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Abstract—Presenting ultra-wideband bandwidth and pencil
beamforming, the terahertz (THz)-band has been envisioned as
one of the key enabling technologies in the sixth generation
(6G) wireless networks. However, the acquisition of the THz
channel entails several unique challenges such as severe path loss
and beam-split. Prior works usually employ ultra-massive arrays
and additional hardware components comprised of time delayer
networks to compensate these loses. In order to provide a cost-
effective solution, this paper introduces a sparse Bayesian learn-
ing (SBL) technique for joint channel and beam-split estimation.
Specifically, we first model the beam-split as an array perturba-
tion inspired from array signal processing. Next, a low complexity
approach is developed by exploiting the line-of-sight-dominant
feature of THz channel to reduce the computational complexity
involved in the proposed SBL technique for channel estimation
(SBCE). Additionally, we implement a model-free technique,
based on federated learning, to the proposed model-based SBCE
solution. Further to that, we examine the near-field considerations
of THz channel, and introduce the range-dependent near-field
beam-split. The theoretical performance bounds, i.e., Cramér-
Rao lower bounds, are derived for near- and far-field parameters,
e.g., user directions, ranges and beam-split, and several numerical
experiments are conducted. The simulations results demonstrate
that the proposed SBCE and SBFL techniques outperform the
existing approaches and exhibits less hardware cost.

Index Terms—Terahertz, channel estimation, beam split, sparse
Bayesian learning, near-field, federated learning.

I. INTRODUCTION

Looking to 2030 and beyond, the sixth generation (6G)
wireless networks require a revolutionary enhancement on data
transmission (> 100Gb/s), extremely lower latency (< 1ms)
and ultra reliability (99.999%) [1]. In order to meet these
demands, the terahertz (THz) band frequencies has been
envisioned as a promising solution exhibiting ultra-wideband
bandwidth and enhanced pencil beamforming [2, 3].

The definition of the THz band varies among different
IEEE communities. While IEEE Terahertz Technology and
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Applications Committee focuses on 0.3 − 3 THz, the IEEE
Transactions on Terahertz Science and Technology Journal
targets 0.3 − 10 THz [4, 5]. On the other hand, the recent
works on wireless communications usually define this band
as 0.1 − 10 THz with a large overlap with millimeter-wave
(mm-Wave) frequencies (e.g., 0.03− 0.3 THz) [4].

Compared to its mm-Wave counterpart, the THz-band chan-
nel exhibits several THz-specific challenges that should be
taken into account. These unique THz features, among others,
include high path loss due to spreading loss and molecu-
lar absorption, shorter transmission rage, distance-dependent
bandwidth and beam-split (see, e.g., Fig. 1) [2, 4, 6]. Further-
more, the THz channels are extremely sparse and modeled
as line-of-sight (LoS)-dominant and non-LoS (NLoS)-assisted
models [4, 7–12]. On the other hand, both LoS and NLoS
paths are significant in the mm-Wave channel [13]. In order
to compensate the severe path loss, analogous to massive
multiple-input multiple-output (MIMO) array in mm-Wave
design, ultra-massive (UM) MIMO array configurations are
proposed [5, 14]. The UM-MIMO design comprises huge
number of antennas which are densely-positioned (e.g., 5× 5
cm2) due to extremely small wavelength [6]. As a result,
the usage of dedicated radio-frequency (RF) chain for each
antenna element involves extreme hardware cost and labor.
The hybrid design configurations, i.e., joint usage of analog
and digital beamformers seems to be major possible solution as
it was first envisioned for mm-Wave massive MIMO systems
in 5G [15–18]. In order to exploit low cost system design,
the hybrid architecture involve small (large) number of digital
(analog) beamformers. Although the digital beamformers are
subcarrier-dependent, the analog phase shifters are designed
as subcarrier-independent components. This causes beam-split
phenomenon, i.e., the generated beams at different subcarriers
split into different directions (see, e.g., Fig. 1) because of
ultra-wide bandwidth and large number of antennas [8, 19,
20]. At mm-Wave, at which the subcarrier frequencies are
relatively closer than THz, beam-squint is broadly used to
describe the same phenomenon [13, 21, 22]. The beam-split
affects the system performance and causes severe degradations
in terms of spectral efficiency, normalized mean-squared-error
(NMSE) and bit-error-rate (BER). For instance, the beam-split
is approximately 4◦ (0.4◦) for 0.3 THz with 30 GHz (60 GHz
with 1 GHz) bandwidth, respectively for a broadside user (see
Fig. 1) [6].

With the aforementioned THz-specific features, THz chan-
nel estimation is regarded as even more challenging problem
than that of mm-Wave. In prior studies, THz channel estima-



2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10-2

10-1

100

101

102

103

(b)

70 80 90 100
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

70 80 90 100
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c)

Fig. 1. THz-band characteristics: (a) path loss (in dB) due to molecular absorption for various transmission ranges, (b) beam-split (in degrees) in different
bandwidths for a broadside user, and (c) normalized array gain with respect to spatial direction at low, center and high end subcarriers for (Left) 3.5 GHz,
B = 0.1 GHz; (Middle) 28 GHz, B = 2 GHz; and (Right) 300 GHz, 30 GHz, respectively.

tion has been investigated in [19, 23–31]. However, most of
these works either ignore the effect of beam-split [23–26, 32]
or consider only narrowband case [27–29], without exploiting
the ultra-wide bandwidth property, the key reason of climb-
ing to THz-band. Further to that, [33] proposed a machine
learning (ML)-based SBL approach for wideband THz channel
estimation by aiming to mitigate the effect of beam-split via
refining the angular grid resolution. However, no performance
improvement is observed in terms of NMSE by enhancing
the grid resolution. In fact, beam-split compensation requires
certain signal processing or hardware techniques to be handled
properly.

Despite the prominence of THz channel estimation, there
are only a few recent works in the literature on mitigating
the beam-split effect. The existing solutions are categorized
into two classes, i.e., hardware-based techniques [30] and
algorithmic methods [19, 31]. The first category of solutions
consider employing time delayer (TD) networks together with
phase shifters to realize virtual subcarrier-dependent analog
beamformers to mitigate beam-split. In particular, [30] de-
vises a generalized simultaneous orthogonal matching pursuit
(GSOMP) technique by exploiting the subcarrier-dependent
information collected via TD network hence achieves close
to minimum MSE (MSE) performance. However, this so-
lutions require additional hardware, i.e., each phase shifter
is connected to multiple TDs, each of which consumes ap-
proximately 100 mW, which is more than that of a phase
shifter (40 mW) in THz [6]. The second category of solu-
tions do not employ additional hardware components. Instead,
advanced signal processing techniques have been proposed
to compensate beam-split. Specifically, an OMP-based beam-
split pattern detection (BSPD) approach is proposed in [19]
to recover the beam-support pattern among subcarriers and
construct one-to-one match between the physical and spatial
(i.e., deviated due to beam-split in the beamspace) directions.
In [31], a beamspace support alignment (BSA) technique is
introduced to align the deviated spatial beam directions among
the subcarriers. Although both BSPD and BSA are based
on OMP, the latter exhibits lower NMSE for THz channel
estimation. Nevertheless, both methods suffer from inaccurate
support detection and low precision for estimating the physical

channel directions.
Due to short transmission range in THz, near-field spherical-

wave models are also considered for THz applications [6, 34].
In particular, in the far-field the transmitted signal reaches
to the users as plane-wave whereas the plane wavefront is
spherical in the near-field when the transmission range is less
then the Rayleigh distance. Thus, the near-field effects should
be taken into account for accurate channel modeling. In [34],
THz near-field beamforming problem is considered and TD
network-based approach is proposed while the THz channel is
assumed to be known a priori.

In this paper, THz channel estimation in the presence of
beam-split is examined. By exploiting the extreme sparsity of
THz channel, we first approach the problem from sparse recov-
ery optimization perspective. Then, we introduce a novel ap-
proach to model the beam-split as an array perturbation as in-
spired by the array imperfection models, e.g., mutual coupling,
gain-phase mismatch, in array signal processing context [35–
37]. The array perturbation model allows us to establish a
linear transformation between the nominal (constructed via
physical directions) and actual (beam-split corrupted) steering
vectors. Next, we propose a sparse Bayesian learning (SBL)
approach to jointly estimate both THz channel and beam-split.
The SBL method has been shown to be effective for sparse
signal reconstruction from underdetermined observations [38–
40]. Compared to other existing signal estimation techniques,
e.g., multiple signal classification (MUSIC) [41] and the `p-
norm (0 ≤ p ≤ 1) techniques such as compressed sensing
(CS) [42], SBL outperforms these techniques in terms of
precision and convergence [43]. Although SBL has been
widely used for both channel estimation [37] and direction-
of-arrival (DoA) estimation [36, 44], the proposed SBL-based
channel estimation (SBCE) approach differentiates from the
these studies by jointly estimating multiple hyperparameters,
e.g., physical channel directions and beam-split as well as
array perturbation-based beam-split model. The proposed ap-
proach is advantageous in terms of complexity since it does
not require any additional hardware components as in TD-
based works, and it exhibits close to optimum performance
for both THz channel and beam-split estimation. Furthermore,
the estimation of beam-split allows one to design the hybrid
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beamformers in massive/UM MIMO systems with more ac-
curacy in a simpler way. The main contributions of this work
are summarized as follows:

1) We propose a novel approach to model beam-split as an
array perturbation, and design a transformation matrix
between the nominal and actual steering vectors in order
to accurately estimate both THz channel and beam-split.

2) An SBL approach is devised to jointly estimate the
physical channel directions and beam-split. In order to
reduce the computational complexity involved in SBL
iterations, we exploit the LoS-dominant feature of THz
channel and design the array perturbation matrix based
on a single unknown parameter, i.e., beam-split. Thus,
instead of designing the array perturbations via a full
matrix with distinct elements, we consider a diagonal
structure, that can be easily represented via only beam-
split knowledge.

3) We also propose a model-free approach based on feder-
ated learning (FL) to ease the communication overhead
while maintaining satisfactory NMSE performance. Dif-
ferent from our preliminary work in [31], we consider
SBCE method for data labeling, hence it is called sparse
Bayesian FL (SBFL).

4) We investigate the near-field considerations for THz
transmission, and derive the near-field beam-split, which
is both range- and direction-dependent.

5) In addition, the theoretical performance bounds for both
physical channel directions and beam-split estimation
are examined and the corresponding Cramér-Rao lower
bounds (CRBs) have been derived.

Paper Organization: The rest of the paper is organized
as follows. In Sec. II, we state the array signal model and
formulate the THz channel estimation problem. Next, our
proposed SBCE approach is introduced in Sec. III. The near-
field model for beam-split and the proposed SBFL approach
are given in Sec. IV and Sec. V, respectively. We present
extensive numerical simulations in Sec. VI, and finalize the
paper with conclusions in Sec. VII.

Notation: Throughout the paper, (·)T and (·)H denote the
transpose and conjugate transpose operations, respectively. For
a matrix A; [A]ij and [A]k correspond to the (i, j)th entry
and kth column while A† denotes the Moore-Penrose pseudo-
inverse of A. A unit matrix of size N is represented by IN ,
∇ represents the gradient operation, and Tr{·} stands for the
trace operation. || · ||0, || · ||1, || · ||2 and || · ||F denote the `0,
`1, `2 and Frobenius norms, respectively.

II. SIGNAL MODEL AND PROBLEM FORMULATION

We consider a multi-user wideband UM-MIMO-OFDM
(orthogonal frequency division multiplexing) architecture with
M subcarriers, wherein the base station (BS) is equipped
with NT antennas and NRF radio-frequency (RF) chains
to serve K single-antenna users. In the downlink, the BS
first precodes the data symbols s[m] = [s1[m], · · · , sK [m]]T

(m ∈ M = {1, · · · ,M}) via subcarrier-dependent baseband
beamformer FBB[m] ∈ CK×K . Then, the resulting signal
FBB[m]s[m] ∈ CK is transformed to the time domain via M -
point inverse discrete Fourier transform (IDFT). After adding

cyclic prefix (CP), the BS employs subcarrier-independent ana-
log beamformers FRF ∈ CNT×NRF (NRF = K < NT). The
analog beamformers, which are realized with phase shifters
are used to steer the generated beams toward users, hence
they have constant-modulus constraint, i.e., |[FRF]i,j | = 1√

NT

as i = 1, · · · , NRF and j = 1, · · · , NT. Additionally, we have
the power constraint

∑M
m=1 ||FRFFBB[m]||2F = MK that

is enforced by the normalized of the baseband beamformers
{FBB[m]}m∈M. Let us define the transmitted signal as

z[m] = FRFFBB[m]s[m]. (1)

Then the received signal at the kth user in the mth subcarrier
is

yk[m] = hT
k[m]z[m] + wk[m], (2)

where wk[m] ∈ C denotes the additive white Gaussian noise
(AWGN) vector with wk[m] ∼ CN (0, µ2).

A. THz Channel Model

In THz transmission, the wireless channel can be modeled
by the superposition of a single LoS path and the contribution
of a few NLoS paths, which are small due to large reflection
loses, scattering and refraction [4, 7–9]. In recent works,
measurement campaigns at 140 GHz have been reported [45,
46]. In particular, [46] states that, while the delay/angular
spread at 140 GHz and lower frequencies are comparable,
the correlation distance of shadow fading at the former is
much shorter. While the ray-tracing techniques assume the
channel to be sparse and dominated by the LoS component for
the graphene nano-transceivers [4], the other channel models
such as the 3GPP model [47, 48] are also popular for THz
transmission.

Let p(τ) denote a pulse shaping function for Ts-space
signaling evaluated at τ seconds. Then, the THz delay-d UM-
MIMO channel in time domain is given by

h̄k(d) =

√
NT

L
p(dTs − τk,l)

(
αm,1k a′(θk,m,1)︸ ︷︷ ︸

LoS

+

L∑
l=2

αm,lk a′(θk,m,l)︸ ︷︷ ︸
NLoS

)
, (3)

where αm,lk ∈ C is the complex path gain. L is the to-
tal number of paths and τk,l is the time delay of the lth
path, for which l = 1 corresponds to the LoS path. After
performing M -point DFT of the delay-d channel in (3) as
hk[m] =

∑D−1
d=0 h̄k(d)e−j

2πm
M d for CP length D ≤ M [23,

49]. Then, the channel vector of the kth user at the mth
subcarrier becomes

hk[m] =

√
NT

L

(
αm,1k a′(θk,m,1)︸ ︷︷ ︸

LoS

+

L∑
l=2

αm,lk a′(θk,m,l)︸ ︷︷ ︸
NLoS

)
e−j2πτk,lfm , (4)
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where fm = fc + B
M (m − 1 − M−1

2 ) is the mth subcar-
rier frequency with fc and B being the carrier frequency
and the bandwidth, respectively. θk,m,l denote the subcarrier-
dependent spatial channel directions as

θk,m,l =
2fm
c0

d̄ϑk,l =
fm
fc
ϑk,l, (5)

with ϑk,l = sin ϑ̃k,l being the physical direction for the l-th
path with ϑ̃k,l ∈ [−π2 ,

π
2 ]. In (5), c0 is speed of light, and d̄ =

c0
2fc

is the half-wavelength antenna spacing. a′(θk,m,l) ∈ CNT

is the steering vector1 corresponding to θk,m,l and defined for
a uniform linear array (ULA)2 as

a′(θk,m,l)=
1√
NT

[1, ejπθk,m,l , · · · , ejπ(NT−1)θk,m,l ]T. (6)

The channel vector in (4) can also be expressed in a compact
form as

hk[m] = A′k[m]x̃k[m], (7)

where A′k[m] = [a′(θk,m,1), · · · ,a′(θk,m,L)] ∈ CNT×L and
x̃k[m] = [αm,1k e−j2πτk,1fm , · · · , αm,Lk e−j2πτk,Lfm ]T ∈ CL.

Note that θk,m,l ≈ ϑk,l when fm ≈ fc (see, e.g., Fig. 1).
This observation allows us to employ subcarrier-independent
analog beamformers (i.e., FRF) for m ∈ M in conventional
mm-Wave systems [13, 21, 22]. However, beam-split implies
that with wider system bandwidth |fm−fc|, physical directions
ϑk,l deviate from the spatial directions θk,m,l. Hence, we
define the beam-split as the difference between the spatial and
physical directions as

∆k,l[m] = θk,m,l − ϑk,l = (
fm
fc
− 1)ϑk,l, (8)

which only depends on the frequency ratio fm
fc

and ϑk,l.

B. Problem Formulation

In order to estimate the THz channel, the BS transmits
known pilot signals which are received and processed at the
user side during channel training [8, 19, 23]. Let S̃[m] =
diag{s̃1[m], · · · , s̃P [m]} ∈ CP×P be the set of pilots, where
P is the number of pilot signals. We assume a block-fading
channel, wherein the coherence time is longer than the training
time [49]. Let us denote the resulting beamformer vector at
the BS as f̃p[m] ∈ CNT for p = 1, · · · , P . Then, the kth user
collects the P × 1 received signals as

ȳk[m] = S̃[m]F̄[m]hk[m] + wk[m], (9)

where F̄ = F̃T ∈ CP×NT and F̃ = [f̃1[m], · · · , f̃P [m]] is
beamformer matrix, ȳk[m] = [yk,1[m], · · · , yk,P [m]]T ∈ CP
and wk = [wk,1[m], · · · , wk,P [m]]T ∈ CP . Without loss of
generality, by assuming F̄[m] = F̄ and S̃[m] = IP , (9)
becomes

ȳk[m] = F̄hk[m] + wk[m]. (10)

1We denote the nominal and actual steering vectors by a′(θ) and a(ϑ) for
notational clarity. Please see (15) for the definition of a(ϑ).

2Although ULA is considered in this work, the proposed approach can
straightforwardly be extended for other array geometries, e.g., uniform rect-
angular array (URA), array-of-subarray (AoSA) [4, 14] or group-of-subarrays
(GoSA) [5].

Estimating the channel from (10) can be performed via
traditional the least squares (LS) and MMSE techniques as

hLS
k [m] = (F̄HF̄)−1F̄Hȳk[m],

hMMSE
k [m] =

(
R−1
k [m] + F̄HR−1

k [m]F̄
)−1

F̄Hȳk[m], (11)

respectively, where Rk[m] = E{hk[m]hH
k [m]} is the channel

covariance matrix. The estimators in (11) require P ≥ NT,
which entails high channel training overheads and time due
to the UM number of antennas. Further to that, the effect of
beam-split is not taken into account for the LS method which
yields poor performance, and prior information on the channel
covariance is needed in MMSE estimator.

Hence, our goal is to efficiently estimate the THz channel
hk[m] for m ∈ M in the presence of beam-split when the
number of received pilot signals is small. To this end, we
exploit the sparsity of the THz channel and introduce an SBL-
based approach in the following.

III. SBL FOR THZ CHANNEL ESTIMATION

The SBL method has been shown to be effective for sparse
signal reconstruction. In this section, we first present the
sparse THz signal model and introduce the proposed array
perturbation model and an efficient approach for joint THz
channel and beam-split estimation.

A. Sparse THz Channel Model

Due to employing UM number of antennas to compensate
the significant path loss in THz frequencies, the THz channel
is extremely-sparse in the angular domain (i.e., L� NT) [7,
14]. In order to exploit the sparsity of THz-band, the channel
in (4) can be expressed as

hk[m] = Fxk[m], (12)

where xk[m] ∈ CN is an L-sparse vector, i.e., ||x[m]||0 = L
and F = [a(φ1), · · · ,a(φN )] ∈ CNT×N denotes an over-
complete dictionary matrix composed of the steering vector
a(φn) ∈ CNT with φn = 2n−N−1

N for n = 1, · · · , N . Hence,
the resolution of F is ρ = 1/N .

Next, we assume that the users collects only P = NRF

pilot signals, where L ≤ P � NT. Further, we model
the subcarrier-independent matrix representing the precoder
at the BS as B ∈ CP×NT with |[B]i,j | = 1√

NT
. Then, the

received signal at the kth user can be given as the following
underdetermined system, i.e.,

yk[m] = BFxk[m] + wk[m], (13)

where yk[m] ∈ CP is the observation vector. Exploiting the
sparsity of xk[m] in (13), we formulate the following `1-norm
sparse recovery (SR) problem

x̂k[m] = arg min
xk[m]

||xk[m]||1

subject to: ||yk[m]−BFxk[m]||22 ≤ ε, (14)

where the residual ε is bounded with ε ≤ µ
√
P + κ

√
2P ,

where κ is an adjustable parameter controlling the noise power
E{||wk[m]||22} [35, 42]. Using x̂k[m], the channel is estimated
as ĥSR

k [m] = Fx̂k[m].
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B. Array Perturbation Based Beam-Split Model

In order to accurately mitigate the beam-split, we approach
the problem from an array calibration point of view, wherein
the beam-split is modeled as an array perturbation, e.g.,
mutual coupling, gain/phase mismatch [35–37]. Let us begin
by rewriting the channel model in (4) as

hk[m] =

√
NT

L

L∑
l=1

αm,lk Uk[m]a(ϑk,l)e
−j2πτk,lfm ,

= Uk[m]Ak[m]x̄k[m], (15)

where Ak[m] = [a(ϑk,1), · · · ,a(ϑk,L)] ∈ CNT×L and
a(ϑk,l) ∈ CNT denotes the array steering vector corresponding
to the physical directions ϑk,l. Uk[m] ∈ CNT×NT denotes
the array perturbation matrix which maps the nominal array
steering matrix, i.e., Ak[m] to A′k[m] which is perturbed due
to beam-split. Hence, Uk[m] provides a linear transformation
between the steering matrices corresponding to physical and
spatial directions as

A′k[m] = Uk[m]Ak[m]. (16)

Now, our aim is to rewrite the received signal yk[m] as
the linear combination of receiver output corresponding to
the physical channel directions and some perturbation term.
Hence, using (16) and (7), we get

yk[m] = BA′k[m]x̃k[m] + wk[m]

= BUk[m]A[m]x̃k[m] + wk[m]

= B(A[m]x̃k[m] + Q̄k[m]uk[m]) + wk[m], (17)

where uk[m] = vec{Uk[m]} ∈ CN2
T , which includes the array

perturbation terms in Uk[m]. Q̄k[m] is an NT × N2
T matrix

with the following structure, i.e.,

Q̄k[m]uk[m] =
(
A′k[m]−Ak[m]

)
x̃k[m]. (18)

Now, let us define P̃k[m] = BAk[m] ∈ CP×L and
Q̃k[m] = BQ̄k[m] ∈ CP×N2

T , then (17) becomes

yk[m] = P̃k[m]x̃k[m] + Q̃k[m]uk[m] + wk[m]. (19)

The perturbed array formulation in (19) explicitly shows the
relationship between the received signal yk[m] and the per-
turbation parameters corresponding to the beam-split uk[m].
Hence, one can minimize the fitting error between yk[m] and
P̃k[m]x̃k[m] to determine the physical channel directions as
well as estimating the perturbation due to beam-split, as will
be introduced in the following.

C. SBL

In the proposed SBL framework, we rewrite (19) in an
overcomplete form. Hence, only in this part, we first drop the
subscript (·)k and [m] for notational simplicity, and discuss
the channel estimation stage for multi-user multi-subcarrier
case later. Next, we use Q ∈ CP×N2

T instead of Q̃k[m],
and define P = BF ∈ CP×N as the overcomplete version
of P̃k[m] ∈ CP×L covering the whole angular domain with
φn, n = 1, · · · , N . Also, we have P′ = BUF ∈ CP×N ,
i.e, the overcomplete version of the perturbed steering matrix

BA′k[m] = BUk[m]Ak[m] ∈ CP×L. Then, (19) can be
expressed as follows

y = Px + Qu + w, (20)

where x, u and w are N × 1, N2
T × 1 and P × 1 vectors,

respectively, as defined earlier with removed subscripts.
Now, we introduce a new set of variables σ =

[σ1, · · · , σN ]T as the variance of sparse vector x ∼ CN (0,Σ),
where Σ = diag{σ}. Then, we derive the statistical depen-
dence of the received signal y on the unknown parameters,
i.e., the sparse vector x, perturbation parameter u, and the
noise variance µ2. Toward this end, we look for the maximum
likelihood estimate of these parameters to reconstruct the
channel vector from the support of x as ĥ = Fx̂.

The likelihood function of the received signal in (20) is

p(y|x; u, µ2) =
1

πµ2NT
exp

{
− 1

µ2
‖y−P′x‖22

}
=

1

πµ2NT
exp

{
− 1

µ2
‖y −Px−Qu‖22

}
. (21)

(21) can be used to write the probability density function (pdf)
of y with respect to the hyperparameters σ, u and µ2 as

p(y;σ,u, µ2) =

∫
p(y|x; u, µ2)× p(x;σ)dx

=
1

|πΠy|
exp

{
−Tr{Π−1

y Ry}
}
, (22)

where Πy ∈ CP×P is the covariance of y as

Πy = E{yyH} = P′ΣP′
H

+ µ2IP , (23)

and Ry = yyH ∈ CP×P .
Let us define the unknown parameters in a hyperparameter

set S = {σ,u, µ2}. Then, S can be estimated by maximizing
the pdf in (22), which is non-concave and computationally
intractable due to the nonlinearities. Hence, we resort to the
expectation-maximization (EM) algorithm, which iteratively
converges to a local optimum [36–40]. Each EM iteration
comprises two steps: E-step for inference, and M-step for
hyperparameter estimation by maximizing the Bayesian ex-
pectation of the complete probability p(y,x,σ,u, µ2).

1) E-Step (Inference): In this step, the expectation of the
complete probability p(y,x,σ,u, µ2) is computed as

E
{
p(y,x;σ,u, µ2)

}
= E{ln p(y,x;σ,u, µ2)}

= E{ln p(y|x; u, µ2) + ln p(x;σ)}. (24)

Using (21), (24) can be rewritten as

E{p(y,x;σ,u, µ2)}

= E{−NT lnµ2 − µ−2‖y −P′x‖22 −
N∑
n=1

(lnσn +
|xn|2

σn
)}

= E{−NT lnµ2 − µ−2‖y −Px−Qu‖22

−
N∑
n=1

(lnσn +
|xn|2

σn
)}. (25)
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2) M-Step (Hyperparameter Estimation): Now, we con-
sider estimating the hyperparameter set S by maximizing
E{p(y,x;σ,u, µ2)}. To this end, we first compute the partial
derivatives of (25) with respect to the unknown parameters as

∂

∂u
E{p(y,x;σ,u, µ2)}

= −2µ−2

(
E{QHQ}u− E{QH(y −Px)}

)
, (26)

∂

∂µ2
E{p(y,x;σ,u, µ2)}=−NT

µ2
+

1

µ4
E{‖y −P′x‖22}, (27)

∂

∂σi
E{p(y,x;σ,u, µ2)} = − 1

σn
+

1

σ2
n

E{|xn|2}, (28)

where n ∈ N = {1, · · · , N}. By setting the above derivatives
to zero, we can get the following expressions

µ2 =
1

NT
E{‖y −P′‖22}, (29)

σn = E{|xn|2}, (30)

u = E
{

(QHQ)−1QH(y −Px)
}
, (31)

where E{‖y −P′‖22} in (29) can be written as

E{‖y −P′x‖22} = ||y −P′ζ||22 + Tr{P′ΠxP′
H}, (32)

where ζ = µ−2ΠxP′
H
y ∈ CN and Πx = (Σ −

ΣP′
H
Π−1

y P′Σ)−1 ∈ CN×N . Furthermore, we have x|y ∼
CN (ζ,Πx), hence (30) becomes σn = |ζn|2.

By computing (30)-(31) iteratively, one can estimate the
unknowns σ, u and µ2. Since the EM algorithm is proved to
be convergent [36–39], most of the terms in σ and x converge
to 0, yielding to a sparse profile.

Updating u involves the computation of (QQ)−1 ∈
CN2

T×N
2
T and Q(y − Px) ∈ CN2

T in (31) which are com-
putationally prohibitive due to large number of unknown
parameters, i.e. N2

T. Therefore, we propose a low-complexity
approach in the sequel.

D. Low-Complexity Approach for Array Perturbation Update

Instead of using an NT ×NT full matrix Uk[m] in (15) to
represent the array perturbations, we exploit the LoS-dominant
feature of the THz channel, we assume that L = 1 by
neglecting the NLoS paths, which are approximately 10 dB
weaker than the LoS paths [4, 9]. This allows us to model
Uk[m] by a diagonal matrix Ck[m] instead of a full one. Let
us rewrite (16) as

a′k[m] = Ck[m]ak[m], (33)

where a′k[m] ∈ CNT

k and ak[m] ∈ CNT correspond to the
perturbed and nominal array steering vectors, respectively.
In (33), Ck[m] = diag(ck[m]) is an NT ×NT diagonal
transformation matrix. ck[m] corresponds to the perturbation
due to beam-split and its ith entry can be defined as

[ck[m]]i = ejπ(i−1)∆k[m], (34)

for i = 2, · · · , NT and [ck]1[m] = 1. Notice that this approach
involves only a single unknown parameters, i.e., ∆k[m] to

perform the update from ak[m] to a′k[m] whereas N2
T un-

knowns are involved in (31). Furthermore, the transformation
in (33) also allows us to accurately estimate the beam-split as
presented in the following lemma.

Lemma 1. Let θk,m be the spatial channel direction, then the
beam-split introduced at the mth subcarrier can be uniquely
recovered as

∆k[m] =
1

NT − 1

NT∑
i=2

[ck]i[m]

π(i− 1)
, (35)

where ∠[ck]i[m] is the angle of [ck]i[m].

Proof: Consider the steering vector a(θk,m). Then, using
(8), the ith entry of a(θk,m) is given by

[a(θk,m)]i = ejπ(i−1)θk,m . (36)

Now, we find the angle of [a(θk,m)]i as
Ωk,i[m] = ∠[a(θk,m)]i for i = 1, · · · , NT.
Then, we compute the unwrapped angles as
Ωk[m] = unwrap{[Ωk,1[m], · · · ,Ωk,NT [m]]T} to ensure
not losing information due to the [−π, π] periodicity of
the exponential3. Using Ωk[m] and (8), the ith element of
the steering vector corresponding to the physical direction
ϑk = fc

fm
θk,m becomes

[a(ϑk)]i = ejΩk,i[m] fcfm . (37)

Substituting (37) and (36) into (33) yields [a(θk,m)]i =
ck,i[m][a(ϑk)]i, where the angle of ck,i[m] is given by

∠[ck[m]]i = Ωk,i[m](1− fc
fm

)

= π(i− 1)θk,m(
θk,m − ϑk
θk,m

)

= π(i− 1)∆k[m]. (38)

Then, taking average of ∠[ck[m]]i for i = 2, · · · , NT and
leaving alone ∆k[m] leads to (35).

Lemma 1 allows us to implement the SBL iterations with
significantly lower complexity. The algorithmic steps of our
proposed SBCE approach is presented in Algorithm 1. In
particular, the SBCE is initialized with (t = 0) σ(t) = 1N ,
C

(t)
k [m] = INT and µ2(t)

= 0. Then, Πy
(t) are Πx

(t)

computed. As the SBCE iterates, C
(t)
k [m] involves the array

perturbations due to beam-split and providing a linear trans-
formation between the nominal and actual steering vectors
as a( fmfc φ

(t)
n?) = C(t)a(φ

(t)
n?). Once the SBCE converges, the

beam-split and the coarse estimate of the physical directions
can be obtained. In the following, we discuss refining the
estimated physical directions.

E. Refined Direction Estimation

The estimation accuracy of the direction estimates obtained
via the support of x is subject to the angular resolution of

3The unwrapped angle information can be easily obtained via unwrap
command in MATLAB.
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Algorithm 1 SBCE
Input: F, B, εTH, fc, yk[m], fm for m ∈M.
Output: ĥk[m], ϑ̂k, ∆̂k[m].

1: for k ∈ K
2: for m ∈M
3: Initialize: t=0, σ(t) =1N , C

(t)
k [m]=INT and µ2(t)

=0.
4: y = yk[m], C(t) = C

(t)
k [m], P′(t) = BC(t)F.

5: flag = true.
6: while flag = true
7: Σ(t) = diag{σ(t)}.
8: Πy

(t) = P′(t)Σ(t)P′(t)
H

+ µ2(t)
IP .

9: Π(t)
x = (Σ(t) −Σ(t)P′(t)

H
Π(t)

y

−1
P′(t)Σ(t))−1.

10: t← t+ 1.
11: ζ(t) = µ2(t)

Πx
(t)P′(t)

H
y.

12: Update σ(t)
n = |ζ(t)

n |2.
13: Find φ(t)

n? from n? = argmaxn |ζ
(t)
n |2.

14: Construct a(φ
(t)
n?).

15: Update C(t) as a( fmfc φ
(t)
n?) = C(t)a(φ

(t)
n?).

16: Update P′(t) = BC(t)F.
17: Update µ2(t)

= 1
NT
||y −P′(t)

H
ζ(t)||22+

Tr{P′(t)Πx
(t)P′(t)

H}.
18: if ||σ(t) − σ(t−1)||2/||σ(t)||2 < εTH

19: flag = false.
20: end if
21: end while
22: yk[m] = y, Ck[m] = C(t), ϑ̄k = φ

(t)
n? .

23: Insert ϑ̄k into (39)-(43), find the refined directions ϑ̂k.
24: Beam-split estimate: ∆̂k[m] = 1

NT−1

∑NT

i=2 ∠{
[ck[m]]i
π(i−1) }.

25: Channel estimate: ĥk[m] = a(ϑ̂k)(Ba(ϑ̂k))†yk[m].
26: end for
27: end for

the selected grid, i.e., ρ = 1
N . Hence, once the EM algorithm

terminates, we use the resulting estimates and search for the
refined directions by employing a finer grid [36, 37]. Let us
define the finer grid for the lth physical direction ϑl as Φl =
[ϑl−ϕ, ϑl+ϕ], where the grid interval is 2ϕ. Then, we rewrite
the covariance of the received signal Πy as

Πy = Πy\l + ηlg
′(ϑl)g

′H(ϑl), (39)

where g′(ϑl) = BCa(ϑl) ∈ CP and ηl is the power of
the lth signal. Πy\l denotes to the covariance matrix in (23)
by excluding the columns of P′ corresponding to ϑl. By
substituting (39) into (22), we can obtain the refined directions
via {ϑ̂l, η̂l} = arg maxηl,ϑl f(ηl, ϑl), where f(ηl, ϑl) is

f(ηl, ϑl) =
1

|π[Πy\l + ηlg′(ϑl)g′
H(ϑl)]|

× exp
{
−Tr

{
[Πy\l + ηlg

′(ϑl)g
′H(ϑl)]

−1Ry

}}
. (40)

To simplify (40), we first set the derivative ∂f(ηl,ϑl)
∂ηl

to zero,
which yields

η̂l =
g′

H
(ϑl)Π

−1
y\l(Ry −Πy\l)Π

−1
y\lg

′(ϑl)

[g′H(ϑl)Π
−1
y\lg

′(ϑl)]
, (41)

and insert (41) into ∂f(ηl,ϑl)
∂ϑl

= 0. Then, we get

Re{g′H(ϑl)Π
−1
y\l[g

′(ϑl)g
′H(ϑl)Π

−1
y\lRy

−RyΠ−1
y\lg

′(ϑl)g
′H(ϑl)]Π

−1
y\lġ

′(ϑl)} = 0, (42)

where ġ′(ϑl) = ∂g′(ϑl)
∂ϑl

. Using (42), we can write the refined
direction estimation problem as

ϑ̂l = arg max
ϑl
|Re{g′H(ϑl)Π

−1
y\l[g

′(ϑl)g
′H(ϑl)Π

−1
y\lRy

−RyΠ−1
y\lg

′(ϑl)g
′H(ϑl)]Π

−1
y\lġ

′(ϑl)}|−1. (43)

IV. NEAR-FIELD CONSIDERATIONS

Due to operating high frequencies as well as employing
extremely small array aperture, THz-band transmission may
encounter near-field phenomenon for close users. Specifically,
in the far-field the transmitted signal reaches to the users
as plane-wave whereas the plane wavefront is spherical in
the near-field when the transmission range is less then the
Rayleigh distance, i.e., R = 2G2fc

c0
where G is the array

aperture [2, 50]. For ULA, we have G = (NT − 1) c02fc
, for

which the Rayleigh distance becomes R ≈ N2
Tc0

2fc
for large NT.

The ith element of the steering vectors for ULA in near- and
far-field can be given as follows by [34, 50]

[aNF(ϑ, r)]i = e−j2π
fm
c0

[r(i)−r] (44)

[aFF(ϑ)]i = ej2πd̄
fm
c0
ϑ, (45)

where r and r(i) stand for the distance between the user and
array center and the ith BS antenna, respectively. In (44), r(i)

is defined by

r(i) =
[
r2 + ((i− 1)d̄)2 − 2(i− 1)d̄rϑ

] 1
2 ,

≈ r − (i− 1)d̄ϑ, (46)

where the approximation can be achieved by utilizing the
Taylor expansion [4, 30, 34].

Now, we calculate beam-split in near-field. Using the ap-
proximated model in (46), and d̄ = c0

2fc
, we rewrite (44) as

[aNF(ϑ, r)]i = e−j2π
fm
c0

(r(i−1)d̄ϑ)

= e−jπ(i−1) fmfc rϑ

= e−jπ(i−1)θ, (47)

where θr,m = fm
fc
rϑ denotes the near-field spatial channel

direction and the near-field beam split can be defined as

∆r,m = θr,m − ϑ = (
fm
fc
r − 1)ϑ. (48)

V. SBFL FOR THZ CHANNEL ESTIMATION

Using the channel estimate via SBCE, we develop an FL
scheme for THz channel estimation in this part. In FL, the
users collaborate on training a learning model by computing
the model parameters based on their local datasets [51]. Let
ξ ∈ RQ and Dk be the set of model parameters and the local
dataset of the kth user, respectively. Then, the trained model
provides a nonlinear relationship, f(ξ) between the input and
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Fig. 2. Channel estimation NMSE versus SNR.

output as Y(i)
k = f(ξ)X (i)

k for i = 1, . . . ,Dk, where Dk =
|Dk| is the number of samples in the kth local dataset. Here,
X (i)
k and Y(i)

k are the input and output data for the ith sample
of the kth dataset with D(i)

k = (X (i)
k ,Y(i)

k ).

A. Data Collection and Training

During dataset collection, each user collects its own
training dataset from the received pilots. Given the chan-
nel estimate ĥk[m], the output data is given by Yk =[
Re{ĥk[m]}T, Im{ĥk[m]}T

]T
∈ R2NT . The input data Xk ∈

RP×3 includes the real, imaginary and angle information of
yk[m] to yield improved feature representation [51]. Thus,
we have [Xk]1 = Re{yk[m]}, [Xk]2 = Im{yk[m]} and
[Xk]3 = ∠{yk[m]}.

Then, the FL problem becomes

min
ξ

1

K

K∑
k=1

Lk(ξ)

subject to: f(X (i)
k |ξ) = Y(i)

k , (49)

for i = 1, . . . ,Dk and k = 1 . . . ,K. In (49), Lk(ξ) =
1

Dk

∑Dk
i=1 ||f(X (i)

k |ξ)−Y(i)
k ||2F corresponds to the loss function

at the kth user and f(X (i)
k |ξ) denotes model prediction given

the input X (i)
k . To efficiently solve (49), gradient descent

is employed and the problem is solved iteratively, wherein
model parameter update is performed at the jth iteration as
ξt+1 = ξj − η 1

K

∑K
k=1 βk(ξj) for j = 1, . . . , J . Here,

βk(ξj) = ∇Lk(ξj) ∈ RQ is the gradient vector and η is
the learning rate.

B. Communication Overhead

The communications overhead of both FL and CL can be
given as the amount of data transmitted during training [52,
53], i.e., TFL = 2QJK and TCL =

∑K
k=1 Dk(3P + 2NT),
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10-1

100

101

Fig. 3. Physical channel direction RMSE versus SNR.

respectively. Here, TFL involves transmission of model pa-
rameters of K users for T iteration, while TCL is computed
as the size of dataset of K users.

VI. NUMERICAL EXPERIMENTS

In this section, the performance of our proposed SBCE
approach is evaluated in comparison with the state-of-the-art
techniques, e.g., LS and MMSE in (11), GSOMP [30], OMP,
BSPD [19] and BSA [31], in terms of NMSE, calculated
as NMSE = 1

JTKM

∑JT,K,M
i=1,k=1,m=1

||hk[m]−ĥ(i)
k [m]||22

||hk[m]||22
, where

JT = 100 is the number of Monte Carlo trials. During
simulations, the THz channel scenario is realized based on
the channel model in (4) with fc = 300 GHz, B = 30 GHz,
M = 128, NT = 256, NRF = P = 32, L = 1, K = 8
and ϑ̃k ∈ [−π2 ,

π
2 ] [4, 5, 19]. The overcomplete dictionary

matrix F is constructed for N = 3NT, and [B]i,j = 1√
NT
ejϕ̃,

where ϕ̃ ∼ uniform(−1, 1). The proposed SBCE algorithm
is initialized with σ(0) = 1N , C

(0)
k [m] = INT

, µ2(0)
= 0, and

run as presented in Algorithm 1. The termination parameter
is selected as εTH = 0.001. It is observed that the SBCE
algorithm converges in approximately T = 50 iterations.

For SBFL, data generation and training are handled over
an hyperparameter optimization of the learning model in the
FL toolbox in MATLAB on a PC with a 2304-core GPU.
We design a CNN with 12 layers and Q = 603, 648 parame-
ters [53]. The first layer accepts the input of size P × 3. The
{2, 4, 6, 8}th layers are convolutional layers with 128 filters of
size 3 × 3. The {3, 5, 7, 9}th layers are normalization layers.
The 10th layer is a fully connected layer with 1024 units,
following with a dropout layer with 50% probability. Finally,
the 12th layer is the output layer of size 2NT × 1. The CNN
model is trained for J = 100 iterations with the learning rate
η = 0.001. During data generation, we generated 100 channel
realizations, and we added AWGN on the input data for three
signal-to-noise ratio (SNR) levels, i.e., SNR = {15, 20, 25}
dB for 50 realizations to provide robust performance [53].
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Fig. 5. Channel estimation NMSE against bandwidth.

Fig. 2 shows the NMSE performance of the competing
algorithms with respect to SNR. We observe that the proposed
SBCE approach attains better NMSE as compared to other
algorithmic-based approaches, i.e., BSA and BSPD. The direct
application of both OMP and LS yields poor NMSE since
they do not involve any specific mechanism to mitigate beam-
split. While BSPD and BSA are beam-split-aware techniques,
they suffer from inaccurate support detection, which leads to
precision loss as SNR increases. The proposed SBCE approach
has very close performance to GSOMP which employs ad-
ditional TD hardware. In addition, we present the physical
channel direction estimation RMSE in Fig. 3. While both
the proposed SBCE approach and GSOMP follows the CRB
closely, the remaining methods suffer from grid error and yield
approximately 0.1◦ RMSE. Comparing SBCE and SBFL, we
observe that the latter has slight performance loss as well as it
suffers from low NMSE in high SNR. This is because of the
neural network losing precision due to decentralize learning
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Fig. 6. (a) NMSE between near- and far-field steering vectors, and (b) channel
estimation NMSE for the usage of far-field model with respect to transmission
range.

and noisy dataset to prove robustness against imperfect data.
In Fig. 4, beam-split estimation RMSE is shown with re-

spect to SNR. As it is seen, the proposed approach effectively
estimates the beam-split and follows the statistical lower bound
CRB with a slight performance gap (e.g., ∼ 0.01◦ in 0 dB).
The channel estimation techniques, i.e., GSOMP, BSPD and
BSA, however, do not have the capability to obtain the beam-
split.

Fig. 5 shows the channel estimation NMSE against band-
width for the interval of [1, 30] GHz at 300 GHz carrier
frequency. We can see that all of the algorithms provide
approximately 0.02 NMSE for the bandwidth B < 7 GHz.
However, the performance of LS and OMP degrades as the
bandwidth widens since these method do not involve beam-
split mitigation. Also, BSPD yields a slight NMSE loss at wide
bandwidth while BSA has robust performance. On the other
hand, the proposed SBCE method enjoys robustness against
the increase of the bandwidth and provides close to NMSE
performance along with GSOMP.
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Finally, we investigate the deviation from far-field model
in terms of transmission range and frequency. Fig. 6a shows
the difference between near- and far-field steering vectors
with respect to transmission range for various frequencies and
corresponding Rayleigh distances. As it is seen, the NMSE
curve crosses the Rayleigh distance approximately at 0.0013
for all frequencies at different ranges. Specifically, NMSE
crosses the Rayleigh distance at 32 m for fc = 300 GHz,
which shows that the near-field model should be considered for
r < 32 m when NT = 256. Note that this distance is smaller
if rectangular arrays are used. For instance, a 16 × 16 URA
has the array aperture of G = 16

√
2d̄ leading to R = 0.256

m, which yields much safer use of far-field model in shorter
distance. Fig. 6b illustrates the channel estimation NMSE with
respect to transmission range when far-field model is used in
GSOMP and SBCE. We observe that relatively large error
for r < R due to mismatch between the far- and near-field
steering vectors. Although fixing the direction information
may yield less error [30], which only due to range-mismatch,
the mismatch in the range also causes inaccurate direction
estimates.

VII. CONCLUSIONS

In this work, we proposed an SBL-based approach for
joint THz channel and beam-split estimation. The proposed
method is based on modeling the beam-split as an array per-
turbation. We have shown that the proposed SBCE approach
effectively estimates THz channel as compared to existing
methods without requiring additional hardware components
such as TD networks. The SBCE technique is also capable
of effectively estimating the beam-split. This is particularly
helpful to design the hybrid beamformers more easily with
the knowledge of beam-split. Furthermore, we investigated the
near-field considerations of the THz channel and asses the
performance of SBCE with far-field model. Also, a model-
free technique, SBFL, is introduced to realize the problem
from ML perspective for computational- and communication-
efficiency.

APPENDIX A
CRAMÉR-RAO LOWER BOUND

In order to derive the CRB, we assume a single user case,
i.e., K = 1 without loss of generality. Nevertheless, the CRB
expressions can easily be extended for the K > 1 case to
by using the decoupledness of the unknown parameters of
multiple users. Now, let us define the unknown parameter
vector as the physical directions and beam-splits corresponding
to L paths. Hence, we have a 2L× 1 unknown vector as

v = [ϑ1, · · · , ϑL,∆1, · · · ,∆L]T ∈ C2L. (50)

Consider the log-likelihood function of the joint pdf in (22)
with respect to v as

L(v) = ln{p(y|v)} = − ln |Πy| − Tr{Π−1
y Ry}. (51)

In order to obtain the CRB, we first need to find the Fisher
information matrix (FIM), which measures the amount of
information contained for the unknown variables. Let FIM ∈

R2L×2L be the FIM. Then, the (i, j)th entry of FIM is
calculated as the second derivative of L(v) as

[FIM]ij = −E
{
∂2L(v)

∂vi∂vj

}
, (52)

for i, j = 1, · · · , 2L. Let us calculate the first derivatives of
L(v). Using

∂ ln{|Πy|}
∂vi

= Tr

{
Π−1

y

∂Πy

∂vi

}
∂Π−1

y

∂vi
= −Π−1

y

∂Πy

∂vi
Π−1

y , (53)

we get the first derivative of L(v) as

∂L(v)

∂vi
= −Tr

{
Π−1

y

∂Πy

∂vi

}
+ Π−1

y

∂Πy

∂vi
Π−1

y Ry

= Tr

{(
Π−1

y

∂Πy

∂vi

)(
Π−1

y Ry − IP
)}

, (54)

and the second derivative becomes

∂2L(v)

∂vi∂vj
= Tr

{
∂

∂vj

(
Π−1

y

∂Πy

∂vi

)(
Π−1

y Ry − IP
)

+

(
Π−1

y

∂Πy

∂vi

)
∂

∂vj

(
Π−1

y Ry − IP
)}

= Tr

{
∂

∂vj

(
Π−1

y

∂Πy

∂vi

)(
Π−1

y Ry − IP
)

+

(
Π−1

y

∂Πy

∂vi

)
∂

∂vj
Π−1

y

∂Πy

∂vj
Π−1

y Ry

}
. (55)

Since E{Ry} = Πy, (52) can be rewritten as

[FIM]ij=−E
{
∂2L(v)

∂vi∂vj

}
=Tr

{
∂

∂vi
Π−1

y

∂Πy

∂vj
Π−1

y Ry

}
, (56)

which is the general FIM expression for Gaussian signals.
Then, by following the steps in [35, 54], the CRB expressions
corresponding to the (i, j)th entries of the FIM can be given
by

CRBij =
1

2
µ2 Tr{MKij}

, (57)

where M = Σ
H
A′

H
Π−1

y A′Σ ∈ CL×L, where Σ is an L×L
matrix comprised of signal powers. Kij ∈ CL×L includes the
derivative of the actual steering matrix A′ with respect to the
unknown parameters, and it is given by

Kij = [
∂A′

∂vi
]H(INT

−A′A′
†
)[
∂A′

∂vj
]. (58)

In particular, the ith entry of the derivative of a′(ϑl), i.e., the
lth column of A′ with respect to the physical direction ϑl and
beam-split ∆l are respectively given by

∂[a′]i
∂ϑl

= jπ(i− 1)
fm
fc

cos ϑ̃l[a
′]i, (59)

∂[a′]i
∂∆l

= jπ(i− 1)ejπ(i−1) sin ϑ̃l [a′]i, (60)
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where we have via (6) and (8) that [a′]i = ejπ(i−1) fmfc sin ϑ̃l =

ejπ(i−1)(∆l+sin ϑ̃l).
In case of near-field scenario, the derivatives of the steering

vector in (47) with respect to ϑl, rl and near-field beam-split
∆l,r are

∂[a′NF]i
∂ϑl

= −jπ(i− 1)
fm
fc
r cos ϑ̃l[a

′
NF]i, (61)

∂[a′NF]i
∂rl

= −jπ(i− 1)
fm
fc

sin ϑ̃l[a
′
NF]i, (62)

∂[a′NF]i
∂∆l,r

= −jπr(i− 1)ejπr(i−1) sin ϑ̃l [a′NF]i. (63)
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