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Abstract. In this article we explore the relationship between the systole and the diameter of

closed hyperbolic orientable surfaces. We show that they satisfy a certain inequality, which

can be used to deduce that their ratio has a (genus dependent) upper bound.

1. Introduction

Geometric invariants play an important part in understanding manifolds and, when ap-

plicable, their moduli spaces. A particularly successful example has been that of systolic

geometry where one studies the (or a) shortest non-contractible closed curve of a non-simply

connected closed Riemannian manifold (the systole).

For (closed orientable) hyperbolic surfaces of given genus g ≥ 2, the length of a systole

becomes a function over the underlying moduli spaceMg, and has intriguing properties,

such as being a topological Morse function over moduli space [11, 55, 1111]. Observe that it is

easy to construct a hyperbolic surface with arbitrarily small systole, and that a standard

area argument gives an upper bound on its length which grows like 2 log g. Buser and

Sarnak [44] were the first to construct a family of surfaces with growing genus and with

systoles of length on the order of 4
3 log(g). Since then, there have been other constructions

(see for example [1010]) but never with a greater order of growth than 4
3 log(g), and the true

maximal order of growth of families of surfaces remains elusive.

In an analogous way, one can study the diameter. Here it is easy to construct surfaces with

arbitrarily large diameter, but difficult to construct small diameter surfaces. Diameters are

quite tricky geometric invariants, because you need to maximize among all pairs of points

minimal distance, and in particular to the best of our knowledge, not a single minimal

diameter surface (in its moduli space) is known. Despite these inherent difficulties, the

asymptotic question was recently settled by Budzinski, Curien and Petri [66] where they
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show that the minimal diameter in each genus grows asymptotically like log(g).

For any closed hyperbolic orientable surface X, we prove the following inequality which

relates these two quantities:

Theorem 1.1. The length of the systole sys(X) and the diameter diam(X) of a closed hyperbolic
orientable surface X always satisfy the following inequality:

4 cosh(sys(X)/2) ≤ 3 cosh(diam(X))− 1.

The first to study the systole and the diameter together in the case of hyperbolic surfaces

was Bavard [22] who proved two inequalities that if put together provide the following (see

Section 22):

4 cosh2(sys(X)/2) ≤ 3 cosh2(diam(X)) + 1.

The inequality in Theorem 1.11.1 strengthens this relation between the two quantities.

The relation between systole length and diameter has also been studied in other contexts.

In the event that a closed Riemannian manifold M is non-simply connected, a cut and paste

type argument rapidly shows that the ratio of systole length and diameter, a natural scale

invariant, satisfies:
sys(M)

diam(M)
≤ 2.

Interestingly, equality occurs if and only if M is isometric to a standard projective RPn for

some n ≥ 1 [88, Proposition 5.30].

Using Theorem 1.11.1, we obtain the following improvement for orientable hyperbolic closed

surfaces (which is a compilation of corollaries 4.14.1 and 4.24.2 from the final section of the

paper):

Corollary 1.2. A closed hyperbolic genus 2 surface X always satisfies

sys(X)

diam(X)
≤

2 arccosh
(

1 +
√

2
)

arccosh
(

5+4
√

2
3

) <
8
5

,

and a closed hyperbolic genus g ≥ 3 surface X always satisfies the asymptotic upperbound

sys(X)

diam(X)
≤ 2

(
1−

log
( 16

π

)
log g

+ o
(

1
log g

))
.

This paper is organized as follows. Section 22 provides a short setup, before passing to the

proof of Theorem 1.11.1 in Section 33. In Section 44 we deduce Corollary 1.21.2 and end the paper

with some open questions.
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2. Brief setup

Throughout the remainder of the paper, X will be a closed orientable hyperbolic surface of

genus g ≥ 2. The moduli spaceMg of genus g ≥ 2 is thought of as a space of hyperbolic

surfaces up to isometry. We are interested in closed geodesics on hyperbolic surfaces,

and a fact that we use on a regular basis is the existence of a unique closed geodesic in a

non-trivial free homotopy class of closed curve. We refer to [33] for background material on

hyperbolic surfaces, their curves and their moduli spaces.

Among all closed geodesics, ones of least length are special: a systole of X is a shortest

non-contractible curve of X, and its length is denoted sys(X). It is not too difficult to see, by

a cut and paste argument, that in our setup, the systole is always a simple closed geodesic.

The diameter of X, denoted diam(X), is the maximal distance between any two points of

X, and because X is closed, is a finite positive number.

Bavard [22] proved two inequalities that are relevant for our setup, namely that

cosh (diam(X)) ≥ 1√
3 tan π

12g−6

(1)

and

cosh
(

sys(X)

2

)
≤ 1

2 sin π
12g−6

. (2)

Note that by a simple manipulation, one can deduce from these the inequality

4 cosh2(sys(X)/2) ≤ 3 cosh2(diam(X)) + 1.

3. Inequalities for all closed hyperbolic surfaces

There are two competing strategies when trying to relate diameter and systole. One

consists in taking diametrically opposite points and constructing a non-contractible curve

of bounded length, which gives a quantifiable upper bound on the length of the systole.

The other strategy is to start from a systole and use the local geometry to get a lower bound

on diameter. Theorem 1.11.1 is the result of the latter strategy, but it is interesting to observe

that the first strategy, which is slightly simpler, gives a weaker but similar result, so we

very briefly outline it first.

Consider p and q on a surface X that realize the diameter (these points may not be unique).

By a variational argument, there must be at least three distance realizing paths between p
and q (otherwise you can find points further away from each other). There are different

topological configurations to consider, and using the geodesic arcs all of length the diameter,

one can construct different non-contractible curves. Each length of the corresponding
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geodesics must be of length greater than the systole. The strategy then consists on finding

an upper bound on the length of the shortest of these candidate curves. Using the fact that

the total angle at both p and q is 2π and that 3 arcs join p and q, a certain pair of these

geodesic arcs must intersect with the sum of their angles at most 4π
3 . The smaller the angle,

the shorter the underlying curve, and then by computing the length of the curves in each of

the topological situations, one obtains the following inequality (see Remark 3.43.4):

4 cosh(sys(X)/2) ≤ 3 cosh(diam(X)) + 1.

We now take an opposite strategy, beginning with observing the local geometry around a

systole and then finding points that are somewhat far apart. This strategy will result in the

proof of our main result.

The proof of Theorem 1.11.1

We begin by considering a systole σ of X. Observe that it is a convex subset of X, that is

a distance path between any x, y ∈ σ is entirely contained in σ. Note that systoles aren’t

necessarily the only convex curves of a surface.

Consider two diametrically opposite points on σ which shall be denoted p0 and q0. Now

fix two geodesic arcs p, q : [0, ∞) → X parametrized by arc length starting respectively

at p0 and q0 and leaving orthogonally σ on the same side of the curve. We define two

geodesic arcs at and bt connecting p(t) and q(t) as the unique geodesic arc in the homotopy

class obtained by following the segment of p between p(t) and p(0) = p0, one of the two

segments of σ connecting p0 and q0, and the segment of q between q0 = q(0) and q(t). We

let

T = sup{t | the only distance paths between p(t) and q(t) are at and bt}.

Note that T > 0, otherwise there would be a third distance path between p0 and q0, and

this would give rise to a non-contractible curve shorter than σ.

Furthermore, T is finite (otherwise we will have d(p(t), q(t)) = `(at) = `(bt) → ∞ when

t→ ∞). And between p(T) and q(T) there must be (at least) a third distance path.

We denote by a and b the two distance paths aT and bT between p(T) and q(T) and c the

(or a choice of a) third distance path between them.

As they are all simple and interior disjoint, there are two topological configurations possible

for a, b and c: together they either form the spine of a pair of pants or of a one holed torus

(see Figures 11 and 22). In other words, it means that adding a small neighborhood around

a ∪ b ∪ c will result in a pair of pants or a one holed torus.
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pT

qT

Figure 1: The arcs a, b and c form the spine of a pair of pants

pT qT

Figure 2: The arcs a, b and c form the spine of a one holed torus

The former case corresponds to having c lie outside of a small embedded collar around σ.

Otherwise we would be in the situation of Figure 33 where the distance path c crosses the

systole σ two times. This is not possible as a cut and paste type argument rapidly shows.

a

b
c

σ

Figure 3: An impossible situation for a, b, c

In the latter case, c must cross σ exactly one time. We will treat each of these two cases

separately, and call them the pants case and the torus case.

In both cases, the following lemma will be crucial.

Lemma 3.1. Consider two interior disjoint simple arcs of length d that share endpoints and form
angles 0 < α ≤ π and 0 < β ≤ π. Let L be the length of the closed geodesic γ in the homotopy
class of the simple closed curve formed by the two arcs.

If α and β are as in figure 44

5



α βd

d

Figure 4: The angles α and β lie on the same side of the curve

then

cosh
(

L
2

)
= − cos

(α

2

)
cos

(
β

2

)
+ sin

(α

2

)
sin
(

β

2

)
cosh(d),

and if α and β are as in figure 55

α

β

Figure 5: The angles α and β lie on opposite sides of the curve

then

cosh
(

L
2

)
= cos

(α

2

)
cos

(
β

2

)
+ sin

(α

2

)
sin
(

β

2

)
cosh(d).

Proof. We can argue in both cases by projecting the intersection points (say p and q) between

c1 and c2 to γ and by then reducing the problem to hyperbolic trigonometry.

To do this, consider geodesic arcs between p and q and γ that end orthogonally on γ.

Cutting along these arcs gives rise to two quadrilaterals. In the situation of Figure 44. the

quadrilaterals are convex, whereas in the other case they are not. In both cases, the two

quadrilaterals share 4 equal side lengths and 2 angles, and hence are isometric.

α
2 β

2
d

L
2

Figure 6: The convex quadrilateral
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α
2

β
2

d

Figure 7: The non-convex case

Thus they can be represented as in figures 66 and 77, and in particular the angles α and β are

equally split between the two quadrilaterals in each case.

The formulas now follow from standard hyperbolic trigonometry (for instance both formu-

las can be found in [77, Section IV.3, pp. 88-89]).

As a consequence, we first have the following proposition.

Proposition 3.2. Consider two interior disjoint simple arcs of length d that share endpoints and
form angles 0 < α ≤ β < 2π such that α + β < 2π. Suppose the angles α and β lie on the same
side of the curve like in figure 44 and let L be the length of the closed geodesic γ in the homotopy class
of the simple closed curve formed by the two arcs.

Then we have
cosh

(
L
2

)
≤ − cos2

(
θ

2

)
+ sin2

(
θ

2

)
cosh(d)

where θ = α+β
2 .

Proof. Observe that α < π.

If β ≤ π, the upper bound follows from the first formula in Lemma 3.13.1 and a straightfor-

ward calculus computation that the function

f (x) = − cos(x) cos(θ − x) + sin(x) sin(θ − x) cosh(d)

is strictly increasing on [0, θ/2] for 0 < θ < π.

If β > π, we invoke the second case of the previous lemma by replacing β with 2π− β, and
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thus

cosh
(

L
2

)
= cos

(α

2

)
cos

(
2π − β

2

)
+ sin

(α

2

)
sin
(

2π − β

2

)
cosh(d)

= − cos
(α

2

)
cos

(
β

2

)
+ sin

(α

2

)
sin
(

β

2

)
cosh(d)

= − cos
(α

2

)
cos

(
θ − α

2

)
+ sin

(α

2

)
sin
(

θ − α

2

)
cosh(d)

≤ − cos2
(

θ

2

)
+ sin2

(
θ

2

)
cosh(d).

In a similar manner we find:

Proposition 3.3. Consider two interior disjoint simple arcs of length d that share endpoints and
form angles 0 < α ≤ β < 2π such that α + β < 2π. Suppose the angles α and β lie on opposite
sides of the curve like in figure 55 and let L be the length of the closed geodesic γ in the homotopy
class of the simple closed curve formed by the two arcs.

Then we have
cosh

(
L
2

)
≤ cos2

(
θ

2

)
+ sin2

(
θ

2

)
cosh(d)

where θ = α+β
2 .

Using these two propositions we can now prove Theorem 1.11.1.

Pants case

Any pair of the three arcs a, b, c forms a potential homotopy class of curve. Each pair also

forms angles at the two endpoints.

a

b

c

Figure 8: The three arcs a, b, c

In particular this means we are in the situation of figure 88. The sum of all 6 angles is 4π,

hence there is a pair of arcs among a, b, c with the sum of the corresponding angles less
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or equal to 4
3 π. If we denote by L the length of the corresponding closed geodesic, and

appealing to Proposition 3.23.2, we have the following inequality:

cosh
(

L
2

)
≤ − cos2

(π

3

)
+ sin2

(π

3

)
cosh(d) = −1

4
+

3
4

cosh(d). (3)

As L ≥ sys(X) and d ≤ diam(X), this proves the desired inequality in the pants case:

cosh
(

sys(X)

2

)
≤ −1

4
+

3
4

cosh(diam(X)). (4)

Torus case

In this case, we proceed in a similar manner to establish an inequality that will turn out to

be strictly stronger for the distances we’re interested in.

We are in the situation of Figure 99 with angles α and β whose sum is 2π. Here we decisively

take advantage of the fact that the angles between a and b at each endpoint coincide.

α1 α2
β1 β2

Figure 9: The angles are complementary

The arc c splits each angle into two parts (denoted α1, α2 and β1, β2 as in the figure). By

the same argument as above, there is a pair of angles αi, βi with αi + βi ≤ π. The choice of

angles implies a choice of either a or b. We denote again by L the length of the corresponding

closed geodesic. By applying Proposition 3.33.3, we obtain

cosh
(

L
2

)
≤ cos2

(π

4

)
+ sin2

(π

4

)
cosh(d) =

1
2
+

1
2

cosh(d). (5)

Now L ≥ sys(X) and d ≤ diam(X), hence
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cosh
(

sys(X)

2

)
≤ 1

2
+

1
2

cosh(diam(X)). (6)

Clearly for large enough values of the diameter, the above inequality is stronger than the

desired one from Theorem 1.11.1. We now show that in our situation this will always be the

case. By contradiction, suppose that Inequality 66 holds, but not Inequality 44. We would

have
1
2

cosh(diam(X)) +
1
2
>

3
4

cosh(diam(X))− 1
4

and hence

cosh(diam(X)) < 3.

We appeal to Bavard’s diameter bounds stated in Section 22. A consequence of Inequality

11 is a universal lower bound on the diameter of any closed orientable hyperbolic surface

given by his lower bound for genus 2, namely

cosh(diam(X)) ≥ 1√
3 tan π

18

= 3.27 . . . > 3.

for any closed genus g ≥ 2 surface. Thus in the torus case, Inequality 44 holds as well, which

completes the proof of Theorem 1.11.1.

Remark 3.4. We quickly explain how to deduce the weaker inequality

cosh
(

sys(X)

2

)
≤ 1

4
+

3
4

cosh(diam(X)).

using the first strategy.

Consider p and q on the surface X that realize the diameter (these points may not be unique).

By a variational argument, there must be at least three distance realizing paths between p
and q that we denote by a, b, c. We have, as before, two topological cases corresponding to

figures 11 and 22, and there is a pair of arcs among a, b, c with the sum of the corresponding

angles less or equal to 4
3 π.

If we are in the pants case, we find that cosh
(

sys(X)
2

)
≤ − 1

4 + 3
4 cosh(diam(X)) using

Proposition 3.23.2.

If we are in the torus case, we only find that cosh
(

sys(X)
2

)
≤ 1

4 +
3
4 cosh(diam(X)) using

Proposition 3.33.3.

4. The ratio between systole length and diameter

The main goal this section is to use Theorem 1.11.1 to give bounds on the ratio between systole

and diameter. We begin by a general inequality that depends on genus.
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Corollary 4.1. For any X ∈ Mg, the ratio of systole and diameter satisfies

sys(X)

diam(X)
≤

2 arccosh

(
1

2 sin
(

π
12g−6

)
)

arccosh

(
2

3 sin
(

π
12g−6

) + 1
3

) = 2

(
1−

log 16
π

log g
+ o

(
1

log g

))
.

Proof. By inequality 44

diam(X) ≥ arccosh
(

4
3

cosh
(

sys(X)

2

)
+

1
3

)
and thus

sys(X)

diam(X)
≤ sys(X)

arccosh
(

4
3 cosh

(
sys(X)

2

)
+ 1

3

) .

Observe that the function

s 7→ s
arccosh

( 4
3 cosh

( s
2

)
+ 1

3

)
is increasing. We now use the upper bound on the length of the systole (Inequality 22) to

conclude.

We point out that working with the inequality

sys(X)

diam(X)
≤

2 arccosh
( 3

4 cosh(diam(X))− 1
4

)
diam(X)

and the lower bound on the diameter (Inequality 11)) leads to a weaker estimate.

In genus 2, there is an optimal upper bound on systole length [99, 1111]. Hence the above

strategy gives the following stronger result:

Corollary 4.2. For any closed hyperbolic X of genus 2 we have

sys(X)

diam(X)
≤

2 arccosh
(

1 +
√

2
)

arccosh
(

5+4
√

2
3

) <
8
5

.

Proof. We apply the strategy above but this time using the (sharp) inequality on systole

length due to Jenni [99] that states that

sys(X) ≤ 2 arccosh(1 +
√

2).
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Further queries. These results raise the question on the relationship between diameters and

systoles, and in particular on how their ratio behaves with respect to genus.

Similarly to the systole function, for any given moduli spaceMg, the ratio sys(X)
diam(X)

reaches a

maximum. What properties might these surfaces have? Can one find a surface that reaches

the maximum ratio in its moduli space?

The relevant asymptotic question is to study the following quantity R:

R := lim sup
g→∞

(
max

X∈Mg

sys(X)

diam(X)

)
.

What is the value of R?

The Buser-Sarnak construction (see also [1010]) gives surfaces with large systole on the order
4
3 log g but also with expander like properties, which in particular means that the diameters

also grow roughly on the order of log(g) (but without any explicit bounds). Hence R is

a real strictly positive number, less or equal to 2. As for the systole growth, there is no

obvious reason why one couldn’t replace the lim sup with a lim, but as far as we know,

there are no behavioral results that would allow one to do this. Finally note that Corollary

4.14.1 above doesn’t bring anything new, because our upper bounds for the ratio limit to the

obvious upper bound of 2.
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[9] Jenni, Felix. Über den ersten Eigenwert des Laplace-Operators auf ausgewählten
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