk [ts]) (27a)

s.t. R̄i,jk [ts] ≤ ri,jk (p̃i,jk [ts])τ, ∀k, (i, j) (27b)∑
k∈K

p̃i,jk [ts] ≤ P i,jmax, ∀(i, j) (27c)

where ri,jk (p̃i,jk [ts]) , W i,j log2

(
1 +

p̃i,jk [ts]ν̃
i,j
k [ts]

N0

)
. The

function ri,jk (p̃i,jk [ts]) is concave in p̃i,jk [ts], leading to the
convexity of problem (27). From (27b), one can show that

p̃i,jk [ts] ≥ p̃i,jk,min[ts] := N0

ν̃i,jk [ts]
2
R̄
i,j
k

[ts]

Wi,jτ
−1. We now develop

an efficient method to solve (27) by formulating the partial

Algorithm 3: Proposed Low-Complexity Algorithm for
Solving (13) with ZFBF-Based Transmission Design

Initialization: Set n := 1 and generate initial values
µ
i,j

= 0 and µi,j = +∞,∀(i, j) ∈ J
1: for each RU (i, j) ∈ J in parallel do
2: repeat
3: Compute µ(n)

i,j = (µ
i,j

+ µi,j)/2 and p̃i,j(n)
k [ts] as

in (30)
4: if

∑
k∈K p̃

i,j(n)
k [ts]− P i,jmax ≤ 0 then

5: Compute µ′i,j = (µ
i,j

+ µi,j)/2 and update
µi,j := µ′i,j

6: else
7: Update µ′i,j = (µ

i,j
+ µi,j)/2 and update

µ
i,j

:= µ′i,j
8: end if
9: Set n := n+ 1

10: until µi,j − µi,j ≤ δ {/*Satisfying a given accuracy
level*/}

11: end for
12: Output: µ∗i,j = µ

(n)
i,j ,

p̃i,j∗k [ts] = max
{
p̃i,jk,min[ts],

q̂k[ts]W
i,j

τµ∗i,j ln 2 −
N0

ν̃i,jk [ts]

}
and

wi,j,∗
k [ts] =

√
p̃i,j∗k [ts]√
ν̃i,jk [ts]

Vi,j
k [ts](h̃

i,j
k [ts])

H, ∀k, (i, j).

Lagrangian as

L(p̃[ts],µ) =
∑
k∈K

q̂k[ts]

τ
rk(p̃i,jk [ts])

+
∑

(i,j)∈J

µi,j
(
P i,jmax −

∑
k∈K

p̃i,jk [ts]
)

(28)

where µ , {µi,j ≥ 0}(i,j)∈J are the Lagrange multipliers of
constraint (27c). The dual function can be written as g(µ) =
max

p̃[ts]≥0
{L(p̃[ts],µ)|p̃i,jk [ts] ≥ p̃i,jk,min[ts],∀k, (i, j)}. We note

that L(p̃[ts],µ) is separable with respect to p̃i,jk [ts]. Thus, by
solving

p̃i,j∗k [ts] = argmax
p̃i,jk [ts]≥p̃i,jk,min[ts]

{ q̂k[ts]

τ
W log2

(
1 +

p̃i,jk [ts]ν̃
i,j
k [ts]

N0

)
− µi,j p̃i,jk [ts]

}
(29)

for a given µi,j , the optimal solution to p̃i,jk [ts] is given as

p̃i,j∗k [ts] = max
{
p̃i,jk,min[ts],

q̂k[ts]W
i,j

τµi,j ln 2
− N0

ν̃i,jk [ts]

}
. (30)

The optimal Lagrange multiplier µi,j is efficiently found by
applying a bisection search method between µ

i,j
= 0 and a

sufficiently large µi,j . An efficient algorithm for solving (13)
with ZFBF is summarized in Algorithm 3, which does not rely
on existing convex optimization solvers.

C. O-RAN-based Implementation of Algorithm 1
Fig. 4 illustrates the key steps for implementing the pro-

posed JFCS management scheme at time-frame t in the O-
RAN architecture.

1 At the beginning of time-frame t > 1, the three-step
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Fig. 4: O-RAN Alliance reference architecture for implement-
ing the proposed JFCS management scheme at time-frame t.

RL procedure for solving L-SP is carried out at Non-
RT RIC based on the collected RAN data in SMO.
The collected data include performance/observation and
resource updates from CU, DU, RU and Near-RT RIC to
SMO. For t = 1, the flow-split decisions are initialized
as βk[1] = 1

|P(1)
k |

[1, · · · , 1],∀k where P(1)
k is the set of

RUs in the feasible communication range of UE k.
2 The optimal flow-split decisions β∗[t] are sent to Near-

RT RIC via A1 (the standardized open interface) for real
deployment.

3 Near-RT RIC hosts xApps (i.e. third party applications)
which communicate with CU/DU through the E2 in-
terface. Given β∗[t], xAPPs deployed in Near-RT RIC
control congestion and optimize RAN resources and
functions in each time-slot ts of time-frame t by solving
S-SP1 and S-SP2 to obtain the optimal solutions of
congestion control a∗[ts] and beamformer w∗[ts].

4 Subsequently, the RAN Data Analytic component in
Near-RT RIC updates queue-lengths as in Step 6 of
Algorithm 1. The updated queue-lengths are sent back
to SMO through the O1 interface for periodic reporting.

5 Given β∗[t] and w∗[ts], the optimal service rate
r(w∗[ts]) is scheduled and applied to CU and DUs
through the E2 interface.

6 After Tf time-slots in the short-term scale ts, perfor-
mance and observations (e.g. q[t − 1],A[t − 1]) are
updated to SMO through the O1 interface to re-estimate
the flow-split decision β∗[t+ 1].

VI. PERFORMANCE ANALYSIS OF THE JFCS FRAMEWORK

In this section, we analyze the main theoretical performance
results of Algorithm 1 and discuss their key insights, followed
by concrete proofs of the theorems.

Assumption 2. To facilitate the analysis, we make the follow-
ing additional assumptions.
• Under the limited transmit power budget at RUs, the

achievable rate of UE k is upper bounded by rmax > 0,

i.e., rk(w[ts]) ≤ rmax, ∀k, ts.
• The congestion control variable ak[ts] satisfies the con-

dition E{a2
k[ts]} ≤ Amax

1 , where Amax
1 is a sufficiently

large positive constant [35].

Theorem 1 (Bounding the mean divergence of the auxiliary
queue-length). For a given scaling factor ϕ, let q̂∞(ϕ) and q̂∗(ϕ)

be the steady-state and optimal queue-lengths, respectively.
From Assumptions 1 and 2, the expected upper bound of the
divergence of q̂∞(ϕ) from q̂∗(ϕ) is given as

E{‖q̂∞(ϕ) − q̂∗(ϕ)‖2} ≤ C1
√
ϕ = O(

√
ϕ) (31)

where C1 ,
√

Kτ2Ψ
2

(
Amax

1 + (rmax)2
)

is a positive constant.

The proof is detailed in Appendix B. Theorem 1 implies that
the divergence of the steady-state queue-length is bounded by
O(
√
ϕ). In particular, the smaller the value of ϕ, the less the

divergence of q̂∞(ϕ). However, a small ϕ will also result in a
small congestion control rate and a faster convergence. When
ϕ is large, a better congestion control rate is achieved but
with the cost of larger steady-state queue-length divergence
(i.e. larger delay and slower convergence). Hence, there exists
an appropriate value of ϕ to make this tradeoff more efficient.
Theorem 1 will immediately lead to the following result.

Corollary 1 (Queue-stability). Given a scaling factor ϕ and
C1 in (31), the steady-state total queue-length remains finite
and scales as O(ϕ) +O(

√
ϕ), i.e.

lim sup
ts→∞

E{‖q̂(ϕ)[ts]‖1} ≤ τΨKAmaxϕ+
√
KC1

√
ϕ

= O(ϕ) +O(
√
ϕ). (32)

Proof. The proof of (32) is straightforward by noticing the
fact that lim sup

ts→∞
E{‖q̂(ϕ)[ts]‖1} = E{‖q̂∞(ϕ)‖1} = E{‖q̂∞(ϕ)−

q̂∗(ϕ)‖1 +‖q̂∗(ϕ)‖1}. Applying the inequality ‖x‖1 ≤
√
K‖x‖2

for any x ∈ RK+ yields: ‖q̂∞(ϕ) − q̂∗(ϕ)‖1 + ‖q̂∗(ϕ)‖1 ≤√
K‖q̂∞(ϕ) − q̂∗(ϕ)‖2 + ‖q̂∗(ϕ)‖1. From (31) and Step 4 of

Algorithm 1, it follows that

lim sup
ts→∞

E{‖q̂(ϕ)[ts]‖1}

≤
√
KE{‖q̂∞(ϕ) − q̂∗(ϕ)‖2}+ ‖q̂∗(ϕ)‖1

≤
√
KC1

√
ϕ+ τ

∑
k∈K

U
′

k

(
a∗k
)
ϕ ≤
√
KC1

√
ϕ+ τΨ

∑
k∈K

a∗kϕ

≤
√
KC1

√
ϕ+ τΨKAmaxϕ (due to a∗k ≤ Amax,∀k) (33)

showing (32).

Let a∞(ϕ) , [a∞(ϕ),k]Tk∈K with a∞(ϕ),k = E
{

min{Amax,

U
′−1
k

( q̂∞(ϕ),k

ϕτ

)
}
}

be the mean steady-state congestion control
rate vector. We also denote by U(a) ,

∑
k∈K Uk(ak) the

total utility function of problem (7). The utility-optimality of
Algorithm 1 is stated by the following theorem, whose proof
is given in Appendix C.

Theorem 2 (Optimality). Given a scaling factor ϕ, Algorithm
1 produces the mean steady-state congestion control rate



vector a∞(ϕ), satisfying

‖a∞(ϕ) − a
∗‖2 ≤ C2

1
√
ϕ

= O(1/
√
ϕ) (34)

where C2 , C1

ψτ =
√

KΨ
2ψ

(
Amax

1 + (rmax)2
)
. Therefore, the

optimal network utility maximization is bounded as

U(a∗)− C3
1

ϕ
= U(a∗)−O(1/ϕ) ≤ U(a∞(ϕ)) (35)

where C3 , ΨC2
1

2ψ2τ2 = KΨ2

4ψ

(
Amax

1 + (rmax)2
)
.

The analytical results in Theorem 2 show that the divergence
of the steady-state congestion control rate vector a∞(ϕ) from a∗

scales as O(1/
√
ϕ), which is the same as in [35], [43]. The

utility-optimality gap can be reduced by increasing ϕ, but this
will also lead to a larger steady-state queue-length divergence.

VII. NUMERICAL RESULTS

In this section, we first present simulation setup and param-
eters in Section VII-A and then provide numerical results of
Algorithm 1 in Section VII-B. The results and performance
comparison over existing schemes will be provided in Section
VII-C.

A. Simulation Setups and Parameters
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Fig. 5: A system topology with J = 8 RUs and K = 12 UEs.

We consider a system topology given in Fig. 5, including
8 RUs and 12 UEs located within a circle of 1-km radius.
There are two DUs, each connected to 4 RUs. RUs are
uniformly distributed in the area, while those of UEs are
randomly located in each time-frame t. The large-scale fading
coefficient ξ[t] ∈ {ξi,jk [t]}∀(i,j),k is modeled as the three-slope
path loss model [33], such as ξ[t] = ξ0 − 35 log10(d[t]) +
20c0 log10(d/d0)+15c1 log10(d/d1) where ξ0 = −140.7+SF
dB, d0 = 10 m, d1 = 50 m, and d is the distance between an
RU and a UE; here ci = max{0, di−d|di−d|} with i ∈ {0, 1}
and SF ∼ CN (0, σSF) denotes the shadowing factor with
σSF = 8 dB. The Rician factor κ[t] ∈ {κi,jk [t]}∀(i,j),k is

TABLE I: Simulation Parameters

Parameter Value
System bandwidth, W 20 MHz
Number of RUs, J 8
Number of UEs, K 12
Number of antennas at RUs (i, j), Mi,j ≡M 16
RUs’ height 10 m
UEs’ antenna altitude 1.5 m
Power budget at RU (i, j), P i,jmax ≡ Pmax 43 dBm
Noise figure, NF 9 dB
Maximum average delay, d̄k ≡ d 10 ms
Require reliable communication, εk ≡ ε 0.95
Number of frames, T 10000
Number of time-slots per frame, Tf 10
Duration of one frame, Tc 10 ms
Duration of one time-slot, τ 1 ms
Trade-off factor (Boltzmann temperature), λ 0.3

given as κ = PLoS(d[t])/
(
1 − PLoS(d[t])

)
, where the LoS

probability follows the 3GPP–UMa model as PLoS(d[t]) =

min
(

18
d[t] , 1

) (
1−exp(−d[t]

36 )
)
+exp(−d[t]

36 ) [44]. We consider
uniform linear arrays with half-wavelength distances between
array elements to model the LoS channels at RUs. The array
response vector is generated as h̄i,jk [t] = a(φi,jk [t]), where
each element m is given as

[
a(φi,jk [t])

]
m

= exp
(
jπ(m −

1) sinφi,jk [t]
)

with φi,jk [t] ∈ [−π/2, π/2) being the angle-of-
departure (AoD) at RU (i, j). The noise power is modeled as
N0 = −170 + 10 log10(W ) + NF dBm, where NF = 9 dB
denotes the noise figure.

We run Algorithm 1 over T = 10000 frames, each consists
of Tf = 10 time-slots (subframes) and has duration of Tc = 10
ms, followed by 5G NR Frame structure [45]. In each time-
frame t, UE k is served by a subset of four RUs. To illustrate
the heterogeneity of UEs, we assume that the arrival rate
Ak[t] is uniformly distributed in [1, 3] Gbps. The step sizes
(learning rates) are set to decrease after each frame as ηu[t] =
1/(t + 1)0.51, ηθ[t] = 1/(t + 1)0.55 and ηβ [t] = 1/(t + 1)0.6

[46]. We adopt the proportional fairness metric to model the
utility function as: Uk(rk) = log(0.001 + rk),∀k [47]. The
key parameters are summarized in Table I for ease of cross-
referencing, followed by studies in [33], [39], [44]–[46]. In
the following figures, results are averaged over the last 6000
frames.

Benchmark schemes: To demonstrate the benefits of the
proposed JFCS algorithm, we consider the following three
benchmark schemes:

• “NUM with fixed resource allocation (NUM-FRA)” [48]:
Under Algorithm 1, RUs allocate power equally to UEs.

• “NUM with equal flow-split distribution (NUM-EFSD):”
CU splits data-flows of all UEs equally among the
selected paths, i.e., βi,jk [t] = 1/|Pk|,∀(i, j) ∈ Pk.

• “NUM with the nearest RU selection (NUM-NRU):”
Under Algorithm 1, each UE k selects only the nearest
RU for the data transmission, i.e. βi,jk [t] = 1 if RU (i, j)
is the nearest RU to UE k.
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Fig. 6: Convergence behavior of Algorithm 1 with ZFBF.

B. Numerical Results of Algorithm 1
We first study the impacts of ϕ and λ on the convergence

behavior of Algorithm 1 in Fig. 6. From Fig. 6(a), it can
be observed that the congestion control rates for different
values of the scaling factor ϕ converge to the same optimal
solution, and ‖a[ts]‖ is almost independent of ϕ. In addition,
increasing ϕ results in a smaller divergence of the steady-state
congestion control rate (see Theorem 2), but also slows down
the convergence rate of Algorithm 1. The reason is attributed
to the fact that for a large ϕ, the network utility function∑
k∈K Uk(ak[ts]) in (8a) will prevail over the Lyapunov drift

function ∆L[ts], which requires more iterations to guarantee
network stability. In Fig. 6(b), we increase the trade-off factor
λ (i.e. Boltzmann temperature) from 0.05 to 0.7. The result
shows that the larger the value of λ, the better the estimated
utility that can be achieved with the cost of lower convergence
speed of the RL process. From (18), the paths associated
with the highest estimated regret θ̂i,jk [t] will be selected to
minimize the best response function f(θ̂[t]). Conversely, a
low value of λ can speed up convergence by allocating traffic
data uniformly to all paths but leads to a very sub-optimal
solution.

In Fig. 7, we evaluate the performance of Algorithm 1 with
different transmission strategies, namely MRT and ZFBF. For
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Fig. 7: Performance of Algorithm 1 with different transmission
strategies versus the number of antennas at RUs, M ≡Mi,j , ∀(i, j).
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Fig. 8: The steady-state congestion control rate with respect to the
number of antennas at RUs, M ≡Mi,j , ∀(i, j).

a fixed ϕ = 25, we vary the number of antennas at RUs
M ≡ Mi,j ,∀(i, j) from 16 to 128. For each transmission
design, we also plot the steady-state congestion control rate
E{‖a∞(25)‖} with the equal flow-split distribution. As seen
from Fig. 7 that the steady-state congestion control rate of all
schemes increases as M increases. Unsurprisingly, Algorithm
1 with ZFBF offers better performance in terms of congestion
control rate than that of MRT when the number of antennas at
RUs is sufficiently large to cancel the inter-user interference
transmitted by the same RU. It is obvious that the higher the
effective data rate of a data-flow in the downlink, the lower
the total queue-length of that data-flow (or user), resulting in
a higher congestion control rate.

Since Algorithm 1 with MRT is based on the IA method that
requires high computation complexity and relies on existing
convex optimization solvers, we provide only the performance
of Algorithm 1 with ZFBF in the following section.
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C. Performance Comparison
Next, we show the performance comparison in terms of

the steady-state congestion control rate E{‖a∞(25)‖} among
the considered schemes versus the number of antennas at
RUs in Fig. 8. We fix ϕ = 25 and vary M from 16
to 128 to investigate the impact of the physical factor. As
M increases, the downlink instantaneous achievable rates of
all UEs also significantly increase since more degrees of
freedom are added to leverage multi-user diversity, resulting
in lower queue-lengths. For a fixed value of ϕ, the steady-
state congestion control rate vector increases monotonically
with M . Clearly, Algorithm 1 outperforms the benchmark
schemes in all ranges of M , and the gap is deeper when M
is small. In addition, the NUM-FRA and NUM-NRU, which
fairly allocate the power budget and fix the path selection
to UEs, respectively, provide the worst performance. These
observations demonstrate the effectiveness of the proposed
Algorithm 1 by jointly optimizing the flow-split distribution,
congestion control, scheduling and radio resource allocation.

Lastly, the impacts of scaling factor ϕ on the steady-state
total queue-length E{‖q̂∞(ϕ)‖1} and average worst-case delay
(i.e., the delay of slowest data-flow) are plotted in Figs. 9 and
10, respectively. It can be seen from Fig. 9 that the steady-
state total queue-length of all schemes monotonically scales
as O(ϕ) + O(

√
ϕ), which confirms our theoretical results

in Corollary 1. We recall from Theorem 2 that the utility-
optimality gap can be narrowed by increasing ϕ, but with the
cost of higher delay, as shown in Fig. 10. When ϕ is larger than
25, all the considered schemes violate the maximum allowable
average delay of d̄ = 10 ms. It implies that the data traffic
cannot be completely transmitted to UEs in each time-frame.
Nevertheless, Algorithm 1 still provides the best performance
out of the schemes considered.

VIII. CONCLUSION

We have proposed a new holistic multi-layer optimization
framework, called JFCS, to enable intelligent traffic steering
in a hierarchical O-RAN architecture. In particular, we have
developed an intelligent resource management algorithm based
on network utility maximization and stochastic optimization
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Fig. 10: Average worst-case delay with respect to ϕ.

to efficiently and adaptively direct traffic to appropriate RUs
by jointly optimizing the flow-split distribution, congestion
control and scheduling. JFCS is proved to achieve fast con-
vergence, long-term utility-optimality and significant delay
reduction compared to state-of-the-art approaches. To that end,
the insights in this work will foster future studies in this area,
especially in the design of more advanced AI/ML solutions to
achieve enhanced control and flexibility in O-RAN.

APPENDIX A: DERIVATION OF INEQUALITY

We will find the concave lower bound of ri,jk [ts]. By [49,
Appendix A], it is true that the function r(x, y) = − ln(1 −
x2/y) is convex in the domain y > x2 with x, y ∈ R+. The
global concave lower bound of r(x, y) at the feasible point
(x̄, ȳ) is given as

r(x, y) ≥ r(x̄, ȳ) +
〈(∂r(x̄, ȳ)

∂x̄
,
∂r(x̄, ȳ)

∂ȳ

)
, (x− x̄, y − ȳ)

〉
= r(x̄, ȳ)− x̄2

ȳ − x̄2
+ 2

x̄x

ȳ − x̄2
− x̄2

ȳ − x̄2

y

ȳ
(A.1)

by applying the first-order Taylor approximation. By the fact
that ln

(
1+ x2

z

)
= − ln

(
1− x2

z+x2

)
and substituting y = z+x2,

ȳ = z̄ + x̄2, x =
√
v and x̄ =

√
v̄ into (A.1), we obtain

r(v, z) , ln
(
1 +

v

z

)
≥ r(v̄, z̄)− v̄

z̄
+ 2

√
v̄
√
v

z̄
− v̄(z + v)

z̄(z̄ + v̄)

:= r̄(v, z; v̄, z̄) (A.2)

where r̄(v, z; v̄, z̄) is concave and r̄(v̄, z̄; v̄, z̄) = r(v̄, z̄)
whenever (v, z) = (v̄, z̄).

APPENDIX B: PROOF OF THEOREM 1

For a given ϕ, the quadratic Lyapunov function defined
in Section IV-A is rewritten with respect to q̂(ϕ)[ts] as:
L(q̂(ϕ)[ts]) = 1

2τ2 ‖q̂(ϕ)[ts]− q̂∗(ϕ)‖
2
2. Following [35, Theorem

3], the mean Lyapunov drift from time-slot ts to ts+1 is
computed as

∆L̄(q̂(ϕ)[ts])

= E{∆L(q̂(ϕ)[ts])} = E{L(q̂(ϕ)[ts+1])− L(q̂(ϕ)[ts])}



=
1

2τ2
E
{(

q̂(ϕ)[ts+1] + q̂(ϕ)[ts]− 2q̂∗(ϕ)

)T
×
(
q̂(ϕ)[ts+1]− q̂(ϕ)[ts]

)}
≤ 1

2τ
E
{(

2q̂(ϕ)[ts]+
(
a[ts]− r(w[ts])

)
τ − 2q̂∗(ϕ)

)T
×
(
a[ts]− r(w[ts])

)}
=

1

2
E{‖a[ts]− r(w[ts])‖22}︸ ︷︷ ︸

,B1

+
1

τ
E{(q̂(ϕ)[ts]− q̂∗(ϕ))

T
(
a[ts]− r(w[ts])

)
}︸ ︷︷ ︸

,B2

(B.1)

by using the inequalities: ([x]+)2 ≤ x2 and x2 − y2 = (x +
y)(x − y), and the fact that q̂(ϕ)[ts+1] − q̂∗(ϕ) = q̂(ϕ)[ts] −
q̂∗(ϕ)+

(
a[ts]− r(w[ts])

)
τ.

We first focus on providing the expected bound of B1 as

B1 =
1

2
E{‖a[ts]‖22 − 2a[ts]

Tr(w[ts]) + ‖r(w[ts])‖22}

≤ 1

2
E{‖a[ts]‖22 + ‖r(w[ts])‖22}

≤ K

2

(
Amax

1 + (rmax)2
)
, BUB

1 (B.2)

where the last inequality follows from Assumption 2. To bound
B2, we first rewrite it equivalently as

B2 =
1

τ
(q̂(ϕ)[ts]− q̂∗(ϕ))

T
(
E
{
a[ts]} − r∗

)
+

1

τ
E
{

(q̂(ϕ)[ts]− q̂∗(ϕ))
T
(
r∗ − r(w[ts])

)}
. (B.3)

From (7), it follows that (q̂(ϕ)[ts]− q̂∗(ϕ))
T
(
E
{
a[ts]}− r∗

)
≤

0. By applying the Cauchy–Schwarz inequality, i.e. |xTy| ≤
‖x‖2‖y‖2, to the first term in (B.3), we have

1

τ
(q̂(ϕ)[ts]− q̂∗(ϕ))

T
(
E
{
a[ts]} − r∗

)
≤ −1

τ

∑
k∈K

|q̂(ϕ),k[ts]− q̂∗(ϕ),k||ak[ts]− r∗k|. (B.4)

By Assumption 1 on Ψ-smooth and Step 4 of Algorithm 1, it is
true that ak[ts]− r∗k = U

′−1
k

( q̂(ϕ),k[ts]

ϕτ

)
−U

′−1
k

( q̂∗(ϕ),k[ts]

ϕτ

)
≤ 0

and
∣∣U ′k( q̂(ϕ),k[ts]

ϕτ

)
−U ′k

( q̂∗(ϕ),k[ts]

ϕτ

)∣∣ ≤ Ψ
∣∣ q̂(ϕ),k[ts]

ϕτ − q̂∗(ϕ),k[ts]

ϕτ

∣∣.
In addition, we have

∣∣U ′−1
k

( q̂(ϕ),k[ts]

ϕτ

)
−U

′−1
k

( q̂∗(ϕ),k[ts]

ϕτ

)∣∣ ≥
1
Ψ

∣∣ q̂(ϕ),k[ts]

ϕτ − q̂∗(ϕ),k[ts]

ϕτ

∣∣ due to the inverse function lemma.
From the fact that (q̂∗(ϕ))

Tr∗ − (q̂∗(ϕ))
Tr(w[ts]) ≥ 0, we can

further bound B2 as

B2 ≤ −
1

τ2Ψϕ
‖q̂(ϕ)[ts]− q̂∗(ϕ)‖

2
2

+
1

τ
E
{

(q̂(ϕ)[ts])
T
(
r∗ − r(w[ts])

)}
(B.5)

where the term E
{

(r∗− r(w[ts]))
}

is a constant with respect
to q̂(ϕ)[ts]. Substituting (B.2) and (B.5) into (B.1) yields

∆L̄(q̂(ϕ)[ts]) ≤−
1

τ2Ψϕ
‖q̂(ϕ)[ts]− q̂∗(ϕ)‖

2
2 + BUB

1

+
1

τ
E
{

(q̂(ϕ)[ts])
T
(
r∗ − r(w[ts])

)}
. (B.6)

We now compute the mean Lyapunov drift over TTf time-
slots as

∆L̄=

T∑
t=1

Tf∑
s=1

E{L(q̂(ϕ)[ts+1])− L(q̂(ϕ)[ts])|q̂(ϕ)[11]}

=

T∑
t=1

Tf∑
s=1

∑
q̂(ϕ)≥0

(
Prob

(
q̂(ϕ)[ts] = q̂(ϕ)|q̂(ϕ)[11]

)
×E{L(q̂(ϕ)[ts+1])− L(q̂(ϕ)[ts])|q̂(ϕ)[ts] = q̂(ϕ)}

)
.(B.7)

Let us denote by ρ∞q̂(ϕ)
the stationary distribution

of the Markov chain q̂(ϕ)[ts] ≥ 0, i.e. ρ∞q̂(ϕ)
=

limT→∞
1

TTf

∑T
t=1

∑Tf
s=1 Prob

(
q̂(ϕ)[ts] = q̂(ϕ)|q̂(ϕ)[11]

)
.

By substituting (B.6) into (B.7) and dividing both side with
TTf , we have∑

q̂(ϕ)≥0

ρ∞q̂(ϕ)

(
− 1

τ2Ψϕ
‖q̂(ϕ)[ts]− q̂∗(ϕ)‖

2
2 + BUB

1

+
1

τ
(q̂(ϕ)[ts])

TE
{(

r∗ − r(w[ts])
)})

= − 1

τ2Ψϕ
E
{
‖q̂∞(ϕ) − q̂∗(ϕ)‖

2
2

}
+BUB

1

+
1

τ
E
{

(q̂∞(ϕ))
T
(
r∗ − r∞

}
≥ 0 (B.8)

where r∞ = argmax
rk(w)∈CH[∞],∀k∈K

∑
k∈K q̂

∞
k rk(w). We note

here that (q̂∞(ϕ))
Tr∞ = max

rk(w)∈CH[∞],∀k∈K

∑
k∈K q̂

∞
k rk(w) ≥

(q̂∞(ϕ))
Tr∗, yielding

1

τ2Ψϕ
E
{
‖q̂∞(ϕ) − q̂∗(ϕ)‖

2
2

}
− BUB

1 ≤ 0 (B.9)

This implies that E
{
‖q̂∞(ϕ) − q̂∗(ϕ)‖2

}
≤√

Kτ2Ψ
2

(
Amax

1 + (rmax)2
)√
ϕ where BUB

1 = K
2

(
Amax

1 +

(rmax)2
)
, showing the inequality (31) in Theorem 1.

APPENDIX C: PROOF OF THEOREM 2

To prove (34), we first recall that a∞(ϕ),k−a
∗
k = U

′−1
k

( q̂∞(ϕ),k

ϕτ

)
−U

′−1
k

( q̂∗(ϕ),k

ϕτ

)
and

∣∣U ′k( q̂∞(ϕ),k

ϕτ

)
−U ′k

( q̂∗(ϕ),k

ϕτ

)∣∣ ≥ ψ
∣∣ q̂∞(ϕ),k

ϕτ −
q̂∗(ϕ),k

ϕτ

∣∣ using Assumption 1. By the inverse function lemma,

we have
∣∣U ′−1
k

( q̂∞(ϕ),k

ϕτ

)
−U

′−1
k

( q̂∗(ϕ),k

ϕτ

)∣∣ ≤ 1
ψ

∣∣ q̂∞(ϕ),k

ϕτ −
q̂∗(ϕ),k

ϕτ

∣∣,
which yields

‖a∞(ϕ) − a
∗‖2 ≤

1

ψτϕ
‖q̂∞(ϕ) − q̂∗(ϕ)‖2

(31)
≤ C1

ψτ

1
√
ϕ
. (C.1)

Next, it is assumed that Uk(·) is twice continuously differ-
entiable, increasing, and strictly concave. If the utility function
U(a) has a maximizer a∗, then

U(a∗)− U(a∞(ϕ)) ≤
Ψ

2
‖a∗ − a∞(ϕ)‖

2
2 ≤

ΨC2
1

2ψ2τ2

1

ϕ
(C.2)

where the last inequality follows from (C.1). The proof is thus
complete.
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