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Abstract

Our main purpose is to use a new condition, α-local nondeterminism,
which is an alternative to the classical local nondeterminism usually
utilized in the Gaussian framework, in order to investigate Besov reg-
ularity, in the time variable t uniformly in the space variable x, for
local times L(x, t) of a class of continuous processes. We also extend
the classical Adler’s theorem [1, Theorem 8.7.1] to the Besov spaces
case. These results are then exploited to study the Besov irregularity
of the sample paths of the underlying processes. Based on similar
known results in the case of the bifractional Brownian motion, we be-
lieve that our results are sharp. As applications, we get sharp Besov
regularity results for some classical Gaussian processes and the solu-
tions of systems of non-linear stochastic heat equations. The Besov
regularity of their corresponding local times is also obtained.
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1 Introduction and main results

The local times of d-dimensional paths have gotten much interest during the
last few decades by the analytical and probabilistic communities. The oc-
cupation measure basically measures the amount of time the path spends
in a given set. The local time is defined as the Radon-Nikodym derivative
of the occupation measure with respect to the Lebesgue measure. It is of
importance in both theory and applications to investigate sample path prop-
erties of stochastic processes. One way of studying the irregularity properties
of the sample paths of stochastic processes is by analyzing the smoothness
of their local times. S. Berman has initiated this approach in a series of
papers [3, 4, 5] by using Fourier analytic methods to Gaussian processes.
Furthermore, he has introduced the concept of local nondeterminism (LND)
for Gaussian processes to investigate the existence of jointly continuous local
times. Since then, there have been a wide variety of extensions of the notion
of local nondeterminism for Gaussian and stable processes, e.g. [21, 14, 20].
In the Gaussian case, the exponential form of the characteristic function al-
lows expressing the LND property in terms of a condition on the variance.
Nevertheless, the unknown form of the characteristic functions of general
processes leads to difficulties in extending the LND condition beyond the
Gaussian framework. Consequently, the LND property used in the Gaussian
context should be replaced, for general processes, by fine estimations on the
characteristic function of the increments. Recently, based on the conditional
Malliavin calculus, Lou and Ouyang [19] have established an upper bound of
Gaussian type for the partial derivatives of the n-point joint density of the
solution to a stochastic differential equation driven by fractional Brownian
motion. They have used this result as an alternative to the LND condition.
Due to this, the authors in [19] have shown the existence and regularity of the
local times of stochastic differential equations driven by fractional Brownian
motions. In [11], a new condition, called α-local nondeterminism (α-LND
for short), has been introduced to investigate the joint regularity of the local
times of the solutions to systems of non-linear stochastic heat equations –
which are neither Gaussian nor stable processes. In the Gaussian context, the
α-LND property is particularly seen as a weaker condition than the classical
LND (see Remark 2.9). Generally, the proof of the α-LND condition relies
on the technique of integration by parts derived from the Malliavin calculus.
Roughly speaking, we believe that the approach presented in [11] can be used
to establish the α-LND for a class of adapted stochastic processes that are
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smooth in the Malliavin sense.
Consider (Xt)t∈[0,1] an R

d-valued continuous stochastic process, such that
X(0) = 0. Assume that X satisfies the α-LND with α ∈ (0, 1), see Definition
2.8. Let us state the following hypothesis on X :
H There exists p0 >

1
α
and K > 0 such that for all 0 ≤ s ≤ t ≤ 1,

E[‖Xt −Xs‖
p0] ≤ K|t− s|p0α. (1.1)

One can get by the same calculations as in [11] (see [11, Remark 5.6]) that,
when α < 1

d
, X has a jointly continuous version of the local time, L(x, t),

satisfying almost surely a Hölder condition of order γ < 1− dα, in the time
variable t uniformly in the space variable x. One of the main aims of this
article is to improve this uniform Hölder continuity of L(x, •) to regularity
in the Besov spaces – we refer to Subsection 2.1 for some notions on Besov
spaces. There are well-known Besov regularity results, in the space variable
x for fixed t, of the local times L(x, t) of some classical Gaussian and stable
processes, e.g. [13, 12]. However, to the best of our knowledge, there is no
work in the literature treating the Besov regularity of L(x, •) even for the
Gaussian or stable processes. To fill this gap, we use the α-LND condition
to investigate the Besov regularity, in the time variable t uniformly in the
space variable x, for local times of general processes. Our first main result
is:

Theorem 1.1. Let X = (Xt)t∈[0,1] be an R
d-valued continuous stochastic

process which is α-LND with α ∈ (0, 1
d
). Assume also that X verifies H.

Denote by L(x, t) the jointly continuous version of the local time of X . Then,
almost surely, for any 1 ≤ p < ∞,

sup
0<t≤1

t−(1−dα) sup
|h|≤t

‖r 7→ sup
x∈Rd

|L(x, r + h)− L(x, r)|‖Lp(I(h);R) < ∞. (1.2)

In particular, we have the following Besov regularity

P
[

L(x, •) ∈ B1−dα
p,∞ (I;R) , for all x ∈ R

d and p ∈ [1,∞)
]

= 1, (1.3)

where I = [0, 1], I(h) = {x ∈ I ; x+ h ∈ I}, and L(x, •) : t ∈ I 7→ L(x, t).

As mentioned above, we know that the regularity of the local time is linked
to the irregular behavior of the sample paths of the corresponding process.
Recall that Adler’s theorem, [1, Theorem 8.7.1], establishes a connection
between the Hölder continuity, in the time variable t uniformly on the space
variable x, of the local time and the Hölder irregularity of its underlying
function, as follows:
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Theorem 1.2 (Adler). Let (f(t))t∈[0,1] be an R
d-valued continuous function

possessing a local time, L(x, t), satisfying: there exist c and ρ positive and
finite constants, such that for all t, t+ h ∈ [0, 1] and all |h| < ρ,

sup
x∈Rd

|L(x, t + h)− L(x, t)| ≤ c|h|µ, (1.4)

for 0 < µ < 1. Then, all coordinate functions of f are nowhere Hölder
continuous of order greater than (1− µ)/d.

One of the goals of this article is to provide a similar theorem to that of
Adler in the case of Besov spaces. We have the following theorem:

Theorem 1.3. Let (f(t))t∈[0,1] be an R
d-valued continuous function possess-

ing a local time, L(x, t), satisfying for some µ ∈ (0, 1) and p ∈ (d/(1−µ),∞),

sup
0<t≤1

t−µ/d sup
|h|≤t

‖s 7→ sup
x∈Rd

|L(x, s+ h)− L(x, s)|
1
d‖

L
p

(p−1) (I(h);R)
< ∞. (1.5)

Then, the function f does not belong to the Besov space B
(1−µ)/d,0
p,∞ (I,Rd),

where I = [0, 1] and I(h) = {x ∈ I ; x+ h ∈ I}.

Based on the above results, we note that the Besov regularity, in the time
variable t uniformly on the space variable x, of the local times L(x, t) associ-
ated with α-LND stochastic processes is valuable, as this knowledge can be
applied towards Besov irregularity of the underlying processes. Therefore, as
a consequence of Theorem 1.1 and 1.3, we will obtain the following theorem:

Theorem 1.4. Let (Xt)t∈[0,1] be an R
d-valued continuous stochastic process,

X(0) = 0, which is α-LND with α ∈ (0, 1
d
). Assume also that X verifies H.

Then
P
[

X(•) ∈ Bα,0
p,∞(I,Rd) , for some p ∈ (1/α,∞)

]

= 0, (1.6)

where I = [0, 1] and X(•) : t ∈ I 7→ Xt ∈ R
d.

According to the following continuous injections

Bα
p,q(I,R

d) →֒ Bα,0
p,∞(I,Rd), 1 ≤ q < ∞,

we get:
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Corollary 1.5. Let (Xt)t∈[0,1] be an R
d-valued continuous stochastic process,

X(0) = 0, which is α-LND with α ∈ (0, 1
d
). Assume also that X verifies H.

Then

P
[

X(•) ∈ Bα
p,q(I,R

d) , for some p ∈ (1/α,∞) and q ∈ [1,∞)
]

= 0, (1.7)

where I = [0, 1] and X(•) : t ∈ I 7→ Xt ∈ R
d.

It appears that Theorem 1.4, for d = 1, covers some well-known results
in Roynette [22] and Boufoussi and Nachit [9, 10]. We illustrate Theorem
1.4 and 1.1 with some examples. We infer the uniform Besov regularity of
the local times, as well as the Besov irregularity, of the following α-LND
processes: First, we consider an R

d-valued Gaussian process (Yt)t∈[0,1], with
Yt = (Y 1, . . . , Y d

t ), where Y 1, . . . , Y d
t are independent copies of a real-valued

LND Gaussian process (Y 0
t )t∈[0,1], satisfying for some α ∈ (0, 1) and finite

constants c, C > 0,

c(t− s)2α ≤ Var
(

Y 0
t − Y 0

s

)

≤ C(t− s)2α, (1.8)

for every 0 ≤ s < t ≤ 1. Notice that the d-dimensional bifractional Brow-
nian motion verifies the above conditions. Secondly, as an example of non-
Gaussian and non-stable processes, we regard systems of non-linear stochastic
heat equations.

In this article, to deal with Besov spaces, we are based on representa-
tions of the Besov norms in terms of dyadic expansion coefficients of a given
function. These descriptions of the Besov norms are derived from [18, 3.b.9
Corollary]. To the best of our knowledge, the treatise of König [18] has been
used for the first time to investigate Besov regularity of stochastic processes
by Hytönen and Veraar [17].

The rest of the paper is organized as follows. In the second section, we
write some preliminary results on Besov spaces and local times. The third
section is devoted to the proofs of the main results. In the fourth section, we
give some examples.

Finally, we point out that constants in our proofs may change from line
to line. For a process X = (Xt)t∈[0,1], sometimes if necessary, we write X(t)
instead of Xt.
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2 Preliminaries

2.1 Besov spaces

For the definition of the real-valued Besov spaces, we refer to [23], and for
the vector-valued Besov spaces, we suggest the treatise [18]. Let I = [0, 1],
for any h ∈ R, we put I(h) = {x ∈ I ; x + h ∈ I}. Let 1 ≤ p < ∞ and
ν ∈ (0, 1), the modulus of continuity of a function f ∈ Lp(I;Rd) is defined
by

ωp(f, t) = sup
|h|≤t

‖x 7→ f(x+ h)− f(x)‖Lp(I(h);Rd). (2.1)

We define the vector-valued Besov space Bν
p,∞(I;Rd) as the space of all func-

tions f ∈ Lp(I;Rd) such that the seminorm Nν,p(f) := sup0<t≤1 t
−νωp(f, t)

is finite. Bν
p,∞(I;Rd) endowed with the sum of the Lp-norm and the semi-

norm Nν,p is a Banach space. Let Bν,0
p,∞(I,Rd) be the space of all functions

f ∈ Bν
p,∞(I;Rd) for which limt→0+ t−νωp(f, t) = 0. Using a dyadic approx-

imation argument (see the lemma in page 173 and Corollary 3.b.9 in [18])
one has the following theorem:

Theorem 2.1. Let 1 ≤ p < ∞ and ν ∈ (0, 1). We have

(i) The seminorm Nν,p is equivalent to

‖f‖ν,p := sup
j≥0

2jν‖x 7→ f(x+ 2−j)− f(x)‖Lp(I(2−j);Rd). (2.2)

(ii) Let f ∈ Lp(I;Rd). Then f is in Bν,0
p,∞(I,Rd) if and only if

lim
j→∞

2jν‖x 7→ f(x+ 2−j)− f(x)‖Lp(I(2−j );Rd) = 0. (2.3)

(iii) Let 1 ≤ p < ∞ and 0 < ν < 1. Then there exists a positive and finite
constant c such that for all g from R

d × [0, 1] to R jointly continuous
function with compact support,

c−1 sup
0<t≤1

t−ν sup
|h|≤t

‖r 7→ sup
x∈Rd

|g(x, r + h)− g(x, r)|‖Lp(I(h);R)

≤ sup
j≥0

2jν‖r 7→ sup
x∈Rd

|g(x, r + 2−j)− g(x, r)|‖Lp(I(2−j );R)

≤ c sup
0<t≤1

t−ν sup
|h|≤t

‖r 7→ sup
x∈Rd

|g(x, r + h)− g(x, r)|‖Lp(I(h);R).

(2.4)
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(iv) Let 1 ≤ p < ∞, 0 < ν < 1, and f be an R
d-valued continuous function.

Then

lim
t→0+

t−ν sup
|h|≤t

‖x 7→ sup
y,z∈[0,1]

‖f(hz + x)− f(hy + x)‖‖Lp(I(h),R) = 0,

if and only if

lim
j→∞

2jν‖x 7→ sup
y,z∈[0,1]

‖f(2−jz + x)− f(2−jy + x)‖‖Lp(I(2−j );R) = 0.

Now we will introduce the spaces bν,0
p,∞(I;Rd), which will play a key role

in the proof of Theorem 1.3. Let I = [0, 1], 1 ≤ p < ∞, and ν ∈ (0, 1),
bν,0
p,∞(I;Rd) is defined as the space of all functions f ∈ C(I;Rd), where

C(I;Rd) is the space of Rd-valued continuous functions, such that

lim
j→∞

2jν‖x 7→ sup
y,z∈[0,1]

‖f(2−jz + x)− f(2−jy + x)‖‖Lp(I(2−j );R) = 0, (2.5)

here I(2−j) = {x ∈ I ; x+ 2−j ∈ I}. In the below theorem, we will give the
relation between the spaces bν,0

p,∞(I;Rd) and the classical spaces Bν,0
p,∞(I,Rd).

Theorem 2.2. Let I = [0, 1], ν ∈ (0, 1), and 1
ν
< p < ∞. Then

bν,0
p,∞(I;Rd) = C(I;Rd) ∩Bν,0

p,∞(I,Rd).

At this point, to prove the above theorem, we need the Garsia-Rodemich-
Rumsey inequality [15].

Lemma 2.3. Let Ψ(u) and p(u) be non-negative even functions respectively
on R and [−1, 1] with p(0) = 0 and Ψ(∞) = ∞. Assume that p(u) and Ψ(u)
are non decreasing for u ≥ 0 and p(u) is continuous. Let g(x) be continuous
on [0, 1] and suppose that

∫ 1

0

∫ 1

0

Ψ

(

g(v)− g(w)

p(v − w)

)

dv dw ≤ B < ∞.

Then, for all z, y ∈ [0, 1],

|g(z)− g(y)| ≤ 8

∫ |z−y|

0

Ψ−1

(

4B

u2

)

dp(u).
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Proof of Theorem 2.2. We just need to prove that C(I;Rd) ∩Bν,0
p,∞(I,Rd) ⊆

bν,0
p,∞(I;Rd), since the second inclusion is trivial. Let f = (f1, . . . , fd) ∈

C(I;Rd)∩Bν,0
p,∞(I,Rd), Ψ(u) = |u|p, and p(u) = |u|ν+

β
p , where β ∈ [0, 1) such

that νp − 1 > 1 − β. Hence by Fubini’s theorem, changes of variables, and
the fact that f ∈ Bν

p,∞(I,Rd), we have for any 1 ≤ i ≤ d,

B(i, j, x) :=

∫ 1

0

∫ 1

0

|fi(2−jv + x)− fi(2
−jw + x)|p

|v − w|νp+β
dv dw < ∞. (2.6)

Therefore, by Lemma 2.3 we get for all 1 ≤ i ≤ d and z, y ∈ [0, 1],

|fi(2
−jz + x)− fi(2

−jy + x)|p

≤ Cν,β,p|z − y|νp+β−2

∫ 1

0

∫ 1

0

|fi(2−jv + x)− fi(2
−jw + x)|p

|v − w|νp+β
dv dw

≤ Cν,β,p

∫ 1

0

∫ 1

0

|fi(2−jv + x)− fi(2
−jw + x)|p

|v − w|νp+β
dv dw,

where Cν,β,p = 8p4pp/(β + pν − 2)p. Hence, for all 1 ≤ i ≤ d,

sup
z,y∈[0,1]

|fi(2
−jz + x)− fi(2

−jy + x)|p

≤ Cν,β,p

∫ 1

0

∫ 1

0

|fi(2−jv + x)− fi(2
−jw + x)|p

|v − w|νp+β
dv dw,

Therefore, for all 1 ≤ i ≤ d,

2jpν
∫

I(2−j)

sup
z,y∈[0,1]

|fi(2
−jz + x)− fi(2

−jy + x)|pdx

≤ Cν,β,p

∫

[0,1]2

2jpν

|v − w|νp+β

∫ 1−2−j

0

|fi(2
−jv + x)− fi(2

−jw + x)|pdx dv dw

= Cν,β,p

∫

[0,1]2

2jpν

|v − w|νp+β

∫ 1−2−j+2−jw

2−jw

|fi(x+ 2−j(v − w))− fi(x)|
pdx dv dw

≤ Cν,β,p

∫

[0,1]2

2jpν

|v − w|νp+β

∫

I(2−j(v−w))

|fi(x+ 2−j(v − w))− fi(x)|
pdx dv dw,

(2.7)

where I(2−j(v−w)) = {x ∈ [0, 1] ; x+2−j(v−w) ∈ [0, 1]}. By the definition
of f ∈ Bν,0

p,∞(I,Rd), we have for all v, w ∈ [0, 1] with v 6= w,

lim
j→∞

2jpν

|v − w|νp+β

∫

I(2−j(v−w))

|fi(x+ 2−j(v − w))− fi(x)|
pdx = 0.
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Therefore, By Lebesgue’s dominated convergence theorem the right hand
side of (2.7) converges to 0. Which concludes the proof of Theorem 2.2.

Remark 2.4. Let Bν
p,q(I,R

d), for 1 ≤ p, q < ∞ and ν ∈ (0, 1), be the Besov
spaces defined as follows:

Bν
p,q(I,R

d) := {f ∈ Lp(I,Rd) ; ‖f‖ν,p,q < ∞},

where by [18, 3.b.9 Corollary] we have

‖f‖ν,p,q :=

{

∑

j≥0

2jqν‖x 7→ f(x+ 2−j)− f(x)‖q
Lp(I(2−j);Rd)

}
1
q

.

Therefore, we have the following continuous injection: for all 1 ≤ p, q < ∞
and ν ∈ (0, 1),

Bν
p,q(I,R

d) →֒ Bν,0
p,∞(I,Rd). (2.8)

2.2 The local times

This section is devoted to give some aspects of the theory of local times. For
more details on the subject, we refer to the survey of Geman and Horowitz
[16].

Let (ϕt)t∈[0,T ] be an R
d-valued Borel function. For any Borel set B ⊆

[0, T ], the occupation measure of ϕ on B is given by the following measure
on R

d:
νB(•) = λ{t ∈ B ; ϕt ∈ •},

where λ is the Lebesgue measure. When νB is absolutely continuous with
respect to the Lebesgue measure on R

d, λd, we say that the local time of ϕ
on B exists and it is defined as the Radon-Nikodym derivative of νB with
respect to λd, i.e., for almost every x,

L(x,B) =
dνB
dλd

(x).

In the above, we call B the time variable and x the space variable. We write
L(x, t) and L(x) instead of respectively L(x, [0, t]) and L(x, [0, T ]).

The local time fulfills the following occupation formula: for any Borel set
B ⊆ [0, T ], and for every measurable bounded function f : Rd → R,

∫

B

f(ϕs)ds =

∫

Rd

f(x)L(x,B)dx. (2.9)
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The deterministic function ϕ can be chosen to be the sample path of a
separable stochastic process (Xt)t∈[0,T ] with X(0) = 0 a.s. In this regard, we
state that the process X has a local time (resp. square integrable local time)
if for almost all ω, the trajectory t 7→ Xt(ω) has a local time (resp. square
integrable local time).

We study the local time through Berman’s approach. The idea is to derive
properties of the local time, L(•, B), from the integrability properties of the
Fourier transform of the sample paths of the process X .

Let us state the following hypotheses:
A1

∫

Rd

∫ T

0

∫ T

0

E
[

ei〈u,Xt−Xs〉
]

dt ds du < ∞,

where 〈·, ·〉 is the Euclidean inner product on R
d.

A2 For every even integer m ≥ 2,

∫

(Rd)m

∫

[0,T ]m

∣

∣

∣

∣

∣

E

[

exp

(

i

m
∑

j=1

〈

uj , Xtj

〉

)]∣

∣

∣

∣

∣

m
∏

j=1

dtj

m
∏

j=1

duj < ∞.

Recall the following essential result that we can find in [3]:

Theorem 2.5. Assume A1. Hence the process X has a square integrable
local time. Furthermore, we have almost surely, for all Borel set B ⊆ [0, T ],
and for almost every x,

L(x,B) =
1

(2π)d

∫

Rd

e−i〈u,x〉

∫

B

ei〈u,Xt〉dt du. (2.10)

Remark that L(x,B), given by (2.10), is not a stochastic process. We will
follow Berman [4] to create a version of the local time, which is a stochastic
process. The following theorem is given in Berman [4, Theorem 4.1] for d = 1
and m = 2, so we will omit its proof.

Theorem 2.6. Assume A1 and A2. Put for all integer N ≥ 1,

LN(x, t) =
1

(2π)d

∫

[−N,N ]d
e−i〈u,x〉

∫ t

0

ei〈u,Xs〉ds du.

Therefore, there exists a stochastic process L̃(x, t) separable in the x-variable,
such that for each even integer m ≥ 2,

lim
N→∞

sup
(x,t)∈Rd×[0,T ]

E

[

|LN(x, t)− L̃(x, t)|m
]

= 0. (2.11)
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Theorem 2.7 (Theorem 4.3 in [4]). Let L̃(x, t) be given by (2.11). If the
stochastic process {L̃(x, t), x ∈ R

d} is almost surely continuous, hence it is
a continuous (in the x-variable) version of the local time on [0, t].

In order to prove Theorem 1.1, we will need to estimate the moments
of the increments of L̃. For this end, we have by (2.11), for all x, y ∈ R

d,
t, h ∈ [0, T ] such that t+ h ∈ [0, T ], and even integer m ≥ 2,

E[L̃(x+ y, t+ h)− L̃(x, t + h)− L̃(x+ y, t) + L̃(x, t)]m =
1

(2π)md

×

∫

(Rd)m

∫

[t,t+h]m

m
∏

j=1

(

e−i〈uj ,x+y〉 − e−i〈uj ,x〉
)

E

[

ei
∑m

j=1〈uj ,Xtj〉
]

m
∏

j=1

dtj

m
∏

j=1

duj

=
1

(2π)md

∫

(Rd)m

∫

[t,t+h]m

m
∏

j=1

(

e−i〈vj−vj+1,x+y〉 − e−i〈vj−vj+1,x〉
)

× E

[

ei
∑m

j=1〈vj ,Xtj
−Xtj−1〉

]

m
∏

j=1

dtj

m
∏

j=1

dvj,

(2.12)

and

E[L̃(x, t+ h)− L̃(x, t)]m

=
1

(2π)md

∫

(Rd)m

∫

[t,t+h]m
e−i

∑m
j=1〈uj ,x〉E

[

ei
∑m

j=1〈uj ,Xtj〉
]

m
∏

j=1

dtj

m
∏

j=1

duj

=
1

(2π)md

∫

(Rd)m

∫

[t,t+h]m
e−i〈v1,x〉E

[

ei
∑m

j=1〈vj ,Xtj
−Xtj−1〉

]

m
∏

j=1

dtj

m
∏

j=1

dvj,

(2.13)

where t0 = 0, and the last equality in (2.12) (resp. (2.13)) holds by the
following changes of variables:

uj = vj − vj+1, j = 1, · · · , m, with vm+1 = 0.

In order to estimate (2.12) and (2.13), we need first to manage the charac-

teristic function E

[

ei
∑m

j=1〈vj ,Xtj
−Xtj−1〉

]

. Therefore, we will use the following

condition called α-local nondeterminism (α-LND), which was introduced for
the first time in [11].
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Definition 2.8. Let X = (Xt)t∈[0,T ] be an R
d-valued stochastic process, J a

subinterval of [0, T ] and α ∈ (0, 1) . X is said to satisfy the α-LND property
on J , if for every non-negative integers m ≥ 2, and kj,l, for j = 1, · · · , m,
l = 1, · · · , d, there exist positive constants c and ε, both may depend on m
and kj,l, such that

∣

∣

∣
E

[

ei
∑m

j=1〈vj ,Xtj
−Xtj−1〉

]∣

∣

∣
≤

c
∏m

j=1

∏d
l=1 |vj,l|

kj,l(tj − tj−1)αkj,l
, (2.14)

for all vj = (vj,l ; 1 ≤ l ≤ d) ∈ (R \ {0})d, for j = 1, · · · , m, and for every
ordered points t1 < · · · < tm in J with tm − t1 < ε and t0 = 0.

Remark 2.9. 1. It is well-known that the concept of local nondeterminism
in the Gaussian framework means that “the value of the process at a
given time point is relatively unpredictable based on a finite set of ob-
servations from the immediate past”. In the Gaussian context, Berman
uses conditional variance to express this. But unfortunately, he can’t
use the conditional variance outside the Gaussian case because in a
general framework the conditional variance is not deterministic. So,
Berman has introduced the local g-nondeterminism concept for general
processes by replacing the incremental variance, which is a measure of
local unpredictability, by a measure of local predictability, namely, the
value of the incremental density function at the origin, see [6, Defini-
tion 5.1]. Therefore, the local g-nondeterminism concept reflects well
his name. By the Fourier inversion theorem, it is easy to see that the
condition in Definition 2.8 implies the local g-nondeterminism condi-
tion. On the other hand, Nolan has introduced the notion of charac-
teristic function locally approximately independent increments (see [20,
Definition 3.1]), which is equivalent in the Gaussian and stable context
to the classical LND condition. The condition in Definition 2.8 (d = 1)
is an extension of Nolan’s notion by replacing the characteristic func-
tions

∣

∣E
[

eicmuj(X(tj )−X(tj−1))
]∣

∣ in the right-hand side of [20, Ineq. (3.3)]
by c |uj|−kj(tj − tj−1)

−αkj . For all these reasons, we choose to call the
condition in Definition 2.8 by α-local nondeterminism (α-LND).

2. Let Y 0 = (Y 0
t )t∈[0,T ] be a real-valued centred Gaussian process satisfy-

ing the classical local nondeterminism (LND) property on J ⊆ [0, T ]
(see [7, Lemma 2.3]). Assume also that there exists a positive constant
K, such that for every s, t ∈ J with s < t,

K(t− s)2α ≤ Var (Yt − Ys) .
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Define Yt = (Y 1
t , · · · , Y

d
t ), where Y 1, · · · , Y d are independent copies of

Y 0. Then Y is α-LND on J .

3. The question of whether or not the α-LND is strictly weaker than the
classical local nondeterminism in the Gaussian framework is an open
problem. We know from [8] that the process (f(t)Wt)t∈(0,δ), where
f(t) is the Weierstrass function and (Wt)t∈[0,1] is a standard Brownian
motion, is not LND; however, we have no idea whether (f(t)Wt)t∈(0,δ)
is α-LND or not.

3 Proof of the main results

Our aim in this section is to prove Theorem 1.1, 1.4, and 1.3. We will need
first the following preliminary lemmas.

Lemma 3.1. Let 1 ≤ p < ∞, 0 < ν < 1, and I = [0, 1]. Then, for
all R-valued jointly continuous function g with compact support defined on
R

d × [0, 1],

sup
j≥0

2jpν‖r 7→ sup
x∈Rd

|g(x, r + 2−j)− g(x, r)|‖pLp(I(2−j);R)

= sup
j≥0

2jpν−j

∫ 1

0

2j−1
∑

k=1

sup
x∈Rd

|g(x, 2−j(s+ k))− g(x, 2−j(s+ k − 1))|pds.
(3.1)

Proof. Denote

Zj = 2jpν‖r 7→ sup
x∈Rd

|g(x, r + 2−j)− g(x, r)|‖pLp(I(2−j);R),

here I(2−j) = {t ∈ [0, 1] ; t+ 2−j ∈ [0, 1]}. We have

Zj = 2jpν
∫ 1−2−j

0

sup
x∈Rd

|g(x, r + 2−j)− g(x, r)|pdr

= 2jpν
2j−1
∑

k=1

∫ k2−j

(k−1)2−j

sup
x∈Rd

|g(x, r + 2−j)− g(x, r)|pdr

= 2jpν−j

∫ 1

0

2j−1
∑

k=1

sup
x∈Rd

|g(x, 2−j(s+ k))− g(x, 2−j(s+ k − 1))|pds,
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where we have used the change of variables s = 2j(r − 2−j(k − 1)). Which
finishes the proof of Lemma 3.1.

Lemma 3.2. Let X = (Xt)t∈[0,1] be an R
d-valued continuous stochastic pro-

cess which is α-LND with α ∈ (0, 1
d
). Denote by L(x, t) the jointly continuous

version of the local time of X, then

• For any positive integer q, there exists a positive constantK = K(q, d, α)
such that for all integer j ≥ 1 and x ∈ R

d,

P





2j−1
∑

k=1

|L(x+X(dj,k), Dj,k)|
q ≥ 2−jq(1−dα)+j



 ≤ K2−jdα; (3.2)

• Let a and q be positive integers and 0 < θ < {( 1
α
−d)/2}∧1, then there

exists a positive constant K = K(q, a, d, α, θ), such that for all integers
j, h ≥ 1 and any x, y ∈ R

d and γ > 0,

P





2j−1
∑

k=1

|Aj,k,x,y|
q ≥ 2−jq(1−dα−θα)+j‖x− y‖qθ2γh



 ≤ K2−jdα2−2aγh,

(3.3)

where dj,k = 2−j(k − 1), Dj,k = [2−j(k − 1), 2−j(k + 1)], and

Aj,k,x,y = L(x+X(dj,k), Dj,k)− L(y +X(dj,k), Dj,k). (3.4)

Proof. We only prove (3.3). We have by Hölder’s inequality, for all positive
integer a,

E











2j−1
∑

k=1

|Aj,k,x,y|
q







2a

 =
2j−1
∑

k1,...,k2a=1

E

[

2a
∏

i=1

|Aj,ki,x,y|
q

]

≤







2j−1
∑

k=1

E
[

|Aj,k,x,y|
q2a
]1/2a







2a

. (3.5)

On the other hand, let Yt = X(t) − X(dj,k). The occupation measure of Y
is just the occupation measure of X translated by the (random) constant
X(dj,k). Since the occupation measure of X has a jointly continuous density,
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the occupation measure of Y has also a jointly continuous density given by
LY (x, t) = LX(x + X(dj,k), t). Put m = q2a, hence by (3.4) and (2.12) we
obtain

E [|Aj,k,x,y|
m]

= E [|L(x+X(dj,k), Dj,k)− L(y +X(dj,k), Dj,k)|
m]

= E [|LY (x,Dj,k)− LY (y,Dj,k)|
m]

=
1

(2π)md

∫

(Rd)m

∫

(Dj,k)m

m
∏

n=1

(

e−i〈vn−vn+1,x〉 − e−i〈vn−vn+1,y〉
)

× E

[

ei
∑m

n=1〈vn,Xtn−Xtn−1〉
]

m
∏

n=1

dtn

m
∏

n=1

dvn,

(3.6)

By (3.6) and the elementary inequality |1− eiρ| ≤ 21−θ|ρ|θ for any 0 < θ < 1
and ρ ∈ R, we get

E [|Aj,k,x,y|
m] ≤ 2−m(d+θ−1)π−md‖x− y‖mθJ (m, θ), (3.7)

where

J (m, θ)

=

∫

(Dj,k)m

∫

(Rd)m

m
∏

n=1

‖vn − vn+1‖
θ
∣

∣

∣
E

[

ei
∑m

n=1〈vn,Xtn−Xtn−1〉
]∣

∣

∣

m
∏

n=1

dvn

m
∏

n=1

dtn.

We replace the integration over the domain (Dj,k)
m by the integration over

the subset Λj,k = {2−j(k−1) ≤ t1 < · · · < tm ≤ 2−j(k+1)}, hence we obtain

J (m, θ)

= m!

∫

Λj,k

∫

(Rd)m

m
∏

n=1

‖vn − vn+1‖
θ
∣

∣

∣
E

[

ei
∑m

n=1〈vn,Xtn−Xtn−1〉
]∣

∣

∣

m
∏

n=1

dvn

m
∏

n=1

dtn,

where t0 = 0 and vm+1 = 0. By the fact that ‖b− c‖θ ≤ ‖b‖θ + ‖c‖θ for each
0 < θ < 1 and b, c ∈ R

d, it follows that

m
∏

n=1

‖vn − vn+1‖
θ ≤

m
∏

n=1

(

‖vn‖
θ + ‖vn+1‖

θ
)

. (3.8)
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Remark that the right side of this last inequality is at most equal to a finite
sum of terms each of the form

∏m
n=1 ‖vn‖

ǫnθ, where ǫn = 0, 1, or 2 and
∑m

n=1 ǫn = m. Hence

J (m, θ) ≤ m!
∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

∫

Λj,k

∫

(Rd)m

m
∏

n=1

‖vn‖
ǫnθ

×
∣

∣

∣
E

[

ei
∑m

n=1〈vn,Xtn−Xtn−1〉
]∣

∣

∣

m
∏

n=1

dvn

m
∏

n=1

dtn.

(3.9)

On the other hand, by the α-LND property of the process X , we get for
every nonnegative integers m ≥ 2, kn,l, for n = 1, · · · , m and l = 1, · · · , d,
there exists a constant c = c(m, kn,l) such that

∣

∣

∣
E

[

ei
∑m

n=1〈vn,Xtn−Xtn−1〉
]∣

∣

∣
≤

c
∏m

n=1

∏d
l=1 |vn,l|

kn,l(tn − tn−1)αkn,l

, (3.10)

where vn = (vn,1, · · · , vn,d). Put In1 = [−1/(tn − tn−1)
α, 1/(tn − tn−1)

α] and
In2 = R \ In1 , Therefore

(Rd)m =
⋃

in,l∈{1,2}

n=1,··· ,m;l=1,··· ,d

m
∏

n=1

d
∏

l=1

Inin,l
. (3.11)

Set, for n = 1, · · · , m and l = 1, · · · , d,

kn,l(in,l) =

{

0, if in,l = 1;
4, if in,l = 2,

Hence, by (3.9)-(3.11), we obtain

J (m, θ) ≤ m!c
∑

in,l∈{1,2}

n=1,··· ,m;l=1,··· ,d

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

∫

Λj,k

∫

∏m
n=1

∏d
l=1 I

n
in,l

×

∏m
n=1 ‖vn‖

ǫnθ

∏m
n=1

∏d
l=1 |vn,l|

kn,l(in,l)(tn − tn−1)αkn,l(in,l)

m
∏

n=1

dvn

m
∏

n=1

dtn.

(3.12)

We remark that
m
∏

n=1

‖vn‖
ǫnθ ≤

m
∏

n=1

(

|vn,1|
ǫnθ + · · ·+ |vn,d|

ǫnθ
)

=
∑

l1,··· ,ld∈{1,··· ,d}

m
∏

n=1

|vn,ln|
ǫnθ.
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Therefore

J (m, θ) ≤ m!c
∑

l1,··· ,ld∈{1,··· ,d}

∑

in,l∈{1,2}

n=1,··· ,m;l=1,··· ,d

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

∫

Λj,k

∫

∏m
n=1

∏d
l=1 I

n
in,l

×

∏m
n=1 |vn,ln|

ǫnθ

∏m
n=1

∏d
l=1 |vn,l|

kn,l(in,l)(tn − tn−1)αkn,l(in,l)

m
∏

n=1

dvn

m
∏

n=1

dtn.

By Fubini’s theorem, the right side of the above expression is equal to

m!c
∑

l1,··· ,ld∈{1,··· ,d}

∑

in,l∈{1,2}

n=1,··· ,m;l=1,··· ,d

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

∫

Λj,k

m
∏

n=1

∫

∏d
l=1 I

n
in,l

×
|vn,ln|

ǫnθ

∏d
l=1 |vn,l|

kn,l(in,l)(tn − tn−1)αkn,l(in,l)
dvn

m
∏

n=1

dtn.

= m!c
∑

l1,··· ,ld∈{1,··· ,d}

∑

in,l∈{1,2}

n=1,··· ,m;l=1,··· ,d

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

×

∫

Λj,k

m
∏

n=1

d
∏

l=1
l 6=ln

∫

Inin,l

1

|vn,l|kn,l(in,l)(tn − tn−1)αkn,l(in,l)
dvn,l

×

∫

Inin,ln

1

|vn,ln|
kn,ln(in,ln )−ǫnθ(tn − tn−1)αkn,ln (in,ln )

dvn,ln

m
∏

n=1

dtn.

(3.13)

• If in,l = 1 or 2 with l 6= ln, then we have
∫

Inin,l

1

|vn,l|kn,l(in,l)(tn − tn−1)αkn,l(in,l)
dvn,l =

K1

(tn − tn−1)α
,

where the constant K1 depends only on in,l.

• If in,ln = 1 or 2, then we get
∫

Inin,ln

1

|vn,ln|
kn,ln(in,ln )−ǫnθ(tn − tn−1)αkn,ln (in,ln )

dvn,ln =
K2

(tn − tn−1)α(1+ǫnθ)
,

where the constantK2 depends on in,ln , θ, and ǫn such that supθ,ǫn K2 <
∞.
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Combining the above discussion with (3.13), we obtain

J (m, θ) ≤ m!c1
∑

l1,··· ,ld∈{1,··· ,d}

∑

in,l∈{1,2}

n=1,··· ,m;l=1,··· ,d

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

×

∫

Λj,k

m
∏

n=1

1

(tn − tn−1)α(d+ǫnθ)

m
∏

n=1

dtn

= m!c2
∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

∫

Λj,k

m
∏

n=1

1

(tn − tn−1)α(d+ǫnθ)

m
∏

n=1

dtn

= m!c2
∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

∫ bj,k

aj,k

dt1

∫ bj,k

t1

dt2 · · ·

∫ bj,k

tm−1

dtm

×
m
∏

n=1

1

(tn − tn−1)α(d+ǫnθ)
, (3.14)

where aj,k = 2−j(k − 1) and bj,k = 2−j(k + 1). Let 0 < θ <
{

( 1
α
− d)/2

}

∧ 1.
We integrate in the order of dtm, dtm−1, . . . , dt1, and use changes of variables
in each step to construct Beta functions. Hence, (3.14) is equal to

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

Kǫ

∫ bj,k

aj,k

(bj,k−t1)
(m−1)(1−dα)−αθ

∑m−2
i=0 ǫm−it

−α(d+ǫ1θ)
1 dt1, (3.15)

whereKǫ = m!c2
1

1−α(d+ǫmθ)

Γ(2−α(d+ǫmθ))
∏m−2

i=1 Γ(1−α(d+ǫm−iθ))

Γ(1+(m−1)(1−dα)−θ
∑m−2

i=0 ǫm−i)
and ǫ = (ǫ1, · · · , ǫm).

Recall that
∑m

n=1 ǫn = m. Then

• If k = 1. According to (3.7) and (3.15) we get

E [|Aj,1,x,y|
m] ≤ K1‖x− y‖mθ2−jm(1−dα−αθ), (3.16)

whereK1 = c
∑

ǫ∈{0,1,2}m Kǫ
Γ(1+(m−1)(1−dα)−αθ

∑m−2
i=0 ǫm−i)Γ(1−α(d+ǫ1θ))

Γ(1+m(1−dα−αθ))
with

c = 2−m(d+θ−1)π−md2m(1−dα−αθ).

• If 2 ≤ k ≤ 2j − 1. Therefore (3.15) is less than or equal to

∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

Kǫ(bj,k − aj,k)
(m−1)(1−dα)−αθ

∑m−2
i=0 ǫm−i

∫ bj,k

aj,k

t
−α(d+ǫ1θ)
1 dt1

(3.17)
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And this last term is equal to
∑

(ǫ1,··· ,ǫm)∈{0,1,2}m

Kǫ2
(m−1)(1−dα)−αθ

∑m−2
i=0 ǫm−i2−jm(1−dα−αθ)

×

∫ k+1

k−1

u−α(d+ǫ1θ)du

≤ K̃22
−jm(1−dα−αθ)

∫ k+1

k−1

u−αddu ≤ K̃22
−jm(1−dα−αθ)(k − 1)−αd.

(3.18)

Hence by (3.7) and (3.17), we have

E [|Aj,k,x,y|
m] ≤ K2‖x− y‖mθ2−jm(1−dα−αθ)(k − 1)−αd. (3.19)

Now we return to estimate E

[

{

∑2j−1
k=1 |Aj,k,x,y|q

}2a
]

. Recall that m = q2a.

According to (3.5) and the convexity of the function x 7→ x2a , we have

E











2j−1
∑

k=1

|Aj,k,x,y|
q







2a



≤







2j−1
∑

k=1

E
[

|Aj,k,x,y|
q2a
]1/2a







2a

≤ 2a−1



E
[

|Aj,1,x,y|
q2a
]

+







2j−1
∑

k=2

E
[

|Aj,k,x,y|
q2a
]1/2a







2a

 .

Hence, using (3.16) and (3.19), we derive that this last term is less than or
equal to

K̃‖x− y‖q2
aθ2−jq2a(1−dα−αθ)



1 +







2j−1
∑

k=2

(k − 1)−αd/2a







2a



≤ K̃‖x− y‖q2
aθ2−jq2a(1−dα−αθ)



1 +







2j−1
∑

k=2

2

∫ k−1

k− 3
2

x−dα/2adx







2a
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Therefore, it is easy to see that the right-hand side of the above inequality
is less than or equal to

K̃‖x− y‖q2
aθ2−jq2a(1−dα−αθ)



1 +

{

2

∫ 2j−2

1
2

x−dα/2adx

}2a




≤ K̂‖x− y‖q2
aθ2−jq2a(1−dα−αθ)

(

1 + 22
aj−jdα

)

.

Therefore

E











2j−1
∑

k=1

|Aj,k,x,y|
q







2a

 ≤ K‖x− y‖q2
aθ2−jq2a(1−dα−αθ)2j(2

a−αd). (3.20)

The remainder of the proof is by Chebyshev’s inequality, i.e.

P





2j−1
∑

k=1

|Aj,k,x,y|
q ≥ 2−jq(1−dα−θα)+j‖x− y‖qθ2γh





≤ 2j2
aq(1−dα−θα)−2aj‖x− y‖−q2aθ2−2aγh

E











2j−1
∑

k=1

|Aj,k,x,y|
q







2a

 .

Hence (3.20) concludes the proof of Lemma 3.2.

Lemma 3.3. Let (Xt)t∈[0,1] be an R
d-valued continuous stochastic process

that verifies H. Then, for all 0 < δ < 1, almost surely there exists j1 =
j1(ω, δ) such that

sup
1≤k≤2j−1

sup
t∈Dj,k

‖X(t)−X(dj,k)‖ ≤ 2
−j(α− 2−δ

p0
)

for j ≥ j1, (3.21)

where dj,k and Dj,k are as in Lemma 3.2.

Proof. According to (1.1), we have almost surely

B :=

∫ 1

0

∫ 1

0

‖X(t)−X(s)‖p0

|t− s|αp0+γ
dt ds < ∞. (3.22)

Then by Lemma 2.3 with Ψ(u) = |u|p0 and p(u) = |u|
α+ γ

p0 where 1
p0

< α and
2− αp0 < γ < 1, we derive

sup
1≤k≤2j−1

sup
t∈Dj,k

‖X(t)−X(dj,k)‖
p0 ≤ Cα,p0,γB2−j(αp0+γ−2). (3.23)
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Therefore, by (1.1), (3.22), and (3.23) we get

E

[

sup
1≤k≤2j−1

sup
t∈Dj,k

‖X(t)−X(dj,k)‖
p0

]

≤ Kα,p0,γ2
−j(αp0+γ−2). (3.24)

Hence, let 0 < δ < 1 and 2 − αp0 < γ < 1 such that δ < γ, then by
Chebyshev’s inequality and (3.24) we write

P

[

sup
1≤k≤2j−1

sup
t∈Dj,k

‖X(t)−X(dj,k)‖ ≥ 2
−j(α− 2−δ

p0
)

]

≤ Kα,p0,γ2
−j(γ−δ). (3.25)

Therefore the Borel–Cantelli lemma concludes the proof of Lemma 3.3.

Lemma 3.4. Let (Xt)t∈[0,1] be an R
d-valued continuous stochastic process

which is α-LND with α ∈ (0, 1
d
). Assume also that X verifies H. Then for

all positive integer q, almost surely we have

sup
j≥1

2jq(1−dα)−j

∫ 1

0

2j−1
∑

k=1

sup
x∈Rd

|L(x, 2−j(s+ k))− L(x, 2−j(s+ k − 1))|qds < ∞.

(3.26)

Proof. Let dj,k = 2−j(k − 1); Dj,k = [2−j(k − 1), 2−j(k + 1)] for j ≥ 1 and
1 ≤ k ≤ 2j − 1. It follows from Lemma 3.3 that for all 2 − αp0 < δ < 1,
almost surely there exists j1 = j1(ω, δ) such that

sup
1≤k≤2j−1

sup
t∈Dj,k

‖X(t)−X(dj,k)‖ ≤ 2
−j(α− 2−δ

p0
)

for j ≥ j1, (3.27)

Let βj = 2−jα and

Gj =
{

x ∈ R
d ; ‖x‖ ≤ 2

−j(α− 2−δ
p0

)
, x = βjb for some b ∈ Z

d
}

,

where Z is the set of integers. The cardinality of Gj verifies

#Gj ≤
(

2
[

2
j( 2−δ

p0
)
]

+ 1
)d

≤ 3d2
jd( 2−δ

p0
)
, (3.28)

where
[

2
j( 2−δ

p0
)
]

is the integral part of 2
j( 2−δ

p0
)
. It follows from (3.28) and

Lemma 3.2 that

P





2j−1
∑

k=1

|L(x+X(dj,k), Dj,k)|
q ≥ 2−jq(1−dα)+j for some x ∈ Gj





≤ #GjK2−jdα ≤ 3dK2
−jd(α− 2−δ

p0
)
. (3.29)
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Since 2 − αp0 < δ < 1, it follows by the Borel-Cantelli lemma that almost
surely there exists j2 = j2(ω, δ) such that

2j−1
∑

k=1

sup
x∈Gj

|L(x+X(dj,k), Dj,k)|
q ≤ 2−jq(1−dα)+j for j ≥ j2. (3.30)

For any fixed integers j, h ≥ 1 and any x ∈ Gj , define

F (j, h, x) =

{

y ∈ R
d ; y = x+ βj

h
∑

n=1

ǫn2
−n for ǫn ∈ {0, 1}d

}

. (3.31)

A pair of points y1, y2 ∈ F (j, h, x) is said to be linked if y2 − y1 = βjǫ2
−h for

some ǫ ∈ {0, 1}d. Then by (3.3) with γ and a such that γ < qθ and 2a > d
γ
,

we have

P





2j−1
∑

k=1

|Aj,k,y1,y2|
q ≥ 2−jq(1−dα−θα)+j‖y1 − y2‖

qθ2γh

for some x ∈ Gj , h ≥ 1 and some linked pair y1, y2 ∈ F (j, h, x)

]

≤ #Gj

∞
∑

h=1

2hdK2−jdα2−2aγh ≤ K3d2
−jd(α− 2−δ

p0
)

∞
∑

h=1

2−h(2aγ−d).

As 2 − αp0 < δ < 1 and 2a > d
γ
, it follows by the Borel-Cantelli lemma that

almost surely there exists j3 = j3(ω, δ, γ) such that for j ≥ j3

2j−1
∑

k=1

|L(y1+X(dj,k), Dj,k)−L(y2+X(dj,k), Dj,k)|
q ≤ 2−jq(1−dα−θα)+j‖y1−y2‖

qθ2γh,

(3.32)
for all x ∈ Gj, h ≥ 1 and any linked pair y1, y2 ∈ F (j, h, x). Let Ω0 be the
event that (3.27), (3.30) and (3.32) hold, hence P[Ω0] = 1. Let j ≥ j4 :=

max{j1, j2, j3} be fixed. For any y ∈ R
d with ‖y‖ ≤ 2

−j(α− 2−δ
p0

)
, we represent

y in the form y = limh→∞ yh, where

yh = x+ βj

h
∑

n=1

ǫn2
−n (y0 = x, ǫn ∈ {0, 1}d),
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for some x ∈ Gj. Then each pair yh−1, yh is linked, so by (3.32) and the
continuity of L(·, Dj,k) we have

2j−1
∑

k=1

|L(y +X(dj,k), Dj,k)− L(x+X(dj,k), Dj,k)|
q

≤ 2−jq(1−dα−θα)+j
∞
∑

h=1

|βj2
−h|qθ2γh

= 2−jq(1−dα)+j
∞
∑

h=1

2−h(qθ−γ)

Since γ < qθ, we have almost surely for j ≥ j4,

2j−1
∑

k=1

|L(y +X(dj,k), Dj,k)− L(x+X(dj,k), Dj,k)|
q ≤ C2−jq(1−dα)+j . (3.33)

for all y ∈ R
d with ‖y‖ ≤ 2

−j(α− 2−δ
p0

)
. It follows from (3.30) and (3.33) that

almost surely for j ≥ j4,

2j−1
∑

k=1

|L(y +X(dj,k), Dj,k)|
q ≤ C12

−jq(1−dα)+j , (3.34)

for all y ∈ R
d with ‖y‖ ≤ 2

−j(α− 2−δ
p0

)
. On the other hand, we have almost

surely for j ≥ j4,

∫ 1

0

2j−1
∑

k=1

sup
x∈Rd

|L(x, 2−j(s+ k))− L(x, 2−j(s+ k − 1))|qds

≤
2j−1
∑

k=1

sup
x∈Rd

|L(x,Dj,k)|
q.

This last term is equal to

2j−1
∑

k=1

sup
x∈X(Dj,k)

|L(x,Dj,k)|
q ≤

2j−1
∑

k=1

sup
y∈V

|L(y +X(dj,k), Dj,k)|
q

≤ C12
−jq(1−dα)+j ,

where V = {y ∈ R
d ; ‖y‖ ≤ 2

−j(α− 2−δ
p0

)
}. This completes the proof of Lemma

3.4.
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Proof of Theorem 1.1. According to Lemma 3.4 and 3.1, and Theorem 2.1(iii)
we conclude the proof.

Now we provide the proof of Theorem 1.3, which clearly explains that if
a functions local time, L(x, t), is Besov regular, in t uniformly in x, then this
has a significant effect on the Besov irregularity of the function itself.

Proof of Theorem 1.3. According to the occupation formula (2.9), we have
for all t ∈ (0, 1], 0 < h ≤ t, and s ∈ [0, 1− h],

h =

∫

f([s,s+h])

L(x, [s, s + h])dx

≤ λd (f([s, s+ h])) sup
x∈Rd

L(x, [s, s+ h])

≤ sup
r,τ∈[s,s+h]

‖f(r)− f(τ)‖d sup
x∈Rd

L(x, [s, s+ h])

= sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖d sup
x∈Rd

L(x, [s, s+ h]).

Hence

h1/d ≤ sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖ sup
x∈Rd

|L(x, [s, s+ h])|1/d.

Therefore by Hölder’s inequality we derive that for all t ∈ (0, 1] and 0 < h ≤ t,

(1− h)h1/d

≤

∫ 1−h

0

sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖ sup
x∈Rd

|L(x, [s, s+ h])|1/dds

≤ ‖s 7→ sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖‖Lp(I(h),R)

×

{
∫ 1−h

0

sup
x∈Rd

|L(x, [s, s+ h])|
p

d(p−1)ds

}

p−1
p

. (3.35)

By the same calculations as above we get for all t ∈ (0, 1] and −t < h < 0

(1− |h|)|h|1/d

≤ ‖s 7→ sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖‖Lp(I(h),R)

×

{
∫ 1

−h

sup
x∈Rd

|L(x, s)− L(x, s+ h)|
p

d(p−1)ds

}

p−1
p

. (3.36)
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According to (3.35), (3.36), and (1.5) we get for all t ∈ (0, 1
2
),

t1/d

2
≤ c tµ/d sup

|h|≤t

‖s 7→ sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖‖Lp(I(h),R). (3.37)

Therefore,

0 < lim
t→0+

t−(1−µ)/d sup
|h|≤t

‖s 7→ sup
r,τ∈[0,1]

‖f(hr + s)− f(hτ + s)‖‖Lp(I(h),R).

Then Theorem 2.1 (iv) and Theorem 2.2 conclude the proof of Theorem
1.3.

Proof of Theorem 1.4. For any 1 < p < ∞, let n = n(p) be a positive integer
such that dn ≥ p

p−1
. We have almost surely,

sup
0<t≤1

t−(1−αd)/d sup
|h|≤t

‖s 7→ sup
x∈Rd

|L(x, s+ h)− L(x, s)|
1
d‖

L
p

(p−1) (I(h);R)

≤ sup
0<t≤1

t−(1−αd)/d sup
|h|≤t

‖s 7→ sup
x∈Rd

|L(x, s+ h)− L(x, s)|‖
1
d

Ldn−1 (I(h);R)

Hence Theorem 1.1 and 1.3 finish the proof of Theorem 1.4.

Proof of Corollary 1.5. It is a consequence of Theorem 1.4 and the injections
(2.8).

4 Examples

4.1 The Gaussian case

Let Y 0 = (Y 0
t )t∈[0,1] be a real-valued continuous centred Gaussian process,

with Y (0) = 0, that satisfies the classical local nondeterminism (LND) prop-
erty on [0, 1]. By [7, Lemma 2.3] we have for any m ≥ 2, there exist two
positive constants cm and ε such that for every ordered points 0 = t0 ≤ t1 <
· · · < tm ≤ 1 with tm − t1 < ε, and (v1, · · · , vm) ∈ R

m \ {0},

Var

(

m
∑

j=1

vj(Y
0
tj
− Y 0

tj−1
)

)

≥ cm

m
∑

j=1

v2j Var
(

Y 0
tj
− Y 0

tj−1

)

. (4.1)
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Assume also that Y 0 verifies (1.8), with some α ∈ (0, 1). Define Yt =
(Y 1

t , · · · , Y
d
t ), where Y 1, · · · , Y d are independent copies of Y 0. Then Y is

α-LND on [0, 1]. The following theorem is a consequence of Theorem 1.1 and
1.4, and Corollary 1.5.

Theorem 4.1. Let Y 0 = (Y 0
t )t∈[0,1] be a real-valued continuous centered

Gaussian process, with Y (0) = 0, that satisfies the classical local nondeter-
minism (LND) property on [0, 1] and inequalities (1.8) with 0 < α < 1

d
. Let

Y 1, · · · , Y d be independent copies of Y 0 and put Yt = (Y 1
t , · · · , Y

d
t ). Denote

by L(x, t) the jointly continuous version of the local time of Y , Therefore

P
[

L(x, •) ∈ B1−dα
p,∞ (I;R) , for all x ∈ R

d and p ∈ [1,∞)
]

= 1; (4.2)

P
[

Y (•) ∈ Bα,0
p,∞(I,Rd) , for some p ∈ (1/α,∞)

]

= 0; (4.3)

P
[

Y (•) ∈ Bα
p,q(I,R

d) , for some p ∈ (1/α,∞) and q ∈ [1,∞)
]

= 0, (4.4)

where I = [0, 1], L(x, •) : t ∈ I 7→ L(x, t) ∈ R, and Y (•) : t ∈ I 7→ Yt ∈ R
d.

A particular example is Y 0 = BH,K a bifractional Brownian motion with
H ∈ (0, 1) and K ∈ (0, 1]; that is a real-valued centred Gaussian process,
starting from zero, with covariance function

E

(

BH,K
t BH,K

s

)

=
1

2K
[

(t2H + s2H)K − |t− s|2HK
]

.

Notice that the case K = 1 corresponds to the fractional Brownian motion
with Hurst parameter H ∈ (0, 1). From [2, Lemma 3.3] we know that the
bifractional Brownian motion is LND and by [2, Eq. (1)] the Hypothesis H
holds with α = HK. Therefore, The below corollary is a consequence of
Theorem 4.1.

Corollary 4.2. Let (BH,K
t )t∈[0,1] be a d-dimensional bifractional Brownian

motion with H ∈ (0, 1) and K ∈ (0, 1], s.t. HK < 1
d
. Denote by L(x, t) the

jointly continuous version of the local time of BH,K, Therefore

P
[

L(x, •) ∈ B1−dHK
p,∞ (I;R) , for all x ∈ R

d and p ∈ [1,∞)
]

= 1; (4.5)

P
[

BH,K(•) ∈ BHK,0
p,∞ (I,Rd) , for some p ∈ (1/HK,∞)

]

= 0; (4.6)

P
[

BH,K(•) ∈ BHK
p,q (I,Rd) , for some p ∈ (1/HK,∞) and q ∈ [1,∞)

]

= 0,

where I = [0, 1], L(x, •) : t ∈ I 7→ L(x, t) ∈ R, and BH,K(•) : t ∈ I 7→
BH,K

t ∈ R
d.
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Remark 4.3. A different approach, based on characterization of Besov spaces
in terms of sequences spaces, has been used in [10] to investigate (4.6) for
d = 1. However, to the best of our knowledge, the uniform Besov regularity
results for the local times of Gaussian processes given by (4.2) and (4.5) are
new and have never been considered in the literature.

4.2 The non-Gaussian case

Let us consider the following system of non-linear stochastic heat equations

∂uk

∂t
(t, x) =

∂2uk

∂x2
(t, x) + bk(u(t, x)) +

d
∑

l=1

σk,l(u(t, x))Ẇ
l(t, x), (4.7)

with Neumann boundary conditions

uk(0, x) = 0,
∂uk(t, 0)

∂x
=

∂uk(t, 1)

∂x
= 0,

for t ∈ [0, T ], 1 ≤ k ≤ d, x ∈ [0, 1], where u := (u1, · · · , ud). Let Ẇ =
(Ẇ 1, · · · , Ẇ d) be a vector of d-independent space-time white noises on [0, T ]×
[0, 1]. Set b = (bk)1≤k≤d and σ = (σk,l)1≤k,l≤d. We consider the below hy-
potheses on the coefficients σk,l and bk:
A1 For all 1 ≤ k, l ≤ d, σk,l and bk are bounded and infinitely differentiable
functions with their partial derivatives of all orders are bounded.
A2 The matrix σ is uniformly elliptic, i.e. there exists ρ > 0 such that for
all x ∈ R

d and y ∈ R
d with ‖y‖ = 1, we get ‖σ(x)y‖2 ≥ ρ2 (where ‖ · ‖ is the

Euclidean norm on R
d).

Following Walsh [24], a mild solution of (4.7) is a jointly measurable R
d-

valued process u = (u1, · · · , ud) such that for any k ∈ {1, · · · , d}, t ∈ [0, T ],
and x ∈ [0, 1],

uk(t, x) =

∫ t

0

∫ 1

0

Gt−r(x, v)

d
∑

l=1

σk,l(u(r, v))W
l(dr, dv)

+

∫ t

0

∫ 1

0

Gt−r(x, v)bk(u(r, v))dv dr.

(4.8)

According to [11, Theorem 5.4], we know that the solution to the system
of non-linear stochastic heat equations, (4.8), is 1

4
-LND, and by [11, Eq.

(2.12)] the hypothesis H holds with α = 1
4
. Hence, Theorem 1.1 and 1.4, and

Corollary 1.5 give the following:
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Theorem 4.4. Let u be given by (4.8). Assume that d ≤ 3 and denote
by L(ξ, t) the jointly continuous version of the local time of the process
{u(t, x) , t ∈ [0, T ]} for x being fixed in (0, 1).Then

P
[

L(ξ, •) ∈ B1−d/4
p,∞ (I;R) , for all ξ ∈ R

d and p ∈ [1,∞)
]

= 1; (4.9)

P
[

u(•, x) ∈ B1/4,0
p,∞ (I,Rd) , for some p ∈ (4,∞)

]

= 0; (4.10)

P
[

u(•, x) ∈ B1/4
p,q (I,R

d) , for some p ∈ (4,∞) and q ∈ [1,∞)
]

= 0, (4.11)

where I = [0, 1], L(ξ, •) : t ∈ I 7→ L(ξ, t) ∈ R, and u(•, x) : t ∈ I 7→ u(t, x) ∈
R

d.

Remark 4.5. In [9], we have studied, for d = 1 and σ = 1, i.e., u(t, x) is
the solution to the linear stochastic heat equation, by a different method the
following:

P
[

u(•, x) ∈ B1/4,0
p,∞ (I,R)

]

= 0.

However, (4.9) is new even in the linear case.
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