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Abstract—We consider a task-effective quantization problem
that arises when multiple agents are controlled via a centralized
controller (CC). While agents have to communicate their obser-
vations to the CC for decision-making, the bit-budgeted commu-
nications of agent-CC links may limit the task-effectiveness of the
system which is measured by the system’s average sum of stage
costs/rewards. As a result, each agent should compress/quantize
its observation such that the average sum of stage costs/rewards
of the control task is minimally impacted. We address the
problem of maximizing the average sum of stage rewards by
proposing two different Action-Based State Aggregation (ABSA)
algorithms that carry out the indirect and joint design of control
and communication policies in the multi-agent system. While
the applicability of ABSA-1 is limited to single-agent systems, it
provides an analytical framework that acts as a stepping stone
to the design of ABSA-2. ABSA-2 carries out the joint design
of control and communication for a multi-agent system. We
evaluate the algorithms - with average return as the performance
metric - using numerical experiments performed to solve a
multi-agent geometric consensus problem. The numerical results
are concluded by introducing a new metric that measures the
effectiveness of communications in a multi-agent system.

Index Terms—Semantic communications, task-effective data
compression, goal-oriented communications, communications for
machine learning, multi-agent systems, reinforcement learning.

I. INTRODUCTION

As 5G is rolling out, a wave of new applications such
as the internet of things (IoT), industrial internet of things
(IIoT) and autonomous vehicles is emerging. It is projected
that by 2030, approximately 30 billion IoT devices will be
connected [1]. With the proliferation of non-human types of
connected devices, the focus of the communications design is
shifting from traditional performance metrics, e.g., bit error
rate and latency of communications to the semantic and
task-oriented performance metrics such as meaning/semantic
error rate [2], [3] and the timeliness of information [4].
To evaluate how efficiently the network resources are being
utilized, one could traditionally measure the sum rate of a
network whereas in the era of the cyber-physical systems,
given the resource constraints of the network, we want to
understand how effectively one can conduct a (number of)
task(s) in the desired way [5], [6]. We are witnessing a
paradigm shift in communication systems where the targeted
performance metrics of the traditional systems are no longer
valid. This imposes new grand challenges in designing the
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Figure 1. Task-effective communications for a) an estimation vs. b) a control
task - the orange dashed box is detailed in Fig. 2 and Fig. 3.

communications towards the eventual task-effectiveness [6].
This line of research is also driven partly due to the success
of new machine learning technologies/ algorithms under the
title of ”emergent communications” in multi-agent systems [7].
Transfer of these new technologies/ideas to communication en-
gineering is anticipated to have a disruptive effect in multiple
domains of the design of communication systems.

According to Shannon and Weaver, communication prob-
lems can be divided into three levels [8]: (i) technical problem:
given channel and network constraints, how accurately can
the communication symbols/bits be transmitted? (ii) semantic
problem: given channel and network constraints, how accu-
rately the communication symbols can deliver the desired
meaning? (iii) effectiveness problem: given channel and net-
work constraints, how accurately the communication symbols
can help to fulfil the desired task? While the traditional com-
munication design addresses the technical problem, recently,
the semantic problem [2], [3], [5], [9], [10] as well as the
effectiveness problem [6], [11]–[18] have attracted extensive
research interest.

In contrast to Shannon’s technical-level communication
framework, semantic communication can enhance perfor-
mance by exploiting prior knowledge between source and
destination [4], [19]. The semantic-based designs, however, are
not necessarily task-effective [20]. One can design transmitters
which compress the data with the least possible compromise
on the semantic meaning being transmitted [2], [3] while
the transmission can be task-unaware [21]. In contrast to
semantic level and technical level communication design,
the performance of a task-effective communication system is
ultimately measured in terms of the average return/cost linked
to the task [11]. In the (task) effectiveness problem, we are
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not concerned only about the communication of meaning but
also about how the message exchange is helping the receiving
end to improve its performance in the expected cost/reward of
an estimation task [4], [13], [14], [16], [22] or a control task
[11], [12], [14], [15], [17], [18], [23], [24].

There are fundamental differences between the design of
task-effective communications for an estimation vs. a control
task - Fig. 1. (i) In the latter, each agent can produce a
control signal that directly affects the next observations of
the agent. Thus, in control tasks, the source of information -
local observations of the agent - is often a stochastic process
with memory - e.g. linear or Markov decision processes -
[11], [17], [18]. In the estimation tasks, however, the source
of information is often assumed to be an independent and
identically distributed (i.i.d.) stochastic process [13], [16],
[22]. (ii) In the control tasks, a control signal often has a
long-lasting effect on the state of the system more than for a
single stage/time step e.g., a control action can result in lower
expected rewards in the short run but higher expected rewards
in the long run. This makes the control tasks intrinsically
sensitive to the time horizon for which the control policies are
designed. Estimation tasks, specifically when the observation
process is i.i.d., can be solved in a single stage/ time step -
since there is no influence from the solution of one stage/ time
step to another i.e., each time step can be solved separately
[22], [25]. (iii) The cost function for estimation tasks is often
in the form of a difference/distortion function while in the
control tasks, it can take on many other forms.

In this paper, we focus on the effectiveness problem for
the control tasks. In particular, we investigate the distributed
communication design of a multiagent system (MAS) with
the ultimate goal of maximizing the expected summation of
per-stage rewards also known as the expected return. Multiple
agents select control actions and communicate in the MAS
to accomplish a collaborative task with the help of a central
controller (CC) - i.e. the communication network topology of
the MAS is a star topology with the hub node being the central
controller and the peripheral nodes being the agents - Fig.
2. The considered system architecture can find applications
in several domains such as the Internet of Things, emerging
cyber-physical systems, real-time interactive systems, vehicle-
to-infrastructure communication [26], collaborative perception
[27] and vehicle-to-edge off-loading [28].

A. Related works: Task-effective communications for control
tasks

Authors in [11], [12], [14], [17], [18], [23], [24] consider
task-effective communication design under different settings.
While [12], utilizes the task-effective communication design
for the specific problem of the design of application-tailored
protocols over perfect communication channels, the commu-
nication channel is considered to be imperfect in [11], [14],
[17], [18], [23], [24]. Authors in [14] provide algorithmic
contributions to the design of task-effective joint source-
channel coding for single agent systems. Task-effective joint
source and channel coding for MAS is targeted by [11],
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Figure 2. Communication topology and its applicable scenarios a) Centralized
control of a MAS with collocated actuators and sensors, b) Distributed sensing
with a single controller collocated with a single actuator. The orange dashed
box is detailing the same box in Fig. 1 and Fig. 3 .

[14], [17], whereas [18], [23] are focused on task-effective
data compression and quantization. Similar to the current
paper, a star topology for the inter-agent communication is
considered in [11], [12] whereas [12] assumes perfect com-
munications between the hub node and the peripherals and
[11] assumes imperfect communication channels at the down-
link of the peripheral nodes. Despite the growing literature
on task-effective communications for single and multi-agent
systems, a part of which was surveyed above, a notable
void persists in addressing the problem of the joint design
of uplink quantization and control for a multi-agent system
communicating over bit-budgeted channels of a star topology
network. Diverse applications of this problem are mentioned
in the last subsection. In contrast to all the above-mentioned
work, this paper is - to the best of our knowledge - the first
to study the star topology with the uplink (agent to hub)
channel be imperfect (bit-budgeted) - Fig. 2. Equivalently, each
agent observes the environment and communicates an abstract
version of its local observation to the CC via imperfect (bit-
budgeted) communication channels - red links in Fig. 2. Sub-
sequently, CC produces control actions that are communicated
to the agents via perfect communication channels - black links
in Fig. 2. The control actions are selected by the CC such
that they maximize the average return of the collaborative
task, where the return is a performance metric linked to the
accomplishment of the task.

B. Contributions

In our earlier work [18], we have developed a generic
framework to solve task-oriented communication problems -
for a multi-agent system (MAS) with full mesh connectivity.
The current work can be considered as an adoption of that
framework to a new problem setting for the design of task-
effective communications where agents follow a star network
topology for their connectivity. In this direction, the current
work transcends the applicability of the proposed framework
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beyond the specific problem that was solved in [18] and
provides further insights into how the framework can be
used in wider terms and under a wider range of settings. In
particular, the contributions of this work are listed below.

• Firstly, we consider a novel problem setting in which a
MAS is controlled via a central controller who has access
to agents’ local observations only through bit-budgeted
distributed communications. This problem setting can
be used in collaborative perception systems as well as
vehicle-to-infrastructure communications, which cannot
be addressed by the problem settings investigated in the
prior similar art.

• Secondly, our analytical studies establish the relationship
between the considered joint communication and con-
trol design problem and conventional data quantization
problems. In particular, lemma 1 shows how the problem
approached in this paper is a generalized version of the
conventional data quantization. This formulation is useful
as it helps to find an exact solution to the problem
under stronger conditions via ABSA-1 and under milder
conditions via ABSA-2.

• Moreover, our analytical studies help us to craft an indi-
rect 1 task-effective data quantization algorithm - ABSA-
2. Designing a task-effective data quantization for ABSA-
2 can equivalently be translated as an indirect approach
to feature selection for an arbitrary deep Q-network.
Relying on the analysis carried out for ABSA-1, ABSA-
2 designs distributed and bit-budgeted communications
between the agents and CC. ABSA-2 is seen to approach
optimal performance by increasing the memory of the
CC. In fact, increasing the memory of CC leads to higher
computational complexity. Therefore, ABSA-2 is said to
strike a trade-off between computational complexity and
task efficiency.

• Numerical experiments are carried out on a geomet-
ric consensus task to evaluate the performance of the
proposed schemes in terms of the optimality of the
MAS’s expected return in the task. ABSA-1 and ABSA-
2 are compared with several other benchmark schemes
introduced by [18], in a multi-agent2 scenario with local
observability and bit-budgeted communications.

• Finally, we will introduce a new metric, called task-
relevant information, for the measurement of effective-
ness in task-oriented communication policies that - in
comparison with the existing metrics such as positive
listening and positive signalling - better explains the
behaviour of a variety of task-effective communication
schemes. The proposed metric is capable of measur-
ing the effectiveness of a task-oriented communica-

1By an indirect algorithm here we mean an approach that is not dependent
on our knowledge from a particular task. Indirect approaches are applicable
to any/(wide range of) tasks. In contrast to indirect schemes, we have direct
schemes that are specifically designed for a niche application [16]. As defined
by [6]: ”the direct schemes aim at guaranteeing or improving the performance
of the cyber-physical system at a particular task by designing a task-tailored
communication strategy”.

2Due to the complexity related issues explained in section IV, the numerical
results are limited to two-agent and three-agent scenarios.

tion/compression policy without the need of testing a
jointly designed control policy and testing the jointly
designed policies in the desired task.

C. Technical approach

Our goal is to perform an efficient representation of the
agents’ local observations to ensure meeting the bit-budget
of the communication links while minimizing the effect of
quantization on the average return of the task. To achieve
this, we first need to design task-effective data quantization
policies for all agents. In task-effective data quantization,
one needs to take into account the properties of the average
return function and the optimal control policies associated with
the task [15]. In addition to the design of the quantization
policies for all agents, we also need the control policy of
the CC to be capable of carrying out near-optimal decision-
making despite its mere access to the quantized messages -
resulting in a joint control and data compression problem. We
formulate the joint control and data compression problem as
a generalized form of data compression: task-oriented data
compression (TODC). Following this novel problem formula-
tion, we propose two indirect action-based state aggregation
algorithms (ABSA): (i) ABSA-1 provides analytical proof for
a task-effective quantization i.e., with optimal performance
in terms of the expected return. In this direction, ABSA-1
relaxes the assumption of the lumpability of the underlying
MDP, according to which [18][condition. 6], the performance
guarantees of the proposed method were established. Since
ABSA-1 is only applicable when the system is composed of
one agent and the CC we also propose ABSA-2. Following
the analytical results of ABSA-1, given the help of MAP
estimation to relax the aforementioned limitation of ABSA-
1, and benefit from a DQN controller at the CC; ABSA-2 will
be introduced as a more general approach. (ii) ABSA-2 solves
an approximated version of the TODC problem and carries
out the quantization for any number of agents communicating
with the CC. Thanks to a deep Q-network controller utilized
at the CC, ABSA-2 can solve more complex problems where
the controller benefits from larger memory. Thus, ABSA-2
allows trading complexity for communication efficiency and
vice versa. Finally, we will evaluate the performance of the
proposed schemes in the specific task: a geometric consensus
problem under finite observability [29].

D. Organization

The rest of this paper is organized as follows. Section II
describes the MAS and states the joint control and commu-
nication problem. Section III proposes two action-based state
aggregation algorithms. Section IV shows the performance of
the proposed algorithms in a geometric consensus problem.
Finally, Section V concludes the paper. For the reader’s
convenience, a summary of the notation that we follow in this
paper is given in Table I. Bold font is used for matrices or
scalars which are random and their realizations follow simple
font.
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Symbol Meaning

x(t) A generic random variable generated at time t

x(t) Realization of x(t)
X Alphabet of x(t)
|X | Cardinality of X

px
(
x(t)

)
Shorthand for Pr

(
x(t) = x(t)

)
H
(
x(t)

)
Information entropy of x(t) (bits)

X−x X − {x}

Ep(x){x}
Expectation of the random variable X over the

probability distribution p(x)

tr(t) Realization of the system’s trajectory at time t

Table I
TABLE OF NOTATIONS
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Figure 3. Illustration of the interactions of the CC and agents for the control
of the environment. The red link shows the communication channels that are
bit-budgeted - implying the local (and not global) observability of the CC.
The orange dashed box is detailing the same box in Fig. 1 and Fig. 2 .

II. SYSTEM MODEL AND PROBLEM STATEMENT

The problem setting we introduce here can be used to
analyse both scenarios illustrated in Fig. 2. Nevertheless, to
use our language consistently, we focus on the scenario (a)
of that figure throughout the manuscript. In particular, when
we use the term ”agent” we refer to an object which certainly
has all the following hardware capabilities: sensing, actuation,
communication and data processing. A MAS, however, may
not be comprised of mere agents, but of a combination
of agents and perhaps other objects that has at least the
hardware capabilities for communication and data processing
power. The central controller here is supposed to have the
hardware capability to process relatively larger data as well as
the capability of communications. The interactions inside the
MAS and outside the MAS with the environment are illustrated
in Fig. 3.

A. System model

We consider a MAS in which multiple agents i ∈ N =
{1, 2, ..., N} collaboratively solve a task with the aid of a CC.
Following a centralized action policy, CC provides the agents
with their actions via a perfect communication channel while
it receives the observations of agents through an imperfect

communication channel 3. The considered setting is similar to
conventional centralized control of MASs [18], [31], except for
the fact that the communications from the agents to the CC are
transmitted over a bit-budgeted communication channel. The
agent-hub communications are considered to be instantaneous
and synchronous [18]. This is in contrast with the delayed [17],
[32] and sequential/iterative communication models [33]–[35].
We note that there is no direct inter-agent communication in
the considered system - communications occur only between
agents and the central controller. The system runs on discrete
time steps t. The observation of each agent i at time step t is
shown by oi(t) ∈ Ω and the state s(t) ∈ S of the system is
defined by the joint observations

s(t) ≜ ⟨o1(t), . . . ,oN (t)⟩4. (1)

The control action of each agent i at time t is shown by
mi(t) ∈M, and the action vector m(t) ∈MN of the system
is defined by the joint actions m(t) ≜ ⟨m1(t), ...,mN (t)⟩.
The observation space Ω, state-space S, and action space
M are all discrete sets. The environment is governed by
an underlying5 Markov Decision Process that is described
by the tuple M =

{
S,MN , r(·), γ, T (·)

}
, where r(·) :

S × MN → R is the per-stage reward function and the
scalar 0 ≤ γ ≤ 1 is the discount factor. The function
T (·) : S ×MN ×S → [0, 1] is a conditional probability mass
function (pmf) which represents state transitions such that
T
(
s(t + 1), s(t),m(t)

)
= Pr

(
s(t + 1)|s(t),m(t)

)
. According

to the per-stage reward signals, the system’s return within the
time horizon T ′ is denoted by

g(t
′
) =

∑T ′

t=t
′ γ

t−1r
(
o1(t), ...,oN (t),m1(t), ...,mN (t)

)
. (2)

While the system state is jointly observable by the agents
[36], each agent i’s observation oi(t) is local 6. Once per time
step, agent i ∈ N is allowed to transmit its local observations
through a communication message ci(t) to the CC. The
communications between agents and the central controller are
done in a synchronous (not sequential) and simultaneous (not
delayed) fashion [17]. Each agent i generates its communi-
cation message ci(t) by following its communication policy
πc
i (·) : Ω → C. In parallel to all other agents, agent i

follows the communication policy πc
i (·) to map its current

observation oi(t) to the communication message ci(t) which
will be received by the central controller in the same time-

3In this work we follow a common assumption used in the networked
control literature [30] according to which the bit-budget only limits the uplink
communications of the agents and not their downlink. Accordingly, the agents
select their control actions as dictated to them by the central controller.

4According to this definition, at any given time t the observations of any
two agent i, j ∈ N are linearly independent in the Euclidean space. The same
conditions are true for the control actions of arbitrary agents.

5As defined in the literature [10], the underlying MDP’ is the horizon-T ′

MDP defined by a hypothetical single agent that takes joint actions m(t) ∈
MN and observes the nominal state s(t) ≜ ⟨o1(t), . . . ,oN (t)⟩ that has
the same transition model T (·) and reward model r(·) as the environment
experienced by our MAS.

6In our problem setting, each agent does not see the environment as an MDP
due to their local observability. We only assume the presence of an underlying
MDP for the environment, which is widely adopted in the literature for the
reinforcement learning algorithm, e.g., [37] [38]. We have this assumption as
our performance guarantees rely on the optimality of the solution provided
for the control task, which is also assumed in [7], [10]. Let us recall that
throughout all of our numerical studies, even the CC, given joint observations
of all agents, cannot observe the true/nominal state of the environment.
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step t. The code-book C is a set composed of a finite number
of communication code-words s c, c′, c′′, ..., c(|C|−1) - we use
the same notation to refer to the different members of the
action, observation and state spaces too. Agents’ communica-
tion messages are sent over an error-free finite-rate bit pipe,
with its rate constraint to be R ∈ R (bits per channel use)
or equivalently (bits per time step). As a result, the size
of the quantization codebook should follow the inequality
|C| ≤ 2R. The CC exploits the received communication
messages c(t) ≜ ⟨c1(t), ..., cN (t)⟩ within the last d number
of time-steps to generate the action signal m(t) following the
control policy πm(·) : CNd → MN . Based on the above
description, the environment from the point of view of the CC
as well as from the agent’s point of view is not necessarily an
MDP - as none is capable of viewing the nominal state of the
environment.

B. Problem statement: Joint Control and Communication De-
sign (JCCD) problem

Now we define the JCCD problem. Let M be the MDP
governing the environment and the scalar R ∈ R to be the
bit-budget of the uplink of all agents. At any time step t′,
we aim at selecting the tuple π = ⟨πm(·), πc⟩ with πc ≜
⟨πc

1(·), ..., πc
N (·)⟩ to solve the following variational dynamic

programming

argmax
π

Eπ

{
g(t′)

}
; s.t. |C| ≤ 2R, (3)

where the expectation is taken over the joint
pmf of the system’s trajectory {tr}T ′

t′ =
o1(t

′), ..., oN (t′),m(t′), ..., o1(T
′), ..., oN (T ′),m(T ′), when

the agents follow the policy tuple π. In the next section,
similar to [18] we will disentangle the design of action
and communication policies via action-based quantization of
observations. In contrast to [18], here the communication
network of the MAS is assumed to follow a star topology. The
idea behind this disentanglement is to extract the features of
the control design problem that can affect the communication
design and to take them into account while designing the
communications. Thus our communication design will be
aware of the key features of the control task. We extract the
key features of the control task using analytical techniques
as well as reinforcement learning [17], [18]. In fact, the new
communication problem called TODC, will no longer be
similar to the conventional communication problems, as it is
inspired by the JCCD problem.

In [18], [23], authors use the value of agents’ observations
for the given task as the key feature of the control task
considered in the communication design. Accordingly, the idea
was to cluster together the observation points that have similar
values. In contrast to [18], [23], which considers the value of
observations as an explicit key feature of the control task, here
we consider the optimal control/action values assigned to each
observation as the key feature. Accordingly, ABSA clusters the
observation values together, whenever the observation points
have similar optimal control/action values assigned to them.
Action-based state aggregation has been already introduced in

the literature of reinforcement learning as a means for reducing
the complexity of the reinforcement learning algorithms while
maintaining the average return performance [39], [40].

III. ACTION-BASED LOSSLESS COMPRESSION OF
OBSERVATIONS

In this section, we will set yet another example - in addition
to [18] - for the use of a generic framework to solve JCCD
problem. In [18], a similar problem is solved for distributed
control and quantization, wherein, the authors disentangle the
design of task-oriented communication policies and action
policies given the aid of a hypothetical functional Πm∗

. In
particular, the functional Πm∗

is a map from the vector space
Kc of all possible communication policies πc to the vector
space Km of optimal corresponding control policy πm∗

(·).
Upon the availability of the functional Πm∗

, wherever the
function πm appears in the JCCD problem, it can be replaced
with Πm∗

(πc) resulting in a novel problem in which only
the communication policies πc are to be designed. While in
[18], authors use an approximation of Πm∗

(πc) to obtain a
task-oriented quantizer design problem, in the current work
we derive an exact solution for a simplified version of (4) -
where the number of agents communicating with the central
controller is limited to one agent. To adapt ABSA to the
generic setting of the problem (4), in ABSA-2, we will lift
this limitation given the aid of an approximation technique.

The JCCD problem can already be formulated as a form
of data-quantization problem. Lemma 1, identifies the quan-
tization metric that we aim to optimize in this paper. It
reformulates the JCCD problem as a novel generalized data
quantization problem.

Lemma 1. The JCCD problem (3) can also be expressed as
a generalized data quantization problem as follows

argmin
π

Ep(s(t))

∣∣∣V π∗(
s(t)

)
− V πm(

c(t)
)∣∣∣, s.t. |C| ≤ 2R, (4)

where the communication vector c(t) generated by πc is a
quantized version of the system’s state s(t).

Proof. Appendix A. ■

In contrast to the classic data-quantization problems, here
the distortion metric, measures the difference between two dif-
ferent functions of the original signal and its quantized version
- namely V π∗(·) and V πm(·) - thus the distortion measure that
we aim to optimize by solving (4) is not conventional. In fact,
the variational minimization problem is solved over the vector
space of joint quantization policies πc and action policy πm

functions.

A. ABSA-1 Algorithm
The applicability of the proposed ABSA-1 is limited to two

mathematically equivalent scenarios: (i) we have a single agent
communicating to the CC - consider the Fig. 2-a, with only one
agent connected to the CC - or (ii) that the agents communicate
with the CC through a relay. In the latter scenario, the relay
has full access to the agents’ communication observation, i.e.,
oi,∀i ∈ N , while the relay to CC channel is bit-budgeted.
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This limited scenario is useful for us to facilitate our analytical
studies on the problem (4), allowing us to establish theoretical
proof for the losslessness of compression in ABSA-1 as well
as its optimal average return performance. These statements
will be confirmed by Lemma 2 - the results of which
will also be useful to design ABSA-2. The central idea of
ABSA-1 is to represent any two states s(i), s(j) using the
same communication message c iff π∗(s(i)) = π∗(s(j)),
where π∗(·) : S → MN is the optimal control policy of
the agents, given the access of observations from all agents.
Thus, ABSA-1 and ABSA-2 solve the JCCD problem at three
different phases: (i) solving the centralized control problem
under perfect communications via reinforcement learning i.e.,
Q-learning, to find π∗(·)7, (ii) solving the task-oriented data
quantization problem to find πc via a form of data clustering,
(iii) finding the πm corresponding to πc.

In order to explain ABSA-1, we introduce the problem of
task-oriented data compression with centralized control. TBIC
is derived using similar techniques in [18] but for a different
setting i.e., the communication network of MAS has a star
topology. The TBIC problem is no longer a joint control and
communication problem but is a quantization design problem
in which the features of the control problem are taken into
account. To arrive to TODC problem from the JCCD problem,
we use the functional Πm∗

to replace πm(·) with Πm∗(
πc

)
.

Upon the availability of Πm∗
, by plugging it into the JCCD

problem (3), we will have a new problem

argmin
πc

Ep(s(t))

∣∣∣V π∗(
s(t)

)
− V Πm∗(

πc
)(
c(t)

)∣∣∣, s.t. |C| ≤ 2R,

(5)

where we maximize the system’s return with respect to
only the communication policies πc(·) of the local relay. The
optimal control policy πm∗

(·) of the CC is automatically
computed by the mapping Πm∗(

πc(·)
)
. The problem is called

here as the TODC problem. Upon the availability of Πm∗
,

the JCCD problem (3) can be reduced to (5). Definition 1
is provided to formalize a precise approach to solve (5) via
obtaining the communication policy of the relay πc(·) as well
as the corresponding Πm∗

, to solve (3).

Definition 1. Quantization and control policies in ABSA-1:

The communication policy πc,ABSA−1(·) designed by
ABSA-1 will be obtained by solving the following k-median
clustering problem

min
P

∑|C|

i=1

∑
s(t)∈Pi

∣∣∣π∗(s(t))− µi

∣∣∣, (6)

where P = {P1, ...,PB} is a partition of S and µi is the
centroid of each cluster i. The communication policy of ABSA-
1 - πc,ABSA−1(·) - is an arbitrary non-injective mapping such
that ∀k ∈ {1, ..., B} : πc,ABSA−1(s) = c(k) if and only if
s ∈ Pk. Now let Cg be a function composition operator such
that Cgf = g ◦ f . We define the operator Πm∗

≜ Cg , with

7ABSA’s bottleneck arises from the increasing complexity of Q-learning as
agents increase in number N . Similar limitations are in place for any other
algorithm that requires a centralized training phase [7], [31]

g = π∗(πc,ABSA−1−1

(·)
)

8 .

The optimality of the proposed ABSA-1 algorithm is sub-
sequently provided in Theorem 2.

Lemma 2. The communication policy πc,ABSA−1 - as de-
scribed by Definition 1 - will carry out lossless compression
of observation data w.r.t. the average return if |C| ≥ |M|N .

Proof. Appendix B. ■

Remark: ABSA-1 will also carry out lossless compression
of observation data with respect to the distortion measure
introduced in the problem (4). Given the proofs of lemma 2
and lemma 1, the proof of this remark is straightforward and
is, therefore, omitted.

The losslessness of quantization in ABSA-1 implies that
the πABSA−1 will result in no loss of the system’s average
return, compared with the case where the optimal policy π∗(·)
is used to control the MAS under perfect communications.
Consequently, the control policy πm,ABSA−1(·) is optimal. Let
us recall once again that here, we do not use a conventional
quantization distortion metric, we select a representation of
local observation in such a way that the conveyed message
maximizes the average task return.

Note that in [7], the authors do not find the higher order
function Πm∗

that reduces the joint communications and
control problem to a task-oriented communication design -
instead they solve an approximated version of the task-oriented
communication design problem. In this paper, however, we
introduce a closed form Πm∗

by ABSA-1 that can map every
communication policy πc,ABSA−1 introduced by ABSA-1, to
the exact optimal control policy. This implies that the solutions
provided by ABSA-1 are also the optimal solutions to the joint
communication and control design (JCCD) problem.

B. ABSA-2 Algorithm
We saw earlier in lemma 2 that the communication policy

obtained by solving the problem 6 is optimal and can result
in a lossless average return performance when |C| ≥ |M|N .
To solve the problem 6, however, we need to know π∗(s(t)).
This is a limiting assumption that in ABSA-1 can be translated
to two different system models which are less general than
the system pictured in Fig. 3: (i) presence of an extra relay
between the agents and the central controller where the relay
has perfect downlink channels to agents and a single bit-
budgeted channel to the CC. (ii) The MAS is only composed
of one single agent and a CC where the uplink of the agent
is bit-budgeted but its downlink is a perfect channel.

Our second proposed algorithm ABSA-2 removes the need
to know π∗(s(t)) and can run under the more general settings
shown in Fig. 3. This is done by approximating the local
element m∗

i (t) of π∗(s(t)) = ⟨m1 ∗ (t), ...,mN ∗ (t)⟩ at

8Note that as πc,ABSA−1(·) is non-injective, its inverse would not produce
a unique output given any input. Thus, by π∗(πc,ABSA−1−1

(c′)
)

we mean
π∗(s′), where s′ can be any arbitrary output of πc,ABSA−1−1

(c′).
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෤𝜋𝑖
∗ ⋅ : Ω → ℳ

Ω

Ω ⊂ෑ
𝑖=1

𝑁

ℝ

Ω ×ℳ

Clustering observation points

over their action values

𝒫i,1

𝒫𝑖,2
𝒫𝑖,3

ABSA-2

Figure 4. Abstract representation of states in ABSA-2 with |C| = 3 and |M| = 5 - |M| is represented by the number of shapes selected to show
the observation points and |C| is represented by the number of clusters shown in the right subplot. The left subplot shows the observation points prior to
aggregation. During a centralized training phase we first compute π∗(·) according to which π∗

i (·) : Ω → M can be obtained. We use the surjection π∗
i (·)

to map a high dimensional/precision observation space to a low dimensional/precision space. The middle subplot shows the observation points together with
the action values assigned to them - each unique shape represents a unique action value. This new representation of the observation points, embeds the
features of the control problem into the data quantization problem. Finally, we carry out the clustering of observation points according to their action
values - all observation points assigned to (a set of) action values are clustered together. The right subplot shows the aggregated observation space, where
all the observation points in each cluster will be represented using the same communication message. The centralized controller which is run using DQN,
observes the environment at each time step, through all these aggregated observations/communications it receives from all the agents.

agent i given the local observation of this agent oi(t). That
is, given a centralized training phase, we will have access
to the empirical joint distribution of p(oi,m

∗
i ), using which

we can obtain a numerical MAP estimator of m̂∗
i. Thus

ABSA-2 allows for fully distributed communication policies.
In particular, the encoding of the communication messages
of each agent is carried out separately by them before they
communicate with CC or any other agent. This form of encod-
ing is often referred to as distributed encoding. Furthermore,
the encoding carried out by ABSA-2 at each agent is a low-
complexity and low-power process that requires no inter-agent
communications before hands. In this case, each agent directly
communicates its encoded observations to the CC via a bit-
budgeted communication channel. In order to improve the
learning efficiency at CC, it can take into account all the
communications received in the time frame [t−d, t] to make a
control decision m(t). Therefore, the ABSA-2 algorithm can
strike a trade-off between the complexity of the computations
carried out at the CC - directly impacted by the value of d - and
effectiveness of agents’ communications - inversely impacted
by the value of |C|. Moreover, ABSA-2 is straightforwardly
extendable to the different values of |C| per each agent i,
instead of having only one fixed bit-budget R = log2 |C| for
all agents.

As illustrated in Fig. 4, ABSA-2, each agent i obtains a
communication policy function πc

i (·) by solving a clustering
problem over its local observation space instead of the global
state space, formulated as follows:

min
Pi

∑|C|

j=1

∑
oi(t)∈Pi,j

∣∣∣π̃∗
i (oi(t))− µi,j

∣∣∣, (7)

where Pi = {Pi,1, ...,Pi,|C|} is a partition of Ω, and

π̃∗
i (oi(t)) = argmaxm∗

i
pπ∗(m∗

i |oi(t)), (8)

and m∗
i is the optimal action of agent i, which is i-th

element of m∗ ≜ π∗(o1(t), ...,oN (t)
)
. Thus π̃∗

i (oi(t)) is the

Algorithm 1. Action Based State Aggregation (ABSA-2)

1: Initialize replay memory D to capacity 10’000.
2: Initialize state-action value function Q(·) with random

weights θ.
3: Initialize target state-action value function Qt(·) with

weights θt = θ.
4: Obtain π∗(·) and Q∗(·) by solving (2) using Q-learning

[41]*, where R >> H(oi(t)) ∀i ∈ N a.
5: Compute π∗

i (oi(t)) = Mode
[
m∗

i |oi(t)
]
, for ∀oi(t) ∈ Ω,

for i ∈ N .
6: Solve problem (5) by applying k-median clustering to

obtain Pi and πc
i (·) , for i ∈ N .

7: for each episode k = 1 : 200’000 do
8: Randomly initialize observation oi(t = 0), for i ∈ N
9: Randomly initialize the message c(t = 0)

10: for t = 1 : T ′ do
11: Select ci(t), at agent i, following πc

i (·), for i ∈ N
12: Obtain the message ⟨c1(t), ..., cN (t)⟩ at the CC
13: Follow ϵ-greedy, at CC, to generate the action

mi(t), for i ∈ N
14: Obtain reward r(t) = R

(
s(t),m(t)

)
at the CC

15: Store the transition
{
c(t),m(t), r(t), c(t+ 1)

}
in D

16: t← t+ 1

17: end
18: Sample D′ =

{
c(t′),m(t′), r(t′), c(t′+1)

}t′=t′62

t′=t′1

from D

19: for each transition t′ = t′1 : t′62 of the mini-batch D′ do
20: Compute DQN’s average loss Lt′(θ) using (9) },
21: Perform a gradient descent step on Lt′(θ) w.r.t θ
22: end
23: Update the target network Qt(·) every 1000 steps.
24: end

aThe condition R >> H(oi(t)) ∀i ∈ N mentioned in line 4, implies
perfect communications between the agents and the central controller when
solving the centralized control problem - for further explanations please refer
to, e.g., section III-A.
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maximum aposteriori estimator of m∗
i = π∗(s(t)) given the

local observation oi(t).
Once the clustering in (7) is done, each agent i will

train its local communication policy πc,ABSA−2
i (·), which

is any non-injective mapping such that ∀k ∈ {1, ..., |C|} :
πc,ABSA−2
i (oi) = c(k) iff oi ∈ Pi,k. After obtaining the

communication policies ⟨πc,ABSA−2
i (·)⟩Ni=1, to obtain a proper

control πm(·) policy at the CC corresponding to the com-
munication policies, we perform a single-agent reinforcement
learning. To this end and to manage the complexity of the
algorithm for larger values of d, we propose to use DQN
architecture [42] at the CC. When training the DQN at the
CC, in we implement the standard DQN, with its standard
loss function

Lt′(θ) = (9)
1

2

(
r(t′)+ max

m′∗
Qt(c(t′ + 1),m′∗, θt

)
− max

m∗
Q
(
c(t′),m∗, θ

))2

.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed schemes via nu-
merical results for the popular multi-agent geometric consen-
sus problem9. Through indirect design, ABSA-1 and ABSA-2
never rely on explicit domain knowledge about any specific
task, such as geometric consensus. Thus, we conjecture that
their indirect design allows them to be applied beyond geomet-
ric consensus problems and to a much wider range of tasks. To
make the geometric consensus task suitable for the evaluation
of our proposed algorithms, similar to [18], we have introduced
a bit constraint to the communication channel between the
agents and the CC. After evaluating the proposed algorithms in
the context of the rendezvous problem, we attempt to explain
the behaviour of all the algorithms via the existing metric
- positive listening - for measuring the task-effectiveness of
communications. As positive listening falls short in explaining
all the aspects of the behaviour of the investigated algorithms,
we will also introduce a new metric. Called task relative
information, the new metric assists in further explaining the
behaviour of different algorithms with higher accuracy and
reliability.

A. The geometric consensus problem

Our proposed schemes are evaluated in this section through
numerical results for the rendezvous problem [43], [44],
which is a specific type of geometric consensus problem
under finite observability [29]. Following the instantaneous
and synchronous communication model and the star network
topology explained in section II-A and Fig. 2 respectively,
the rendezvous problem is explained as the following. At
each time step t several events happen in the following order.
First, an agent i obtains a local observation oi(t) - which is
equivalent to its own location in the grid world. By following
equation (1), the state of the environment s(t) at time step
t is defined as the location of all agents in the grid world

9In our numerical experiments, the discount factor is assumed to be γ =
0.9. All experiments are done over a grid world of size 8×8, where the goal
point of the rendezvous is located at the grid number ΩT = {22}.

10. Each agent i, using its quantization/communication policy,
generates a compressed version ci(t) of its observation to be
communicated to the CC via a bit-budgeted communication
link. After receiving the quantized observations of all agents,
CC follows its control policy to decide and select the joint
action vector m(t) and communicate each agent i’s local action
mi(t) to it accordingly. The local action mi(t) ∈ M that is
communicated back to the agent i via a perfect communication
channel is a one-directional move in the greed world, i.e,
mi(t) ∈ M = { left, right, up, down, pause}. Given each
agent i’s action mi(t) the environment evolves and transitions
to the next time step t+ 1 where each agent i obtains a new
local observation oi(t + 1). All agents receive a single team
reward

rt =


C1, if ∃ i, j ∈ N : oi(t) ∈ ΩT & oj(t) /∈ ΩT

C2, if ∄ i ∈ N : oi(t) ∈ Ω− ΩT ,

0, otherwise,
(10)

where C1 < C2 and ΩT is the set of terminal observations i.e.,
the episode terminates if ∃ i ∈ N : oi(t) ∈ ΩT . Accordingly,
when not all agents arrive at the target point, a smaller reward
C1 = 1 is obtained, while the larger reward C2 = 10 is
attained when all agents visit the goal point at the same time.
We compare our proposed ABSA algorithms with the heuristic
non-communicative (HNC), heuristic optimal communication
(HOC) and SAIC algorithms proposed in [18] which are direct
schemes to jointly design the communication and control
policies for the specific geometric consensus problem solved
here. In contrast to ABSA-1 and ABSA-2 which enjoy an
indirect design, the direct design of HOC and HNC does
not allow them to be applied in any other problem rather
than the specific geometric consensus problem with the finite
observability i.e., the rendezvous problem explained here.

B. Numerical experiment

A constant learning rate α = 0.07 is applied when exact Q-
learning is used to obtain π∗(·) and α = 0.0007 when DQN
is used to learn πm(·) for ABSA-2. For the exact Q-learning,
a UCB11 exploration rate of c = 1.25 considered. The deep
neural network that approximates the Q-values is considered
to be a fully connected feed-forward network with 10 layers
of depth, which is optimized using the Adam optimizer. An
experience reply buffer of size 10’000 is used with the mini-
batch size of 62. The target Q-network is updated every 1000
steps and for the exploration, decaying ϵ-greedy with the initial
ϵ = 0.05 and final ϵ = 0.005 is used [42]. In any figure
that the performance of each scheme is reported in terms
of the averaged discounted cumulative rewards, the attained
rewards throughout training iterations are smoothed using a
moving average filter of memory equal to 20,000 iterations. As
explained in section III-A, ABSA-1 and ABSA-2 both require

10Note that the complete information of the state of the environment s(t) at
no time step t is available neither to the CC and nor to an agent i. Accordingly,
agents or the CC have partial access to the information on the state of the
environment, to learn more please refer to the section II

11UCB is a standard scheme used in exact reinforcement learning to strike
a trade-off between the exploration and exploitation [41].
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a centralized training phase prior to being capable of being
executed in a distributed fashion.

For all black curves, one prior centralized training phase
to obtain π∗(·) is required. As detailed in Section III, the
proposed algorithms, ABSA-1 and ABSA-2, leverage π∗(·)
to design πc and then πm afterwards. Dashed curves, HOC
and HNC, as proposed by [18] provide heuristic schemes
which exploit the domain knowledge of its designer about
the rendezvous task making it not applicable to any other
task rather than the rendezvous problem. While HOC enjoys
a joint control and communication design, HNC runs with no
communication. Note that HNC & HOC require communica-
tion/coordination between agents prior to the starting point of
the task - which is not required for any other scheme. These
schemes, introduced by [18], are detailed as the following.

• A joint communication and control policy is designed
using domain knowledge in the rendezvous problem.
HNC agents approach the goal point and wait nearby
for a sufficient number of time steps to ensure that the
other agent has also arrived. Only after that, they will
get to the goal point. Note that this scheme requires
communication/coordination between agents prior to the
starting point of the task since they have to have agreed
upon this scheme of coordination.

• A joint communication and control policy is designed
using domain knowledge in the rendezvous problem.
HOC agents wait next to the goal point until the other
agent informs them that they have also arrived there.
Only after that, they will get to the goal point. Note
that this scheme requires communication/coordination
between agents prior to the starting point of the task since
they have to have agreed upon this scheme of coordina-
tion and communications as well as on the meaning that
each communication message entails.

To obtain the results demonstrated in Fig. 5, we have
simulated the rendezvous problem for a three-agent system.
The black curves illustrate the training phase that is occurring
at CC to obtain πm after πc is already computed using
equations (6) and (7). We observe the lossless performance
of ABSA-1 in achieving the optimal average return without
requiring any (2nd round) training. To enable fully decen-
tralized quantization of the observation process, ABSA-2 was
proposed which is seen to approach the optimal solution as
d grows. All ABSA-2 curves are plotted with |C| = 3, and
ABSA-1 curve is plotted with |C| = |M|N = 125 in 3 agent
scenarios - e.g., in Fig. 5. This figure, however, provides no
insights into how each scheme might perform at different rates
of quantization, as all the results are reported for a single rate
of quantization per scheme.

To see the behaviour of ABSA-2 and other benchmarks
HNC, HoC and SAIC at different rates of quantization, Fig. 6
is demonstrated. As expected, with the increase in the size of
the quantization codebook, the average return performance of
ABSA-2 is gradually improved, such that it approaches near-
optimal performance at d = 3. We also observe the superior
performance of ABSA-2 compared with SAIC at very tight
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Figure 5. Average return comparison made between the proposed schemes
and some benchmarks introduced in [18] - the three agent scenario under
constant bit-budget values.
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Figure 6. The obtained normalized average return as a function of codebook
size |C| is compared across a range of schemes: proposed schemes and some
benchmarks introduced in [18] - two-agent scenario.

bit-budgets where SAIC’s performance sees a drastic drop. It
is observed that as d grows, ABSA-2 approaches the optimal
return performance even under higher rates of quantization,
however, higher values of d come at the cost of the increased
computational complexity of ABSA-2.

C. Explainablity of the learned communication policies

One common metric to evaluate the effectiveness of
communications in the literature [38] is positive listening
I
(
ci(t);mj(t)

)
j ∈ N −{i}, which is the mutual information

between the communication ci(t) produced by an agent i
and the action mj(t) selected by another agent following
the receipt of the communication ci(t) from agent i. Positive
signaling I

(
oi(t); ci(t)

)
is another metric proposed by [38],

measuring the mutual information between agent i’s observa-
tion oi(t) and its own produced communication message ci(t)
at the same time step. As to be shown below, however, these
metrics are unable to fully capture the underlying performance
trends of all schemes. Therefore, we, for the first time,
introduce a new metric called task relevant information (RI)
- allowing us to explain the task-effectiveness of the learned
communication policies.
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Figure 7. Comparing the positive listening I
(
ci(t);mj(t)

)
performance

across a range of schemes.

Measuring positive listening is one way to quantify the
contribution of the communicated messages of agent i to the
action selection of agent j. Positive signalling, on the other
hand, measures the consistency as well as the relevance of the
communicated messages ci(t) and the agent’s observations
oi(t). As SAIC and ABSA use a deterministic mapping of
observation oi to produce the communication message ci, they
are always guaranteed to have positive signalling [38] - the
degree of which, however, is limited by the uplink channel’s bit
budget R = log2 |C|. Thus, among the existing metrics for the
measurement of the effectiveness of communications, we limit
our numerical studies to the measurement of positive listening.
It is known that the higher positive listening is, the stronger
(not necessarily better) we expect the coordination between
the agents to be. That is, the higher positive listening means
higher degree of dependence between agents (their actions and
observations) which is not necessarily sufficient for the team
agents to fulfill the task.

Figure 7 explains how stronger coordination between agents
and the CC is often resulting in an increased performance of
the MAS in obtaining a higher average return. For instance,
the enhancement in the positive-listening performance of SAIC
from |C| = 3 to |C| = 4 quantizer in Fig. 7 is resulting in an
improved average return performance, as shown in Fig. 6. This
metric also reasonably explains the enhancement of ABSA-2
performance in obtaining higher return by increasing d - the
memory of the CC - and the size of the quantization codebook
|C|. Moreover, stronger coordination between agents and CC
is visible in ABSA-2 when compared with HOC. Thus, we
expect better average return performance for ABSA-2 which
is in contrast to the results of Fig. 5. This event suggests
that stronger coordination - measured by positive listening
- may not necessarily result in an improved average return
performance as the coordination may not be perfectly aligned
with task needs.

The curve concerning the HOC scheme allows us to recall
that a positive listening of 0.3 (bit) is sufficient to maintain
the coordination required for optimal performance in the afore-
mentioned geometric consensus task. Therefore, in the ABSA-
2 and SAIC schemes, there is still an unnecessary influence
from the side of the communication messages to the actions
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Figure 8. Comparing the positive listening I (ci(t);m(t)) performance
across a range of schemes.

selected by the receiving end. In fact, not all the information
received from the receiving end has contributed to the higher
average return of the system. Accordingly, there is yet, some
unnecessary data in the communication messages designed by
ABSA that contain no task-specific/useful information.

Thus we believe that positive listening cannot explicitly
quantify the effectiveness of the task-oriented communica-
tion algorithms; therefore they fall short in explaining the
behaviour of these algorithms. Even when positive listening is
computed as I (ci(t);m(t)) to capture the mutual information
between the communication of agent i and the control signals
of all agents we arrive at almost similar patterns - Fig. 8.

Figure 9, investigates the performance of multiple schemes
via a novel performance metric: task-relevant information
(TRI). Here we define the task-relevant information metric to
be

I
(
πc

(
oi(t)

)
;π∗(s(t))) = I

(
ci(t);m

∗(t)
)
, (11)

which measures the mutual information (in bits) between the
communicated message of agent i and the vector m∗(t) of
joint optimal actions at the CC - which is selected by the
optimal centralized control policy π∗(·). As demonstrated
by Fig. 9, TRI is an indirect metric of the effectiveness of
communications that can explain the behaviour of different
communication designs. It is also observed that the TRI metric
magnifies the performance gap between different schemes
as they get closer to the optimal performance. Nevertheless,
TRI can be utilized as a standalone measure to quantify
the effectiveness of a communication design since it almost
perfectly predicts the average return performance of the a com-
munication policy - without the need for the communication
to be tested when solving the real task.

Note that, we measure the task-effectiveness of a quan-
tization algorithm based on the average return that can be
obtained when using it. Further, to measure the average
return that can be obtained under the communication poli-
cies ⟨πc

1(·), ..., πc
N (·)⟩, we have to design the control policy

πm(·) at the CC that selects the control vector m(t) having
access to only the quantized observations of the agents c(t).
Accordingly, we cannot measure the effectiveness of the
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Figure 9. Comparing the task-relevant information (TRI) performance across
a range of schemes. It is observed that TRI can comprehensively explain the
behaviour of all task-effective quantization schemes in a certain task without
the need to measure their effectiveness via their resulting average return in
the task - compare this figure with Fig. 6 .

communication policy of an MAS without having a specific
design for their control policy. Even after the design of the
control policy of the MAS, it is challenging to understand if
the suboptimal performance of the algorithm is caused by an
ineffective design of the control policy or the communication
policy. In fact, it is hard disentangle the effect of the control
and communication policies on the MAS’s average return. Our
proposed metric TRI can facilitate measuring the performance
of any communication policy in isolation and without the
effect of the control policy being present in the numerical
values of TRI.

Accordingly, the importance of introducing this metric is
multi-fold: (i) by using TRI as an indirect metric we can
measure the effectiveness of a communication policy for any
specific task; (ii) it allows us to measure the effectiveness of
the communication scheme prior to the design of any control
policy; (iii) it helps to design task effective communication
policies in complete separation from the control policy design.

V. CONCLUSION

In this paper, we have investigated the joint design of control
and communications in a MAS under centralized control
and distributed communication policies. We first proposed
an action-based state aggregation algorithm (ABSA-1) for
lossless compression and provided analytical proof of its
optimality. Then we proposed ABSA-2, which offers a fully
distributed communication policy and can trade computational
complexity for communication efficiency. We finally demon-
strated the task-effectiveness of the proposed algorithms via
numerical experiments performed on a geometric consensus
problem via a number of representative metrics. Furthermore,
our numerical studies demonstrate the pressing need for further
research on finding a metric that can measure/explain the
task-effectiveness of communications with more accuracy.
And, scalability in task-oriented design is yet another central
challenge to be addressed in future research.

APPENDIX A
PROOF OF LEMMA 1

Proof. Applying Adam’s law on equation (3) yields

argmax
π

Ep(c(t))

{
E
pπc,πm ({tr}T ′

t′ |c(t))

{
g(t′)|c(t)

}}
, s.t. |C| ≤ 2R

(12)

where c(t) is generated by the communication policy πc and
the joint pmf of the system’s trajectory {tr}T ′

t′ is directly
influenced by the action policy πm. The conditional pmf
pπc,πm({tr}T ′

t′ |c(t)) is the joint probability of the trajectory
of the system given the received communication c(t) when
policies πc(·) and πm(·) are followed. We proceed by negating
the equation (12) and adding a second term to the objective
function which is constant with respect to the decision vari-
ables of the problem to have

argmin
πc

Ep(s(t))

{
E
pπ∗ ({tr}T ′

t′ |s(t))

{
g(t′)|s(t)

}}
− (13)

Ep(c(t))

{
E
pπc,πm ({tr}T ′

t′ |c(t))

{
g(t′)|c(t)

}}
, s.t. |C| ≤ 2R.

We replace the conditional expectation of system return by
the value function V (·), [41](Ch. 3.5), and we will have

argmin
πc

Ep(s(t))

{
V π∗(

s(t)
)}

− Ep(c(t))

{
V πm(

c(t)
)}

,

s.t. |C| ≤ 2R. (14)

Note that the empirical joint distribution of c(t) can be
obtained by following the communication policy πc on the
empirical distribution of s(t).

argmin
πc

Ep(s(t))

{
V π∗(

s(t)
)}

− Ep(s(t))

{
V πm(

c(t)
)}

,

s.t. |C| ≤ 2R. (15)

As V π∗(
s(t)

)
− V πm(

c(t)
)
≥ 0 is true for any s(t) ∈ S,

merging the two expectations results in

argmin
πc

Ep(s(t))

∣∣∣V π∗(
s(t)

)
− V πm(

c(t)
)∣∣∣, s.t. |C| ≤ 2R,

(16)

which concludes the proof of the lemma. ■

APPENDIX B
PROOF OF LEMMA 2

Proof. We depart from the result of lemma 1 - problem (4).
By taking the expectation over the empirical distribution of
s(t) and applying Bellman optimality equation, we obtain

argmin
π

1

n

n∑
t=1

∣∣∣Qπ∗(
s(t), π∗(s(t))

)
−Qπm

(
c(t), πm(πc(s(t))

))∣∣∣,
s.t. |C| ≤ 2R, (17)

where the vector πc(s(t)) is of N dimensions and its i-th
element is ci(t). We proceed by plugging πc,ABSA−1(·) and
Πm∗

, according to the definition 1, into the equation (17) to
obtain

1

n

n∑
t=1

∣∣∣Qπ∗(
s(t), π∗(s(t))

)
−Qπ∗(

c(t), π∗(s′))∣∣∣, (18)

where s′ = πc,ABSA−1−1
(
πc,ABSA−1

(
s(t)

))
, and any pos-

sible value for it lies in the same subset Pk′ as s(t) does, while
according to the definition of Pk′ , we know π∗(s(t)) = π∗(s′),
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if |C| ≥ |M|N . Thus, by replacing π∗(s′) in with π∗(s(t)) in
equation (19) we get

1

n

n∑
t=1

∣∣∣Qπ∗(
s(t), π∗(s(t))

)
−Qπ∗(

s(t), π∗(s(t)))∣∣∣ = 0. (19)

This concludes the proof of theorem 2.

■
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