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Abstract—This paper studies multiple-access scenarios where
users are cooperatively served by the satellite and terrestrial
access points (APs). We derive the uplink ergodic throughput
of scheduled users under practical conditions where maximum-
radio combining is exploited locally at the ground gateway and
the APs. The analytical result explicitly unveils the effects of pilot
contamination and channel conditions on the achievable through-
put of each scheduled user in the uplink data transmission. The
system can explicitly define the scheduled users and perform
the power allocation by maximizing the sum throughput using
either model-based or learning-based approaches. Numerical
results demonstrate that the cooperation between space and
ground systems brings superior throughput improvements over
either space or ground networks. Even though most users can
be simultaneously served, some may not be scheduled in each
coherence interval due to limited radio resources.

Index Terms—Cooperative network, satellite communications,
linear combining, throughput maximization

I. INTRODUCTION
Terrestrial wireless networks have been a dominant mode

of communication, providing enhanced communication speeds
and quality of service [1], especially using cell-free Massive
MIMO (multiple-input multiple-output) in which terrestrial
access points (APs) are distributed and coordinated with
each other. Looking toward the future, sixth-generation radio
networks are expected to acquire a significantly high demand
for many devices [2]. Coverage requirements for 6G will be
crucial to support widely distributed devices across vast areas.
However, due to critical limitations, including geographical lo-
cations and operation costs, it will be hard to guarantee cover-
age with terrestrial networks only [3]. Satellites can provide an
immediate solution to this issue by complementing terrestrial
networks with ubiquitous connectivity [4]. Low orbit (LEO)
satellites offer distinctive merits to connect terrestrial devices
on the ground, which can communicate with objects with
limited or no access to traditional terrestrial networks [5], [6].
Nonetheless, most related works assume perfect channel state
information (CSI) and rely on optimization problems based on
slow fading. This creates a gap between theory and practical
implementation. Instead, analyzing network performance and
allocating radio resources based only on channel statistics
could provide a viable solution.
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Machine learning (ML) has appeared as an auspicious direc-
tion to address various complicated problems in wireless com-
munication systems [7]. When designing machine learning-
based schemes for wireless systems, there are typically two
main approaches: data-driven methods [8] and autoencoders
[9]. While both can achieve a near-optimal solution compared
to conventional methods with much faster execution time in a
small-scale network, their performance degrades significantly
in large-scale systems. To address this issue, graph neural
networks (GNNs) have emerged as a promising approach that
leverages the graph topology of communication systems to
achieve comparable performance and remarkable scalability
and generalization in large-scale dimensions [10]. Unlike
traditional ML approaches, GNN models are capable of
maintaining their performance even as the number of system
parameters increases, making them well-suited for large-scale
systems [11]. To our knowledge, no existing works design a
GNN applicable for heterogeneous devices from space and
ground with only channel statistics.

This paper considers integrated satellite-terrestrial commu-
nication systems with our key contributions listed as follows:
i) We investigate cooperative networks with the presence of a
LEO satellite and APs in a cell-free Massive MIMO system
where users can be either in active or inactive mode. The
instantaneous CSI is estimated at the APs and the gateway
locally. To keep a generic framework, we assume an arbitrary
pilot reuse pattern; ii) We derive an uplink ergodic throughput
of each active user for maximum-ratio combining (MRC)
method and spatially correlated Rician fading channel model;
iii) we formulate an optimization problem that maximizes
the total throughput of all the active users with finite power
constraints. Despite the inherent non-convexity, this optimiza-
tion problem allows obtaining the solution to both the power
allocation and user scheduling; iv) we propose an iterative
algorithm to attain a stationary solution by exploiting the
alternating optimization approach (AOP); and v) we construct
a heterogeneous graph neural network and an unsupervised
learning that, in contrast to previous works, only exploits
statistical information to assign the transmit power to every
user and schedule all users in the coverage area.

Notation: Vectors and matrices are denoted by lower and
upper bold letters. (·)H and (·)T are Hermitian and regular
transpose. IN denotes an identity matrix of size N ×N and



tr(X) is the trace of a square matrix X. CN (·, ·) is the
circularly symmetric Gaussian distribution. The expectation
of a random variable is E{·} The floor function is ⌊·⌋, while
mod (·, ·) is the modulus operation.

II. SYSTEM MODEL AND UPLINK PILOT TRAINING

We consider a cooperative wireless network with M APs
distributed in a cell-free topology and K available users, all
equipped with a single antenna. Let K = {1, . . .K} denote
the set of all available users. The system is complemented
by a LEO satellite with N antennas. In each coherence
interval with τc symbols, τp symbols are used for the pilot
training (channel estimation), and the τc− τp symbols for the
data transmission in the uplink. Due to massive connectivity,
a subset of users may be inactive. Thus, Q denotes the
set of active users with Q ⊆ K and the remaining users
are in the inactive user subset, denoted by Q̄ = K \ Q.
The channel between AP m and user k, ∀m, k, denoted
by gmk ∈ C, follows a Rayleigh fading model, which is
gmk ∼ CN (0, βmk), where βmk stands for the large-scale
fading. The channel between satellite and user k follows a
Rician distribution as hk ∼ CN (h̄k,Rk), where h̄k ∈ CN

and Rk ∈ CN×N are the LoS component and the spatial
correlation matrix, respectively.
A. Uplink Pilot Training

Each user is allocated a pilot signal from a set of τp
orthonormal pilots {ϕϕϕ1, . . . ,ϕϕϕτp}. The pilot ϕϕϕk ∈ Cτp is ded-
icated to user k. Let us denote Pk ⊆ K the set of user indices
who share the same pilot sequence with user k, which creates
the following pilot reuse pattern ϕϕϕH

k ϕϕϕk′ = 1 if k′ ∈ Pk.
Otherwise, ϕϕϕH

k ϕϕϕk′ = 0. For the ground link, the received
training signal at AP m is ypm =

∑
k∈K

√
pτpgmkϕϕϕ

H
k +wH

pm,
where p is the transmit power assigned to each pilot symbol
and wpm ∼ CN (0, σ2

aIτp) is additive noise at AP m with
zero mean and variance σ2

a [dB]. After that, AP m estimates
the desired channel from user k by projecting the received
training signal ypm onto ϕϕϕk as

ypmk =
√
pτpgmk +

∑
k′∈Pk\{k}

√
pτpgmk′ +wH

pmϕϕϕk. (1)

For space communications, the received training signal at
the gateway of satellite, Yp ∈ CN×τp , can be formulated
similarly as Yp =

∑K
k=1

√
pτphkϕϕϕ

H
k +Wp, in which Wp ∈

CN×τp is additive noise with elements following CN (0, σ2).
The desired channel from user k is obtained at the gateway
by projecting Yp onto ϕϕϕk as

ypk = Ypϕϕϕk =
√
pτphk+

∑
k′∈Pk\{k}

√
pτphk′+w̃pk, (2)

where w̃pk = Wpϕϕϕk is additive noise at the satellite section,
which is distributed as w̃pk ∼ CN (0, σ2

sIN ) with zero
mean and standard deviation σs [dB]. The cooperative system
deploys the minimum mean square error (MMSE) estimation
to attain the channel estimates as in Lemma 1.

Lemma 1. By exploiting the MMSE estimation locally at
the APs, the channel estimate of gmk can be determined
as ĝmk = E{gmk|ypmk} = cmkypmk, where cmk =

E{y∗pmkgmk}/E{|ypmk|2} is computed in the closed-form
expression as cmk =

√
pτpβmk/(

∑
k′∈Pk

pτpβmk′ +σ2
a). The

channel estimate ĝmk follows ĝmk ∼ CN (0, γmk), where
γmk = E{|ĝmk|2} = pτpβ

2
mk/(

∑
k′∈Pk

pτpβmk′ + σ2
s). Also,

the channel estimation error emk = gmk − ĝmk follows
emk ∼ CN (0, βmk − γmk). Note that ĝmk and emk are
independent.

In a similar manner, the channel estimate of hk can be
determined based on (2) as ĥk = h̄k+

√
pτpRkΦΦΦk(ypk−ȳpk),

where ȳpk =
∑

k′∈Pk
pτph̄k and ΦΦΦk =

(∑
k′∈Pk

pτpRk′ +

σ2
sIN

)−1
. Then, the channel estimate ĥk is distributed as

follows ĥk ∼ CN (h̄k, pτpRkΦΦΦkRk). In addition, the channel
estimation error ek ∼ CN (0,Rk − pτpRkΦΦΦkRk) is defined
by ek = hk − ĥk. Note that ĥk and ek are independent.

Proof. The proof is accomplished by exploiting the MMSE
estimation to the satellite-terrestrial system and notations.

Lemma 1 gives the expressions of the channel estimates
which will be utilized for designing the combing coefficients
to detect the desired signals.

III. UPLINK DATA TRANSMISSION AND ERGODIC
THROUGHPUT ANALYSIS

This section provides the SE analysis of uplink data trans-
mission under imperfect CSI.

A. Uplink Data Transmission
Active users Q are allowed to access the network such

that a particular utility metric can be optimized with a finite
radio resource. From this assumption, the signal received at
the satellite and AP m are, respectively, formulated as

y =
∑

k∈Q

√
ρkhksk +w, (3)

ym =
∑

k∈Q

√
ρkgmksk + wm, (4)

in which the corresponding additive noises denote as w ∼
CN (0, σ2

sIN ) and wm ∼ CN (0, σ2
a). From the received sig-

nals in (3) and (4), we will decode the transmitted signal from
user k, ∀k. More precisely, to detect signals transmitted by
user k, the received signals are first combined independently
at the gateway, and each AP as s̃k = uH

k y and s̃mk = u∗
mkym,

where uk ∈ CN is the combining vector used to decode
signals from the satellite and umk ∈ C is a combining element
utilized by AP m. Then, all these combined signals s̃k and
s̃mk,∀m, will be forwarded to and combined at the centralized
unit (CU) as ŝk = s̃k +

∑M
m=1 s̃mk.

B. Uplink Ergodic Spectral Efficiency

When the number of APs and the satellite antennas is
sufficiently large, the system can approximate the channel gain
as a deterministic value. We introduce an aggregated channel

akk′ = uH
k hk′ +

∑M

m=1
u∗
mkgmk′ , (5)



which represents the effective channel gains. By using (5), the
combined signal at the CU is

ŝk =
√
ρkE{akk}sk +

√
ρk (akk − E{akk}) sk+∑

k′∈Q,k′ ̸=k

√
ρk′akk′sk′ + uH

k w +
∑M

m=1
u∗
mkwm. (6)

By exploiting the use-and-then-forget channel capacity bound-
ing technique [12], the uplink ergodic throughput of user k is

Rk = B (1− τp/τc) log2(1 + SINRk), [Mbps], (7)

where B is the bandwidth measured in [MHz] and
SINRk is the signal-to-interference-and-noise ratio
(SINR), SINRk = ρk

∣∣E{akk}∣∣2/(∑k′∈Q ρk′E{|akk′ |2} −
ρk

∣∣E{akk}∣∣2 + E
{
|uH

k w|2
}
+

∑M
m=1 E

{
|u∗

mkwm|2
}
) . We

demonstrate that the uplink ergodic throughput in (7) can be
applied for an arbitrary combining technique at satellite and
APs. We now derive the closed-form solution to (7) for the
case where MRC is deployed in Theorem 1.

Theorem 1. If MRC is used, the uplink ergodic throughput
for user k given in (7) is derived in closed form as

Rk = B (1− τp/τc) log2(1 + SINRk), [Mbps], (8)

where the effective SINR is given by

SINRk =
ρk

(
∥ḡk∥2 + pτptr(RkΦΦΦkRk) +

∑M
m=1 γmk

)2

MIk + NOk
,

(9)
where the mutual interference MIk is given by (10), shown
at the top of next page, and noise NOk = σ2

s∥h̄k∥2 +
pτpσ

2
str(RkΦΦΦkRk) + σ2

a

∑M
m=1 γmk.

Proof. The proof is attained by deriving the expectation in
(7), which is omitted because of space limitations.

The LoS components and spatial correlation matrix from
the space link upgrade the signal strength as illustrated in the
numerator of (9). The effectiveness of distributed terrestrial
APs is shown by M terms contributing to the spatial diver-
sity. The denominator of (9) shows the severity of mutual
interference and additive noise.

IV. SUM THROUGHPUT OPTIMIZATION
This section formulates a sum throughput optimization

problem subject to the limited power budget constraints and
then solves it by a model-based approach.

A. Problem Formulation

One of the main tasks for the future satellite-terrestrial
cooperative networks is to maximize the total throughput
under the power constraints as follows

maximize
{ρk≥0},Q

∑
k∈Q

Rk

subject to ρk ≤ Pmax,k,∀k,Q ⊆ K,
(11)

where Pmax,k is the maximum transmit power, which user k
utilizes for every data symbol. The inherent non-convexity
of the objective function of problem (11), so the global

optimum is, unfortunately, nontrivial to obtain. To cope with
this matter, the throughput in (8) should be attained by the
signal transmission of an equivalent single-input single-output
(SISO) system as

ỹk = ρ̃k
(
∥h̄k∥2 + pτptr(RkΦΦΦkRk) +

∑M

m=1
γmk

)
xk + w̃k,

(12)
where ρ̃k =

√
ρ
k

and xk is the transmitted data symbol
with E{x2

k} = 1. The additive noise w̃k is distributed as
w̃k ∼ N (0, δk) with δk = CIk + NIk + NOk and N (·, ·)
being a normal distribution. The network utilizes a combining
coefficient vk ∈ R to detect the transmitted signal from user k
as x̂k = vkỹk. Following, the mean square error (MSE) of this
decoding process is ek = E{(x̂k − xk)

2}. After that, (11) is
equivalent to the sum MSE optimization problem

minimize
{αk≥0,ρ̃k≥0,vk},Q

∑
k∈Q

αkek − ln(αk)

subject to ρ̃2k ≤ Pmax,k,∀k,Q ⊆ K,
(13)

in the sense that they share the same optimal power solution,
say ρ̃2k = ρk,∀k, at the global optimum, with the proof
straightforwardly obtained by utilizing the similar method-
ology as in [13]. Compared to the original problem, we
have simplify the complexity matter since the sum MSE
optimization is element-wise convex that should be effectively
cultivated to attain a stationary solution to problem (11).

B. Model-based Iterative Algorithm
We first tackle the discrete variable in problem (13) by

observing that Q is explicitly defined when the optimal
solution to the transmit power coefficients is available. One
can set Q = K at the beginning and reformulate problem (13)
into an equivalent form as

minimize
{αk≥0,ρ̃k≥0,uk}

∑
k∈K

αkek − ln(αk)

subject to ρ̃2k ≤ Pmax,k,∀k.
(14)

The feasible set of problem (14) is continuous and the
combinatorial issue is completely solved. We now can exploit
the element-wise convexity to find a local optimum. For such,
the Lagrangian function to problem (13) is first formulated as

L =
∑
k′′∈K

(αk′′ek′′−ln(αk′′))+
∑
k′′∈K

µk′′(ωk′′δk′′−ρ̃2k′′a2k′′)

+
∑

k∈K
λk′′(ρ̃2k′′ − Pmax,k′′), (15)

where µk and λk, for all k, are the Lagrange multipliers
associated with the SINR and limited power budget con-
straints, respectively. We now provide an algorithm to solve
problem (11) in Theorem 2.

Theorem 2. From a given initial point {ρ̃(0)k }, an iterative
update {vk, αk, ρ̃k} can obtain a stationary solution to prob-
lem (13). The updates in iteration n are as follows:
• The vk variables, ∀k, are updated as in (16), where δk,(n−1)

is computed as in (17).



MIk =
∑

k′∈Pk\{k}
ρk′

∣∣∣∣h̄H
k h̄k′ + pτptr(Rk′ΦΦΦkRk) +

∑M

m=1

cmk′

cmk
γmk

∣∣∣∣2 +∑
k′ /∈Pk

ρk′ |h̄H
k h̄k′ |2 +

∑
k′∈Q

ρk′ h̄H
k Rk′ h̄k

+ pτp
∑

k′∈Q
ρk′ h̄H

k′RkΦΦΦkRkh̄k′ + pτp
∑

k′∈Q
ρk′tr(Rk′RkΦΦΦkRk) +

∑
k′∈Q

∑M

m=1
ρk′γmkβmk′ . (10)

vk,(n) =
ρ̃k,(n−1)

(
∥h̄k∥2 + pτptr(RkΦΦΦkRk) +

∑M
m=1 γmk

)
ρ̃2k,(n−1)

(
∥h̄k∥2 + pτptr(RkΦΦΦkRk) +

∑M
m=1 γmk

)2

+ δk,(n−1)

(16)

δk,(n−1) =
∑

k′∈Pk\{k}
ρ̃2k′,(n−1)|h̄

H
k h̄k′ + pτptr(Rk′ΦΦΦkRk) +

∑M

m=1
cmk′γmk/cmk|2 +

∑
k′ /∈Pk

ρ̃2k′,(n−1)|h̄
H
k h̄k′ |2+∑

k′∈K
ρ̃2k′,(n−1)pτph̄

H
k′RkΦΦΦkRkh̄k′ +

∑
k′∈K

ρ̃2k′,(n−1)h̄
H
k Rk′ h̄k + pτp

∑
k′∈K

ρ̃2k′,(n−1)tr(Rk′RkΦΦΦkRk)

+
∑

k′∈K

∑M

m=1
ρ̃2k′,(n−1)γmkβmk′ + σ2

s∥h̄k∥2 + pτpσ
2
str(RkΦΦΦkRk) + σ2

a

∑M

m=1
γmk

(17)

• The αk variables, ∀k, are updated as

αk,(n) = 1/ek,(n), (18)

where ek,(n) is computed as (19).
• The ρ̃k variables, ∀k, are updated as

ρ̃k = min(ρ̄k,(n),
√

Pmax,k), (20)

where ρ̄k,(n) is computed as

ρ̄k,(n) = αk,(n)vk,(n)×(
∥ḡk∥2 + pτptr(RkΦΦΦkRk) +

∑M

m=1
γmk

)
/tk,(n), (21)

with tk,(n) defined as in (22).
If we denote the fixed point solution obtained by the above
iterative algorithm as {v∗k, α∗

k, ρ̃
∗
k}, then {ρ∗k} is a stationary

point solution to problem (11).

Proof. The proof relies on the first-order derivative of the
Lagrangian function in (15) with respect to the optimization
variables, which is omitted because of space limitations.

The proposed iterative approach to attain a stationary so-
lution is summarized in Algorithm 1. For a given power
coefficients, {ρk,(0)}, in the feasible domain, we compute
the related optimization variables ρ̃k,(0) =

√
ρk,(0),∀k. In

iteration n, the beamforming variables vk,(n),∀k, are updated
by deploying the closed-form throughput expression in (16)
with the square root of the coefficients from the previous
iteration and δk,(n−1) computed as in (17). After that, the
weighted variables αk,(n),∀k, are updated by exploiting the
closed-form expression in (18) with ek,(n) computed by as
in (19). Algorithm 1 then updates the optimization variables
ρ̃k,(n),∀k, by utilizing (20) with ρ̄k,(n) given in (21) and tk,(n)
given in (22). The CPU can terminate Algorithm 1 when the
total throughput has a small variation between the two con-
secutive iterations as

∣∣∑
k∈K Rk,(n) −

∑
k∈K Rk,(n−1)

∣∣ ≤ ϵ.
Theorem 2 indicates that, from an initial point of the power
domain, the proposed iterative algorithm will converge to
a stationary point of problem (14) since each optimization
variable is computed based on the first derivative of the

Algorithm 1 A stationary solution to problem (14) by AOP
Input: Channel statistics {ḡk,Rk,ΦΦΦk, γmk, βmk} ; Maximum
transmit power of user k, Pmax,k,∀k; Choose initial values
ρ̃k,(0)∀k; Set up n = 0 and tolerance ϵ.
While Stopping criterion does not hold do

1. Set n = n+ 1.
2. Update vk,(n), ∀k by (16) where each δk,(n−1) is com-

puted as in (17).
3. Update αk,(n), ∀k by (18) where each ek,(n) is computed

as in (19).
4. Update ρ̃k,(n), ∀k by (20) where each ρ̄k,(n) is computed

as in (21) with tk,(n) given in (22).
5. Store the current solution ρ̃k,(n).

End while
Output: A stationary solution ρ̃∗k = ρ̃k,(n), ∀k.

Lagrangian function. From the stationary solution {ρ̃∗k}, we
set ρ∗k = (ρ̃∗k)

2, for all k, and the optimized scheduled user
set Q∗ is explicitly formulated as Q∗ = {k|ρ∗k > 0, k ∈ K},
and therefore the unscheduled user set is Q̄∗ = K \ Q∗.

V. LEARNING-BASED FRAMEWORK
This section describes a heterogeneous GNN to learn and

predict the solution to (11) using channel statistics in an
unsupervised fashion.
A. Graphical Representation

A graph is defined by a tuple G = {V, E}, where V
denotes the set of vertices and E denotes the set of edges.
Generally, vertices and edges can belong to different types.
We denote A the set of vertex types, where R is the set of
edge types. Graph G is a homogeneous graph (HomoGraph)
if |A| = |R| = 1, otherwise it is a heterogeneous graph
(HetGraph). In this paper, we formulate the power allocation
optimization problem (11) as a learning problem over the
following HetGraph with three types of vertices, i.e. |A| = 3.
Vertexes and Edges: each AP, each user, or the satellite is
a vertex; and each channel link between APs and users or
each channel link between the satellite and users is an edge.



ek,(n) =
(
ρ̃k,(n−1)vk,(n)

(
∥h̄k∥2 + pτptr(RkΦΦΦkRk) +

∑M

m=1
γmk

)
− 1

)2
+ v2k,(n)δk,(n−1) (19)

tk,(n) = αk,(n)

(
∥h̄k∥2 + pτptr(RkΦΦΦkRk) +

∑M

m=1
γmk

)2
v2k,(n) +

∑
k′′∈K

αk′′,(n)v
2
k′′,(n)(

pτph̄
H
k Rk′′ΦΦΦk′′Rk′′ h̄k + h̄H

k′′Rkh̄k′′ + pτptr(RkRk′′ΦΦΦk′′Rk′′) +
∑M

m=1
γmk′′βmk

)
+

∑
k′′ /∈Pk

αk′′,(n)

× v2k′′,(n)|h̄
H
k′′ h̄k|2 +

∑
k′′∈Pk\{k}

αk′′,(n)v
2
k′′,(n)|h̄

H
k′′ h̄k + pτptr(RkΦΦΦk′′Rk′′) +

∑M

m=1
cmkγmk′′/cmk′′ |2 (22)

Features: The vertex feature of every user is the available
transmit power, i.e. Pmax,k. APs and the satellite have no
feature. The feature of the edge between AP m and user k
is the large-scale fading coefficient βmk. The feature of the
edge between the satellite and user k is the LoS channel ḡk

and the correlation matrix Rk. We refer to this HetGraph as
a heterogeneous wireless interference graph (HWIG), where
each AP and each user are linked with each other, and the
users are linked to the satellite. The designed HWIG can
capture the permutation equivariance property of the power
allocation optimization problem (11). Specifically, if the order
of user indices is permuted in the problem, the optimal
allocated power should be permuted correspondingly.

B. Implementation of HetGNN

To distinguish the outputs of three type of vertices in
HWIG, we denote bl

m, ul
m, and sl as the output of AP m,

user m and the satellite in the l-th layer. The procedure of the
proposed HetGNN comprises of three phases as follows.

1) Feature Initialization: In the initialization phase, we
design the feature for each type of vertices and edges.
Firstly, the input feature from the user vertices are available
transmit power at each user, i.e. u0

m = Pmax,m. Since the
vertices of APs and satellite do not have any feature, we
set one as the input of them, i.e. b0

m = s0 = 1,∀m. For
the edges between APs and user, the large-scale fading
coefficients are used as features as eAPm−userk = βmk.
The LoS channels and correlation matrices are used
as the edge feature as esat−userk = [vec(Re{ḡk})T ,
vec(Im{ḡk})T , vec(Re{Rk})T , vec(Im{Rk})T ]T , where
vec(.) is the vectorization operator. Besides, Re(A) and
Im(A) are real and imaginary parts of matrix A.

2) Data Processing: The update consists of three
parts. First, APs aggregate information from users
by a

(l)
m,AP = MEANk{MLP1(eAPm−userk ,b

(l−1)
m )}

and b
(l)
m = ReLU(MLP2(b

(l−1)
m ,a

(l)
m,AP)). Second,

satellite aggregates information from users by
a
(l)
sat = MEANk{MLP3(esat−userk , s

(l−1))} and
s(l) = ReLU(MLP4(s(l−1),a

(l)
sat)). Third, users

aggregate information from the APs and satellite by
a
(l)
m,user−AP = MEANn{MLP5(eAPn−userm ,u

(l−1)
m )},

a
(l)
m,user−sat = MLP6(esat−userm ,u

(l−1)
m ), and

u
(l)
m = ReLU(MLP7(u

(l−1)
m ,a

(l)
m,user−AP,a

(l)
m,user−sat)),

where ReLU(.) is ReLu activation function, MEAN({.}) is
the pooling function that calculates the mean value of a set,

and MLP denotes the neural network. At the last HetGNN
layer, the output of user vertices will be processed to obtain the
optimal power allocation vector. A Sigmoid activation layer is
then applied to ensure the predicted power vector satisfies the
transmit power constraint. Specifically, the optimal allocated
power is obtained as p∗ = pmax ⊙ σ

(
MLP8(u(D))

)
,

where σ(.) denote Sigmoid activation function,
pmax = [Pmax,1, · · · , Pmax,K ]T , p∗ = [p∗1, · · · , p∗K ] is
the optimal allocated power vector, u(D) = [u

(D)
1 , · · · ,u(D)

K ],
and D is the number of HetGNN layers. Finally, the
loss function adopted to train the neural network is
L = −E{B (1− τp/τc)

∑K
k=1 log2(1 + SINRk(p

∗(θ)))},
where θ are hyper parameters. Our neural network is trained
in an unsupervised manner without requiring any labels.

VI. NUMERICAL RESULTS
We consider a system with 40 APs distributed in a square

area of 16 [km2] that serves various users mapped into a Carte-
sian coordinate system. An LEO satellite is placed at location
(300, 300, 400) [km]. The satellite antenna is fabricated by a
rectangular array with NV = NH = 5. The system bandwidth
is B = 20 [MHz], and the carrier wave has the frequency
3 [GHz]. The noise figure at the satellite and APs is 1.2 [dB]
and 4 [dB], respectively. The large-scale fading coefficients
involve both the path loss and shadow fading as in [2], and
the satellite beam patterns are modeled as in [6].

Fig. 1(a) shows the CDF of sum throughput by the three
benchmarks. Monte-Carlo simulations match well with the
analytical results for all the considered realizations of user
locations and shadow fading. Besides, we observe that the
space network with a single satellite yields relatively stable
sum throughput. The satellite-terrestrial cooperative network
offers the sum throughput surpassing the space network 2.1×.
Fig. 1(b) visualizes the CDF of the sum throughput by de-
ploying the different power control strategies consisting of i)
Algorithm 1; ii) the random power allocation with uniformly
distributed power [14]; and iii) the equal power allocation
with the maximum level (ρk = Pmax,k,∀k) [15]. While
Algorithm 1 deactivates several users with weak channel gains
to reduce mutual interference, the remaining benchmarks
admit all K users to the network. Thanks to this advanced
scheduling policy, Algorithm 1 provides the sum throughput
226.5 [Mbps], which is 24.0% better than the baseline with
K = 30 users. Fig. 1(c) shows the percentage of scheduled
users, by exploiting Algorithm 1. If there are only 20 users in
the coverage area, the space-ground cooperative network can
serve most of them with 99.2% scheduled users. Nevertheless,
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Fig. 1. The system performance of the satellite-terrestrial cooperative systems: (a) CDF of the sum throughput [Mbps] using Monte Carlo simulations versus
the analyses with K = 20, τc = 10000, and pk = Pmax,k; (b) CDF of the sum throughput [Mbps] with the power control policies, τc = 10000, and
τp = K/2; (c) Probability of scheduled users versus the different number of available users with τc = 10000 and τp = K/2.

TABLE I
PERFORMANCE COMPARISON BETWEEN LEARNING-BASED AND

MODEL-BASED APPROACHES

Number
of users
(K)

Sum throughput [Mbps] Run-time [ms]

GNN-S GNN-R Alg. 1 GNN-S,
GNN-R Alg. 1

20 170.5 171.4 167.1 30 621
30 228.6 228.6 226.5 34 1667
40 275.6 275.9 279.3 35 2939
50 317.8 318.9 321.9 36 5089

a remarkable portion of available users should be ignored if
the network density increases. With 50 users available, only
the portion of 87.3% is admitted to service.

Table I compares the system performance, i.e., sum
throughput and run time, of the learning-based and model-
based approaches. We consider two different learning-based
approaches consisting of the GNN-S where K = 30 users
are used to train the neural network. At the same time, the
testing phase is applied to a communication system with
various users. In contrast, the GNN-R has an equable number
of users in both phases. Regarding the sum throughput,
both approaches are very competitive with each other. At
most, the GNN-R can provide 2.6% better sum throughput
than Algorithm 1. Besides, the GNN-S manifests scalability
with slightly worse performance than the GNN-R. Regarding
run time, the two learning-based approaches can predict the
solution to problem (11) in the order of milliseconds. In
contrast, Algorithm 1 has much higher time consumption than
the two previous benchmarks, which does not scale with the
network dimension well.

VII. CONCLUSION
This paper has demonstrated the benefits of coherent signal

processing from the space and ground in enhancing SE for
users in a large coverage area. The uplink ergodic throughput
is derived under practical conditions. The sum throughput
maximization is formulated to attain the optimal power co-
efficients and the subset of served users with the availability
of channel statistics only. Effective algorithms have been
proposed to overcome the inherent non-convexity and obtain
low-complexity solutions. Numerical results demonstrate that
the vast majority of users are served, but the remaining may
be ignored from service to maximize the total throughput.
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