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Abstract

In this paper, we provide new results about the free Malliavin calculus on the Wigner space
first developed in the breakthrough work of Biane and Speicher [3]. We define in this way the
higher-order Malliavin derivatives, and we study their associated Sobolev-Wigner spaces. Using
these definitions, we are able to obtain a free counterpart of the Stroock’s formula and various
variances identities. As a consequence, we obtain a sophisticated proof a la Üstünel, Nourdin
and Peccati ([48, 36]) of the product formula between two multiple Wigner integrals. We also
study the commutation relations (of different significations) on the Wigner space, and we show
for example the absence of non-trivial bounded central Malliavin differentiable functionals and
the absence of non-trivial Malliavin differentiable projections.

2010 AMS Classification Numbers: 46L54, 60H07, 60H30.

Key Words and Phrases: Free probability, Wigner chaos, free Malliavin calculus, Sobolev-
Wigner spaces.

1 Introduction

Free probability, and in particular the concept of freeness which is modelled on free products instead
of tensors products of algebras, and which can be seen as a free analog of the classical (tensor) inde-
pendence was invented by Dan Virgil Voiculescu during the last 80s to have a deeper understanding
of Π1 factors and especially the free groups factors. Voiculescu in his breakthrough work has shown
its powerful applications in the study of von Neumman algebras and the connection with random
matrix theory. Indeed, it has allowed several authors to prove numerous results for von Neumann
algebras, especially for the free groups factors L(Fn), 1 ≤ n ≤ ∞ such as the absence of the property
Gamma, absence of Cartan subalgebras or primeness [51, 52, 21] which were unknown until the ap-
pearance of this theory. Voiculescu also discovered an important connection with Gaussian random
matrices: the large N × N limit of Gaussian matrices behave as a semicircular system, which has
motivated of a lot of parallelism between free probability and random matrix theory. Then, two
decades ago, in the breakthrough paper of Biane and Speicher [3], the first results about the free
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stochastic calculus of variations on Semicircular spaces appeared, which is the free counterpart of the
celebrated stochastic calculus of variations onto Gaussian spaces (first developed onto the classical
Wigner space) and invented by Malliavin during the 70’s. Indeed, it was defined in their paper
a free analogue of the usual (commutative or bosonic) Brownian motion, which is called the free
Brownian motion. Many results of free stochastic analysis were proved such as Ito integration for
biprocesses, functional Ito formula for a subspace of smooth operator-valued Lipschitz functions, a
L2-decomposition of the Wigner Space, which is exactly the noncommutative analogue of the Wiener
chaotic decomposition (identified with bosonic Fock spaces), as well as a free counterpart of the clas-
sical Malliavin operators. Several important results on the Wiener space were proved to also hold
true in the free context: e.g. a free Clark-Ocone-Bismut formula, the hypercontractivity of the free
Ornstein-Uhlenbeck semigroup by Biane in [2], a free Skorohod integration, and also recently several
regularity results about of the analytic distribution of Wigner functionals (c.f Mai [31]). By con-
sidering analogies between the classical and free case, a lot of progress had been made concerning
the “fourth moment theorems” on the Wigner space were proved (see e.g. the main contribution of
Kemp et al. [26], Nourdin and Peccati [37] (free Poisson approximation), Bourguin and Campese
[6], Cebron [8], or more recently the author in [20] by means of free Malliavin calculus (the reader
interested in the free Stein’s method can consult the constantly updated webpage maintained by
Nourdin https://sites.google.com/site/malliavinstein/home for further results (q-Gaussian
approximation: Deya, Norredine, Nourdin in [18], tetilla law: Deya, Nourdin in [17], multidimen-
sional free Poisson Bourguin in [5], invariances principles for homogeneous sums: Deya, Nourdin in
[19]...).

Our purpose here is to refine several results about the free Malliavin calculus on the Wigner
space. We first recall some details which can be found in the main contribution to this topic by
Biane and Speicher [3]. We then introduce the main operators of this infinite dimensional differential
calculus, and we prove several results about them: e.g free Ornstein-Uhlenbeck operator as the
directional derivative with respect to a scale parameter. In a second time, we study the commutation
relation (with different meanings) such as: the commutation relation between the free Malliavin
derivative and the free Ornstein-Uhlenbeck semigroup, as well as commutation relations between
Malliavin derivative and conditional expectation, and a kind of infinite dimensional dual system
in the sense of Voiculescu: the commutator between a smooth Wigner functionals and the left
annihilation operator (which might be of independent interest, as it could help, combined with
findings of Charlesworth and Shlyakhtenko in [9] and Mai, Speicher and Weber in [30], to prove the
free analog of the Shigekawa’s result [43] about the absolute continuity of the analytic distribution
of multiple Wigner integrals). In the last part of this section we prove the absence of central (in
the sense of von Neumann algebra) Wigner functionals in D

1,2, which gives another proof that the
von Neumann algebra generated by a free Brownian motion (known to be isomorphic to L(F∞), the
main idea being to don’t use this fact) is a factor as a consequence of the free Poincaré inequality on
the Wigner space, by using ideas which have first appeared in the work of Dabrowski in [13], in the
finitely generated case. In a third part, we define higher-order free Malliavin derivatives of Wigner
functionals. In this way, we then consider their associated Sobolev-Wigner (or semicircular) spaces,
which are thus the free counterpart of the Gaussian ones (usually called Sobolev-Watanabe spaces).
We then provide several results about their chaotic characterization, and as a main consequence
we prove a free Stroock formula. Finally, we are able to give a more sophisticated proof of the

2

https://sites.google.com/site/malliavinstein/home


multiplication rule on the Wigner space which is more in spirit with the free Malliavin calculus.
Indeed, this result can be seen as a free counterpart of a now well known proof of the product formula
on the classical Wiener space, which has first appeared in the book of Üstünel [49] and in the book of
Nourdin and Peccati [36]. In fact, it is a consequence of a Leibniz rule for the free Malliavin gradient.
This kind of Leibniz rule turns out to first explicitly appear (in the finitely generated case) in the
work of Voiculescu for the free difference quotients (see the discussion preceding proposition 4.5 in
[53]).

2 Preliminaries

In this section, we recall basic definitions about noncommutative Lp-spaces.
Here M denotes a von Neumann algebra, equipped with a faithful normal state.
Now by the GNS construction, τ defines an inner product on M by setting for all x, y ∈ M.

〈x, y〉τ = τ(y∗x)

The completion of M with respect to the induced norm ‖.‖τ is denoted L2(M, τ). We will omit to
denote the state when its clearly defined and denote ‖.‖τ as ‖.‖2 and L2(M, τ) as L2(M). We can
also define in the same way the spaces Lp(M, τ) for 1 ≤ p ≤ ∞ by taking the completion with
respect to the norm :

‖x‖p = τ(|x|p)
1
p (1)

where |x| = (x∗x)
1
2 and L∞(M, τ) := M equipped with the operator norm ‖.‖.

From the von Neumann tensor product M⊗Mop (we denote here to avoid confusion, the algebraic
tensor product as ⊙) equipped with operator norm : ‖.‖M⊗Mop , and the faithful normal state
τ ⊗ τ op. We can consider the Hilbert space L2(M⊗Mop, τ ⊗ τ op). which can be identified with
HS(L2(M)) which is the space of Hilbert–Schmidt operators on L2(M) via the following map:

x⊗ y 7→ 〈y, .〉2x, x, y ∈ M.

3 Wigner-Ito chaoses

In this section, we will describe the fundamental concepts of the Wigner space which is the free analog
of the classical Wiener space: the notion of multiple Wigner-Ito integrals, the chaotic decomposition
of L2-functionals, or the product rule between two multiple Wigner integrals which is valid as we
have an L∞-norm estimate of these multiple Wigner integrals, and which ensures that such operators
are bounded.

We first recall (and also because some operators will be needed further in the paper) how to
construct a free Brownian motion via the free Fock space which will turns out to be ∗-unitarily
isomorphic to the completion of the von Neumann algebra generated by the free Brownian motion
with respect to the associated L2-norm.
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Definition 1. Let HR being a real separable Hilbert space and HC = HR ⊗R C its complexification.
The free (or full) Fock space is defined as the completion of

F (HC) = CΩ⊕
∞⊕

i=1

H⊗n
C

,

where Ω is the “vaccum vector” (of norm 1), and ⊙n is the algebraic tensor product (without com-
pletion).
with respect to the following the inner product (we explicitly omit to denote the underlying Hilbert
space HC):

〈g1 ⊗ ...⊗ gn, h1 ⊗ ...⊗ hm〉 = δn,m〈g1, h1〉...〈gn, hn〉,
Definition 2. We define the following operator in B(F (HC)) :

1. For all h ∈ HC the left creation operator l(h) ∈ B(F (HC)) by :

l(h)(g1 ⊗ . . .⊗ gn) = h⊗ g1 ⊗ . . . ⊗ gn,

2. For all h ∈ HC the left annihilation (left annihilation) l(h) ∈ B(F (HC))

l∗(h)Ω = 0

l∗(h)(g1 ⊗ . . . ⊗ gn) = 〈h, g1〉g2 ⊗ . . .⊗ gn,

Definition 3. We define the following operator in B(F (HC)) :

1. For all h ∈ HC the right creation operator r(h) ∈ B(F (HC)) by :

r(h)(g1 ⊗ . . .⊗ gn) = g1 ⊗ . . .⊗ gn ⊗ h,

2. For all h ∈ HC the right annihilation r∗(h) ∈ B(F (HC))

r∗(h)Ω = 0

r∗(h)(g1 ⊗ . . .⊗ gn) = 〈h, gn〉g1 ⊗ . . .⊗ gn−1,

Definition 4. We define the following operator in B(F (HC)) : For all h ∈ HC the semicircular
operator:

S(h) := l(h) + l∗(h) ∈ B(F (HC))

Definition 5. We also let

Salg(HR) = ∗ − alg {S(h), h ∈ HR} ,
being the ∗-unital algebra generated by the real semicircular elements

Theorem 1. (Voiculescu [53]) The von Neumann algebra generated by the real field operators (semi-
circulars) is isomorphic to the free group factor (with numbers of generators depending on the di-
mension of HR).

SC(HR) = {S(h), h ∈ HR}′′ ≃ L(Fdim(HR))

And we trivially have the following inclusion

Salg(HR) ⊂ SC(HR) ⊂ B(F (HC)),

Note that Ω is a cyclic and separating vector on SC(HR), i.e SC(HR)Ω = F (HC), and if X ∈ SC(HR)
is such that XΩ = 0, then X = 0.
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We also denote the vaccum state: τ( . ) = 〈. Ω,Ω〉F (HC), which is tracial τ(XY ) = τ(Y X) for
X,Y ∈ SC(HR), and we recall that S(h) with h ∈ HR have semicircle distribution with respect to τ .

Proposition 1. (Second quantization) Let T : HR → KR a contraction between real separable Hilbert
spaces with complexification TC, then the linear map

F(T )(f1 ⊗ . . . ⊗ fn) = (Tf1)⊗ . . .⊗ (Tfn)

extends to a contraction between F (HC) to F (KC).

It turns out that the construction of Wigner chaoses could be done efficiently by using an
isomorphism between the free Fock space and the Wigner space: such a construction is usually
done via the Wick map or multiple Wigner-Itô integral IS(f) generally denoted I(f) when the
semicircular process S is fixed. We refer to the article [3] for a complete exposure.

Definition 6. We define the finite Wigner chaos of order n denoted Pn as the (sub) Hilbert space
in L2(SC(HR)) generated by

{S(h1) . . . S(hk), h1, . . . , hk ∈ HR, 1 ≤ k ≤ n} ∪ {1} (2)

We also define the homogeneous Wigner chaos of order n by:

Hn := Pn ⊖ Pn−1 (3)

and we obviously have:

Pn =

n⊕

k=0

Hk, (4)

where the direct sum is understand in L2.

In fact, the projection on tensors of length “n” denoted πn from
Hn to L2(A, τ):

In : h1 ⊗ ...⊗ hn 7→ πn(S(h1)...S(hn)), (5)

can be extended to a linear isometry between H⊗n
C

to Hn. This allows to introduce the fundamental
theorem which asserts that the free Fock space is unitarily isomorphic to the L2-space generated by
the isonormal semicircular process.

Theorem 2. (Biane, Speicher proposition 5.3.2 in [3]) We have the following Wigner-Ito chaotic
decomposition:

L2(SC(HR)) =

∞⊕

k=0

Hk ≃ F (HC)

When the real separable Hilbert space HR = L2
R
(R+), this is the free Brownian motion case which

can be defined as a centered semicircular process of covariance function:

K(t, s) := τ(StSs) = t ∧ s, t, s ≥ 0,

5



We also denote the corresponding Brownian filtration (non-decreasing sequences of von Neumann
subalgebras whose union weakly generates SC(L2

R
(R+)) := SC)

At =
{
S(1[0,s]), 0 ≤ s ≤ t

}′′

and we recall that the free Brownian motion is a noncommutative martingale with respect to this
filtration: τ(St|Au) = Su, for 0 ≤ u ≤ t.

In the sequel, we only focus on free Stochastic analysis on the classical Wigner space

and will denote both at convenience SC or W ∗({St, t ≥ 0}) the von Neumann algebra

generated by a free Brownian motion.

Definition 7. We define the Tchebychev polynomials of second kind (in the formal variable X) as
the sequence: U0 = 1, U1 = X and recursively:

XUk = Uk+1 + Uk−1 (6)

Note that these are exactly the orthogonal polynomials associated to the standard semicircular
distribution and provide the Wigner Ito-isometry since we have:

Proposition 2. For h ∈ L2
R
(R+), ‖h‖L2(R+) = 1, we have:

Up(S(h)) = Ip(h
⊗p)

and for n,m ∈ N, and h, h′ ∈ L2
R
(R+) of norm 1, we have:

〈Un(S(h)), Um(S(h′)〉L2(SC) =

{ 〈h, h′〉nL2(R+) if n = m

0 if n 6= m
(7)

In this setting, the homegenous Wigner chaos of order n ≥ 1 can also be defined as the set of
multiple free stochastic integrals of order n.

Definition 8. Let the collection of diagonals, i.e. Dn ⊂ R
n
+,

Dn =
{
(t1, . . . , tn) ∈ R

n
+, 1 ≤ i, j ≤ n,∃i 6= j, ti = tj

}
, (8)

For a characteristic function f = 1A, where A = [u1, v1]× . . . × [un, vn] with A ∩Dn = ∅
We define the multiple Wigner-Ito stochastic integral as :

ISn (f) := (Sv1 − Su1) . . . (Svn − Sun), (9)

Which is then extended linearly for:

f =
k∑

i=1

ai1Ai , (10)

where each Ai = [ui1, v
1
i ]× . . .× [uin, v

i
n] are disjoints rectangles with moreover Ai ∩Dn = ∅.
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Lemma 1. (Wigner-Ito isometry) For f ∈ L2(Rn
+), g ∈ L2(Rm

+ ) simple functions, we have:

τ(In(f)
∗Im(g)) = δn,m〈g, f〉L2(Rn

+), (11)

where δ denotes the delta Kroenecker symbol.

By density in L2 of simple functions in L2(R+) and Wigner-Ito isometry, we can extend the
map:

f 7→ In(f), (12)

for all f ∈ L2(Rn
+). which will be generally denoted as in the classical case by the formal symbol

In(f) =

∫

Rn
+

f(t1, . . . , tn)dSt1 . . . dStn (13)

Thus we have that
Hn =

{
In(f), f ∈ L2(Rn

+)
}

(14)

An important lemma is the following, called the Haagerup-Biane-Speicher inequality, or more
precisely its semicircular version (Haagerup lemma 1.4 in [23] for length functions over words of
length n, f : F∞ → C∗

red(F∞) and prove in the semicircular case by Biane and Speicher), which
implies that our multiple integrals constructed to be in L2(SC, τ) are in fact SC and more precisely
they belong to the C∗-algebra generated by {St}t≥0 (theorem 5.3.4 of [3]). This inequality shows

that one surprisingly has a control of the operator norm of a multiple Wigner integral by its L2

norm (contrary to the classical case, where Wiener functionals with finite chaotic expansion have
moments of any positive order and are not generally bounded).

Theorem 3. (Haagerup, Biane Speicher [3]). Let n ≥ 0, then for all F ∈ Hn, we have :

‖F‖L∞(SC) ≤ (n+ 1)‖F‖L2(SC), (15)

The following proposition ensures that the multiple Wiener-Itô integral behaves well with respect
to the product. Indeed, elements in some homogeneous Wigner chaos are bounded operators by
the previous theorem 3 and so, we are allowed to multiply them. In fact, this formula linearises
the product of two multiple Wigner integrals (and is much simpler than in the classical case, as the
combinatoric in free probability is much lighter since it involves a smaller class of partitions: the
non-crossing ones), see Nourdin and Peccati section 2.7.3 in [36] for comparison with the classical
case.

Before stating the result, we begin with the definition of nested contractions.

Definition 9. Let f ∈ L2(Rn
+) and g ∈ L2(Rm

+ ), for every

0 ≤ p ≤ n∧m, we define the nested contraction of order p of f and g as the element of L2(Rn+m−2p
+ )

by:

f
p
⌢ g(t1, ..., tn+m−2p) =

∫

R
p
+

f(t1, ..., tn−p, sp, ..., s1)g(s1, ..., sp, tn−p+1..., tn+m−2p)ds1...dsp (16)

7



Proposition 3. (Biane, Speicher proposition 5.3.3 in [3]) For all f ∈ L2(Rn
+) and g ∈ L2(Rm

+ ), we
have:

In(f)Im(g) =

n∧m∑

p=0

In+m−2p(f
p
⌢ g), (17)

In particular for all n,m ≥ 0, we have the following Wigner-Ito isometry:

τ(In(f)
∗Im(g)) = δn,m〈g, f〉L2(Rn

+) (18)

Remark 1. Given a function f ∈ L2(Rn
+), the adjoint of this function is defined almost everywhere

by:
f∗(t1, ..., tn) = f(tn, ..., t1)

which ensure that In(f)
∗ = In(f

∗). We then easily deduce that In(f) is self-adjoint if and if only
f = f∗. Such functions are usually called mirror-symmetric (see [20]).

4 The free Malliavin calculus on the Wigner space

The classical Malliavin operators (onto gaussian spaces) have a free counterpart in the context of
free probability (and only for now onto semicircular spaces) thanks to the breakthrough work of
Biane and Speicher in [3]. This construction could be done efficiently on the Free Fock space and
then transferred onto the algebra of field operators by the identification X 7→ XΩ where Ω denotes
the “vaccum” vector and the ∗-unital algebra generated by the field operators. Since, we are in
presence of a closable operator, we will consider as usual the closure of the gradient (still denoted
in the by same symbol), defined on a domain which will be the completion of this unital algebra
with respect to the Lp, p ≥ 1-norms. For sake of clarity, we will also assume standard identifications
of spaces as usual in the Malliavin calculus. We will however as mentioned before, and due to the
heavy notations, only focus our study on the classical Wigner space, i.e. when HR = L2

R
(R+) (which

will be typically suppressed as the Hilbert space is fixed all along the paper).

Definition 10. Fix p ≥ 1, then the free Malliavin derivative is the unique unbounded closable
operator (valued into the Lp-integrable biprocesses Bp):

∇ : Lp(SC, τ) → Lp(R+, L
p(SC, τ)⊗ Lp(SC, τ))

A 7→ ∇A = (∇tA)t≥0 (19)

such that for all h ∈ L2
R
(R+), ∇(S(h)) = h.1 ⊗ 1, and that, for all A,B ∈ Salg (where Salg is

the unital ∗-algebra generated by
{
S(h), h ∈ L2

R
(R+)

}
, we have the derivation property ∇(AB) =

A.∇B + ∇A.B where the left and right actions are given by the multiplication on the left leg and
opposite multiplication on the right leg.

Definition 11. We denote for any p ≥ 1, D
1,p the domain of ∇ viewed as a closable unbounded

operator from Lp(SC) to Bp, and which is defined as the completion of SCalg, with respect to the
following norm:

‖Y ‖p1,p = ‖Y ‖pp + ‖∇Y ‖pBp
. (20)
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Definition 12. For F ∈ SCalg and h ∈ L2(R+), we define the pairing (directional Malliavin deriva-
tive):

∇hF := 〈∇F, h〉L2(R+) :=

∫

R+

∇tF h(t)dt (21)

We know recall the (probably) most important formula, which is at the basis of the free Malliavin
calculus as it will provide the integration-by-parts formula.

Lemma 2. (NC Wick formula) Let F = S(e1) . . . S(en) ∈ SCalg where e1, . . . , en, h ∈ L2
R
(R+), then:

τ(FS(h)) =

n∑

k=1

〈ek, h〉L2(R+)τ(S(e1) . . . S(ek−1))τ(S(ek+1) . . . S(en)) (22)

As a consequence, we have the fundamental integration-by-parts which will be fundamental in
the paper.

Proposition 4. (Integration-by-parts, Biane-Speicher, lemma 5.2.2 in [3]) For F ∈ SCalg, and
h ∈ L2

R
(R+), we have

τ(FS(h)) = τ ⊗ τ(∇hF ) (23)

Since the free Malliavin gradient enjoys a chain rule, we have as an easy consequence that:

Lemma 3. Suppose that X,Y,Z ∈ SCalg and h ∈ L2
R
(R+), then:

τ ⊗ τ(X.∇hY.Z) = −τ ⊗ τ(∇hX.Y Z)− τ ⊗ τ(XY.∇hZ) + τ(XY ZS(h)) (24)

In the following set of propositions, we state basic results about the action of the free Malliavin
derivative on finite Wigner chaos.

Proposition 5. (proposition 5.3.10 of [3]) D
1,2 contains Pn, and the restriction of ∇ to this space

is a bounded linear operator.

We can also explicit the action of ∇ on Pn. First, we note that for any n,m ≥ 0, the map In ⊗ Im
from L2(Rn

+)⊗ L2(Rm
+ ) to Hn ⊗Hm. By the isomorphism between L2(Rn+m

+ ) and
L2(Rn

+)⊗ L2(Rm
+ ), we can see the linear extension of the map:

In ⊗ Im : L2(Rn+m
+ ) → Hn ⊗Hm

h1 ⊗ ...⊗ hn+m 7→ πn(S(h1)...S(hn))⊗ πm(S(hn+1)...S(hn+m)) (25)

In particular, we will define for an elementary tensor f = h⊗ g ∈ L2(Rn
+)⊗ L2(Rm

+ ) ≃ L2(Rn+m
+ ),

In ⊗ Im(f) := In(h)⊗ Im(g) and then continuously extendy for general f ∈ L2(Rn+m
+ ) viewed as an

element of L2(Rn
+)⊗ L2(Rm

+ ).

For all A⊗B ∈ Pn⊗Pn and B⊗C ∈ Pn⊗Pn,we denote : (A⊗B)∗ = A∗⊗B∗ and (A⊗B)♯(C⊗D) =
AC⊗DB, and we extend them by linearity for the first map which turns out to provide a map from
(Pn ⊗Pn) to Pn ⊗Pn, and by bilinearity and continuity for the second one which gives a map from
(Pn ⊗ Pn)

2 to P2n ⊗ P2n.
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We define for all f ∈ L2(Rn
+), the function fk

t ∈ L2(Rn−1
+ ) by the equality for almost all t ≥ 0 :

f(t1, ..., t, tk+1, ..., tn) = fk
t (t1, .., tk−1, tk+1, ..., tn)

Proposition 6. (proposition 5.3.9 of [3]) The Malliavin derivative maps Pn into L2(R,Pn ⊗ Pn),
indeed for f ∈ L2(Rn

+), then for almost all t ≥ 0 :

∇t(In(f)) =
n∑

k=1

Ik−1 ⊗ In−k(f
k
t ), (26)

Definition 13. We denote δ : dom(δ) ⊂ B2 → L2(SC) the adjoint of the free Malliavin derivative
which is a densely defined and closable operator called the free Skorohod integral, the domain of its
closure (still denoted δ) will be denoted as dom(δ) and it’s characterized by the duality relation:
u ∈ dom(δ), if there exists a (unique) element denoted δ(u) ∈ L2(SC) such that for all F ∈ SCalg:

〈∇F, u〉B2 = 〈F, δ(u)〉L2(SC), (27)

We also restate for convenience the infinite dimensional versions of Voiculescu formulas for the free
Skorohod integral (proposition 3.9 in [53]) which can be thus thought as the free analog of the formula
δ(Fh) = F.W (h)− 〈DF, h〉 with F ∈ D

h,2 in the classical case (c.f Nualart proposition 1.3.4 [40]).

Proposition 7. Let F ∈ SC⊙2
alg and h ∈ L2

R
(R+), then F.h belongs to dom(δ) and:

δ(F.h) = F♯S(h) −m1 ◦ (id⊗ τ ⊗ id)(〈∇̃F, h〉L2(R+))

= F♯S(h) −m1 ◦ (id⊗ τ ⊗ id)(〈(∇ ⊗ id+ id⊗∇)F, h〉L2(R+))

where m1 denotes the linear extension of the multiplication from SCalg ⊗ SCalg into SCalg given by:

m1(a⊗ b) = ab (28)

Remark 2. This lat proposition is basically the infinite dimensional version on the Wigner space of
the well known Voiculescu formulas applied to the free difference quotient in a semicircular system
(c.f section 4 in [53]). We will however prefer to denotes the last term in the second way because it
is better fitted to the usual conventions used in Voiculescu formulas and similar others works.

We now state the chain rule of the free Malliavin derivative:

Proposition 8. For all F ∈ Pd, and for all P ∈ C[X]

∇tP (F ) = ∂P (F )♯∇t(F ),

and for the multivariate case, we have for all (F1, ..., Fn) with each Fi ∈ Pd and P ∈ C〈F1, . . . , Fn〉 :

∇t(P (F )) =
n∑

k=1

∂kP (F )♯∇tFk,

10



We first introduce the class of functions (a subspace of operator-Lipschitz functions) which
can be seen as a “good” subset of noncommutative functions to deduce some chain rules in free
stochastic analysis: a free Ito formula and a chain rule for the free Malliavin derivative (we do not
investigate further here this line of topic which have recently known important achievements: see
Nikitopoulos[34], or Jekel, Li and Shlyakhtenko and [25]). Note also that this class of functions is
well approximated by polynomials onto compact interval (c.f theorem 3.20 in [26]).

Definition 14. We define the following set of smooth L2-functions as:

I2(f) =
{

f : R → C, f(x) =

∫

R

eixµ(dy),

∫

R

|y|2|µ|(dy) < ∞,

}

, (29)

where µ is a complex valued measure on R.

Proposition 9. (generalized chain rule, Biane-Speicher) Let F ∈ D
1,2 and φ ∈ I2(f), then φ(F ) ∈

D
1,2 and we have for almost all t ≥ 0:

∇tφ(F ) = ∂φ(F )♯∇tF (30)

Theorem 4. (Biane, Speicher, proposition 5.3.12 in[3]) Let F ∈ D
1,2, then we have the following

Clark-Ocone-Bismut formula:
F = τ(F ) + δ(Γ ◦ ∇F ) (31)

where Γ denotes the orthogonal projection from B2 onto the square integrable adapted biprocesses Ba
2

and δ the Skorohod integral (the adjoint of the Malliavin derivative) and the integration is understand
as a free stochastic integral with respect to the free Brownian motion of an adapted biprocesses.

As a straightforward corollary, we have the following representation in fixed finite Wigner chaos:

Theorem 5. Fix n ≥ 0, then we have:

id|Pn
= P1 + δ(Γ ◦ ∇)|Pn

(32)

where P1 denotes the orthogonal projection onto C.1 ⊂ L2(SC).
Theorem 6. Heinseberg commutation relation (Biane, Speicher proposition 5.4.1 in [3])
For U ∈ dom(δ) with finite chaotic expansion (more generally for u ∈ L

1,2), we have the following
commutation relation between Skorokhod integral and Malliavin derivative:

∇t(δ(U)) = ∇t(δ(U)) + δs(∇t(Us)) (33)

where the subscript δs indicates that the Skorohod integration acts in the variable s and on biprocess,
we set in this case ∇t(As ⊗Bs) = ∇tAs ⊗Bs +As ⊗∇tAs

Definition 15. We define the free Ornstein-Uhlenbeck semigroup (Pt)t≥0 as the second quantization
of the contraction Tt = e−tIdL2

R
(R+), that is

Pt := F(e−tIdL2
R
(R+)), t ≥ 0, which is unital, tracial, completely positive and which acts on F =

∑∞
n=1 In(fn) ∈ L2(SC) as:

PtF :=

∞∑

n=0

e−ntIn(fn) (34)

11



Definition 16. We denote L, the L2-generator of the free Ornstein-Uhlenbeck semigroup defined for
F =

∑∞
n=0 In(fn) ∈ L2(SC) as:

LF :=
∞∑

n=0

−nIn(fn) (35)

whenever the last series exists in L2, that is that the domain of L (a closed, non-positive self-adjoint
operator with dense domain) denoted dom(L) with respect to the L2 norm is given by the following
chaotic characterization:

dom(L) =

{

F =

∞∑

n=0

In(fn),

∞∑

n=0

n2‖fn‖2L2(Rn
+) < ∞

}

:= D
2,2

Definition 17. We also denote C, the Cauchy Operator: the negative square-root of the free number
operator C := −

√
−L, defined for F =

∑∞
n=0 In(fn) ∈ L2(SC) as:

CF :=

∞∑

n=0

−nIn(fn) (36)

with domain denoted dom(C):

dom(C) =

{

F =

∞∑

n=0

In(fn),

∞∑

n=0

n‖fn‖2L2(Rn
+) < ∞

}

:= D
1,2

In fact, −L is an unbounded positive self-adjoint operator with pure point spectrum: sp(−L) = N

with for each n ≥ 0 the associated Wigner chaos of order {Hn, n ≥ 0} as corresponding eigenspace,
we have the following proposition which is a very important feature of the free group factors as the
“free fourth moment phenomenon” on the Wigner space precisely appears as in the classical case for
eigenvalues of this operator (see Ledoux [27] for reference in the classical case and Kemp et al. or
Cébron or the author [26, 8, 20] for more precise details and a conjecture in the free case).

Proposition 10. We have the following abstract chaotic decomposition:

L2(SC) =
∞⊕

k=0

ker(L+ kId) (37)

As in the classical case, the Ornstein-Ulhenbeck operator can be seen as a directional derivative
with respect to a scale parameter (see Nualart and Zakai, section 2 in [38]). This also has motivated
the definition of L as the derivative operator in the early beginning of Malliavin calculus.

Proposition 11. Let F =
∑∞

n=1 In(f) ∈ L2(SC), define for |λ| < 1, the functional:

Fλ = τ(F ).1 +

∞∑

n=1

λnIn(f), (38)

Then LF exists if and if only: F ε := 1
ε (F1−ε − F ) converges in L2 as ε tends to zero and in this

case,

LF = lim
ε→0

1

ε
(F1−ε − F ), (39)
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Proof: For 0 < ε < 1, for all n ≥ 0, ε−1((1 − ε)n − 1) ≤ n (and converges to −n as ε → 0) , if LF
exists then a simple computation shows that:

lim
ε1→0
ε2→0

τ(F ε1F ε2) = τ [|LF |2],

thus the only if part is obtained.
For the reverse implication (let’s recall that πn denotes the projection onto the n-th Wigner chaos)
suppose that F ε is a Cauchy-sequence in L2 converging to G ∈ L2(SC).
Then we set, Fn =

∑n
k=0 πn(F ), F ε

n =
∑n

k=0 πn(F
ε), and Gn =

∑n
k=0 πn(G), then we have that

(since we suppose that the limit is G) F ε
n

L2

→
ε→0

Gn and by assumption that: F ε
n

L2

→
ε→0

LFn, thus LF

exists and F ε L2

→
ε→0

LF and the proof is obtained.

It turns out that, as in the classical case, the semigroup (Pt) satisfies a commutation relation with
the free Malliavin gradient. This result has deeps consequences in the classical case, the main one is
with the logarithmic Sobolev inequality. Unfortunately, we have not been able to use this fact
prove it in differently of Biane (c.f corollary 1 in [2]) by means of free Ito formula and
noncommutative martingales. In fact, in the classical case, the most simple and direct proof is
achieved by means of Ito formula and the use of martingales and seems to first appeared in the
introduction of Capitaine, Hsu and Ledoux in [7] (this proof seems to be known for a long time by
Maurey and Neveu as discussed in the introduction of the aforementioned paper).

Remark 3. The free Ornstein-Uhlenbeck semigroup acts in fact as a mollifier: for all , Pt(L
2(SC)) ⊂

D
1,2 as we have for F =

∑∞
n=0 In(fn) ∈ L2(SC), ∑∞

n=0 ne
−2nt‖fn‖2L2(Rn

+) < ∞.

Proposition 12. (Commutation relation with O.U semigroup) Let F ∈ D
1,2, then we have the

following relation which holds true for every t > 0:

∇PtF = e−tP⊗2
t ∇F (40)

Proof: Thanks to an approximation argument, it suffice to prove that the result holds true for,
F = In(f), f ∈ L2(Rn

+), n ≥ 0.
Then for all t > 0, and almost all s ≥ 0,

∇sPtF = ∇s(e
−ntIn(f))

= e−nt
n∑

k=1

Ik−1 ⊗ In−k(f
k
s )

= e−t
n∑

k=1

e−(k−1)tIk−1 ⊗ e−(n−k)tIn−k(f
k
s )

= e−t(Pt ⊗ Pt)∇sF,

which concludes.
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We can also provide some consequences of the hypercontractivity of the free Ornstein-Uhlenbeck
semigroup, this last important result was proved by Biane in the free case by [2] (in fact, Biane
proved a much stronger result: the hypercontractivity of the q-Gaussian Ornstein-Uhlenbeck
semigroup for all q ∈ (−1, 1), thus the free case q = 0 being just a particular result). We also
remind tho the reader that the next result which is basically an equivalence in the finite Wigner
chaos between ‖ .‖p and ‖ .‖q is an important lemma in the classical case to reach the proof of the
so-called Meyer inequalities, first proved by Meyer in the celebrated paper [33]. Proving the free
version of the Meyer’s inequalities is for now a longstanding open problem in the free probabilistic
context (we don’t even know what norm should use, as it relies on noncommutative Riesz
transform and thus to prove equivalence on the Lp, 1 ≤ p ≤ ∞-norms between a noncommutative
Carré-du-champ and the Cauchy operator, i.e. ‖Γ(F,F )‖p ∼ cp‖CF‖p where
Γ(F,F ) = 〈∇F,∇F 〉L2(R+) =

∫

R+
∇t(F )♯(∇t(F ))∗dt is the noncommutative Carré-du-champ on the

Wigner space) as mentioned by Biane and Speicher in the last page of [3] (see also Nualart [40] or
Üstünel [49] for details about classical Meyer’s inequalities and different types of proofs).

Theorem 7. Let F ∈ Lp(SC), p ≥ 1 and denote the projection onto the n-th Wiener chaos πn(F ).
Then the linear map:

F 7→ πn(F ) (41)

is continuous on Lp(SC).

Proof: Let’s first suppose that p ≥ 2, and choose t ≥ 0, such that p = e2t + 1. Then, from the
hypercontractivity of the free Ornstein-Uhlenbeck semigroup (Theorem 3 of Biane in [2]) we get:

‖PtF‖p ≤ ‖F‖2 ≤ ‖F‖p
Now since (Pt) is a contraction for all Lp(SC), p ≥ 1-norms, we know that:

‖Ptπn(F )‖p ≤ ‖πn(F )‖2 ≤ ‖F‖2.
but

Ptπn(F ) = e−ntπn(F ) (42)

and thus
‖πn(F )‖p ≤ ent‖F‖p

Now if 1 < p < 2, we use the duality where q is the conjugate of p and we choose t ≥ 0 such that
q = e2t + 1 to get:

‖πn(F )‖p = sup
‖G‖q≤1

|〈G,πn(F )〉2|

= sup
‖G‖q≤1

|〈πn(G), F 〉2|

= sup
‖G‖q≤1

|〈πn(F ), πn(G)〉2|

≤ ‖F‖p sup
‖G‖q≤1

‖πn(G)‖q

≤ ent‖F‖p,
(43)
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5 Commutation relations and Malliavin derivatives

The goal of this section is to prove several commutation relation (of different kinds) between the
Malliavin derivative and conditional expectation, and also between a Malliavin differentiable element
and the left creation operator. We also investigate the absence of central and Malliavin differentiable
elements in the Wigner space. We also show that there is no Malliavin differentiable idempotents in
the Wigner space.
Most of the result of this section can thus be thought as free analog of well-known results which can
be found in the celebrated book of Nualart [40].

We first recall that given a von Neumann subalgebra B of W ∗({St, t ≥ 0}), there exists a unique
trace preserving conditional expectation onto B denoted τ [.|B].
The interested reader can consult the paper of Takesaki [50] to have further details on the notion of
conditional expectation onto von Neumann subalgebras.

As usual, for any Borel set A ⊂ (R+,B(R+)) with finite Lebesgue measure λ(A), we denote S(A) :=
S(1A), the associated semicircular element (centered and of variance λ(A)).

Definition 18. Given any Borel set A of (R+,B(R+)) with finite Lebesgue measure, we denote FA
the von Neumann subalgebra generated by:

{S(1B), B ⊂ A, λ(B) < ∞} (44)

Lemma 4. Let F =
∑∞

n=0 In(fn) ∈ L2(SC), then:

τ(F |FA) =
∞∑

n=0

In(fn1A) (45)

Proof: Let consider an elementary multiple Wigner integral, F = In(fn) with fn = 1B1×...×Bn ,
where (Bi)

n
i=1 are mutually disjoints Borel sets with finite Lebesgue measure (and note also that the

mapping B 7→ S(B) is linear),
Then by using freeness, we see that:

τ(F |FA) = τ(S(B1) . . . S(Bn)|FA)

= τ

(
n∏

i=1

(S(Bi ∩ A) + S(Bi ∩Ac))|FA

)

= S(B1 ∩A) . . . S(Bn ∩ A)

:= In(fn1
⊗n
A )

Where we have used in the third line that Bi ∩Bj = ∅ for i 6= j. The general result follows then by
approximation, and polarization.

We first introduce an elementary lemma which ensures that conditional expection onto von
Neumann subalgebra (of the one generated by the free Brownian motion) of Malliavin differentiable
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functionals is also Malliavin differentiable also provide the commutation relation between the
derivative and the conditional expectation. The reader familiar with Malliavin calculus might
notice that this fact is particular the to free Brownian motion case as for the non commutative
fractional Brownian motion (abbreged in ncfBm), this formula and more generally the version of
the Clark-Ocone formula will be as in the classical case much harder to obtain since the norm may
increase by multiplying with indicators functions (see proposition 3.2 in Léon and Nualart [28] or
Bender and J.Elliot [1]).

Lemma 5. Let F ∈ D
1,2, and FA the previously defined von Neumann subalgebra of W ∗({St, t ≥ 0}),

then τ(F |FA) ∈ D
1,2, and:

∇t(τ(F |FA)) = τ ⊗ τ(∇t(F )|FA).1A(t) (46)

Proof: From the previous lemma, remark that is a consequence that τ(F |FA) ∈ D1,2. Indeed:

∞∑

n=0

n‖fn1⊗n
A ‖2L2(Rn

+) ≤
∞∑

n=0

n‖fn‖2L2(Rn
+) = ‖∇F‖2B2

< ∞

since it just multiply each element of the chaotic decomposition by 1⊗n
A , and thus does not increase

for each n ≥ 0 the norm ‖fn‖2.

Now, we have for F =
∑∞

n=0 In(fn) ∈ D
1,2

∇t(τ(F |FA)) =

∞∑

n=0

∇t(In(fn1
⊗n
A ))

=

∞∑

n=0

n∑

k=1

Ik−1 ⊗ In−k(f
k,t
n .1

⊗(n−1)
A ).1A(t)

= τ ⊗ τ(∇t(F )|FA).1A(t)

We recall that for almost all t ≥ 0, fk,t
n .1

⊗(n−1)
A is seen as a function of L2(Rk−1

+ )⊗ L2(Rn−k
+ ).

As a direct consequence, we have the free following corollary which gives the local property of
the Malliavin derivative:

Lemma 6. Let F ∈ D
1,2, then if F belongs to FA, then for t ∈ Ac, we have:

∇t(F ) = 0 (47)

Note also that the we have a commutation relation between a Malliavin differentiable element and
the left annihilation operator. This lemma being particularly useful for its connection with the
study of regularity properties of analytic distribution since it provides a kind of infinite
dimensional dualy system in the sense of Voiculescu defined in section 5 in [53] and which have
deep consequences in the study of the regularity properties of the spectral measure on
noncommutative polynomials evaluations in self-adjoints indeterminates , i.e. P (y1, . . . , yn). For
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example, when y1, . . . , yn admits a dual system, and that P is self-adjoint and also an eigenvalue of
the “discrete” Number operator, where N =

∑n
j=1 ∂j( )♯yj, Charlesworth and Shlyakhtenko proved

that the analytic distribution of P (y1, . . . , yn) is absolutely continuous w.r.t the Lebesgue measure
(c.f theorem 13 in [9]).

Lemma 7. Let n ≥ 0 a fixed integer. Then for all F ∈ Pn, we have:

[r∗(h), F ] = ∇h(F )♯P1 (48)

where P1 is the orthogonal projection onto 1 ∈ L2(SC) and ∇h is the directional Malliavin derivative:
∇h := 〈∇, h〉 on D

1,2.

Proof: Indeed for (ei)
∞
i=1 a complete orthonormal system of L2

R
(R+), if we denote

Λ = {a := (an)n≥1, an ∈ N,∃M,an = 0, for, n > M} the integers valued sequences such that all the
terms except a finite numbers of them vanish. Then we define for a ∈ Λ, with (Un)n≥0, the sequence
of the Chebychev polynomials of second kind.

φa =

∞∏

i=1

Uai(S(ei)),

Then,
{φa, a ∈ Λ, |a| = n} ,

is an orthonormal system in Hn, the n-fold Wigner chaos. And, as a consequence, the family:

{φa, a ∈ Λ} , (49)

is a complete orthonormal system in L2(SC),

Indeed it is easy to prove that (derivation property) for any integer n ≥ 1, since it is easy to check
and well known that: [r∗(h), S(ei)] = 〈ei, h〉L2(R+).P1, for all h ∈ L2

R
(R+).

[r∗(h), Un(S(ei))] = ∂S(ei)Un(S(ei))♯[r
∗(h), S(ei)] (50)

=
n∑

k=1

〈ei, h〉L2(R+)(Uk−1(S(ei))⊗ Un−k(S(ei)))♯P1

= ∇h(Un(S(ei))♯P1,

This last term being exactly the directional Malliavin derivative on the direction h ∈ L2
R
(R+).

Then by linearity and density it extends to the whole space since both [r∗(h), .] and ∇h(.)♯P1 are
derivations and coincide onto this orthonormal basis which spans SCalg which is dense in D

1,2.

Note also that there exists a free Poincaré inequality on the Wigner space (which have never been
mentioned or used) and which can be seen as the infinite dimensional analog of the one’s proved by
Voiculescu in an unpublished note (see Dabrowski [13], lemma 2.2).
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Theorem 8. Let F ∈ D
1,2, then we have the free Poincaré inequality:

‖F − τ(F )‖22 ≤ ‖∇F‖2B2

The proof is straightforward via the chaotic decomposition or the free Clark-Ocone-Bismut formula.

Remark 4. It turns out that, this inequality gives an important result about the structure of von
Neumann algebra generated by a free Brownian motion: it is a factor. Indeed it is well known by the
work of Voiculescu that the von Neumann algebra generated by the free Brownian motion, we also use
the standard notation SC = W ∗({St, t ≥ 0}) ≃ L(F∞) (where the second term is defined as the weak-
operator closure of the left regular representation of the non-abelian free group with countably many
generator) is a factor since F∞ of is an i.c.c (infinite conjugacy class) group. The idea is to prove
this (without knowing this isomorphism), as a consequence of the free Poincaré inequality on the
Wigner space, as it was inspired to us by the powerful Dabrowski’s techniques found in [13], which
proved that W ∗(X1, . . . ,Xn) with X1, . . . ,Xn self-adjoint operators in some tracial W ∗-probability
space is a full Π1 factor (without property Γ) under finite free Fisher information Φ∗(X) < ∞. We
will prove our result using the free Malliavin calculus, which can be seen as an infinite dimensional
version of the theory of non commutative derivatives over a semicircular field.

Before stating the next result, we introduce for the non specialist reader a few notions about von
Neumann algebras.

Definition 19. Let S ⊂ B(H), by definition its commutant is defined as:

S
′

= {T ∈ B(H), ST = TS} , (51)

Definition 20. The center of a von Neumann algebra M is defined as the intersection of M with
its commutant M′

:
Z(M) = M∩M′ = C1, , (52)

We also remind for the interested reader, that there exists three distinct types of factors (type I,
type II and type III). Here we are in the setting of II1 factors.

Definition 21. A Π1 factor is an infinite dimensional von Neumann algebra equipped with a (unique)
faithful normal tracial state, and which has a trivial center:

Z(M) = C.1, (53)

Theorem 9. D1,2∩SC does not contain any central element, i.e. element commuting with all bounded
others.

Proof: The basic idea is the following one:
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We denote (ei)
∞
i=1 a complete orthonormal system of L2

R
(R+), and the directional Malliavin

derivative (introduced by Mai in [31]) in the direction h ∈ L2
R
(R+) and valued into the coarse

correspondence, defined for F a smooth functional:

∇h : SCalg → L2(SC)⊗ L2(SC) ≃ HS(L2(SC)) (54)

F 7→ 〈∇F, h〉L2(R+) :=

∫

R+

∇tF h(t)dt

with domain
D(∇h) := SCalg = ∗ − unital

{
S(h), h ∈ L2

R(R+)
}

Then we can easily show that this is a unbounded closable operator (the closure is still denoted
∇h) whose domain D(∇h) is defined as the closure of the unital ∗-algebra generated by the free
Brownian motion with respect to the directional derivative seminorm:

‖Y ‖21,2,h = ‖Y ‖22 + ‖∇hY ‖2L2(τ⊗τ)

And note that when F ∈ D
1,2, ∇hF = 〈∇F, h〉L2(R+).

Now, assume that F ∈ Z(SC) ∩ D
1,2 , and in particular, one has for all j ∈ N:

[F, S(ej)] = 0

and this implies for any i 6= j, that:

0 = [∇eiF, S(ej)] + [F,∇eiS(ej)]

it is then standard to check that since the family is orthogonal that ∇ei(S(ej)) = 〈ej , ei〉L2(R).1⊗1 =
0, since (S(ei))

∞
i=1 is a (infinite) semicircular system.

Then it gives us that:
0 = [∇eiF, S(ej)]

Now, one sees ∇eiF ∈ HS(L2(SC)), an Hilbert-Schmidt operator (and a fortiori a compact one), by
the usual identification recalled in the section 2 (equation 2) of this paper, it is easily deduced, because
S(ej) is a semicircular operator, it is also a diffuse operator as it as a Lebesgue absolutely continuous
spectral measure (since its analytic distribution is absolutely continuous w.r.t the Lebesgue measure),
and thus since a compact operator commuting with a diffuse one must be identically zero, it follows
without further effort that:

∇eiF = 0 (55)

since ei was arbitrary, it implies that ∇F = 0B2 , and thus by the free Poincare inequality, we obtain
the desired conclusion.

This last result allows in fact to the factoriality by using regularisation with the help of resolvents
maps associated to the free directional Ornstein-Uhlenbeck operator. However, we need to
introduce a powerful lemma of Popa: corollary p.818 in [41], refined by Dabrowski lemma 7 in [13]
which allows to obtain a quantitative estimate in L2 on how a tracial, normal and completely
positive map φ almost fixes the translation of an element x ∈ M by a element of the unit ball
y ∈ (M)1, this means evaluate ‖φ(yx)− yφ(x)‖2, y ∈ (M)1, x ∈ M in terms of how this map φ
almost fixes this same unit ball: ‖φ(y) − y‖2, u ∈ (M)1.
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Lemma 8. (Popa corollary p.818 in [41] , Dabrowski lemma 7 in [13]) Let φ a unital tracial com-
pletely positive map, then for every x, y ∈ M with ‖y‖ ≤ 1, we have:

‖φ(yx)− yφ(x)‖2 ≤ ‖φ‖ 1
2‖x‖(2‖φ(y) − y‖22 + 2‖φ(y) − y‖2)

1
2 (56)

Corollary 1. SC := W ∗({St, t ≥ 0}), is a factor.

Proof: It only remains to remove the domain assumption, that is to prove that any central element
Z ∈ Z(SC) is in fact in D

1,2. An essential tool to be able to do this, is the closability of the free
Malliavin gradient. Indeed, if we are able to find a smooth (in D

1,2) net (Zα)α≥0 converging in L2

towards Z and which also belongs to the center, the proof is obtained.
This is essentially done through regularisation in the Malliavin calculus sense.

Indeed, let’s denote δh, the adjoint of the directional Malliavin derivative in the direction h ∈
L2
R
(R+) which is a densely defined operator:

δh : dom(δh) ⊂ L2(SC)⊗ L2(SC) → L2(SC)
U 7→ δ(U♯(1 ⊗ h⊗ 1)) (57)

Moreover, one knows from Mai (c.f lemma 5.2 (b) in [31]) that when restricted to real vectors
h ∈ L2

R
(R+), ∇h induces a real closable derivation. This enables us to directly use results which can

be found in Cipriani and Sauvageot [11] or the introduction by Dabrowski in [13].

In this way, we can define the directional number operator (Laplacian) in the direction h ∈
L2
R
(R+), which is defined as the square of the directional Malliavin derivative:

Nh : dom(Nh) ⊂ L2(SC) → L2(SC)
F 7→ δh(∇hF ) (58)

and see that it is the generator of a completely Dirichlet form (Nh ⊗ In is also a Dirichlet form on

Mn(SC) for all n ≥ 0). We denote φh
t := e−Nht the semigroup of generator Nh.

Now consider for each h ∈ L2
R
(R+), the associated resolvent maps defined for α > 0 to each

directional Laplacian, and which will be denoted as

ηα,h := α(α+Nh)−1 (59)

and

ζα,h := η
1
2
α,h (60)

which are moreover unital, tracial (τ ◦ ηα,h = τ), positive and completely positive and moreover
contractions on L2(SC).
With the following properties: Range(ηα,h) = dom(Nh) ⊂ D(∇h) and Range(ζα,h) = dom(∇h) and
moreover that ∇h ◦ ζα,h is bounded.
Note also that we have (its an easy computation) ‖Z − ζα,h(Z)‖2 → 0

α→∞
for all h ∈ L2

R
(R+).

Now by definition, we have for Y ∈ C〈X(ej)j 6=i〉, ∇ei(Y ) = 0. Thus it is straightforward from the
lemma 8 that ζα,ei(FX(ej)) = ζα,ei(F )X(ej) and ζα,ei(X(ej)F ) = X(ej)ζα,ei(F ).
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Thus, if we denote for α > 0 and h ∈ L2
R
(R+), ∇h

α := α− 1
2∇h ◦ ζα,h.

We then have for Y ∈ C〈X(ej)j 6=i〉 with in particular ∇ei(Y ) = 0:

∇ei
α ([Z, Y ]) = [∇ei

α (Z), Y ] (61)

Thus if Z ∈ Z(SC), we have:
[∇ei

α (Z), Y ] = 0 (62)

By closability, we then have (by using the same arguments as below: an Hilbert-Schmidt operator
commuting with a diffuse one must be identically zero) that ∇ei

α (Z) = 0.
Since ‖Z − ζα,ei(Z)‖2 → 0

α→∞
, we get that Z ∈ D(∇ei) and ∇eiZ = 0.

It is then straightforward to check for any h ∈ L2
R
(R+), (apply the same analysis by computing

[∇h
α(Z), Y ] = 0 with Y which belongs to the C〈X(h

′

)h′∈{h}⊥〉 (in the orthogonal complement of h

in L2
R
(R+)), that is ∇hZ = 0, and we can also check easily that the map h 7→ ∇hZ is linear and

continuous.
Thus Z ∈ D1,2 and ∇Z = 0, thus the free Poincaré inequality on the Wigner space concludes.

Remark 5. It is also well known by the breakthrough result of Voiculescu using free entropy tech-
niques (theorem 5.3 in [53]), that this von Neumann algebra does not have regular DHSA: diffuse
hyperfinite abelian subalgebra, and a fortiori no Cartan subalgebra as in a Π1 factor, regular Maximal
abelian subalgebras (MASA’s) are also DHSA. In their important work, Dabrowski and Ioana [20],
these authors have been able to prove various indecomposability results such as non-L2 rigidity and
absence of Cartan subalgebras in presence of a real closable derivation into the coarse bimodule whose
domain contain a weakly dense ∗-subalgebra M0 and various additional conditions (but not at all
restrictive) such as existence of a non-amenability set and that moreover the derivation is algebraic.
Indeed Dabrowski in [14] proved that under the assumptions of Lipschitz conjugate variables the von
Neumann algebra M = W ∗(X1, . . . ,Xn) generated by X1, . . . ,Xn admits a free dilation: a deforma-
tion into M ∗L(F∞), then important findings of Ioana in [24] and Popa’s deformation/rigidity theory
allows them to deduce absence of Cartan subalgebras. However in the infinite dimensional case, we
have not been able to prove that L(F∞) does not have Cartan subalgebras by using again this infinite
dimensional differential calculus on the Wigner space. We leave this question to an interested reader.

We are for now only able to prove an infinite dimensional version in the semicircular case of a re-
sult of Shlyakhtenko [44] which gives condition on algebraic derivations to give rise via exponentiation
to a one parameter semigroup of M ∗ L(Z) . Thus our results can be seen as an elementary infinite
dimensional case of the general result of Shlyakhtenko, since in our context, of each S(h), h ∈ L2

R
(R+)

satisfies the most standard integration by parts, and can also be seen as an infinite system of Lipschitz
conjugate variables (idea introduced by Dabrowski in [15]):

τ(FS(h)) = τ ⊗ τ(〈∇F, h〉L2(R+)) (63)

for all h ∈ L2
R
(R) and F ∈ SCalg and that for almost all t ≥ 0, ∇t(S(h)) = h(t).1 ⊗ 1 ∈ SC ⊗ SC.

Proposition 13. Let M = W ∗({St, t ≥ 0} ≃ L(F∞) and Malg be respectively the von Neumann alge-

bra and the ∗-unital algebra generated by the free Brownian motion S =
{

S(h) :=
∫

R+
h(s)dS(s), h ∈ L2

R
(R+)

}
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and consider in this way, ∇S and δS be respectively the free Malliavin derivative and the Skorohod
integral with respect to the semicircular process S.
Let also X denotes an independent copy of the semicircular process S, which generates also L(F∞).
Then there exists a one parameter semigroup of automorphism (αt)t≥0 of M∗W ∗(

{
X(h), h ∈ L2

R
(R+)

}
) ≃

M ∗ L(F∞), and such that:

d

dt

∣
∣
∣
∣
t=0

αt(F ) = X∇S(F ),∀F ∈ Malg,

d

dt

∣
∣
∣
∣
t=0

αt(X(h)) = −δS(h.1 ⊗ 1) := −S(h),∀h ∈ L2
R(R+), ,

where for F = S(e1) . . . S(en) with e1, . . . , en ∈ L2
R
(R+), we define

X∇S(F ) :=
∑n

k=1 S(e1) . . . S(ek−1)X(ek)S(ek+1) . . . S(en), and we then extend it linearly.

Proof: Indeed, denote X =
{
X(h), h ∈ L2

R
(R+)

}
an independent copy of the semicircular isonormal

process S =
{
S(h), h ∈ L2

R
(R+)

}
,

Then, it suffices to consider for t ≥ 0,

αt(S(h)) = cos(t)S(h) + sin(t)X(h)

αt(X(h)) = − sin(t)S(h) + cos(t)X(h)

which is well defined and clearly an automorphism of M ∗W ∗({St, t ≥ 0}), then by differentiating,
we get:

d

dt

∣
∣
∣
∣
|t=0

α(S(h)) = X(h)

d

dt

∣
∣
∣
∣
|t=0

αt(X(h)) = −S(h) = −δS(h.1 ⊗ 1)

and by using the chain rule of the free Malliavin derivative its is elementary to check that the result
holds true for F = S(e1) . . . S(en).

We also provide here an interesting characterization about the triviality of projections in D
1,2

which can be seen as a corollary of Guionnet and Shlyakhtenko, theorem 4.2 in [22] which states
that C∗({St, t ≥ 0}) is projectionless, and which ensures that the distribution of any self-adjoint
element of this C∗-algebra has a connected support. Our proposition thus shows that projections
are not regular functionals in the free Malliavin calculus sense.

Indeed, in his celebrated monograph, Nualart (see proposition 1.2.6 in [40]) proved an interesting
proposition about existence of Malliavin differentiable idempotent in Gaussian spaces, that is to
say, for any Borel set set A with respect to the σ-algebra generated by a Gaussian isonormal
process, the following Bernoulli random variable: 1A belongs to D

1,2 if and if only P(A) ∈ {0, 1}.
We propositionose here to show the free counterpart of this “0 − 1 law”.

Proposition 14. D
1,2 ∩W ∗({St, t ≥ 0}) does not contain non trivial projections, that is for

p = p∗ = p2 ∈ W ∗({St, t ≥ 0}) a projection, then p ∈ D
1,2 if and if only p ∈ {0, 1}.
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Proof: Take a smooth approximation φ ∈ I2(f) of x 7→ x2 which coincides inside the support of p
(compactly supported on the real line since it is a bounded self-adjoint operator),
supp(p) ⊂ [−ρ(p), ρ(p)] (ρ denote the spectral radius), where

I2(f) =
{

f : R → C, f(x) =

∫

eixµ(dy),

∫

R

|y|2|µ|(dy) < ∞,

}

(64)

Then by the chain rule (note here that the assumption over φ is necessary as the chain rule for
random variable with possibly infinite chaotic expansion is only-satisfied for this subset of
operator-Lipschitz functions), we get for almost all t ≥ 0:

∇t(p) = ∇t(p
2) = p.∇t(p) +∇t(p).p

First remark by using compression on both side by “p”, it gives:

p.∇t(p).p = p2.∇t(p).p+ p∇t.p
2

= 2p.∇t(p).p

Thus we have:
p.∇t(p).p = 0 (65)

and in particular that:
(p.∇t(p).p)♯(∇t(p))

∗ = 0 (66)

Which easily implies (by faithfulness and traciality since p is a projection) that at least one of the
following two terms is zero:

p.∇t(p) = 0 or ∇t(p).p = 0

Let’s suppose that the first one is zero:
Then we get,

∇t(p) = ∇t(p).p

By multiplying by p, on the left side, we then have from 65:

p.∇t(p) = p.∇t(p).p = 0

The other possibility can be dealt with in the same way.

Thus in any cases by injecting in 65, we have ∇(p) = 0 and by the free Poincaré inequality it gives
that p = τ(p).1, and since p is an idempotent, we get that:

τ(p) = τ(p)2 (67)

and finally that p ∈ {0, 1}.

Remark 6. It is important to notice that we have shown a little more since we didn’t use the self-
adjoint condition (orthogonality): there is no bounded Malliavin differentiable idempotent. It would be
very interesting to prove or disprove an analog of this result for W ∗(X1, . . . ,Xn) where X1, . . . ,Xn

are self-adjoint operators in (M, τ) a tracial W ∗-probability space with for example finite Fisher
information: Φ∗(X) < ∞. This would require to have a chain rule for free difference quotients which
go beyond polynomial calculus (here it is a particular feature of the Wigner space and that we are
dealing with functionals of a semicircular system) and thus be able to consider more general classes
of functions.

23



6 Higher-order Malliavin derivatives

In this section, we pursue the analysis of Biane and Speicher in [3] about free Malliavin calculus by
defining higher order (semicircular) Sobolev-Wigner spaces and we study the action of the Malliavin
derivative onto finite Wigner chaos. We obtain in this way the free counterparts of classical important
results on the Wiener space. We first recall some definitions about biprocesses and their associated
Lp-spaces defined as the completion of simple adapted biprocesses. We then focus and introduce
some notations in the case of HR = L2

R
(R+) which will be very useful to lighten the exposure. Note

that, up to much heavier notations and definitions it is also possible to extend our definitions to the
general setting of “abstract Wigner spaces”.

Definition 22. Recall now that a simple biprocess, is a piecewise constant map t 7→ Ut indexed
by positive time such that for all t ≥ 0, Ut ∈ SC ⊙ SC (the algebraic tensor product, i.e. without
completion), and Ut = 0 for t large enough.

Definition 23. A simple biprocess is called adapted if for all t ≥ 0, Ut ∈ At ⊙At.

Definition 24. The (complex) space of simple biprocesses is endowed with the family of norms,
defined for all 1 ≤ p ≤ ∞ as:

‖U‖Bp =

(∫ ∞

0
‖Ut‖2Lp(τ⊗τop)dt

) 1
2

(68)

The completion will be denoted as Bp and the restriction to the closed subspace of Lp-integrable
adapted biprocesses Ba

p .

When p = 2, B2 is an Hilbert space associated with the inner product:

〈U, V 〉B2 =

∫ ∞

0
〈Ut, Vt〉L2(τ⊗τop)dt (69)

Definition 25. We denote for 1 ≤ p ≤ ∞, and k, n ≥ 1 positive integers,
M

k,n
p := L2(Rk

+, L
p(SC⊗n)), the random field of Lp(SC⊗n) valued noncommutative random variables

equipped with the following semi-norm:

‖U‖
M

k,n
p

=

(
∫

Rk
+

‖Ut1,...,tk‖2Lp(τ⊗n)dt1 . . . dtk

) 1
2

Remark 7. We can see in this way that the class of Lp-biprocesses Bp is simply M
1,2
p . Note that

we adopt this more general definition which can be used independently to study “free random fields”.
Indeed we can restrict ourselves to the study of these spaces with n = k + 1, which is sufficient for
our purpose and specified in the following.

Definition 26. We define for each p ≥ 1, the iterated free Malliavin derivative of order “n” denoted
∇n by setting for any F ∈ SCalg, ∇0 = Id, ∇1 = ∇, and for n > 1,

∇n : SCalg → L2(Rn
+,SC⊙(n+1)))

F 7→ (∇n
t1,...,tnF )t1...,tn≥0 := (id⊗(n−1) ⊗∇tn) ◦ . . . ◦ (id⊗∇t2) ◦ ∇t1(F )
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or equivalently, we have by recursion for almost all t1, . . . , tn ≥ 0,

∇n
t1,...,tnF = (id⊗(n−1) ⊗∇tn)∇n

t1,...,tn−1
F (70)

Sometimes, we will however prefer to use this following definition as the free Malliavin derivative
will be shown to be an almost everywhere coassociative derivation which justify the fact to multiply
by the coefficient n! to get some kind of symmetrized expression. Note that it will also provide
exact free counterparts of the formulas obtained on the Wiener space (Stroock’s formula, chaotic
characterization of the Sobolev-Watanabe spaces...).

Definition 27. We set Dn, n ≥ 1, the symmetrized variant of the free Malliavin derivative by setting
for F ∈ SCalg :

DnF := n!∇nF (71)

Remark 8. It is straightforward to check that both of these map are well-defined on SCalg and also
does not depend on the choice of the representation. Note also that the free Malliavin derivative is
an almost sure coassociative derivation as formulated in the next proposition. It is really important
to insist on it as it provides infinite dimensional Dabrowski inequalities (section 2.2 in [15]): the
boundedness of the directional Malliavin derivative: i.e. L2-bounds of (id⊗ τ) ◦∇h (see Mai remark
5.7 of [31] for applications).

Proposition 15. The free Malliavin derivative is an almost-everywhere coassociative derivation in
the following sense:

For all F ∈ SCalg, and for almost all s, t ≥ 0:

(∇t ⊗ id)∇sF = (id⊗∇s)∇tF. (72)

Proof: Indeed it is sufficient to show the equality for F = S(e1) . . . S(en) with n ≥ 1 (since SCalg

consists of finite sum of this type of elements), where (ei)
∞
i=1 is an orthonormal basis of L2

R
(R+).

Then, we have:

∇sF =
∑

1≤i2≤n

ei2(s).S(e1) . . . S(ei2−1)⊗ S(ei2+1) . . . S(en)

And thus:

(∇t ⊗ id)∇sF =
∑

1≤i1<i2≤n

ei1(t)ei2(s).S(e1) . . . S(ei1−1)⊗ S(ei1+1) . . . S(ei2−1)⊗ S(ei2+1) . . . S(en)

We can compute the other term to get:

∇tF =
∑

1≤i1≤n

ei1(t).S(e1) . . . S(ei1−1)⊗ S(ei1+1) . . . S(en)

and we have:

(id⊗∇s)∇tF =
∑

1≤i1<i2≤n

ei1(t)ei2(s).S(e1) . . . S(ei1−1)⊗ S(ei1+1) . . . S(ei2−1)⊗ S(ei2+1) . . . S(en)
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Thus both expression coincide onto SCalg and it concludes.

Remark 9. Note that we might drop the subscript denoting the Hilbert space L2(R+) when we use
inner products or pairings 〈∇F, h〉 since the context is clear here.

Definition 28. We denote for U ∈ L2(Rn
+, SC

⊙(n+1)) ⊂ M
n,n+1
∞ , and h1, . . . , hn ∈ L2(R+) the linear

extension of the pairing

〈U, h1 ⊗ . . . ⊗ hn〉 :=
∫

Rn
+

Ut1,...,tnh1(t1) . . . hn(tn)dt1 . . . dtn (73)

Note that by Cauchy-Schwartz inequality we have:

‖〈U, h1 ⊗ . . .⊗ hn〉‖L∞(SC⊗(n+1)) ≤ ‖U‖
M

n,n+1
∞

‖‖h1 ⊗ . . .⊗ hn‖L2(Rn
+), (74)

thus the pairing could be extended continuously to a pairing between M
n,n+1
∞ and L2(Rn

+).

This enables us to provide a first interesting generalized integration-by-parts at the second-order.
We will generalize this fact to higher-orders in the sequel.

Proposition 16. Let F ∈ SCalg, h1, h2 ∈ L2
R
(R+), then

τ⊗3(〈∇2F, h1 ⊗ h2〉) = τ(FI2(h2 ⊗ h1)) (75)

Proof: There is at least two distinct way to reach the conclusion. The first one is more sophisticated
and relies on proving the closability of the linear operator (id⊗∇h2) ◦ ∇h1 .
Indeed, rewriting the equation 75, it involves to prove that for F ∈ SCalg we have:

τ⊗3((id⊗∇h2)∇h1F ) = τ(FI2(h2 ⊗ h1)) (76)

Said otherwise, it amounts to prove that, =
(
(id⊗∇h2) ◦ ∇h1

)∗
(1⊗1⊗1) := (∇h1)∗((∇h2)∗(1⊗1)⊗1)

exists in L2(SC). That is to say in the language of noncommutative derivatives that a kind a second-
order conjugate variable exists in L2(SC), we show in fact more since the second-order conjugate
variables will be bounded (even Lipschitz). Indeed, one knows from Mai’s (recalled in the proof of
theorem 1) that in this case ∇h1 is a real closable derivation,

Then a simple computations show that if this term exists and is in fact equal to:

(∇h1)∗((∇h2)∗(1⊗ 1)⊗ 1) := δh1(δh2(1⊗ 1)⊗ 1)

= δh1(S(h2)⊗ 1)

= S(h2)S(h1)−m1 ◦ (id ⊗ τ ⊗ id)(〈∇̃(S(h2)⊗ 1), h1〉)
= S(h2)S(h1)− 〈h2, h1〉
:= I2(h2 ⊗ h1) (77)

where in the last line, we used the infinite-dimensional version of the Voiculescu formula’s 7.

26



We propose another proof based on a direct computation.
We know from proposition 15, that for F = S(e1) . . . S(en) for e1, . . . , en ∈ L2

R
(R+) (not necessarily

a complete orthonormal system), for some n ≥ 1.

〈∇2F, h1 ⊗ h2〉 =
∑

1≤i1<i2≤n

〈ei1 , h1〉〈ei2 , h2〉.S(e1) . . . S(ei1−1)⊗ S(ei1+1) . . . S(ei2−1)

⊗S(ei2+1) . . . S(en)

and by applying the trace:

τ⊗3(〈∇2F, h1 ⊗ h2〉) =
∑

1≤i1<i2≤n

〈ei1 , h1〉〈ei2 , h2〉.τ(S(e1) . . . S(ei1−1))

τ(S(ei1+1) . . . S(ei2−1))τ(S(ei2+1) . . . S(en))

Now by applying two times the Wick identity (note we used the following convention: when
i1 = n+ 1, en+1 = h2), we get

τ(FX(h2)X(h1))

=
∑

1≤i1≤n+1

〈ei1 , h1〉τ(S(e1) . . . X(ei1−1))τ(S(ei1+1) . . . S(en+1))

=
∑

1≤i1≤n

〈ei1 , h1〉τ(S(e1) . . . S(ei1−1))τ(S(ei1+1) . . . S(h1)) + 〈h2, h1〉τ(F )

=
∑

1≤i1<i2≤n

〈ei1 , h1〉〈ei2 , h2〉τ(S(e1) . . . X(ei1−1))τ(S(ei1+1) . . . S(ei2−1)) . . . τ(S(ei2+1) . . . S(en))

+ 〈h2, h1〉τ(F )

Thus by comparing with the expression 78, we get:

τ(FI2(h2 ⊗ h1)) := τ(F [S(h2)S(h1)− 〈h2, h1〉]) = τ⊗3(〈∇2F, h1 ⊗ h2〉) (78)

which concludes.

Note that the definition of the gradient which acts onto biprocesses is different from our first one and
useful to deduce the Heisenberg commutation relation (c.f section 5.4) in [3]. Indeed this last one
is our second “symmetrized” version of the free Malliavin derivative which acts onto biprocesses as
following for almost all s, t ≥ 0, ∇̃t(As⊗Bs) := (∇t⊗id+id⊗∇t1)(As⊗Bs) = ∇tAs⊗Bs+As⊗∇tBs

(via the coassociativity). We will emphasize this use of this version of the gradient when needed, by
specifying it as ∇̃. Indeed, as we will see later, if we used it, it would simply and only complexify
some formulas by adding some combinatorial constant in these, as in the Wigner space it is well
known that this type of formulas are much simpler than on the Wigner space.

Definition 29. We define the non commutative semicircular Sobolev
spaces D

k,p for any p ≥ 1 and any natural number k ≥ 1 by setting on SCalg the following family of
seminorm:

‖F‖k,p =



‖F‖pp +
k∑

j=1

‖∇kF‖p
M

k,k+1
p





1
p

(79)
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As we have introduced a symmetrized variant of the free Malliavin derivative, one can thus
consider in the same vein their associated semicircular Sobolev spaces.

Definition 30. We define the symmetrized semicircular Sobolev spaces Dk,p,σ for any p ≥ 1 and any
natural number k ≥ 1 by setting on SCalg the following family of seminorm:

‖F‖k,p,σ =



‖F‖pp +
k∑

j=1

‖DkF‖p
M

k,k+1
p





1
p

(80)

With these definitions, one can then obtain the closability of these iterated gradients, as well as
compatility relations that are expected when using classical Sobolev spaces.

Proposition 17. For any p ≥ 1, and k ≥ 1, an integer, ∇k is a closable operator from Lp(SC) to
M

n,n+1
p and the domain of its closure is denoted D

k,p. For p = ∞, it is a closable operator from
L∞(SC) to M

n,n+1
∞ for the weak-operator topology.

Proof: The proof is similar as in the case k = 1 of Biane and Speicher, but involve much more
notations.
Indeed to show the closability of ∇n, n ≥ 1, consider (Fn)n ∈ SCalg, a sequence of cylindrical
functionals converging towards zero, i.e. Fn → 0 (in Lp(SC), p ≥ 1, resp. weakly) and such that

∇kFn → U ∈ M
k,k+1
p , then we have to prove that U = 0 and it is sufficient to show that:

τ⊗(k+1)
(

Z(k+1)♯〈U, h1 ⊗ . . . ⊗ hn〉
)

= 0 (81)

for any choice of h1, . . . , hn ∈ L2
R
(R+), and Z1, . . . , Zk+1 ∈ SCalg where we denoted Z(k+1) = Z1 ⊗

. . . ⊗ Zk+1 and where ♯ denotes the linear extension of the multiplication onto SC⊗k ⊗ SCop (i.e.
(a1 ⊗ . . . ⊗ ak+1)♯(b1 ⊗ . . . ⊗ bk+1) = a1b1 ⊗ a2b2 ⊗ . . . ⊗ bk+1ak+1, ai, bi ∈ SC, for i = 1, . . . , k + 1).
Then by using recursively the integration by parts formula 3, one can then achieve the proof.

Theorem 10. Replacing ∇, by D in the previous theorem, the conclusion also holds true when we
consider the symmetrised semicircular Sobolev spaces whose closure are denoted D

k,p,σ, k, p ≥ 1, and
also on L∞(SC) for the weak operator topology.

The following proposition ensures that these non commutative semicirculars Sobolev spaces
behaves well with respect to compatibility relations.

Proposition 18. This family of seminorms satisfies the following propositionerties:

1. Almost-Monotonicity: ∃ ck,p,q > 0, ‖F‖k,p ≤ ck,p,q‖F‖j,q for all F ∈ SCalg and k ≤ j, p ≤ q.

2. Compatibility: Let k, j ≥ 1 positive integers and p, q ≥ 1, then if (Fn)n≥0 is a sequence of
smooth cyclindricals functionals, ‖F‖k,p → 0, and such that (Fn)n≥0 is a Cauchy sequence for
‖.‖j,q, then by closability of ∇j on SCalg, we have that ‖Fn‖j,q → 0.

The statement also holds true when replacing the seminorms by the ones constructed with D.
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Proof: This is an easy consequence of the closability of the Malliavin gradient ∇i,Di, i ≥ 1, on
SCalg and non-commutative Holder inequalities.

We can in this way, consider the adjoint of the p-th Malliavin derivative denoted as the free
Skorokhod integral δp of order p ∈ N+. We can also show (as expected) that we can recover the
definition of multiple Wigner integral as Skorokhod integral of deterministic multiprocesses and
show that they coincide as in the classical case (see Nourdin and Peccati section 2.7 in [36]).

Definition 31. We define the free Skorohod integral of order p ≥ 1 (a positive integer), as the adjoint
of the free Malliavin derivative of order “p”, the derivative being view as an unbounded closable
operator from D

p,2 into M
p,p+1
2 . We will denote it as δp being an operator from dom(δp) ⊂ M

p+1
2

onto L2(SC).
which in particular satisfies the following duality relation:
Let u ∈ dom(δp), then for all F ∈ SCalg, there exists a unique element denoted δp(u) such that:

〈∇pF, u〉
M

p,p+1
2

= 〈F, δp(u)〉L2(SC), (82)

Remark 10. When p = 1, by choosing in 23, u = h.1 ⊗ 1 for h ∈ L2(R+), we get that
L2(R+).1⊗ 1 :=

{
h.1⊗ 1, h ∈ L2(R+)

}
⊂ dom(δ), then it is not difficult to prove that

(L2(R+))
⊗p.1⊗(p+1) :=

{
h.1⊗(p+1), h ∈ (L2(R+))

⊗p ≃ L2(Rp
+)
}
⊂ dom(δp).

This fact will allows us in particular to recover that multiple Wigner integral of order “p” are exactly
given by free Skorohod integral of order “p” of deterministic multiprocesses. This idea was first
introduce in the classical setting by Nualart and Zakai in [39], and turns out to be an important
fact, as various important statement on the classical case can be shown in an easier way by using
this definition (eg. Hypercontractivity in the the finite Wiener chaos which are a consequence of the
so-called Meyer formulas, see e.g. section 2.7 of Nourdin and Peccati [36]).

Proposition 19. For any integer p ≥ 1, and f ∈ L2(Rp
+)

δp(f.1⊗(p+1)) = Ip(f) (83)

Proof: Let us prove by induction (over “p”) that the result hold true for f = h⊗p, with h ∈ L2
R
(R+),

with ‖h‖L2(R+) = 1, and thus that we have,

Up(S(h)) = δp(h⊗p.1⊗(p+1)) (84)

For p = 1, it is clear, since U1 = X and δ(h.1 ⊗ 1) = S(h).
Now, suppose that the result holds true for 1, 2 . . . , p,
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And note that: δp+1(u) = δ((δp ⊗ idL2(R+,L2(SC))(u)), which implies that:

δ(p+1)(h⊗(p+1).1⊗(p+2))

= δ(h.δp(h⊗p.1⊗(p+1))⊗ 1)

= δ(h.Ip(h
⊗p)⊗ 1)

= Ip(h
⊗p)S(h)−m1 ◦ (id ⊗ τ ⊗ id)(〈∇̃(Ip(h

⊗p)⊗ 1), h〉L2(R+))

= Ip(h
⊗p)S(h)−m1 ◦ (id ⊗ τ ⊗ id)

(

〈h, h〉L2(R+)

p
∑

k=1

Ik−1 ⊗ Ip−k(h
⊗(p−1))⊗ 1

)

= Ip(h
⊗p)S(h)−m1

(

Ip−1(h
⊗(p−1))⊗ 1

)

= Up(S(h))S(h) − Up−1(S(h))

= Up+1(S(h))

where in the third line we used the induction hypothesis,in the fourth line we used the infinite
dimensional Voiculescu’s formulas (c.f proposition 7), and in the fifth line, the explicit action of the
Malliavin derivative (of order 1) onto Wigner integrals (c.f proposition 6).

Note that the passage from the fourth line to the fifth one is because Wigner integrals of order
greater than or equal to one are centered, thus only term in the sum which contributes to the
sum is when k = p, which gives just a constant (a multiple Wigner integral of order 0) and we
also used the hypothesis that ‖h‖L2(R+) = 1, Now, the general conclusion will follow by linearity
and density of such elementary tensors, i.e. the linear span of the complexification UC where U =
{
h⊗p, h ∈ L2

R
(R+)/‖h‖L2(R+) = 1

}
is dense in L2(Rp

+) as well as the closability of δp.

Remark 11. The reader which knows the notion of “higher-order conjugate variables” in the sense
of Voiculescu (c.f definition 3.1 in [53]) might notice that we have in fact recover in a simpler way the
proposition 3.8 in [53] which says that the p-th order conjugate variable of a standard semicircular
variable S is given by the p-th Tchebychev polynomial in this semicircular variable S. This fact
which can be rewritten in a more sophisticated way as ∂(p)∗(1⊗(p+1)) = Up(S), where ∂(p) denotes the
p-th iterated free-difference quotient with respect to the semicircular variable S (which we remind is
an unbounded and densely defined closable operator for any p ∈ N

∗), is also the free counterpart of
the result, δp(1) = Hp where δ denotes the divergence operator on the Gaussian space L2(γ) where

dγ(x) = 1√
2π
e−x2/2dx is the standard Gaussian measure and with Hp denoting the p-th Hermite

polynomial (see Nourdin and Peccati, section 1.4 in [36] for a complete and didactic exposure).

Definition 32. We define for each p ≥ 1, the following intersection of Sobolev-Wigner spaces (we
only consider here the symmetrized spaces since the first are included in these ones) which is the
space of Lp-test functionals and defined as:

D
∞,p,σ :=

⋂

k=1

D
k,p,σ (85)
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Definition 33. We set the space of test Wigner functionals as:

D
∞,σ :=

⋂

p≥1

⋂

k=1

D
k,p,σ (86)

Remark 12. A standard application of the noncommutative Holder inequalities shows that this space
is in fact an unital ∗-algebra. It is also important to notice that finite sum of multiple Wigner integrals
always belongs to D

∞,σ.

We can now level up the action of the free Malliavin derivative of higher-order onto some fixed
Wigner chaos.

Proposition 20. For p ≥ 1, a positive integer, the action of ∇p onto homogeneous Wigner chaos
of order greater than p, that is for all n ≥ p and F = In(f) with f ∈ L2(Rn

+) is given by:

∇p
t1,...,tp (In(f)) =

∑

1≤i1<...<ip≤n

Ii1−1 ⊗ Ii2−i1−1 ⊗ . . . ⊗ In−ip(f
i1,...,in
t1,...,tp ) (87)

and for almost all t1, . . . , tp ≥ 0, and every 1 ≤ i1 < . . . < ip ≤ n we have:

f(s1, . . . , si1−1, t1
︸︷︷︸

i1

, si1+1, . . . , si2−i1 , tp−1
︸︷︷︸

ip−1

, . . . , tp
︸︷︷︸

ip

, sip+1, . . . , sn)

= f
i1,...,ip
t1,...,tp (s1, . . . , si1−1, si1+1, . . . , si2−1, . . . sn)

and where we regard for almost all t1 . . . , tp fixed, and for all i1 . . . ip,

f i1,...,in
t1,...,tp as an element of L2(Ri1−1

+ )⊗ . . .⊗ L2(R
n−ip
+ ).

When p > n, the action of the free Malliavin derivative is trivial:
∇p

|Pn
= 0.

Proof: To explain the formula, first remark and note that it is easily deduced onto elementary
multiple Wigner integrals Un(S(ej)) = In(e

⊗n
j ) for n ≥ 1, where as previously (ej)

∞
j=1 is a complete

orthonormal system of L2
R
(R+).

Indeed, we have at the first order:

∇t1(Un(S(ej))) = ej(t1)
∑

1≤i1≤n

Ui1−1(S(ej))⊗ Un−i1(S(ej)) (88)

and thus (and also remark that the higher degree of Tchebychev polynomials considered is “n − 2”
since the derivative of Un−1(S(ej)) ⊗ 1, 1 ⊗ Un−1(S(ej)) which correspond to the term in the sum
k ∈ {1, n} trivially vanishes) from the almost everywhere coassociativity relation, we get (in the
second equality, we use the change of summation i2 → i2 + i1)

∇2
t1,t2(Un(S(ej))) = e⊗2

j (t1, t2)
∑

1≤i1≤n

∑

1≤i2≤n−i1

Ui1−1(S(ej))⊗ Ui2−1(S(ej))⊗ Un−i1−i2(S(ej))

= e⊗2
j (t1, t2)

∑

1<i1<i2≤n

Ui1−1(S(ej))⊗ Ui2−i1−1(S(ej))⊗ Un−i2(S(ej))

The general case can also be deduced by checking the relation for multiple Wigner integrals expressed
in terns of elementary tensors.
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for p = 1, it reduces to the action of the free Malliavin derivative onto multiple Wigner integrals,
which is true by the proposition 6.

By density and linearity, since ∇p is closable, it suffices to prove the result for some In(f) with
f an elementary (real valued) tensor of the form:
take f = f1 ⊗ . . .⊗ fn with each fi ∈ L2

R
(R+).

We obtain at first order:

∇t1(In(f)) =
∑

1≤i1≤n

fi1(t1)Ii1−1(f1 ⊗ . . .⊗ fi1−1)⊗ In−i1(fi1+1 ⊗ . . .⊗ fn)

And then by applying iteratively id⊗∇tj , we get:

∇2
t1,t2(In(f)) =

∑

1≤i1<i2≤n

fi1(t1)fi2(t2)Ii1−1(f1 ⊗ . . .⊗ fi1−1)⊗ Ii2−i1−1(fi1+1 ⊗ . . .⊗ fi2−1)

⊗In−i2(fi2+1 ⊗ . . .⊗ fn)

Similar computations for higher order Malliavin derivatives lead to the result.

Remark 13. For sake of simplicity, we will often write the tensor product

I
⊗(i1,...,ip)
n := Ii1−1 ⊗ . . . . . .⊗ In−ip to shorten the notations.

As in the classical case, we can characterize the Wigner functionals which belongs to these
L2-Sobolev spaces via their chaotic decomposition. Here we only consider the symmetrized version
as it will provide the same combinatoric appearing in the classical chaotic characterization (i.e. the
number of derangement) .

Proposition 21. Let’s F =
∑∞

n=0 In(fn) ∈ L2(SC), then for any integer p ≥ 1, F belongs to D
p,2,σ,

if and if only:
∞∑

n=p

n(n− 1) . . . (n− p+ 1)‖fn‖2L2(Rn
+) < ∞ (89)

and in this case:

‖DpF‖
M

p,p+1
2

=
∞∑

n=p

n(n− 1) . . . (n− p+ 1)‖fn‖2L2(Rn
+) < ∞ (90)

Proof: The reader may also notice that as expected of a derivation of order p ≥ 1, the elements of
the finite Wigner chaos of order stricly less than “p” vanishes. It is then only useful to consider the
case F = In(f), f ∈ L2(Rn

+), n ≥ p.
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From an approximation argument and the action of the free Malliavin derivative of order p ≥ 1,
onto homogeneous Wigner chaos, it is then sufficient to remark that given any 1 ≤ i1 . . . < ip ≤ n,
and t1 . . . , tp fixed, we have from the Wigner-Ito isometry for multiple Wigner-Ito integral which is
obviously extended to the tensor case, that the L2-norm given by τ⊗(p+1) is:

∥
∥
∥
∥
Ii1−1 ⊗ Ii2−i1−1 ⊗ . . .⊗ In−ip(f

i1,...,in
t1,...,tp )

∥
∥
∥
∥

2

L2(τ⊗(p+1))

= ‖f i1,...,in
t1,...,tp ‖

2
L2(Rn−p

+ )
(91)

where the function f i1,...,in
t1,...,tp ∈ L2(Rn−p

+ ) is seen here as a square integrable function in n−p variables.

By integrating over R
p
+, for each i1, . . . , ip fixed it gives the same contribution which is exactly the

L2 norm of the function f .

∫

R
p
+

∥
∥
∥
∥
Ii1−1 ⊗ Ii2−i1−1 ⊗ . . .⊗ In−ip(f

i1,...,in
t1,...,tp )

∥
∥
∥
∥

2

L2(τ⊗(p+1))

dt1 . . . dtp = ‖f‖2L2(Rn
+). (92)

We are then left to evaluate the cardinal of ♯ {1 ≤ i1 < . . . < ip ≤ n}, which is equal to
(
n
p

)
.

Now it suffice to remark that p!
(
n
p

)
= n(n− 1) . . . (n− p+ 1) which concludes.

As a easy consequence of the two previous propositions, we have:

Proposition 22. Let F ∈ D
2,p,σ, if ∇p(F ) = 0, then F ∈ Pp−1.

Now we will explicit the main theorem of this section which is the free analog of the well known
“Stroock’s” formula on the Wiener space first proved by Stroock in [47], and which explicitly gives
the chaotic decomposition of an infinitely smooth L2-functional in terms of its iterated Malliavin
derivatives.

Theorem 11. (Free Stroock’s formula)
Let F ∈ D∞,2,σ, with chaotic expansion F =

∑∞
n=0 In(fn), then for all n ≥ 0 and almost all (in the

sense of the Lebesgue measure) t1, . . . , tn ≥ 0:

fn(t1, . . . , tn) = τ⊗(n+1)
(
∇n

t1,...,tnF
)

(93)

Or the symmetrized version

fn(t1, . . . , tn) =
1

n!
τ⊗(n+1)

(
Dn

t1,...,tnF
)

(94)

Proof: By linearity and density, since ∇p, p ≥ 1 is a densely defined unbounded closable operator,
it suffices to show the result for multiple Wigner-Ito integrals of any order n ≥ 1:
By the proposition 6,

∇p
t1,...,tp (In(f)) =

∑

1≤i1<...<ip≤n

Ii1−1 ⊗ Ii2−i1−1 ⊗ . . . ⊗ In−ip(f
i1,...,in
t1,...,tp ) (95)

then applying τ⊗(p+1) for all p < n, is is easily seen that there is at least for any 1 ≤ i1 < . . . < ip ≤ n,
a non zero integer in the following sequence i1 − 1, i2 − i1 − 1, . . . , n− ip, thus since Wigner integral
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are centered, all the terms vanishes.
Now for p > n the higher order Malliavin derivatives trivially vanishes as expected: ∇p

|Pn
= 0.

And for the only (non trivial) contributing case, that is p = n, it is straightforward to check that the
only term is (for almost all t1, . . . , tn ≥ 0)

∇n
t1,...,tn(In(f)) = f(t1, . . . , tn).1

⊗(n+1) (96)

and the result follows.

As a straightforward application of our previous findings, we also have a generalized commutation
relation between the Ornstein-Uhlenbeck semigroup and the higher-order Malliavin derivatives.

Proposition 23. Let k a positive integer and F ∈ D
k,2, then we have the following relation which

holds true for every t > 0:

∇kPtF = e−ktP
⊗(k+1)
t ∇kF (97)

7 Variance formulas on the Wigner space

This free Stroock’s formula also gives a simple and free counterpart of variances expansion in terms
of infinite series for infinitely smooth Wigner functionals. The interested reader might consult the
book of Nourdin and Peccati [36] section 1.5 chapter 1 for analogous results in the classical case. In
fact this formula is closely linked with the free number operator N := −L, the opposite of the free
Ornstein-Uhlenbeck operator.

We first begin with a variance formula involving the free Ornstein-Uhlenbeck semigroup:

Lemma 9. For all F,G ∈ D
1,2,

cov(F,G) := τ

[

(F − τ(F ))(G − τ(G))

]

=

∫ ∞

0
e−t〈P⊗2

t (∇F ),∇G∗〉B2dt (98)

Proof: Let’s denote the (continuous) function h(t) := −τ(PtFG), then h(0) = τ(FG) and by
ergodicity of (Pt)t≥0 which means that the subalgebra of fixed-points:

N := {F ∈ SC, PtF = F, for all t ≥ 0} = C.1 (99)

is trivial (which is easy to prove), implies that lim
t→∞

h(t) = −τ(F )τ(G).

Thus one has by the fundamental rule of calculus:

cov(F,G) =

∫ ∞

0
− d

dt
h(t)dt

=

∫ ∞

0
τ

(

− dPtF

dt
G

)

dt

=

∫ ∞

0
τ(L(PtF )G)dt

=

∫ ∞

0
〈∇PtF,∇G∗〉B2dt

=

∫ ∞

0
e−t〈P⊗2

t (∇F ),∇G∗〉B2dt (100)
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Proposition 24. Let F ∈ D
∞,2,σ, then:

var(F ) := ‖F − τ(F )‖22 =
∞∑

n=1

‖τ⊗(n+1)(∇nF )‖L2(Rn
+) (101)

where τ⊗(n+1)(∇nF ) is understand point-wise amost everywhere in the sense of the product Lebesgue
measure.

Proof: The statement is an easy consequence of the previous Stroock’s formula combined with the
Wigner-Ito isometry.

Note that these last formulas are not the only variances estimates in terms of free Malliavin
operators, there is also the well known (as it is the free counterpart) of the integration by parts on
the Wiener space involving ∇, L−1, the last operator being the pseudo-inverse of the free Ornstein-
Uhlenbeck operator. Surprisingly, this last one doesn’t seem to be an appropriate variance formula
on the Wigner space especially when dealing with its combination with the free Stein’s method.
Cébron (lemma 3.9 in [8]) discovered a much more powerful formula which seems to traduce better
the properties of this differential calculus. We first recall its formula, and we provide generalized
versions which involve the higher order free Malliavin derivatives.

Lemma 10. For all A,B ∈ Pn, such as τ(A) = 0 or τ(B) = 0:

τ(AB) = τ

(∫

R+

id⊗ τ(∇tA).(τ ⊗ id(∇tB))dt

)

, (102)

We can now state a much more interesting variance formula which can be seen as the general-
ization of the formula discovered by Cébron and which is linked to the higher order free Malliavin
derivatives.

Lemma 11. (Generalized Cébron formulas) Let b ≥ a ≥ p > 1 be positive integers, then for all
A,B ∈⊕b

k=aHk :

τ(AB) = τ

(
∫

R
p
+

(id⊗ τ⊗p)(∇p
tp,...,t1A).(τ

⊗p ⊗ id)(∇p
t1,...,tpB)dt1 . . . dtp

)

, (103)

Proof: First, it is important to notice that in the term (id ⊗ τ⊗p)(∇p
tp,...,t1), that the variables

t1, . . . , tp are taken in reverse order (the reader familiar with usual and free Malliavin calculus can
notice that to be able to interchange the variables, it is necessary to assume the fully-symmetry of
the multiple Wigner integrals considered).
By linearity of the free Malliavin derivatives, it is sufficient to show the proposition for elementary
multiple Wigner integrals.
Moreover since elements of Hk, k ≥ 1 are centered (and it’s not an hypothesis) we have that τ(A) =
τ(B) = 0.
Thus it suffice to consider for a ≤ n,m ≤ b with n,m ≥ p and
A = In(f), B = Im(f) with f = f1 ⊗ . . . ⊗ fn and g = g1 ⊗ . . . ⊗ gm and each fi, gj ∈ L2

R
(R+) for

i = 1, . . . , n and j = 1, . . . ,m.
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Then we have:

∇p
tp,...,t1(In(f)) =

∑

1≤i1<...<ip≤n

fi1(tp) . . . fip(t1)Ii1−1(f1 ⊗ . . .⊗ fi1−1)⊗ . . .⊗ In−ip(fip+1 ⊗ . . .⊗ fn)

(104)
Now applying id⊗ τ⊗p, we are left with:

(id⊗ τ⊗p)(∇p
tp,...,t1A) = fn(t1) . . . fn−p+1(tp)In−p(f1 ⊗ . . .⊗ fn−p) (105)

Indeed since Wigner integrals of order k ≥ 1 are centered, all the terms vanishes expect when
ip = n, ip−1 = n− 1, . . . , i2 − i1 − 1 = 0 which implies recursively that i1 = n− p+ 1.
Similarly, we have:

(τ⊗p ⊗ id)(∇p
t1,...,tp

B) = g1(t1) . . . gp(tp)Im−p(gp+1 ⊗ . . .⊗ gm) (106)

Now,

τ

(
∫

R
p
+

(id ⊗ τ⊗p)(∇p
tp,...,t1A).(τ

⊗p ⊗ id)(∇p
t1 ,...,tpB)dt1 . . . dtp

)

=

∫

R
p
+

fn(t1) . . . fn−p+1(tp)g1(t1) . . . gp(tp)τ (In−p(f1 ⊗ . . . ⊗ fn−p).Im−p(gp+1 ⊗ . . .⊗ gm)) dt1 . . . dtp

=

∫

R
p
+

fn(t1) . . . fn−p+1(tp)g1(t1) . . . gp(tp)δn−p,m−p(f1 ⊗ . . .⊗ fn−p)
p
⌢ (gp+1 ⊗ . . . ⊗ gm)dt1 . . . dtp

= δn,m.f
n
⌢ g

= τ(AB)

where here we denote δ as the delta Kronecker symbol.

Remark 14. This lemma will be particularly useful for its connection with the free-Malliavin Stein
method, especially when dealing with higher-order derivatives of noncommutative polynomials, this
we will be investigated in another forthcoming paper.

8 Product formula on the Wigner space

We recalled in the first section, the product formula proved by Biane and Speicher in [3], which
provides the chaotic decomposition (linearization formula) of the the product of two multiple Wigner
integrals. In this section, we will prove that this formula is as in the classical case (idea which first
appeared in the work of Üstünel [49]) just a consequence of a kind of Leibniz formula (idea introduced
by Voiculescu in discussion preceding proposition 4.5 in [53]) and also satisfied by the free Malliavin
gradient. This proof is thus more in spirit with its connection to Malliavin calculus.

Before giving the proof of this formula, we remind to the reader, that it is straightforward to check
(see for example Voiculescu page 205 in [53]) that:
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Lemma 12. For any F,G in SCalg, then, for almost all t1, . . . , tn ≥ 0:

∇n
t1,...,tn(FG) =

n∑

k=0

(id⊗k ⊗m1 ⊗ id⊗(n−k))(∇k
t1,...,tn−k

(F )⊗∇n−k
tn−k+1,...,tn

(G)) (107)

where by convention when k ∈ {0, n}, ∇0(F )⊗∇n(G) := F.∇n(G) and ∇n(F )⊗∇0(G) := ∇n(F ).G
are respectively the multiplication of the first and last leg.

Proof: Thus we fix F,G ∈ SCalg. We first explain how it works on the first few orders, n = 1, 2, 3.
The general result being just an iterative application of the Malliavin gradient.
Indeed, for n = 1 it is clear, since it’s just reduces to the Leibniz rule of the free Malliavin derivative
onto SCalg.

∇t1(FG) = ∇t1(F ).G +∇t1(G).F

Which gives at the second order n = 2, for t1, t2 ≥ 0,

∇2
t1,t2(FG) := (id ⊗∇t2)(∇t1(F ).G + F.∇t1(G))

= ∇2
t1,t2(F ).G + (id⊗m1 ⊗ id)(∇t1(F )⊗∇t2(G)) + F.∇2

t1,t2(G) (108)

Then at the third order, we have:

∇3
t1,t2,t3(FG) := (id⊗∇t3)(∇2

t1,t2(F ).G + (id⊗m1 ⊗ id)(∇t1(F )⊗∇t2(G)) + F.∇2
t1,t2(G))

= ∇3
t1,t2,t3(F ).G + (id⊗2 ⊗m1 ⊗ id)(∇2

t1 ,t2(F )⊗∇t3(G))

+ (id⊗m1 ⊗ id2)(∇t1(F )⊗∇2
t2,t3(G)) + F.∇2

t1,t2,t3(G)

Applying the same scheme for higher order yields the result.

We can now get back to proof of 3.

Proof: (proposition 3) First remark that for all n,m ≥ 0, In(f), In(g) ∈ D
∞,4,σ, thus In(f)Im(g) ∈

D
∞,2,σ.

For sake of clarity and because it suffices to consider f = f1 ⊗ . . . ⊗ fn and g = g1 ⊗ . . . ⊗ gm
elementary tensors with fi, gj ∈ L2

R
(R+) for all 1 ≤ i ≤ n, 1 ≤ j ≤ m, we only give details about this

case, the general result follows by approximation.
Then, we know from the free Stroock’s formula, that the chaotic decomposition is given by:

In(f)Im(g) =

∞∑

p=0

Ip

(

τ⊗(p+1)[∇p(In(f)Im(g))]
)

(109)

Now, we know by the previous lemma that:

∇p(In(f)Im(g)) =

p
∑

k=0

(id⊗k ⊗m1 ⊗ id⊗(p−k))(∇k(In(f))⊗∇p−k(Im(g)) (110)
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and thus by using the explicit action of ∇ onto Wigner chaos, we get (note the conventions used in
remark 13):

∇p(In(f)Im(g))

=

p∧n
∑

k=0∨(p−m)

∑

1≤i1<...<ik≤n
1≤j1<...<jp−k≤m

(id⊗k ⊗m1 ⊗ id⊗(p−k))(Ii1,...,ikn (f)⊗ I
j1,...,jp−k
m (g))

Since Wigner-Ito integrals are centered, by applying τ⊗(p+1), we must have to get non-zero terms:
i1 − 1 = . . . = ik − ik−1 − 1 = j2 − j1 − 1 . . . = jp−k − jp−k−1 − 1 = m− jp−k = 0, which thus gives
recursively that:
i1 = 1, . . . , ik−1 = k − 1, ik = k and j1 = m+ k − p+ 1, . . . , jp−k−1 = m− 1, jp−k = m.

One can see that the “central term” (the one on which the operator m1 applies) being thus given
by the trace of the product of the multiple integrals In−k(fk+1⊗. . .⊗fn) and Im+k−p(g1⊗. . .⊗gm+k−p),
is non zero by the Wigner-Ito isometry if and if only k = (n−m+ p)/2, thus k and n+m have the
same parity and |n−m| ≤ p ≤ n+m.
Thus there is only one non zero term in the equation 110 given by k = (n −m + p)/2, which gives
n− k = (n+m− p)/2 and m+ k − p = (n+m− p)/2 the associated kernel being thus given by:

τ

(

I(n+m−p)/2(f(n−m−p+2)/2 ⊗ . . .⊗ fn)I(n+m−p)/2(g1 ⊗ . . .⊗ g(n+m−p)/2)

)

.f1 ⊗ . . . ⊗ f(n−m+p)/2

⊗ g(n+m−p+2)/2 ⊗ . . .⊗ gn

= 〈g1 ⊗ . . .⊗ g(n+m−p)/2, fn ⊗ . . . ⊗ f(n−m+p+2)/2〉L2(R
(n+m−p)/2
+ )

.f1 ⊗ . . . ⊗ f(n−m+p)/2

⊗ g(n+m−p+2)/2 ⊗ . . .⊗ gn

:= f
(n+m−p)/2

⌢ g

Using this fact into the equation 109, we get by setting r = (n+m− p)/2 :

In(f)Im(g) =

n+m∑

p=|n−m|
Ip(f

(n+m−p)/2
⌢ g)

=

n∧m∑

r=0

In+m−2r(f
r
⌢ g) (111)

which concludes the proof.

Remark 15. Another way of proving the product formula is to use the original approach of Üstünel
in [48], the previous Leibniz formula, the fact that
δp(f.1⊗(p+1)) = Ip(f) for f ∈ L2(Rp

+) and finally that the adjoint of the free Malliavin derivative ∇p

is δp. It is however a less obvious and clear proof due to the heavy notations. We leave the details
to the interested reader.
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Indeed, without loss of generality, we can assume that n < m. By computing for φ ∈ D
∞,σ, the

following quantity:
τ(In(f)Im(g)φ∗), (112)

and prove that it is equal to:
n∑

r=0

τ(In+m−2r(f
r
⌢ g)φ∗), (113)

gives the desired conclusion.
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[19] Aurélien Deya, Ivan Nourdin, Invariance principles for homogeneous sums of free random
variables, Bernoulli 20(2): 586-603 (May 2014).

[20] Charles-Philippe Diez, Free Malliavin-Stein-Dirichlet method: multidimensional semicircu-
lar approximations and chaos of a quantum Markov operator, arXiv:2211.07595v1.

[21] Liming Ge, Applications of free entropy to von Neumann algebras, II. Annals of Mathematics
Second Series, Vol. 147, No. 1 (Jan., 1998), pp. 143-157 (15 pages).

[22] Alice Guionnet, Dimitri Shlyakhtenko, Free diffusion and matrix models with strictly
convex inetraction, Geometric and Functional Analysis, 18(6):1875-1916.

[23] Uffe Haagerup, An example of a non nuclear C∗-algebra, which has the metric approximation
property, Invent Math 50, 279–293 (1978).

[24] Adrian Ioana with an appendix joint with Stefaan Vaes, Cartan subalgebras of amal-
gamated free product II1 factors, Ann. Sci. Ec. Norm. Super. (4) 48 (2015), no. 1, 71-130.

[25] David Jekel, Wuchen Li and Dimitri Shlyakhtenko, Tracial smooth functions of non-
commuting variables and the free Wasserstein manifold, Dissertationes Mathematicae 580
(2022), 1-150.

[26] Todd Kemp, Ivan Nourdin, Giovanni Peccati, Roland Speicher, Wigner chaos and
fourth moment theorems, Ann. Probab. 2012.

[27] Michel Ledoux, Chaos of a Markov operator, The Annals of Probability, 2012, Vol. 40, No.
6, 2439–2459 DOI: 10.1214/11-AOP685.
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