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Abstract— In this paper, we propose a solution for legged
robot localization using architectural plans. Our specific con-
tributions towards this goal are several. Firstly, we develop
a method for converting the plan of a building into what
we denote as an architectural graph (A-Graph). When the
robot starts moving in an environment, we assume it has no
knowledge about it, and it estimates an online situational graph
representation (S-Graph) of its surroundings. We develop a
novel graph-to-graph matching method, in order to relate the
S-Graph estimated online from the robot sensors and the A-
Graph extracted from the building plans. Note the challenge
in this, as the S-Graph may show a partial view of the full
A-Graph, their nodes are heterogeneous and their reference
frames are different. After the matching, both graphs are
aligned and merged, resulting in what we denote as an informed
Situational Graph (iS-Graph), with which we achieve global
robot localization and exploitation of prior knowledge from the
building plans. Our experiments show that our pipeline shows
a higher robustness and a significantly lower pose error than
several LiDAR localization baselines.
Paper Video: https://youtu.be/3Pv7y8aOsUY

I. INTRODUCTION

Mobile robots are increasingly being deployed in the
construction sector, with significant potential benefits. For
example, they may reduce significantly the costs by regular
inspection of an ongoing site to monitor progress. However,
robots at construction are nowadays mostly teleoperated or
work semi-autonomously due among others to the perception
challenges associated with the constantly changing nature of
a construction site. For fully autonomous operation, it would
be convenient for such robots to have a comprehensive prior
knowledge of the construction site geometry. Leveraging
such prior knowledge together with sensor readings during
real-time operation may lead to robust and accurate global
localization in construction sites.

Digital architectural plans, such as Building Information
Modelling (BIM) [1], provide a means of capturing and
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Fig. 1: Generation of an iS-Graph leveraging the information
from the offline generated A-Graph using an architectural
plan and the online generated S-Graph using robot sensors.
A structure-based graph matching algorithm estimates the
relationship between the two graphs as the robot navigates
to provide a final connected iS-Graph.

communicating information about a construction site and
incorporating it as prior knowledge about the scene. Works
such as [2]–[4] have addressed the problem of extracting
relevant structural knowledge from BIM and using it for real-
time robot localization. However, these methods only extract
geometric information from the BIM and do not leverage
the topological and relational information also available in
it, which limits the robustness and accuracy in complex and
changing construction sites.

To tackle this problem, we present a novel approach to
localize robots leveraging not only geometry but also higher-
level hierarchical information from architectural plans. We
present in this paper how to model the BIM information
in the form of a graph that we denote as Architectural
Graph (A-Graph), and then match and merge with the online
Situational Graph (S-Graph) [5], [6] that the robot builds as
it navigates the environment. As a key aspect, translating
low-level geometry into high-level features in both graphs is
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what allows a robust matching between such different inputs.
Our method can be divided into three main stages. In the

first one, an A-Graph is created for a given environment
with nodes representing the semantic features available in a
BIM model, specifically, wall-surfaces, doors, and rooms as
the graph nodes, and edges containing the relevant relational
information such as two wall surfaces comprising a wall,
four wall surfaces connecting room and rooms connected
through doors. In the second stage, running in real-time
onboard the robot, a S-Graph is estimated using 3D LiDAR
measurements. The nodes of our S-Graph correspond to
semantics such as wall surfaces and rooms, and the edges
correspond to constraints between these wall surfaces and the
relevant room nodes. Finally, to localize the robot within this
environment, a graph-matching algorithm is proposed uti-
lizing hierarchical information from both graphs to provide
the best match candidates finally resulting in informed (iS-
Graphs) that fuses the information of both. This last graph
will be the one used for global localization.

As a summary, the main contributions of this paper are:
• A hierarchical optimizable A-Graph built from BIM

models that extends S-Graphs factors [5], [6] with novel
wall and door-way ones.

• A novel hierarchical graph matching between A-Graphs
and S-Graphs.

• Generation of iS-Graphs, from the fusion of A-Graphs
and S-Graphs for graph-based global robot localization.

• Validation of the proposed solution over simulated and
real datasets collected over different construction sites
achieving state-of-the-art results.

II. RELATED WORK

A. Global Localization

Global localization refers to the estimation of the pose
of a robot on a known map. Global localization is usually
done in two steps. Initial localization is usually performed by
sensor-reading-to-map matching [7], [8], which is frequently
referred to as re-localization [9], place recognition [10] or the
kidnapped robot prolem [11]. After an initial pose has been
estimated within the known map, the robot pose is tracked
in such map fusing its dynamics and sensor readings.

Multiple sensor modalities, including LiDAR [12], monoc-
ular [13], and stereo [14] cameras, can be employed for
such tasks. Fox et al. [15] proposed one of the pioneer
works in global localization, in which they use a Markov
model to update with each sensor reading, a probability
distribution over the space of potential locations in the sur-
rounding environment. If the robot becomes confident about
its location, the probability distribution converges to a single
mode centered around the true position of the robot. Markov
localization has, however, a high computational footprint. To
overcome this issue, [16] proposed Monte Carlo Localization
(MCL), which models the robot state as a set of particles that
are randomly sampled from the probability density function.
MCL has proven to be effective in a wide variety of scenarios
[17], [18], [19].

Hess et al. [20] proposed Cartographer, a real-time indoor
mapping algorithm along with localization capability. It
uses submap based scan-matching technique for estimating
the initial odometry. A global loop closure is performed
to optimize the estimated trajectory and further improve
the accuracy of the map. The localization-only mode of
Cartographer then uses this map for global localization.

Other methods rely on the extraction and matching of local
point cloud descriptors such as [21], [22], [23]. Keypoint-
based methods are constrained by the limited distinctiveness
of local structures in LiDAR data. However, they have
emerged as an alternative to those based on scan matching
and have garnered significant interest from the research
community in recent years [24], [25].

Recent research has shown some promising results in
learning-based localization. [26] presented SegMap which
creates a different map representation for localization by
extracting segments from 3D point clouds. Most global
localization approaches assume that the prior maps were
estimated using the same sensors used for localization. This
limits the use of maps estimated from other sensor modalities
or human maps, as we do. As we are addressing this specific
last case, we refer to related works in the next subsection.

B. Localization in Architectural Plans

Boniardi et al. [27] proposed the use of CAD plans for
robust LiDAR indoor localization. They first create a globally
consistent sparse map by combining Bayes filtering and
graph-based mapping techniques. The robot then estimates
its pose in the global frame of the floor plan by aligning
this map to the CAD plan. [28] also proposed a localization
approach in digital floor plans with a monocular camera.
They predict the room layout by using a convolutional neural
network (CNN) named room layout extraction network. Then
they use a particle filter to estimate the robot pose by match-
ing the extracted edges from the network and the digital floor
plan. [29] performed global localization using schematic
floor plans. They proposed a factor-graph-based localization
approach that uses features –such as wall intersections and
corners from the digital floor plans– as landmarks. Their
approach assumes that the features mentioned above are pre-
viously labeled. The robot extracts similar features from a 3D
point cloud and performs data association. The robot poses
and landmarks are jointly optimized by a factor graph. [30]
addressed the issue of localization in erroneous architectural
plans. They first segment RGB images using a segmentation
network into foreground and background, then fuse them
with LiDAR scans. Then they perform local referencing to
make up for the deviations in the digital plan and perform
precise localization. They also proposed an outlier detector
to counter noise and clutter in sensor readings. They claim
that their method outperforms the Iterative Closest Point
(ICP) based method by almost 30%. [31] also addressed
localization in inaccurate floor plans using Stochastic Gra-
dient Descent (SGD) and 2D LiDAR. They benchmark
their algorithm against Adaptive Monte Carlo Localization
(AMCL) [32] and claim to significantly outperform it in



Fig. 2: Overview of our approach. We generate offline an Architectural Graph (A-Graph) from a BIM model. A robot
estimates online a Situational Graph (S-Graph) from its sensors. We do graph matching between the two, align them, and
merge their information. This generates the final iS-Graphs, which is utilized by the robot to be localized with respect to
the BIM.

the case of imprecise maps. Ling et al. [33] proposed a
novel idea of Approximate Nearest Neighbor Fields (ANNF)
which they use for localization on floor plans. ANNF allows
for fast retrieval of the closest geometric floor plan features
for any point within the localization space. [34] proposed
to use of Building Information Modelling (BIM) for robot
localization. Instead of using the traditional Simultaneous
Localization and Mapping (SLAM) algorithm, they convert
the BIM model to a localization-oriented point cloud and
localize the robot using ICP between the robot’s laser scanner
and the metric point cloud. [35] proposes an open-source
method to generate appropriate Pose Graph-based maps from
BIM models for robust 2D-LiDAR localization in changing
and dynamic environments. They first create 2D occupancy
grid maps automatically from BIM (Building Information
Modelling) and then convert them into Pose-Graph-based
maps. Then using various map representations they per-
form localization using different localization algorithms. [36]
explore an effective way to localize a mobile 3D LiDAR
sensor on BIM-generated maps considering both geometric
and semantic properties.

C. Graph Matching

Several approaches have tackled the problem of associat-
ing data from two different sets. [37] formulates a maximum
common sub-graph problem, or maximum clique when new
noisy data is acquired incrementally. [38] performs an
outlier-robust estimation, maximum consensus, and truncated
least squares. CLIPPER [39] presents a relaxation of this
NP-hard problem. They weigh the geometric consistency of
different associations and encounter the most consistent asso-
ciations (inliers) by finding the densest sub-graph, hence as a
graph theoretic framework. The authors provide experiments
with point and point-normal noisy sets with outliers. [40] use
a convolutional neural network for large places recognition
visually.

The literature has approached the problem of graph match-
ing for robot localization with a loop-closure goal. [41]
takes as input two graphs describing scenes. Random walks
are accomplished in both of them generating class-aware
descriptors of each walk. The node association is based
on the number of identical descriptors in common. Dis-
tance comparison between nodes is used when ambiguity
remains for different match candidates. [42] use a sparse
Kuhn–Munkres algorithm to find the association between
nodes of graphs extracted from images. The similarity is
computed in terms of shape and image similitudes along
the euclidian distance. [43] measure the similarities by
comparing the instance-level embeddings provided by 3D
CNNs followed by a graph-wise geometrical verification.

The concept of 3D scene graphs for representing the
structure of an environment in a hierarchical manner was
introduced by [44] and [45]. [46] presented a hierarchical
loop-closer detection in graphs. First, they compare descrip-
tors in a top-down fashion to find putative loop closures
at places, objects, and vision. Those descriptors contain
statistics of the robot’s surroundings at object and place lev-
els combining geometrical and semantic information. Both
are aggregated as histograms for its comparison. Second, a
bottom-up verification of the geometric consistency yields a
match between robot nodes.

III. SYSTEM OVERVIEW

Fig. 2 shows an overview of the proposed approach. Firstly
the BIM information is extracted for a given environment to
create the two-layered Architectural Graphs (Section. IV)
in an offline manner, with all the elements extracted in
the BIM frame of reference B. As the robot navigates
within the given environment, an online Situational Graph
(Section. III-A) is estimated by the robot in the map frame of
reference M . In parallel, we run our the Graph Matching
method (Section. V) to provide match candidates between



the existing A-Graphs and the current S-Graph. Finally, after
retrieving the best match candidate, our Graph Merging
(Section. VI) provides the merged iS-Graph utilized for
the global localization with respect to the BIM frame of
reference B.

A. Situational Graphs (S-Graphs)
S-Graphs are four-layered optimizable hierarchical graphs

built online using 3D LiDAR measurements. The full details
of the S-Graphs we use in this work can be found in [5],
[6]. In brief, their four layers can be summarized as:

Keyframes Layer. It consists of the robot poses factored
as MxRi ∈ SE(3) nodes in the map frame M with pairwise
odometry measurements constraining them.

Walls Layer. It consists of the planar wall-surfaces Mπi ∈
R3 extracted from the 3D LiDAR measurements and factored
using minimal plane parameterization. The planes observed
by their respective keyframes are factored using pose-plane
constraints.

Rooms Layer: It consists of two-wall rooms Mγi ∈ R2

or four-wall rooms Mρi ∈ R2, each constraining either two
or four detected wall-surfaces respectively.

Floors Layer: It consists of a floor node Mξi ∈ R2 posi-
tioned at the center of the current floor level and constraining
all the rooms present at that floor level.

IV. ARCHITECTURAL GRAPHS (A-GRAPHS)
We propose to extract relevant information from BIM

models into two-layered optimizable graphs denoted as A-
Graphs. In the lowest-level layer we will model the geometry
of the walls, and in the highest level the rooms. Room-to-
walls constraints connect the two layers and neighbouring
rooms are constrained by door-ways. The specific formula-
tion is detailed below.

A-Walls Layer. This layer extracts all the information
about the walls and wall surfaces from the BIM and connects
them with appropriate wall-to-wall-surface edges.

Wall-Surfaces: Wall-surfaces are planar entities Bπ ex-
tracted in the BIM frame of reference B. All the wall-
surfaces are converted to their Closest Point (CP) represen-
tation, as in [6]. Wall-surface normals with their component
Bnx greater than Bny are classified as x-wall-surfaces, and
wall surfaces whose normal component Bny is greater than
the normal component Bnx are defined as y-wall-surfaces.
These are initialized in the graph as Bπ = [Bφ,Bθ,Bd],
where Bφ and Bθ stand for the azimuth and elevation of the
plane in frame B and Bd is the perpendicular distance in B.

Walls: We introduce a novel semantic entity with respect
to [6] in the form of a Wall ω ∈ R3, consisting of two pla-
nar wall-surfaces. Two opposed planar wall-surface entities
either in x-direction or y-direction with similar perpendicular
distance Bd can be classified as a part of a single wall
entity. The wall center Bωxi

for two opposed x-direction
wall-surfaces is computed as:

Bwxi =
1
2

[
|Bdx1 | · Bnx1 − |

Bdx1 | · Bnx2

]
+ |Bdx2 | · Bnx2

Bωxi =
Bwxi +

[
Bsi − [ Bsi · Bŵxi ] · ˆBwxi

]
(1)

where Bsi ∈ R3 is the starting point for a given BIM wall
and n and d are the plane normals and distance. For Eq. IV
to hold true, all plane normals are converted to point away
from the BIM frame of reference as in [6]. The wall center
along with it wall-surfaces is factored in the graph as:

cω(
Bωi,

[
Bπx1

,Bπx1
,Bsi])

=

K∑
i=1

‖Bω̂i − f(Bπ̃x1
,Bπ̃x1

,Bsi)‖2Λω̃i,t
(2)

Where f(Bπ̃x1
,Bπ̃x1

,Bsi) is the function mapping the
wall center using the wall-surfaces and its starting point
following Eq. IV. Wall factors add an additional layer of
structural consistency to the graph. A Wall center for opposed
planes in y-direction is computed following Eq. IV.

A-Rooms Layer. The second layer of the graph extracts
all the information about the rooms along with the door-ways
interconnecting the rooms.

Rooms: In this work we use the similar concept of a four-
wall room Bρ ∈ R2 as presented in [6], where each room
comprises the four-wall surfaces extracted in the first layer of
the graph. The information regarding the room with its wall
surfaces can be easily extracted from the BIM. The creation
of the room and room-to-wall-surfaces edges can be referred
to in [6].

Door-Ways: In this paper we incorporate an additional
entity in the graph called door-ways interconnecting the room
nodes, easily available from BIM. The position of a door-
way node BD ∈ R3 is directly extracted from BIM in the
frame of reference B. Using the semantic information from
BIM of the rooms connected by a given door-way, the door-
way-to-rooms factor can be formulated as:

cD(Bρ1,
Bρ2,

BDi) =

‖ f(Bρ̂1,
ρ1D̂i)− f(Bρ̂2,

ρ2D̂i)‖ (3)

Where Bρ1 and Bρ2 are the four-wall rooms connected
to the door-way BDi. ρ1Di and ρ2Di are the positions the
door-way nodes estimated with respect to rooms Bρ1 and
Bρ2.

V. GRAPH MATCHING

Our second contribution to this paper is a novel approach
to graph matching. Specifically, our goal is to match an
architectural A-graph, Ga, and a S-Graph, Gs. In our case,
we compare and match the room (ρ) entities and for each
room entity its corresponding wall-surfaces (π), extracted
from both graphs. As a result, the correspondences form a
bipartite graph connecting the nodes of some parts of Ga
with all, or almost all nodes, in Gs, at the rooms and walls
layers. Provided that Gs is built incrementally as the robot
navigates the environment, the graph matching is run after
every map update until a successful match is obtained. A
schema of the entire graph-matching process is described in
Fig. 3.



Fig. 3: Graph matching schema. a) Downwards and at each level, different combinations of matches are proposed and
selected by their geometrical affinity either at the same level or with the associated upper-level pair. b) The match graph is
traversed upwards while combined with same-level nodes to define all-level match candidates. c) The lowest-level pairs of
every candidate are scored in global affinity. That score is clustered to find symmetries in the best cluster.

Notation. Let V be any set of nodes, with V a and V s the
sets of nodes in the A-Graph and the S-Graph respectively.
Let m = (va, vs) : va ∈ Va, vs ∈ Vs, and M be any set of
m such as M = {m1,m2, ...,mn}. Let M be any set of
M such as M = {M1,M2, ...,Mn}. Local candidates are
M including m referring to a small part of the input graphs.
Global candidates are M including m referring to the entire
input graphs.

Match Candidates Graph. The first process is to build a
graph Gm with the match candidates that, incrementally and
in a top-down manner, integrates and manages all suitable
match combinations at each level as described in Fig. 3a.
Level i comprises two sub-levels. At the lowest sub-level,
mi
k, k = {1, . . . n} contains a single edge linking a node in

Ga with another node in Gs. The second sub-level, M i
j , j =

{1, . . . n} contains a suitable combination of mi
k elements.

In this work, mi
k are pairs of room nodes and their leaf

node contains the pairs of wall-surfaces for a given room
node pair.

The suitability of each M i
j candidate is checked by three

different factors required to be satisfied. First, we check
isomorphism, i.e., the structure of both matched sub-graphs
must be identical. Second, we perform a categorical check,
i.e., the type of two matched nodes must be the same type.
And third, affinity is checked, i.e. both matched sub-graphs
must maintain geometrical consistency with respect to all
other nodes either at the same level (interlevel) or with other
levels (interlevel). The geometrical consistency is computed
as defined in [39] for rooms (points) and wall surfaces
(point-normals).

Local Candidates Combination. In the bottom layer of
Gm, every leaf node represents a partial match for a single
branch of the graph. For that purpose, as described in Fig. 3b,
all branch combinations of Gm are composed of different
candidates. In a bottom-up manner for every level, children
of M type nodes are inclusively aggregated and children m
type nodes are exclusively aggregated. As a result, Mg is
obtained, represented in the figure only by leaf nodes. The
global affinity of the leaf nodes in each element of Mg is

then ranked to determine which combinations are globally
affine.

Global Candidates Selection. Due to existing symme-
tries, only selecting the element of Mg with a higher
affinity score is not enough, as there may be a set of
optimal matchings and not a unique one. As an illustrative
example, let Ga have two square rooms with similar but not
identical layouts. Let Gs have a single room corresponding
to one of those in Ga. This case would generate a set of
affinities such as two clusters 1 and 2 in Fig. 3c, created
due to similarities between the rooms as well as similarities
between the wall-surfaces of those rooms. For this reason,
after clustering, the best cluster (cluster 1) has to contain a
single set of matches to determine a unique optimal match.
In the case of several optimal matches within the cluster, the
algorithm awaits further information to be incorporated in
Gs (additional rooms and wall-surfaces) before providing a
single unique match.

VI. GRAPH MERGING

Our global state s at time T , before graph merging,
contains all the nodes of the A-Graph, generated offline, as
well as the current nodes estimated online by the S-Graph

s = [MxR1
, . . . , MxRT

,
Mπ1, . . . ,

MπP ,
Bπ1, . . . ,

BπQ,
Mρ1, . . . ,

MρS ,
Bρ1, . . . ,

BρR (4)
Mγ1, . . . ,

MγG,
Mξ1, . . . ,

MξE ,
Bω1, . . . ,

BωW ,
BD1, . . . ,

BDD,
BxM ]>,

where BxM is the estimated transformation between the map
frame M of the S-Graph and the BIM frame B of the A-
Graph, which is set to identity before graph merging. The
graph matching method from Section. V provides match
candidates between the room nodes and the wall-surface
nodes of the S-Graph and the A-Graph. To efficiently merge



(a) AMCL (b) UKFL (c) Cartographer (d) iS-Graphs

Fig. 4: Top view of estimated trajectories and APE [m] for all baselines and our iS-Graph in the D2 sequence of our
simulated data. Our iS-Graph presents the lowest errors (see the color coding), followed by Cartographer.

the two graphs to generate the iS-Graph, we introduce room-
to-room constraints as well as a wall-surface-to-wall-surface
constraints between the matched candidates. The room-to-
room constraint is defined as

cρ(
Bρ1,

Mρ2) = ‖
Bρ̂1 −

M ρ̂2‖2Λρ̃1,2 , (5)

where Bρ1 is the room node in the A-Graph and Mρ2
is the corresponding room node in S-Graph. Similarly, for
all correspondences between wall-surface candidates, the
constraint is formulated as

cπ(
Bπ1,

Mπ2) = ‖ Bπ1 −Mπ2‖2Λπ̃1,2
, (6)

where Bπ1 and Mπ2 are the wall-surfaces in the A-Graph
and the S-Graph.

With the constraints between the two graphs, BxM can be
estimated and all the robot poses, the wall-surfaces, rooms,
and floors of the S-Graph can be referred accurately with
respect to the BIM frame of reference B of the A-Graph,
resulting in the final improved situational graph iS-Graph. In
this manner the robot is localized with respect to the global
reference of the architectural plan. Our approach thus can
perform global localization exploiting the hierarchical high-
level information in the environment without the need for
appearance-based loop closure constraints at keyframe level,
which are more variable.

VII. EXPERIMENTAL EVALUATION

A. Experimental Setup

We conducted experiments to validate our proposed ap-
proach in multiple simulated and real-world construction en-
vironments. As it is evident, in cases where the environment
has high symmetry, the localization algorithm will struggle
to find a solution. Therefore, in our environments, there is
always at least one unique combination of rooms. In all
experiments, we generated A-Graphs from various building
models that were created in Autodesk Revit1. The Boston

1https://www.autodesk.com/products/revit/
architecture

Dynamics Spot robot, equipped with a Velodyne VLP-16
3D LiDAR, was teleoperated for data collection over the
environments. We compared our approach to two 2D LiDAR-
based localization algorithms (AMCL [32] and Cartographer
[20]) and one 3D LiDAR-based localization (UKFL [47])
algorithm. In simulated datasets we measured the Absolute
Pose Error (APE) [48] with respect to the ground truth,
while in real-world due to the absence of ground truth
pose information, we compare the point cloud RMSE of
the generated map with the available ground truth map from
BIM. The proposed methodology was implemented in C++,
and the experiments were validated on an Intel i9 16-core
workstation.

B. Results and Discussion

Simulated Datasets. Table. I presents the APE of our
proposed iS-Graphs and state-of-the LiDAR-based localiza-
tion algorithms for six simulated datasets. Each simulated
dataset represents a single floor level of a given construction
environment with varying configurations of wall-surfaces and
rooms. Given the output from 2D LiDAR algorithms, the
APE of all the algorithms is computed in 2D (x, y, θ).
Figure 4 shows the top view of estimated trajectories in D2
sequence for our algorithm and all the baselines. It can be
seen from Table. I that our iS-Graphs show higher robustness
against localization failure and outperform all the localization

TABLE I: Absolute Pose Error (APE) [m] for several
LiDAR-based localization baselines and our iS-Graphs
Datasets have been recorded in simulated environments. ‘−’
stands for localization failure.

Method APE [m] ↓
Datasets

D1 D2 D3 D4 D5 D6

AMCL [32] 2.04 1.71 2.03 2.01 - -
UKFL [47] 0.97 0.78 - 0.74 0.70 0.88

Cartographer [20] 0.10 0.16 0.12 - 0.13 -
iS-Graphs (ours) 0.08 0.01 0.02 0.04 0.09 0.12

https://www.autodesk.com/products/revit/architecture
https://www.autodesk.com/products/revit/architecture


(a) BIM (b) AMCL (c) UKFL (d) Cartographer (e) iS-Graphs

Fig. 5: 3D maps generated using robot poses for real-world sequence D2. (a) Ground truth 3D map from BIM. (b) 3D map
generated by AMCL. (c) 3D map generated by UKFL [47]. (d) 3D map generated by Cartographer. (e) 3D map generated
by our iS-Graphs.

baselines using both 2D and 3D LiDARs.
Real-World Datasets. Table. II presents the point cloud

RMSE for three different construction environments, where
our iS-Graphs is able to localize the robot correctly while
providing a more accurate 3D map of the environment when
compared to the ground truth. Given the presence of noise
in LiDAR measurements and the clutter present in a real
construction environment traditional approaches to localiza-
tion fail to localize the robot (see D1 in Table. II). Since
our approach relies only on high-level entities like wall-
surfaces and rooms and their topological relationship instead
of directly relying on low-level LiDAR measurements, it
is more robust to noise and clutter in the environment
than the baselines, robustly localizing the robot in all the
real-world datasets and achieving the lowest point cloud
RMSE. Additionally, Fig 5 shows the qualitative results
of the aligned map generated using robot poses obtained
from iS-Graphs and the baselines for D2 against the ground
truth map generated using BIM. iS-Graphs shows accurate
alignment with the ground truth map (see axis in Fig. 5a
and Fig. 5e), while AMCL, UKFL, and Cartographer due
to inaccuracies in localization provide inaccurate robot pose
and hence poorly aligned and noisier map when comparing
it against the ground truth.

C. Limitations

Although iS-Graphs has demonstrated state-of-the-art per-
formance in our experimental validation, there are still some
open challenges. The success of our graph-matching algo-
rithm depends on the correct extraction of rooms in the S-

TABLE II: Point cloud RMSE [m] for our real-world dataset.
Best results are boldfaced. ‘−’ stands for localization failure.

Method Alignment Error ↓
Datasets

D1 D2 D3

AMCL [32] - 0.90 0.98
UKFL [47] - 0.86 0.69
Cartographer [20] - 0.58 0.64
iS-Graphs (ours) 0.17 0.20 0.21

Graphs. In cases where S-Graph fails to detect a room that
is present in the BIM, our graph matching may encounter
difficulties in finding a reliable match.

Additionally, the success of iS-Graphs is reliant on the
ability to obtain a unique match between S-Graph and A-
Graph. In cases where the environment has high symmetry,
the graph-matching module will not be able to find a unique
match candidate until, at least, one unique combination of
rooms is detected by S-Graphs.

VIII. CONCLUSION

In this paper, we have presented a novel method for global
robot localization utilizing prior information from architec-
tural plans. We propose to embed the architectural data
from BIM models into optimizable graphs that we denote
as Architectural Graphs (A-Graphs). Utilizing Situational
Graphs (S-Graphs) estimated by a robot as it navigates its
environment, we present a novel graph matching strategy to
match the A-Graphs with the S-Graphs and we also present
a graph merging strategy to fuse the content of both. The
result of the fusion is an informed iS-Graph, which enables
the robot to localize itself within the architectural plan for
the given environment. We validate our approach on differ-
ent simulated and real-world construction sites showcasing
state-of-the-art results with respect to current localization
frameworks. In future works, we will explore the possibility
of incorporating uncertainties in the architectural plans to
further detect and correct deviations in the built environment
with respect to the architectural plans.
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