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We study the fluctuations, as d,n → ∞, of the Wishart matrix Wn,d = 1
d
Xn,dX T

n,d
associated to a n × d ran-

dom matrix Xn,d with non-Gaussian entries. We analyze the limiting behavior in distribution of Wn,d in two
situations: when the entries of Xn,d are independent elements of a Wiener chaos of arbitrary order and when the
entries are partially correlated and belong to the second Wiener chaos. In the first case, we show that the (suitably
normalized) Wishart matrix converges in distribution to a Gaussian matrix while in the correlated case, we obtain
its convergence in law to a diagonal non-Gaussian matrix. In both cases, we derive the rate of convergence in the
Wasserstein distance via Malliavin calculus and analysis on Wiener space.

Keywords: Wishart matrix; multiple stochastic integrals; Malliavin calculus; Stein’s method; Rosenblatt process;
fractional Brownian motion; high-dimensional regime

1. Introduction

Random matrix theory plays an important role in various areas of applications, including statistical
physics, engineering sciences, signal processing or mathematical finance. The various tools that can be
used to study random matrices come from different branches of mathematics, such as combinatorics,
non-commutative algebra, geometry, spectral analysis and, of course, probability and statistics. We
focus on a special type of random matrices, called Wishart matrices, which have been introduced in
Wishart [21]. Given a n × d random matrix Xn,d = (Xij )1≤i≤n,1≤j≤d with real entries, its associated
Wishart matrix Wn,d = (Wij )1≤i,j≤n is the symmetric n × n matrix Wn,d = 1

d
Xn,dX T

n,d (X T being
the transpose of the matrix X ). The class of Wishart matrices constitutes a special class of sample
covariance matrices with applications in multivariate analysis or statistical theory, see, for example,
the surveys (Bishop, Del Moral and Niclas [1], Johnstone [10], Rasmussen and Williams [17]). The
limiting behavior of this type of random matrices, as d goes to infinity and n is fixed (which is referred
to as the classical or finite dimensional regime) or when both n, d tend to infinity (usually called the
high dimensional regime), has been studied by many authors. The starting point of this analysis is
the situation where the entries of the matrix Xn,d are i.i.d. and n is fixed. In this case, the Wishart
matrix associated to Xn,d converges almost surely, as d → ∞, to the n × n identity matrix In by the
strong law of large numbers and the renormalized Wishart matrix

√
d(Wn,d − In) satisfies a Central

Limit Theorem (CLT in the sequel). Later, due to the increasing need of handling large data sets, several
authors investigated the high dimensional regime, when the matrix size n also goes to infinity. Different
strategies have been considered in this case. A classical approach is based on the study of the empirical
spectral distribution and of the eigenvalues of Wn,d . It is well known that if n,d → ∞ such that n/d →
c ∈ (0,∞), then the empirical spectral distribution of the Wishart matrix converges weakly to the so-
called Marchenko–Pastur distribution (see Marčenko and Pastur [11]). A more recent approach consists
in analyzing the distance in distribution (for example, under the total variation distance or Wasserstein
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distance) between the renormalized Wishart matrix
√

d(Wn,d − In) and its limiting distribution when
d and n are large. This approach has been used in, for example, Bubeck et al. [4], Bubeck and Ganguly
[5], Jiang and Li [9], Rácz and Richey [16], Nourdin and Zheng [13]. It has been discovered that
the distance (in the Wasserstein or total variation sense) between the distribution of the renormalized
Wishart matrix and its limiting distribution (when this limit is Gaussian, which happens in all the cases
except when the entries have a strong enough correlation, see Nourdin and Zheng [13]), as n,d → ∞,
is of order less than n3/d . In the above references, several situations have been studied: the entries of
the initial matrix Xn,d are independent and Gaussian (see Bubeck et al. [4], Jiang and Li [9], Rácz and
Richey [16]), the entries are independent and not necessarily Gaussian (they are supposed to have a log-
concave distribution in Bubeck and Ganguly [5]) or the entries are Gaussian and partially correlated
(see Nourdin and Zheng [13]). While in most references the proofs are based on entropy or moments
analysis, in Nourdin and Zheng [13] the authors use the recent Stein–Malliavin calculus (see Nourdin
and Peccati [12]).

Our purpose is to use the techniques of Malliavin calculus and analysis on Wiener space in order to
generalize the above results in two directions. First, we start with an n × d matrix Xn,d whose entries
are independent (not necessarily identically distributed) elements of Wiener chaoses of arbitrary order.
That is, we assume that for every 1 ≤ i ≤ n and for every 1 ≤ j ≤ d ,

Xij = Iqi
(fij ), (1.1)

with fij ∈ H�qi , where qi ≥ 1 and the maximum of the qi ’s is bounded by an integer number N0

for every 1 ≤ i ≤ n. In (1.1), Iq denotes the multiple Wiener integral of order q with respect to an
isonormal process W . Assume that the entries have the same second and fourth moments, that is, for
every 1 ≤ i ≤ n and 1 ≤ j ≤ d ,

E
(
X2

ij

) = qi !‖fij‖2
H⊗qi

= 1 and E
(
X4

ij

) = m4.

In this situation, we obtain the convergence in law of the corresponding renormalized Wishart matrix
W̃n,d = (W̃ij )1≤i,j≤n with entries W̃ij = √

dWij for 1 ≤ i, j ≤ n to the GOE (Gaussian Orthogonal
Ensemble) matrix Zn given by (3.7). This is a symmetric random matrix Zn = (Zij )1≤i,j≤n whose
diagonal elements follow the distribution Zii ∼ N(0,m4 − 1) while the non-diagonal entries are such
that Zij ∼ N(0,1) if 1 ≤ i < j ≤ n and Zij = Zji if 1 ≤ i < j ≤ n, the variables {Zij : i ≤ j} being
independent.

The study of Wishart matrices based on an initial matrix Xn,d with independent elements in (po-
tentially different) Wiener chaoses is motivated by the following facts. As mentioned above, Wishart
matrices can be viewed as sample covariance matrices and the elements of the matrix Xn,d can be inter-
preted as the data. In recent years, the statistical inference based on observations belonging to Wiener
chaoses of arbitrary order has been intensively studied (see, among others, Chronopoulou, Tudor and
Viens [6], Clausel et al. [7], Pipiras and Taqqu [15], Tudor [18]). Another motivation is related to the
concept of universality, which has been tremendously studied for random matrices by many authors
(see e.g. Edelman, Guionnet and Péché [8] and the references therein). Loosely speaking, the notion
of universality implies to understand the behavior of random matrices with entries from a general (non
necessarily Gaussian) distribution and to see if the behavior displayed by Gaussian matrices still holds
in the general case.

We actually show that, when n,d → ∞, the distance between the renormalized Wishart matrix
W̃n,d = (W̃ij )1≤i,j≤n and the GOE matrix is of order less that n3/d . This generalizes the results of
Bubeck et al. [4], Bubeck and Ganguly [5], Jiang and Li [9], Rácz and Richey [16]. More precisely, we
prove the following result.
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Theorem 1.1. Consider the renormalized Wishart matrix W̃n,d with entries given by (3.6). Then for
every n ≥ 1, W̃n,d converges in distribution componentwise, as d → ∞, to the matrix Zn given by
(3.7). Moreover, there exists a positive constant C such that for every n,d ≥ 1,

dW (W̃n,d ,Zn) ≤ C

√
n3

d
, (1.2)

where dW denotes the Wasserstein distance defined in Section 2.1.

Another direction of study is to start with a matrix Xn,d whose elements are non-Gaussian and par-
tially correlated. As pointed out in for example, Bubeck and Ganguly [5], obtaining an approximation
result without the assumption of independence represents a natural question which has been a subject
of wide interest. We will assume that these entries are elements of the second Wiener chaos, corre-
lated on the same row, with the correlation being given by the increments of the Rosenblatt process
(see Section 4 for the definition and basic properties of this stochastic process). More precisely, the
entries of the matrix Xn,d = (Xij )1≤i≤n,1≤j≤ are given by Xij = Z

H,i
j − Z

H,i
j−1, where ZH,i , 1 ≤ i ≤ n

are n-independent Rosenblatt processes with the same Hurst parameter H ∈ ( 1
2 ,1). The definition and

basic properties of the Rosenblatt process are recalled in Section 4. This stochastic process is a non-
Gaussian self-similar process with stationary increments and long-memory. Due to these properties, it
found several applications in various areas (hydrology, finance, interned traffic analysis, and more). For
more details on the theoretical aspects and practical applications of the Rosenblatt process, we refer to
the monographs Pipiras and Taqqu [15], Tudor [18].

Note that the correlation structure of the Rosenblatt process is the same as the one of the fractional
Brownian motion (fBm). In this sense, the correlation on the rows of the matrix Xn,d considered in
our work is the same as in Nourdin and Zheng [13] (where the entries are increments of the fBm).
Nevertheless, the non-Gaussian character of the entries brings more complexity and leads to a different
behavior of the associated Wishart matrix. Actually, we show that the renormalized Wishart matrix
W̃n,d = (W̃ij )1≤i,j≤n with W̃ij = c−1

1,H d1−H Wij (the constant c1,H is defined in (4.7)) converges to a
diagonal matrix whose diagonal entries are random variables distributed according to the Rosenblatt
distribution and we are also able to quantify the distance associated to this limit theorem. Our result
can be stated as follows.

Theorem 1.2. Let W̃n,d be the renormalized Wishart matrix (4.10) and let RH
n be the diagonal matrix

with entries given by (4.12). Then, for every n ≥ 1, the random matrix W̃n,d converges componentwise
in distribution, as d → ∞, to the matrix RH

n . Moreover, there exists a positive constant C such that as
n,d ≥ 1,

dW

(
W̃n,d ,RH

n

) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nd
1
2 −H if H ∈

(
1

2
,

3

4

)
,

n
√

log(d)d− 1
4 if H = 3

4
,

ndH−1 if H ∈
(

3

4
,1

)
,

where dW denotes the Wasserstein distance defined in Section 2.1.

In the case of independent entries, the proof of our main result is based on the Stein–Malliavin
calculus and the characterization of independent random variables in Wiener chaos while when the
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entries of the initial matrix Xn,d are correlated, we use the properties of random variables in the second
Wiener chaos and in particular the behavior of the increments of the Rosenblatt process.

The paper is organized as follows. In Section 2, we recall several facts related to the distance between
the probability distributions of random matrices and random vectors, as well as the basics of Wiener
space analysis and Malliavin calculus. In Section 3, we analyze the fluctuations of the Wishart matrix
constructed from a matrix with independent entries in an arbitrary Wiener chaos, while in Section 4
we treat the situation where the elements of the starting matrix Xn,d are non-Gaussian and partially
correlated.

2. Preliminaries

In this preliminary part, we recall some facts related to the concept of distance between the probabil-
ity distributions of random matrices and random vectors and we introduce the tools of the Malliavin
calculus needed in the sequel.

2.1. Distances between random matrices

We will use the Wasserstein distance between two random matrices taking values in Mn(R), which
denotes the space of n × n real matrices. Given two Mn(R)-valued random matrices X and Y , the
Wasserstein distance between them is given by

dW (X ,Y) = sup
‖g‖Lip≤1

∣∣E(
g(X )

) −E
(
g(Y)

)∣∣,
where the Lipschitz norm ‖·‖Lip of g : Mn(R) → R is defined by

‖g‖Lip = sup
A�=B∈Mn(R)

|g(A) − g(B)|
‖A − B‖HS

,

with ‖·‖HS denoting the Hilbert–Schmidt norm on Mn(R).
With this definition at hand, we recall the definition of the notion of φ-closeness between random

matrices.

Definition 2.1. For every n ≥ 1, let {An,d : d ≥ 1} and {Bn,d : d ≥ 1} be two families of n × n random
matrices. Let φ : N × N → R+ be given. Then, An,d is said to be φ-close to Bn,d if dW (An,d ,Bn,d)

converges to zero as n,d → ∞ and φ(n, d) → 0.

We will also make use of the Wasserstein distance between random vectors, defined analogously
as in the matrix case. Namely, if X, Y are two n-dimensional random vectors, then the Wasserstein
distance between them is defined to be

dW (X,Y ) = sup
‖g‖Lip≤1

∣∣E(
g(X)

) −E
(
g(Y )

)∣∣, (2.1)

where the Lipschitz norm ‖·‖Lip of g : Rn →R is defined by

‖g‖Lip = sup
x �=y∈Rn

|g(x) − g(y)|
‖x − y‖Rn

,

with ‖·‖Rn denoting the Euclidean norm on R
n.
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If X = (Xij )1≤i,j≤n is an n×n symmetric random matrix, we associate to it its “half-vector” defined
to be the n(n + 1)/2-dimensional random vector

X half = (X11,X12, . . . ,X1n,X22,X23, . . . ,X2n, . . . ,Xnn). (2.2)

It turns out that, in the case of two symmetric matrices, the Wasserstein distance between said ma-
trices can be bounded from above by a constant multiple of the Wasserstein distance between their
associated half-vectors. More specifically, we have the following lemma (see Nourdin and Zheng [13],
Lemma 2.2).

Lemma 2.1. Let X , Y be two symmetric random matrices with values in Mn(R). Then

dW (X ,Y) ≤ √
2dW

(
X half,Yhalf),

where X half, Yhalf are the associated half-vectors defined in (2.2).

2.2. Elements of Malliavin calculus

We briefly describe the main tools from analysis on Wiener space that we will need in this paper. For
a complete treatment of this topic, we refer the reader to the monographs Nualart [14] or Nourdin and
Peccati [12].

Let H be a real separable Hilbert space and {W(h) : h ∈ H} an isonormal Gaussian process indexed
by it, that is, a centered Gaussian family of random variables such that E(W(h)W(g)) = 〈h,g〉H.
Denote by In the multiple Wiener (or Wiener–Itô) stochastic integral of order n ≥ 0 with respect to W

(see Nualart [14], Section 1.1.2). The mapping In is actually an isometry between the Hilbert space
H�n (symmetric tensor product) equipped with the scaled norm 1√

n! ‖·‖H⊗n and the Wiener chaos of
order n, which is defined as the closed linear span of the random variables{

Hn

(
W(h)

) : h ∈H,‖h‖H = 1
}
,

where Hn is the n-th Hermite polynomial given by H0 = 1 and for n ≥ 1

Hn(x) = (−1)n

n! exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈R.

Multiple Wiener integrals enjoy the following isometry property: for any integers m,n ≥ 1,

E
(
In(f )Im(g)

) = 1{n=m}n!〈f̃ , g̃〉H⊗n , (2.3)

where f̃ denotes the symmetrization of f and we recall that In(f ) = In(f̃ ).
Recall the multiplication formula satisfied by multiple Wiener integrals: for any integers n,m ≥ 1,

and any f ∈ H�n and g ∈H�m, it holds that

In(f )Im(g) =
n∧m∑
r=0

r!
(

n

r

)(
m

r

)
Im+n−2r (f ⊗r g), (2.4)

where the r-th contraction of f and g is defined by, for 0 ≤ r ≤ m ∧ n,

f ⊗r g =
∞∑

i1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r , (2.5)

with {ei : i ≥ 1} denoting a complete orthonormal system in H.
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Recall that any square integrable random variable F which is measurable with respect to the σ -
algebra generated by W can be expanded into an orthogonal sum of multiple Wiener integrals:

F =
∞∑

n=0

In(fn), (2.6)

where fn ∈H�n are (uniquely determined) symmetric functions and I0(f0) = E(F ).
Let L denote the Ornstein–Uhlenbeck operator, whose action on a random variable F with chaos

decomposition (2.6) and such that
∑∞

n=1 n2n!‖fn‖2
H⊗n < ∞ is given by

LF = −
∞∑

n=1

nIn(fn).

For p > 1 and α ∈ R we introduce the Sobolev–Watanabe space D
α,p as the closure of the set of

polynomial random variables with respect to the norm

‖F‖α,p = ∥∥(I − L)
α
2 F

∥∥
Lp(�)

,

where I represents the identity operator. We denote by D the Malliavin derivative that acts on smooth
random variables of the form F = g(W(h1), . . . ,W(hn)), where g is a smooth function with compact
support and hi ∈H, 1 ≤ i ≤ n. Its action on such a random variable F is given by

DF =
n∑

i=1

∂g

∂xi

(
W(h1), . . . ,W(hn)

)
hi.

The operator D is closable and continuous from D
α,p into D

α−1,p(H).

3. Random matrices with independent chaotic entries

In this section, we consider random matrices Xn,d = (Xij )1≤i≤n,1≤j≤d with independent entries
belonging to arbitrary order Wiener chaoses associated with an isonormal Gaussian process W =
{W(h) : h ∈ H} as introduced in Section 2.2. Moreover, we assume that the elements on the same
row of the matrix Xn,d belong to the same Wiener chaos, while the order of the chaos may change
from one row to another. In other words, we assume that for every 1 ≤ i ≤ n and for every 1 ≤ j ≤ d ,

Xij = Iqi
(fij ), (3.1)

with fij ∈ H�qi , where the integer numbers qi for every 1 ≤ i ≤ n are all in the set {1,2, . . . ,N0} with
N0 ≥ 1 being an integer. Here and in the sequel, Iq denotes the multiple Wiener integral of order q

with respect to W introduced in Section 2.2.
We do not assume that the entries have the same probability distribution, only that they have the

same second and fourth moments, that is, for every 1 ≤ i ≤ n and 1 ≤ j ≤ d ,

E
(
X2

ij

) = qi !‖fij‖2
H⊗qi

= 1 and E
(
X4

ij

) = m4. (3.2)

Consider the centered Wishart matrix (which is what will be referred to as Wishart matrix in the sequel)
Wn,d = (Wij )1≤i,j≤n defined by

Wn,d = 1

d
Xn,dX T

n,d − In, (3.3)
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where In denotes the identity matrix of Mn(R), and X T stands for the transpose of the matrix X .
Note that the Wishart matrix Wn,d is a symmetric n × n matrix and its entries can be explicit as

Wii = 1

d

d∑
k=1

(
X2

ik − 1
)
, i = 1, . . . , n (3.4)

and

Wij = 1

d

d∑
k=1

XikXjk, 1 ≤ i �= j ≤ n. (3.5)

Note that the independence of the entries Xij and assumption (3.2) yield, for any 1 ≤ i ≤ n,

E
(
W 2

ii

) = 1

d2

d∑
k=1

E
((

X2
ik − 1

)2) = m4 − 1

d
,

and for 1 ≤ i �= j ≤ n,

E
(
W 2

ij

) = 1

d2

d∑
k=1

E
(
X2

ik

)
E

(
X2

jk

) = 1

d
.

Based on this observation, we define the renormalized Wishart matrix W̃n,d = (W̃ij )1≤i,j≤n as

W̃ij = √
dWij (3.6)

for all 1 ≤ i, j ≤ n.
Also, consider the GOE matrix Zn = (Zij )1≤i,j≤n with entries given by⎧⎪⎨⎪⎩

Zii ∼ N(0,m4 − 1) for 1 ≤ i ≤ n,

Zij ∼ N(0,1) for 1 ≤ i < j ≤ n,

Zij = Zji for 1 ≤ j < i ≤ n,

(3.7)

where the entries {Zij : i ≤ j} are independent.

Remark 3.1. Note that proving Theorem 1.1 entails proving that the matrices W̃n,d and Zn are φ-close

for φ(n, d) = n3

d
(as introduced in Definition 2.1).

As pointed out in Section 2.1, assessing the Wasserstein distance between symmetric random ma-
trices can be shifted to the problem of estimating the Wasserstein distance between associated random
vectors (see Lemma 2.1). In our context, a helpful result in this direction is Nourdin and Peccati [12],
Theorem 6.1.1, which we restate here for convenience.

Theorem 3.1 (Theorem 6.1.1 in Nourdin and Peccati [12]). Fix m ≥ 2, and let F = (F1, . . . ,Fm) be
a centered m-dimensional random vector with Fi ∈ D

1,4 for every i = 1, . . . ,m. Let C ∈ Mm(R) be a
symmetric and positive definite matrix, and let Z ∼ Nm(0,C). Then,

dW (F,Z) ≤ ‖C−1‖op‖C‖1/2
op

√√√√ m∑
i,j=1

E
((

Cij − 〈
DFi,−DL−1Fj

〉
H

)2)
,

where ‖·‖op denotes the operator norm on Mm(R).
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3.1. Independent random variables in Wiener chaos

This section prepares the proof of Theorem 1.1 by providing results related to the independence of
multiple Wiener integrals. By a standard argument based on the fact that separable Hilbert spaces
are isometrically isomorphic, we may assume, when it serves the clarity of our exposition, that H =
L2(T ,B,μ) where μ is a σ -finite measure without atoms.

Recall that the entries of the matrix X , on which our Wishart matrices are based, are independent
multiple Wiener integrals of possibly different orders. The independence of random variables in Wiener
chaos can be characterized in terms of their kernels via the celebrated Üstünel-Zakai criterion (see
Üstünel and Zakai [20]), which we will intensively make use of in the sequel. We recall the criterion
here for convenience.

Theorem 3.2 (Üstünel-Zakai Üstünel and Zakai [20]). For any n,m ≥ 1, let f ∈ H⊗n and g ∈ H⊗m.
The multiple Wiener integrals In(f ) and Im(g) are independent if and only if

f ⊗1 g = 0 almost everywhere on H⊗m+n−2. (3.8)

Remark 3.2. Relation (3.8) also implies that

f ⊗r g = 0 almost everywhere on H⊗m+n−2r

for all 1 ≤ r ≤ n ∧ m.

We will also need the notion of strong independence of random variables introduced in Bourguin
and Tudor [2] (to which we refer for various properties of strongly independent random variables).

Definition 3.1. Two random variables X and Y with Wiener chaos decomposition

X =
∞∑

n=0

In(fn) and Y =
∞∑

m=0

Im(gm),

where fn ∈ H�n, gm ∈ H�m for every n,m ≥ 0, are said to be strongly independent if every chaos
component of X is independent of every chaos component of Y , that is, for every n,m ≥ 0, the random
variables In(fn) and Im(gm) are independent.

The following lemma assesses the strong independence of squares of chaotic random variables.

Lemma 3.1. Let X = In(f ), f ∈ H�n and Y = Im(g), g ∈ H�m be independent. Then, the random
variables X2 and Y 2 are strongly independent.

Proof. By the product formula for multiple Wiener integrals (2.4),

X2 =
n∑

r1=0

r1!
(

n

r1

)2

I2n−2r1(f ⊗r1 f )

and

Y 2 =
m∑

r2=0

r2!
(

m

r2

)2

I2m−2r2(g ⊗r2 g).
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It suffices to show that for every 0 ≤ r1 ≤ n−1 and 0 ≤ r2 ≤ m−1, the random variables I2n−2r1(f ⊗r1

f ) and I2m−2r2(g ⊗r2 g) are independent, which by (3.8) is equivalent to

(f ⊗̃r1f ) ⊗1 (g⊗̃r2g) = 0 (3.9)

almost everywhere on H⊗2n+2m−2r1−2r2 . By the definition of contractions (2.5), with Sn denoting the
group of permutations of {1, . . . , n}, we have

(f ⊗̃r1f )(t1, . . . , t2n−2r1)

= 1

(2n − 2r1)!
∑

σ∈S2n−2r1

∫
T r1

f (u1, . . . , ur1, tσ (1), . . . , tσ (n−r1))

× f (u1, . . . , ur1, tσ (n−r1+1), . . . , tσ (2n−2r1)) du1 · · ·dur1 .

Similarly,

(g⊗̃r2g)(t1, . . . , t2m−2r2)

= 1

(2m − 2r2)!
∑

τ∈S2m−2r2

∫
T r2

g(u1, . . . , ur2 , tτ (1), . . . , tτ (m−r2))

× g(u1, . . . , ur2, tτ (m−r2+1), . . . , tτ (2m−2r2)) du1 · · ·dur2 .

Hence, we can write (
(f ⊗̃r1f ) ⊗1 (g⊗̃r2g)

)
(t1, . . . , t2n−2r1+2m−2r2−2)

=
∫

T

(f ⊗̃r1f )(t1, . . . , t2n−2r1−1, x)

× (g⊗̃r2g)(t2n−2r1 , . . . , t2n−2r1+2m−2r2−2, x) dx. (3.10)

Note that for a symmetric function h ∈H�n, it holds that

h̃(t1, . . . , tn−1, x) = 1

n!
∑

σ∈Sn−1

n∑
i=1

h(tσ(1), . . . , tσ (i−1), x, tσ (i+1), . . . , tσ (n−1)),

so that by plugging the above identity into (3.10), we get[
(f ⊗̃r1f ) ⊗1 (g⊗̃r2g)

]
(t1, . . . , t2n−2r1+2m−2r2−2)

= 1

(2n − 2r1 − 1)!(2m − 2r2 − 1)!

×
∑

σ∈S2n−2r1−1,τ∈S2m−2r2−1

2n−2r1∑
i=1

2m−2r2∑
j=1

∫
T

(f

⊗r1 f )(tσ (1), . . . , tσ (i−1), x, tσ (i+1), . . . , tσ (2n−2r1−1))

× (g ⊗r2 g)(tτ(1), . . . , tτ (j−1), x, tτ(j+1), . . . , tτ (2m−2r2−1)) dx.
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To obtain (3.9), it suffices to show that for all 1 ≤ i ≤ 2n − 2r1 and 1 ≤ j ≤ 2m − 2r2,∫
T

(f ⊗r1 f )(tσ (1), . . . , tσ (i−1), x, tσ (i+1), . . . , tσ (2n−2r1−1))

× (g ⊗r2 g)(tτ(1), . . . , tτ (j−1), x, tτ(j+1), . . . , tτ (2m−2r2−1)) dx = 0 (3.11)

almost everywhere with respect to t1, . . . , t2n+2m−2r1−2r2−2.
Assume that 1 ≤ i ≤ n − r1 and 1 ≤ j ≤ m − r2 (the other cases can be dealt with in the same way).

Then, we have ∫
T

(f ⊗r1 f )(tσ (1), . . . , tσ (i−1), x, tσ (i+1), . . . , tσ (2n−2r1−1))

× (g ⊗r2 g)(tτ(1), . . . , tτ (j−1), x, tτ(j+1), . . . , tτ (2m−2r2−1)) dx

=
∫

T

∫
T r1

du1 · · ·dur1f (u1, . . . , ur1, x, tσ (1), . . . , tσ (n−r1−1))

× f (tσ(n−r1), . . . , f (tσ (2n−2r1−1))

×
∫

T r2
dv1 · · ·dvr2g(v1, . . . , vr2, x, tτ(1), . . . , tτ (m−r2−1))

× g(tτ(m−r2), . . . , tτ (2m−2r2−1)) dx.

Now, for almost every u1, . . . , ur1 , v1, . . . , vr2, tσ (1), . . . , tσ (n−r1−1), tτ (1), . . . , tτ (m−r2−1), (3.8) implies
that ∫

T

f (u1, . . . , ur1, x, tσ (1), . . . , tσ (n−r1−1))g(v1, . . . , vr2, x, tτ(1), . . . , tτ (m−r2−1)) dx = 0,

which implies (3.11) and in turn (3.9). �

The following lemma is the statement of Bourguin and Tudor [2], Lemma 2.

Lemma 3.2. Let X, Y be centered, strongly independent random variables in D
1,2. Then〈

DX,−DL−1Y
〉
H

= 〈
DY,−DL−1X

〉
H

= 0.

We prove another consequence of strong independence needed later in the paper.

Lemma 3.3. Let X, Y be strongly independent random variables in D
1,2.

(i) The random variables 〈DX,−DL−1X〉H and 〈DY,−DL−1Y 〉H are strongly independent.
(ii) The random variables X and 〈DY,−DL−1Y 〉H are strongly independent.

Proof. Let us prove (i) (the proof of (ii) follows in a similar way by the same arguments, and an
analogous result has been proved in Bourguin and Tudor [2], Lemma 1). Assume

X =
∞∑

n=0

In(fn) and Y =
∞∑

m=0

Im(gm),
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where fn ∈H�n and gm ∈H�m for every n,m ≥ 0. Then, we have

DθX =
∑
n≥1

nIn−1
(
fn(·, θ)

)
and − DθL

−1X =
∑
n≥1

In−1
(
fn(·, θ)

)
,

where In−1(fn(·, θ)) denotes the multiple Wiener integral of the function

(t1, . . . , tn−1) �→ fn(t1, . . . , tn−1, θ).

Then, it holds that

〈
DX,−DL−1X

〉
H

=
∞∑

n1,n2=1

n1

∫
T

In1−1
(
fn1(·, x)

)
In2−1

(
fn2(·, x)

)
dx

=
∞∑

n1,n2=1

n1

n1∧n2−1∑
r=0

(
n1
r

)(
n2
r

)
In1+n2−2r−2(fn1⊗̃r+1fn2).

Similarly,

〈
DY,−DL−1Y

〉
H

=
∞∑

m1,m2=1

m1

m1∧m2−1∑
r=0

(
m1
r

)(
m2
r

)
Im1+m2−2r−2(gm1⊗̃r+1gm2).

The conclusion is obtained if we prove that for every 0 ≤ r1 ≤ n1 ∧ n2 − 1 and for every 0 ≤ r2 ≤
m1 ∧ m2 − 1, the random variables In1+n2−2r−2(fn1⊗̃r1+1fn2) and Im1+m2−2r−2(gm1⊗̃r2+1gm2) are
independent, or equivalently, that

(fn1⊗̃r1+1fn2) ⊗1 (gm1⊗̃r2+1gm2) = 0 a.e. (3.12)

Since for every n,m ≥ 0, we have fn ⊗1 gm = 0 almost everywhere on T m+n−2, (3.12) follows from
the proof of Lemma 3.1. �

Let us illustrate what the above results on strong independence imply about the entries of the matrix
Xn,d . We begin by introducing some notation. For every 1 ≤ i ≤ n and for every 1 ≤ k, l ≤ d , we define

Fikl = 〈
D

(
X2

ik − 1
)
,−DL−1(X2

il − 1
)〉
H

. (3.13)

We then have the following lemma.

Lemma 3.4. Let the above notation prevail.

(i) If k �= l, Fikl = 0 almost surely.
(ii) For every k, l = 1, . . . , d with k �= l, the random variables Fikk and Fill are independent.

Proof. By Lemma 3.1, X2
ik and X2

il are strongly independent random variables. Lemma 3.2 yields (i),
and Lemma 4 implies (ii). �



1088 S. Bourguin, C.-P. Diez and C.A. Tudor

3.2. Proof of Theorem 1.1

This subsection is dedicated to the proof of Theorem 1.1. We restate it here for convenience.

Theorem 1. Consider the renormalized Wishart matrix W̃n,d with entries given by (3.6). Then for
every n ≥ 1, W̃n,d converges in distribution componentwise, as d → ∞, to the matrix Zn given by
(3.7). Moreover, there exists a positive constant C such that for every n,d ≥ 1,

dW (W̃n,d ,Zn) ≤ C

√
n3

d
.

Proof. Lemma 2.1 combined with Theorem 3.1 implies that we need to estimate the quantity

E
((〈

DW̃ij ,−DL−1W̃ab

〉
H

−E(ZijZab)
)2)

for every 1 ≤ i, j, a, b ≤ n with i ≤ j and a ≤ b, and Zij as in (3.7). Note that E(Z2
ii ) = m4 − 1,

E(Z2
ij ) = 1 if i �= j , and E(ZijZab) = 0 if (i, j) �= (a, b).

Step 1: calculation of E((〈DW̃ii,−DL−1W̃ii〉H − (m4 − 1))2).
By (3.4) and the strong independence proved in Lemma 3.4, for every 1 ≤ i ≤ n, it holds that

〈
DW̃ii,−DL−1W̃ii

〉
H

= 1

d

d∑
k,l=1

〈
D

(
X2

ik − 1
)
,−DL−1(X2

il − 1
)〉
H

= 1

d

d∑
k=1

〈
D

(
X2

ik − 1
)
,−DL−1(X2

ik − 1
)〉
H

= 1

d

d∑
k=1

Fikk,

where Fikk is given by (3.13). Since for every G ∈ D
1,2, E(G2) = E(〈DG,−DL−1G〉H), we can write,

using (3.2),

E
(〈
DW̃ii,−DL−1W̃ii

〉
H

) = 1

d

d∑
k=1

E
(〈

D
(
X2

ik − 1
)
,−DL−1(X2

ik − 1
)〉
H

)

= 1

d

d∑
k=1

E
((

X2
ik − 1

)2) = m4 − 1.

Hence, we can write

E
((〈

DW̃ii,−DL−1W̃ii

〉
H

− (m4 − 1)
)2)

= E
((〈

DW̃ii,−DL−1W̃ii

〉
H

−E
(〈
DW̃ii,−DL−1W̃ii

〉
H

))2)
= 1

d2
E

((
d∑

k=1

(
Fikk −E(Fikk)

))2)

= 1

d2

d∑
k=1

E
((

Fikk −E(Fikk)
)2)

. (3.14)
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We claim that for every 1 ≤ i ≤ n and 1 ≤ k ≤ d ,

E
((

Fikk −E(Fikk)
)2) ≤ C(i),

where C(i) > 0 is a constant depending on i, but not on k. In order to prove this, we will make use of
the Wiener chaos decomposition of Fikk , together with (3.8) and assumption (3.2). From (3.1) and the
product formula (2.4), for every 1 ≤ i ≤ n and 1 ≤ k ≤ d , it holds that

X2
ik =

qi∑
r=0

r!
(

qi

r

)2

I2qi−2r (fik ⊗r fik),

Dθ

(
X2

ik − 1
) =

qi−1∑
r=0

r!
(

qi

r

)2

(2qi − 2r)I2qi−2r−1
(
(fik ⊗r fik)(·, θ)

)
,

and

−DθL
−1(X2

ik − 1
) =

qi−1∑
r=0

r!
(

qi

r

)2

I2qi−2r−1
(
(fik ⊗r fik)(·, θ)

)
.

This yields, for every 1 ≤ i ≤ n and 1 ≤ k ≤ d ,

Fikk = 〈
D

(
X2

ik − 1
)
,−DL−1(X2

ik − 1
)〉
H

=
qi−1∑

r1,r2=0

r1!r2!
(

qi

r1

)2 (
qi

r2

)2

(2qi − 2r1)

× 〈
I2qi−2r1−1(fik ⊗r1 fik), I2qi−2r2−1(fik ⊗r2 fik)

〉
H

=
qi−1∑

r1,r2=0

r1!r2!
(

qi

r1

)2 (
qi

r2

)2

(2qi − 2r1)

×
(2qi−2r1)∧(2qi−2r2)−1∑

p=0

p!
(

2qi − 2r1 − 1
p

)(
2qi − 2r2 − 1

p

)
× I4qi−2r1−2r2−2(p+1)

(
(fik ⊗r1 fik) ⊗p+1 (fik ⊗r2 fik)

)
,

and hence

Fikk −E(Fikk)

=
qi−1∑

r1,r2=0

1{r1 �=r2}r1!r2!
(

qi

r1

)2 (
qi

r2

)2

(2qi − 2r1)

× 〈
I2qi−2r1−1(fik ⊗r1 fik), I2qi−2r2−1(fik ⊗r2 fik)

〉
H

=
qi−1∑
r1=0

qi−1∑
r2=0

r1!r2!
(

qi

r1

)2 (
qi

r2

)2

(2qi − 2r1)
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×
(2qi−2r1)∧(2qi−2r2)−1∑

p=0

p!
(

2qi − 2r1 − 1
p

)(
2qi − 2r2 − 1

p

)
× I4qi−2r1−2r2−2(p+1)

(
(fik ⊗r1 fik) ⊗p+1 (fik ⊗r2 fik)

)
+

qi−1∑
r=0

r!2
(

qi

r

)4

(2qi − 2r)

2qi−2r−2∑
p=0

p!
(

2qi − 2r − 1
p

)2

× I4qi−4r−2(p+1)

(
(fik ⊗r fik) ⊗p+1 (fik ⊗r fik)

)
. (3.15)

Now, using the isometry property (2.3) of multiple Wiener integrals together with the bounds
‖f̃ ‖H⊗n ≤ ‖f ‖H⊗n and ‖f ⊗r g‖H⊗(2n−2r) ≤ ‖f ‖H⊗n‖g‖H⊗n for every f,g ∈ H⊗n and 0 ≤ r ≤ n,
we can write

E
(
I4qi−2r1−2r2−2(p+1)

(
(fik ⊗r1 fik) ⊗p+1 (fik ⊗r2 fik)

)2)
= c(qi, r1, r2,p)

∥∥(fik⊗̃r1fik)⊗̃p+1(fik⊗̃r2fik)
∥∥2
H⊗(4qi−2r1−2r2−2(p+1))

≤ c(qi, r1, r2,p)‖fik⊗̃r1fik‖2
H⊗(2qi−2r1)‖fik⊗̃r2fik‖2

H⊗(2qi−2r2)

≤ c(qi, r1, r2,p)‖fik‖8
H⊗qi

≤ c(qi, r1, r2,p), (3.16)

where c(qi, r1, r2,p) is a strictly positive constant depending on qi , r1, r2, p but not on k. Now, in
(3.15), we use the isometry property (2.3) together with (3.16) to obtain, for every 1 ≤ i ≤ n and for
every 1 ≤ k ≤ d ,

E
((

Fikk −E(Fikk)
)2) ≤ C(i),

where C(i) > 0 is a constant (depending only on qi ). Therefore, using the above inequality and (3.14)
yields

E
((〈

DW̃ii,−DL−1W̃ii

〉
H

− (m4 − 1)
)2) = 1

d2

d∑
k=1

E
((

Fikk −E(Fikk)
)2) ≤ C(i)

d
. (3.17)

Step 2: calculation of E((〈DW̃ij ,−DL−1W̃ij 〉H − 1)2) with i < j .
Assume 1 ≤ i < j ≤ n. In this case, by (3.1), the product formula (2.4) as well as (3.8), we have for

every 1 ≤ k ≤ d ,

XikXjk = Iqi+qj
(fik ⊗ fjk),

so that XikXjk is an element of the (qi + qj )-th Wiener chaos. Consequently,

−DL−1(XikXjk) = 1

qi + qj

D(XikXjk)

and

〈
DW̃ij ,−DL−1W̃ij

〉
H

= 1

d(qi + qj )

d∑
k,l=1

〈
D(XikXjl),−DL−1(XikXjk)

〉
H
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= 1

d(qi + qj )

d∑
k=1

∥∥D(XikXjk)
∥∥2
H

= 1

d(qi + qj )

d∑
k=1

(
X2

ik‖DXjk‖2
H + X2

jk‖DXik‖2
H

)
.

On the other hand, since E(‖DXik‖2
H

) = qi and E(‖DXjk‖2
H

) = qj , we have

E
(〈
DW̃ij ,−DL−1W̃ij

〉
H

)
= 1

d(qi + qj )

d∑
k=1

(
E

(
X2

ik

)
E

(‖DXjk‖2
H

) +E
(
X2

jk

)
E

(‖DXik‖2
H

)) = 1

and thus, writing 1 = qi

qi+qj
+ qj

qi+qj
,

∣∣〈DW̃ij ,−DL−1W̃ij

〉
H

− 1
∣∣

≤ 1

d(qi + qj )

∣∣∣∣∣
d∑

k=1

(
X2

ik‖DXjk‖2
H − qj

)∣∣∣∣∣ + 1

d(qi + qj )

∣∣∣∣∣
d∑

k=1

(
X2

jk‖DXik‖2
H − qi

)∣∣∣∣∣
and

E
(∣∣〈DW̃ij ,−DL−1W̃ij

〉
H

− 1
∣∣2) ≤ 2

d2(qi + qj )2
E

(∣∣∣∣∣
d∑

k=1

(
X2

ik‖DXjk‖2
H − qj

)∣∣∣∣∣
2)

+ 2

d2(qi + qj )2
E

(∣∣∣∣∣
d∑

k=1

(
X2

jk‖DXik‖2
H − qi

)∣∣∣∣∣
2)

. (3.18)

The two summands above can be estimated in a similar way, so we only cover the first one. By the
independence of the entries and Bourguin and Tudor [2], Lemma 1, we have

E

(∣∣∣∣∣
d∑

k=1

(
X2

ik‖DXjk‖2
H − qj

)∣∣∣∣∣
2)

≤ 2E

(∣∣∣∣∣
d∑

k=1

X2
ik

(‖DXjk‖2
H − qj

)∣∣∣∣∣
2)

+ 2E

(∣∣∣∣∣
d∑

k=1

qj

(
X2

ik − 1
)∣∣∣∣∣

2)

= 2
d∑

k=1

E
([

X2
ik

(‖DXjk‖2
H − qj

)]2)

+ 2
d∑

k=1

q2
jE

((
X2

ik − 1
)2)
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= 2
d∑

k=1

E
((‖DXjk‖2

H − qj

)2)
m4

+ 2d(m4 − 1). (3.19)

Writing

‖DXjk‖2
H − qj = q2

j

qj −2∑
r=0

r!
(

qj − 1
r

)2

I2qj −2r−2(fik⊗̃r+1fik)

and estimating the L2-norm as in the proof of (3.16) yields

E
((‖DXjk‖2

H − qj

)2) ≤ C(j), (3.20)

where C(j) is a constant depending solely on qj . By (3.18), (3.19) and (3.20), we get

E
((〈

DW̃ij ,−DL−1W̃ij

〉
H

− 1
)2) ≤ C(i, j)

d
, (3.21)

where C(i, j) is a positive constant depending only on qi and qj .
Step 3: calculation of E((〈DW̃ij ,−DL−1W̃ab〉H)2) with (i, j) �= (a, b).
Let 1 ≤ i, j, a, b ≤ n with i ≤ j , a ≤ b and (i, j) �= (a, b). If i, j , a, b are all distinct, then we have

〈
DW̃ij ,−DL−1W̃ab

〉
H

= 1

dqa

d∑
k,l=1

〈
D(XikXjk),D(XalXbl)

〉
H

= 1

dqa

d∑
k,l=1

〈XikDXjk + XjkDXik,XalDXbl + XblDXal〉H

= 1

dqa

d∑
k,l=1

(
XikXal〈DXjk,DXbl〉H + XikXbl〈DXjk,DXal〉H

+ XjkXal〈DXik,DXbl〉H
+ XjkXbl〈DXik,DXal〉H

) = 0, (3.22)

since all the scalar products vanish according to Lemma 3.2.
The remaining cases, namely 〈DW̃ij ,−DL−1W̃ib〉H with j �= b and 〈DW̃ij ,−DL−1W̃aj 〉H with

i �= a can all be dealt with in a similar manner. For instance, if j �= b, assuming i < j and i < b, we
can write

〈
DW̃ij ,−DL−1W̃ib

〉
H

= 1

2dqi

d∑
k=1

〈
D(XikXjk),D(XikXbk)

〉
H

= 1

2dqi

d∑
k=1

XjkXbk‖DXik‖2
H.
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Similarly, we also have

E
((〈

DW̃ij ,−DL−1W̃aj

〉
H

)2) = C(i)

d2

d∑
k=1

E
(‖DXik‖4

H

) ≤ C(i)

d
, (3.23)

where the above equality and inequality are derived similarly as for what was done for the bound
appearing in (3.20).

An application of Lemma 2.1 together with Theorem 3.1 yields

dW (W̃n,d ,Zn) ≤ √
2C

√√√√ n∑
i,j,a,b=1

E
((〈

DW̃ij ,−DL−1W̃ab

〉
H

−E(ZijZab)
)2)

,

where C > 0 is the constant appearing in Theorem 3.1. Since for a, b, i, j all distinct, the correspond-
ing above summands vanish according to (3.22), we have only n4 − n(n − 1)(n − 2)(n − 3) ≤ 6n3

summands. By (3.17), (3.21) and (3.23), all these non-vanishing summands are bounded by C
d

, where
C > 0 denotes a generic constant resulting from the aggregation of the C(i) and C(i, j) constants
appearing in the previous steps of the proof. This yields (1.2) and concludes the proof. �

4. Random matrices with correlated second chaos entries

In this section, we consider the case where the entries of the matrix Xn,d are allowed to be correlated.
As in the previous section, let Xn,d = (Xij )1≤i≤n,1≤j≤d be a n × d random matrix whose entries
are given by the increments of a Rosenblatt process, which lives in the second Wiener chaos. The
choice of dealing with the second chaos in the case of correlated entries comes both from the accrued
importance of the second chaos in applications, as well as from technical considerations of keeping the
involved combinatorics at a reasonable level for our exposition. The Rosenblatt process (ZH

t )t≥0 with
self-similarity parameter H ∈ ( 1

2 ,1) is defined by, for every t ≥ 0,

ZH
t = I2(Lt ), (4.1)

where I2 denote the multiple Wiener integral of order two with respect to a Brownian motion (Bt )t∈R+
and the kernel Lt is given by, for every y1, y2 ∈ R and t ≥ 0,

Lt(y1, y2) = d(H)1[0,t]2(y1, y2)

∫ t

y1∨y2

∂1K
H+1

2 (u, y1)∂1K
H+1

2 (u, y1) du, (4.2)

where

d(H) = 1

H + 1

√
2(2H − 1)

H
(4.3)

and for t > s,

KH (t, s) = c(H)s
1
2 −H

∫ t

s

(u − s)H− 3
2 uH− 1

2 du,

with c(H) =
√

(
H(2H−1)

β(2−2H,H− 1
2 )

), where β denotes the beta function (see e.g. Nualart [14]).
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The kernel Lt belongs to L2(R2+) for every t ≥ 0. The Rosenblatt process ZH is H -self similar, has
stationary increments and long memory. We refer to the monographs Pipiras and Taqqu [15] or Tudor
[18] for its basic properties. In particular, it has the same covariance as the fractional Brownian motion,
that is, for any s, t ≥ 0,

E
(
ZH

t ZH
s

) = 1

2

(
t2H + s2H − |t − s|2H

)
.

A random variable with the same distribution as ZH
1 will be called a Rosenblatt random variable.

Let us now define the entries of the matrix Xn,d . Let B = (B1, . . . ,Bn) denote a d-dimensional
Brownian motion and define

Z
H,i
t = I i

2(Lt ), (4.4)

where I i
q denotes the multiple Wiener integral of order q with respect to the Brownian motion Bi

for any 1 ≤ i ≤ n. Then, by (4.1), the processes (Z
H,i
t )t≥0, 1 ≤ i ≤ n are independent Rosenblatt

processes with the same Hurst parameter (or self-similarity parameter) H ∈ ( 1
2 ,1). For any i ≥ 1,

denote fi = Li − Li−1.
Consider the random matrix Xn,d = (Xij )1≤i≤n,1≤j≤d with entries given by

Xij = I i
2(fj ) = Z

H,i
j − Z

H,i
j−1 (4.5)

for every 1 ≤ i ≤ n and 1 ≤ j ≤ d , with ZH,i given by (4.4). This means that all the entries have
the same distribution, the ones on different columns are independent and those on the same rows are
correlated according to the correlation structure of the increments of the Rosenblatt process. Since
the covariance of the Rosenblatt process coincides with that of the fractional Brownian motion, the
correlation structure of our matrix is the same as in Nourdin and Zheng [13] (where the entries are given
by the increments of the fractional Brownian motion). Despite this fact, the non-Gaussian character will
yield a different limiting behavior of the associated Wishart matrix.

More precisely, we have for every 1 ≤ 1, k ≤ n and 1 ≤ j, l ≤ d ,

E(XijXkl) = 1{i=k}ρH (j − l),

where ρH denotes the correlation function of the Rosenblatt process (or that of the fractional Brownian
motion) given by, for k ∈ Z,

ρH (k) = 1

2

(|k + 1|2H + |k − 1|2H − 2|k|2H
)
. (4.6)

In particular, for 1 ≤ i ≤ n and 1 ≤ j ≤ d ,

E
(
X2

ij

) = 2!〈fi, fj 〉L2(R2+) = 1.

4.1. Rosenblatt limiting distribution

Consider the Wishart matrix Wn,d obtained from Xn,d as in (3.3), where Xn,d is now given by (4.5).
Recall that the entries of the Wishart matrix are given by (3.4) and (3.5). We start by analyzing the
asymptotic behavior in distribution of each element of the Wishart matrix. This will be related to the
limiting behavior of the quadratic variations of the Rosenblatt process. Consider the constant c1,H

given by

c1,H = 4d(H), (4.7)

with d(H) given by (4.3). Let us recall the following result from Tudor and Viens [19].
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Theorem 4.1. Let (ZH
t )t≥0 be a Rosenblatt process. Define, for d ≥ 1,

Vd = c−1
1,H d−H

d−1∑
k=0

[ (ZH
k+1
d

− ZH
k
d

)2

d−2H
− 1

]
. (4.8)

Then, the sequence (Vd)d≥1 converges in L2(�), as d → ∞, to the Rosenblatt random variable ZH
1 .

Let us first study the limiting behavior, as d → ∞, of the diagonal terms of the Wishart matrix Wn,d .

Proposition 4.1. For 1 ≤ i ≤ n, let Wii be given by (3.4), and let

W̃ii = c−1
1,H d1−H Wii,

where c1,H is the constant defined in (4.7). Then, for every 1 ≤ i ≤ n,

W̃ii → Z
H,i
1

in L2(�) as d → ∞.

Proof. By the scaling property of the Rosenblatt process and (4.5), we have, for every 1 ≤ i ≤ n,

Wii = 1

d

d∑
k=1

(
X2

ik − 1
) = 1

d

d∑
k=1

((
Z

H,i
k+1 − Z

H,i
k

)2 − 1
)

D= 1

d

d−1∑
k=0

( (Z
H,i
k+1
d

− Z
H,i
k
d

)2

d−2H
− 1

)
= c1,H dH−1V i

d ,

where
D= denotes equality in distribution, and for 1 ≤ i ≤ n,

V i
d = c−1

1,H d−H
d−1∑
k=0

( (Z
H,i
k+1
d

− Z
H,i
k
d

)2

d−2H
− 1

)
. (4.9)

The conclusion follows from Theorem 4.1. �

As far as the convergence of the non-diagonal terms of the Wishart matrix (3.3), we have the follow-
ing result. It shows that the square mean of the non-diagonal terms of the renormalized Wishart matrix
is dominated by the square mean of the diagonal terms. Intuitively, this happens because the mean
square of the non-diagonal terms involves the increments of two independent Rosenblatt processes.

Proposition 4.2. For 1 ≤ i, j ≤ n with i �= j , let Wij be given by (3.5), and define

W̃ij = c−1
1,H d1−H Wij , (4.10)

where c1,H denotes the constant defined in (4.7). Then, for every 1 ≤ i, j ≤ n,

W̃i,j → 0
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in L2(�) as d → ∞, and

E
(
W̃ 2

ij

) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1−2H if H ∈
(

1

2
,

3

4

)
,

log(d)d− 1
2 if H = 3

4
,

d2H−2 if H ∈
(

3

4
,1

)
,

(4.11)

where C > 0 denotes a generic constant.

Proof. By self-similarity and (4.5),

Wij = 1

d

d∑
k=1

XikXjk = 1

d

d−1∑
k=0

(
Z

H,i
k+1 − Z

H,i
k

)(
Z

H,j

k+1 − Z
H,j
k

)
,

so that, for every 1 ≤ i, j ≤ n,

E
(
W̃ 2

ij

) = c−2
1,H d−2H

E

((
d−1∑
k=0

(
Z

H,i
k+1 − Z

H,i
k

)(
Z

H,j

k+1 − Z
H,j
k

))2)

= c−2
1,H d−2H

d−1∑
k,l=0

E
((

Z
H,i
k+1 − Z

H,i
k

)(
Z

H,i
l+1 − Z

H,i
l

))
×E

((
Z

H,j

k+1 − Z
H,j
k

)(
Z

H,j

l+1 − Z
H,j
l

))
= c−2

1,H d−2H
d−1∑
k,l=0

ρH

(|k − l|)2

≤ c−2
1,H d1−2H

∑
v∈Z

ρH

(|v|)2
(

1 − |v|
n

)
1(|v|<n),

where ρH is given by (4.6). The fact that ρH (|k|) behaves as H(2H −1)|k|2H−2 as |k| → ∞ concludes
the proof. �

4.2. Proof of Theorem 1.2

In this section, we pave the way to the proof of Theorem 1.2 by stating and proving some preparatory
results, making use of the results established in the previous subsection to do so. Theorem 1.2 is restated
for convenience at the end of the section right before its proof.

Consider the renormalized Wishart matrix W̃n,d defined in (4.10). By Propositions 4.1 and 4.2, its
limit in distribution is an n × n diagonal matrix, denoted by RH

n = (RH
ij )1≤i,j≤n, with independent

diagonal entries given by, for all 1 ≤ i ≤ n,

RH
ii = Z

H,i
1 . (4.12)
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Given that what we need is to estimate the Wasserstein distance between W̃n,d and RH
n , we start with

the observation that, due to the scaling property of the Rosenblatt process, we have

dW

(
W̃n,d ,RH

n

) = dW

(
Vn,d ,RH

n

)
,

where the matrix Vn,d = (Vij )1≤i,j≤n is given by⎧⎪⎪⎨⎪⎪⎩
Vii = V i

d for 1 ≤ i ≤ n,

Vij = c−1
1,H dH

d−1∑
k=0

(
Z

H,i
k+1
d

− Z
H,i
k
d

)(
Z

H,j
k+1
d

− Z
H,j
k
d

)
for 1 ≤ i �= j ≤ n,

where V i
d was defined in (4.9). By the definition of the Wasserstein distance (2.1),

dW

(
W̃n,d ,RH

n

) = dW

(
Vn,d ,RH

n

) ≤
√√√√ n∑

i,j=1

E
((

Vij − RH
ij

)2) (4.13)

with RH
ij = 0 if i �= j and RH

ii given by (4.12).
The estimates for the terms with i �= j in the right-hand side of (4.13) will follow from Proposi-

tion 4.2. The next proposition provides estimates for the diagonal summands of the right-hand side of
(4.13).

Proposition 4.3. Let Vd be given by (4.8). Then, it holds that

E
(∣∣Vd − ZH

1

∣∣2) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1−2H if H ∈
(

1

2
,

3

4

)
,

log(d)d− 1
2 if H = 3

4
,

d2H−2 if H ∈
(

3

4
,1

)
,

(4.14)

where C > 0 denotes a generic constant.

Proof. For 0 ≤ k ≤ d − 1, we have

ZH
k+1
d

− ZH
k
d

= I2(Lk+1
n

− Lk
n
),

where L is the kernel defined in (4.2). By the product formula for multiple Wiener integrals (2.4), we
can decompose Vd as the sum of two terms, one in the fourth Wiener chaos and one in the second
Wiener chaos. Namely,

Vd = c−1
1,H dH

d−1∑
k=0

[
I4

(
(Lk+1

n
− Lk

n
)⊗2) + 4I2

(
(Lk+1

n
− Lk

n
) ⊗1 (Lk+1

n
− Lk

n
)
)]

= T4,d + T2,d . (4.15)
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The estimation of the L2(�)-norm of the term T4,d has been done in Tudor and Viens [19]. This term
has no contribution to the limit of Vd and using Tudor and Viens [19], Equations (3.15)–(3.17), yields

E
(
T 2

4,d

) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

d1−2H if H ∈
(

1

2
,

3

4

)
,

log(d)d− 1
2 if H = 3

4
,

d2H−2 if H ∈
(

3

4
,1

)
.

The summand T2,d appearing in (4.15) converges in L2(�) to ZH
1 . This has also been proved in Tudor

and Viens [19], but we still need to evaluate the rate of this convergence. We can write T2,d = I2(hd),
with

hd(y1, y2) = 4c−1
1,H dH

d−1∑
k=0

(
(Lk+1

n
− Lk

n
) ⊗1 (Lk+1

n
− Lk

n
)
)
. (4.16)

Hence,

E
(∣∣T2,d − ZH

1

∣∣2) = E
(|T2,d |2) − 2E

(
T2,dZH

1

) +E
(∣∣ZH

1

∣∣2)
. (4.17)

On one hand, Tudor and Viens [19], Equation (3.11), yields

E
(|T2,d |2) = 2‖hd‖2

L2(R2+)

= 2c−2
1,H d(H)4(H(H + 1)

)4
d2H

d−1∑
i,j=0

∫ i+1
d

i
d

∫ i+1
d

i
d

∫ j+1
d

j
d

∫ j+1
d

j
d

|u − v|H−1

× ∣∣u′ − v′∣∣H−1∣∣u − u′∣∣H−1∣∣v − v′∣∣H−1
dudv du′ dv′

= H(2H − 1)e(H)d−2H

d−1∑
i,j=0

∫
[0,1]4

|u − v|H−1
∣∣u′ − v′∣∣H−1

× ∣∣u − u′ + i − j
∣∣H−1∣∣v − v′ + i − j

∣∣H−1
dudv du′ dv′,

where e(H) is a constant given by

e(H) = H 2(H + 1)2

4
. (4.18)

On the other hand, using the fact that 2‖L1‖2
L2(R2+)

= 1 yields

E
(∣∣ZH

1

∣∣2) = 2‖L1‖2
L2(R2+)

= H(2H − 1)

∫ 1

0

∫ 1

0
|u − v|2H−2 dudv

= H(2H − 1)

d−1∑
i,j=0

∫ i+1
d

i
d

∫ j+1
d

j
d

|u − v|2H−2 dudv
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= H(2H − 1)d−2H
d−1∑
i,j=0

∫
[0,1]2

|u − v + i − j |2H−2 dudv

= 1.

Furthermore, note that (4.16) and (4.2) imply

E
(
T2,dZH

1

) = 2〈hN,L1〉L2(R2+)

= H(2H − 1)f (H)dH
d−1∑
i=0

∫ i+1
d

i
d

∫ i+1
d

i
d

∫ 1

0
|u − v|H−1

∣∣u − u′∣∣H−1

× ∣∣v − u′∣∣H−1
dudv du′

= H(2H − 1)f (H)dH

d−1∑
i,j=0

∫ i+1
d

i
d

∫ i+1
d

i
d

∫ j+1
d

j
d

|u − v|H−1
∣∣u − u′∣∣H−1

× ∣∣v − u′∣∣H−1
dudv du′

= H(2H − 1)f (H)d−2H

d−1∑
i,j=0

∫
[0,1]3

|u − v|H−1
∣∣u − u′ + i − j

∣∣H−1

× ∣∣v − u′ + i − j
∣∣H−1

dudv du′,

where f (H) is a constant given by

f (H) = H + 1

2(2H − 1)
. (4.19)

Now, (4.17) becomes

E
(∣∣T2,d − ZH

1

∣∣2)
= H(2H − 1)d−2H e(H)

d−1∑
i,j=0

[∫
[0,1]4

|u − v|H−1
∣∣u′ − v′∣∣H−1∣∣u − u′ + i − j

∣∣H−1

× ∣∣v − v′ + i − j
∣∣H−1

dudv du′ dv′

− 2f (H)

∫
[0,1]3

|u − v|H−1
∣∣u − u′ + i − j

∣∣H−1∣∣v − u′ + i − j
∣∣H−1

dudv du′

+
∫

[0,1]2
|u − v + i − j |2H−2 dudv

]
≤ Cd1−2H e(H)

∑
k∈Z

[∫
[0,1]4

|u − v|H−1
∣∣u′ − v′∣∣H−1∣∣u − u′ + k

∣∣H−1

× ∣∣v − v′ + k
∣∣H−1

dudv du′ dv′
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− 2f (H)

∫
[0,1]3

|u − v|H−1
∣∣u − u′ + k

∣∣H−1∣∣v − u′ + k
∣∣H−1

dudv du′

+
∫

[0,1]2
|u − v + k|2H−2 dudv

]
. (4.20)

Now, Tudor and Viens [19], Lemma 5 (see also Clausel et al. [7], Lemma 2), together with the definition
of e(H) given in (4.18) yields∫

[0,1]4
|u − v|H−1

∣∣u′ − v′∣∣H−1∣∣u − u′ + k
∣∣H−1∣∣v − v′ + k

∣∣H−1
dudv du′ dv′

= e(H)−1k2H−2 + O
(
k2H−2). (4.21)

Similarly,∫
[0,1]3

|u − v|H−1
∣∣u − u′ + k

∣∣H−1∣∣v − u′ + k
∣∣H−1

dudv du′ = f (H)−1k2H−2 + o
(
k2H−2), (4.22)

where f (H) is given by (4.19). Finally, Breton and Nourdin [3], Proof of Proposition 3.1, yields∫
[0,1]2

|u − v + k|2H−2 dudv = k2H−2 + o
(
k2H−2). (4.23)

Combining (4.21), (4.22) and (4.23) implies that the sum over k ∈ Z in (4.20) converges. Hence,

E
(∣∣T2,d − ZH

1

∣∣2) ≤ Cd1−2H ,

and since, by (4.15),

E
(∣∣Vd − ZH

1

∣∣2) = E
(|T4,d |2) +E

(∣∣T2,d − ZH
1

∣∣2)
,

we obtain (4.14). �

We are now ready to provide the proof of Theorem 1.2, which we restate here for convenience.

Theorem 2. Let W̃n,d be the renormalized Wishart matrix (4.10) and let RH
n be the diagonal matrix

with entries given by (4.12). Then, for every n ≥ 1, the random matrix W̃n,d converges componentwise
in distribution, as d → ∞, to the matrix RH

n . Moreover, as n,d ≥ 1, there exists a positive constant C

such that

dW

(
W̃n,d ,RH

n

) ≤ C

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

nd
1
2 −H if H ∈

(
1

2
,

3

4

)
,

n
√

log(d)d− 1
4 if H = 3

4
m

ndH−1 if H ∈
(

3

4
,1

)
.

Proof of Theorem 1.2. The conclusion follows from combining relation (4.13) with Propositions 4.2
and 4.3. Indeed, the summands with i �= j in (4.13) have been estimated in Proposition 4.2 (see (4.11)),
while the diagonal terms of (4.13) are estimated by (4.14). �
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