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A B S T R A C T

Mean-field descriptions for the thermo-viscoelastic response of reinforced solids undergoing small deformations
but large temperature changes are presented. The descriptions follow from an approximate homogenization
scheme that identifies macroscopic internal variables with low-order statistics of the microscopic internal
variable fields as a result of a variational model reduction. Unlike descriptions based on the correspondence
principle, these descriptions can account for thermorheologically complex constitutive laws with multiple
internal times and/or temperature-dependent stiffnesses, and can provide information not only on the
macroscopic response but also on the statistics of the microscopic mechanical fields; it is further demonstrated
that the descriptions can even accommodate a special class of hereditary laws often employed for polymeric
materials. Simple expressions for material systems with elastically rigid but thermally dilatant reinforcements
are provided. By way of example, reduced descriptions are presented for a special class of material systems
for which the thermomechanical response can be computed exactly by means of the correspondence principle.
In the case of isotropic particle-reinforced solids under hydrostatic loadings, the reduced descriptions can
reproduce the exact response identically; in the case of transversely isotropic fiber-reinforced solids subject
to monotonic coolings, the reduced and exact descriptions provide indistinguishable macroscopic strains and
stresses for the entire range of temperature drops and cooling rates considered.
1. Introduction

During their consolidation, reinforced polymers develop internal
stresses due to the pronounced mismatch between the thermomechani-
cal properties of the matrix and the reinforcement (e.g., Parlevliet et al.,
2006). These so-called thermal residual stresses can significantly reduce
the mechanical strength and fatigue endurance of the composite mate-
rial, and can induce undesired dimensional changes of the structural
element (e.g., Parlevliet et al., 2007). This has motivated numerous at-
tempts to correlate the magnitude of residual stresses with material and
process parameters such as matrix rheology, reinforcement shape and
distribution, and cooling rate (e.g., Lu et al., 2008; Ding et al., 2015b,a;
Chen and Zhang, 2019; Wu et al., 2020). In the absence of chemical
changes – as in amorphous thermoplastics –, the problem reduces
to that of estimating the macroscopic behavior and microscopic field
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statistics of a viscoelastic composite in terms of the thermomechanical
properties and microgeometrical arrangement of its constituents. The
use of mean-field descriptions derived by homogenization methods thus
constitutes an effectual approach. However, given that consolidation
processes often vary the temperature of the sample across the glass tran-
sition temperature of the thermoplastic matrix, the method of choice
should account for the strong coupling between elastic and viscous
deformation mechanisms along with the strong variation of matrix
rheology with temperature. This hinders the use of most mean-field
descriptions commonly employed for describing isothermal processes,
especially if the matrix response is thermorheologically complex in the
sense of Harper and Weitsman (1985). The sections that follow present
mean-field descriptions adequate for such situations.

The descriptions follow from a homogenization procedure proposed
by Lahellec and Suquet (2007a) for composites undergoing isothermal
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deformations, recast as in Idiart et al. (2020a) and generalized to
non-isothermal processes. The thermo-viscoelastic response of the con-
stituent phases is described in Section 2 via generalized standard mod-
els in terms of viscous deformations that play the role of microscopic
internal variables. Given that the homogenized thermo-viscoelastic
response of the composite depends on the entire spatial distribution
of these microscopic internal variables over a representative volume
element, a variational model reduction is then employed in Section 3 to
generate an approximate homogenized description in terms of a finite
number of macroscopic internal variables identified with low-order
statistics of the microscopic internal variable fields. Unlike descriptions
based on the correspondence principle (e.g., Hashin, 1965; Schapery,
1967), the reduced-order mean-field descriptions thus obtained can
account for thermorheologically complex constitutive laws with mul-
tiple internal times – or even none – and/or temperature-dependent
stiffnesses, and can provide information not only on the macroscopic
response but also on statistics of the microscopic mechanical fields up
to second order. Furthermore, it is demonstrated that these descrip-
tions can even accommodate a special class of hereditary laws often
employed for polymeric materials. Simple expressions for material
systems with elastically rigid but thermally dilatant reinforcements are
provided in Section 4. In order to assess the capabilities of the reduced
descriptions, results are generated in Section 5 for a special class of
rigidly reinforced solids whose effective response can be determined ex-
actly by means of the correspondence principle. The reduced and exact
descriptions for this reinforced solids are confronted and discussed in
Section 6. The presentation concludes with final comments elaborated
in Section 7.

2. Material description

2.1. Microscopic description

We consider a representative volume element of a composite mate-
rial made up of 𝑁 constituent phases, and denote by 𝛺 and 𝛺(𝑟) (𝑟 =
,… , 𝑁) the domains occupied by the element and the phases within
t, respectively, so that 𝛺 = ∪𝑁

𝑟=1𝛺
(𝑟). Also, we denote by 𝜒 (𝑟)(𝐱) the

characteristic function of each subdomain 𝛺(𝑟). The local viscoelastic
response is described within the framework of generalized standard
materials by constitutive relations of the form (Germain et al., 1983)

𝝈 = 𝜕𝑤
𝜕𝜺

(𝐱, 𝜺,𝜶, 𝜃), 𝜂 = − 𝜕𝑤
𝜕𝜃

(𝐱, 𝜺,𝜶, 𝜃) and

𝜕𝑤
𝜕𝜶

(𝐱, 𝜺,𝜶, 𝜃) + 𝜕𝜑
𝜕𝜶̇

(𝐱, 𝜶̇, 𝜃) = 𝟎, (1)

where

𝑤(𝐱, 𝜺,𝜶, 𝜃) =
𝑁
∑

𝑟=1
𝜒 (𝑟)(𝐱)𝑤(𝑟)(𝜺,𝜶, 𝜃) and

𝜑(𝐱, 𝜶̇, 𝜃) =
𝑁
∑

𝑟=1
𝜒 (𝑟)(𝐱)𝜑(𝑟)(𝜶̇, 𝜃). (2)

n these expressions, 𝜺 and 𝜃 denote the strain and temperature change
elative to a stress-free reference configuration, 𝜶 is a collection of
nternal variables describing viscous effects, 𝝈 and 𝜂 are the Cauchy
tress and entropy density, the dot over a variable denotes a time
erivative, and the functions 𝑤(𝑟) and 𝜑(𝑟) denote the Helmholtz free-
nergy density and the dissipation potential of phase 𝑟, respectively.
hese potentials are convex functions of the mechanical fields and are
ounded from below. The dissipation potentials are, at the same time,
ositive functions vanishing at zero rates.

For our purposes it suffices to consider viscoelastic phases charac-
erized by generalized Maxwell rheologies with an arbitrary number of
iscoelastic units.2 To each unit we associate a viscous strain tensor 𝜶(𝑢)

2 It is recalled that this class of rheologies can be put into correspondence
ith generalized Kelvin–Voigt rheologies (see for instance Gutierrez-Lemini,
014).
2

(𝑢 = 1,… , 𝑈) and write the thermodynamic potentials as

𝑤(𝑟)(𝜺,𝜶, 𝜃) =
𝑈
∑

𝑢=1

1
2
(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)) ⋅ L(𝑟,𝑢)(𝜃)
(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢))

+ 𝑓 (𝑟)(𝜃) and (3)

𝜑(𝑟)(𝜶̇, 𝜃) =
𝑈
∑

𝑢=1

1
2
𝜶̇(𝑢) ⋅M(𝑟,𝑢)(𝜃)𝜶̇(𝑢), (4)

where L(𝑟,𝑢) and M(𝑟,𝑢) denote positive-definite tensors of elastic and
iscous moduli, respectively, characterizing the 𝑢th unit of the rheo-
ogical model for phase 𝑟, 𝜷(𝑟) is the corresponding thermal straining,
nd 𝑓 (𝑟) is a function of temperature characterizing the specific heat
apacity of the solid.3 The form of these potentials is motivated by
rheological model corresponding to 𝑈 units of the Maxwellian type

onnected in parallel, along with a thermal unit connected in series,
s depicted in Fig. 1. This model can accommodate any variation
f material properties with instant temperature change, provided it
atisfies the requirements imposed on the thermodynamic potentials.
t generates mechanical relations and evolution equations of the form

=
𝑈
∑

𝑢=1
L(𝑟,𝑢)(𝜃)

(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)) (5)

nd
(𝑟,𝑢)(𝜃)𝜶̇(𝑢) + L(𝑟,𝑢)(𝜃)𝜶(𝑢) = L(𝑟,𝑢)(𝜃)

(

𝜺 − 𝜷(𝑟)(𝜃)
)

. (6)

he instantaneous elastic stiffness of the material is thus

(𝑟)(𝜃) =
𝑈
∑

𝑢=1
L(𝑟,𝑢)(𝜃). (7)

hen the elastic moduli are insensitive to temperature changes, the
orresponding entropy density is given by

=
𝑈
∑

𝑢=1

(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)) ⋅ L(𝑟,𝑢) 𝜕𝜷(𝑟)

𝜕𝜃
(𝜃) −

𝜕𝑓 (𝑟)

𝜕𝜃
(𝜃)

= 𝝈 ⋅
𝜕𝜷(𝑟)

𝜕𝜃
(𝜃) −

𝜕𝑓 (𝑟)

𝜕𝜃
(𝜃); (8)

when the elastic moduli are sensitive to temperature changes, addi-
tional terms arise, but are omitted for conciseness.

2.2. Macroscopic description

The homogenized response relates the macroscopic stress 𝝈 and
entropy density 𝜂 to the macroscopic strain 𝜺 and temperature change
𝜃, which are the averages of the local stress, entropy density, strain
and temperature fields over the representative volume element. This
relation can be written in terms of the macroscopic free-energy density
and dissipation potential as (e.g., Germain et al., 1983; Suquet, 1985)

𝝈 = 𝜕𝑤
𝜕𝜺

(𝜺,𝜶, 𝜃), 𝜂 = − 𝜕𝑤
𝜕𝜃

(𝜺,𝜶, 𝜃) and

𝛿𝑤
𝛿𝜶(𝐱)

(𝜺,𝜶, 𝜃) + 𝛿𝜑
𝛿𝜶̇(𝐱)

(𝜶̇, 𝜃) = 𝟎, (9)

where

𝑤(𝜺,𝜶, 𝜃) = inf
𝜺∈(𝜺)

⟨

𝑤(𝐱, 𝜺,𝜶, 𝜃)
⟩

and 𝜑(𝜶̇, 𝜃) =
⟨

𝜑(𝐱, 𝜶̇, 𝜃)
⟩

. (10)

In these expressions, (𝜺) is the set of kinematically admissible strain
fields with average 𝜺, ⟨⋅⟩ denotes volume averaging over the repre-
sentative volume element, and the 𝛿 operator denotes a functional

3 A possible choice is 𝑓 (𝑟)(𝜃) = 𝑐𝜎 (𝑟)
[

𝜃 − (𝑇0 + 𝜃) ln 𝑇0+𝜃
𝑇0

]

− 𝜂0(𝑟)(𝑇0 + 𝜃) + 𝑒0(𝑟)

with 𝑇0, 𝜂0(𝑟) and 𝑒0(𝑟) representing reference temperature, entropy and internal
energy levels, respectively, and 𝑐𝜎 (𝑟) representing the heat capacity at fixed
stress.
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Fig. 1. Generalized Maxwell rheological model composed of 𝑈 viscoelastic units in
parallel, along with the thermal strain in series.

derivative. That the temperature change within the entire representa-
tive volume element is uniformly given by the macroscopic temperature
change 𝜃 has been found in multiple works with varying degrees of
igor and generality (e.g., Francfort, 1983; Yu and Fish, 2002; Amasov
t al., 2013; Chatzigeorgiou et al., 2016) provided the local thermo-
ynamic potentials satisfy certain mathematical properties that are
ssumed to hold in this work.

It is observed that the macroscopic free-energy density and dissi-
ation potential are the volume averages of their microscopic counter-
arts, and are therefore functionals of the microscopic viscous strain
ields and their rates. In the case of the generalized Maxwellian rheolo-
ies considered in this work, they take the forms

𝑤(𝜺,𝜶, 𝜃) = inf
𝜺∈(𝜺)

𝑁
∑

𝑟=1

𝑈
∑

𝑢=1
𝑐(𝑟)

⟨ 1
2

(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)
)

⋅L(𝑟,𝑢)(𝜃)
(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)
)⟩(𝑟)

+
𝑁
∑

𝑟=1
𝑐(𝑟)𝑓 (𝑟)(𝜃) (11)

nd

𝜑(𝜶̇, 𝜃) =
𝑁
∑

𝑟=1

𝑈
∑

𝑢=1
𝑐(𝑟)

⟨ 1
2
𝜶̇(𝑢) ⋅M(𝑟,𝑢)(𝜃)𝜶̇(𝑢)

⟩(𝑟)
, (12)

where the symbol 𝑐(𝑟) = ⟨𝜒 (𝑟)
⟩ has been introduced to denote the

volume fraction of phase 𝑟. These functionals inherit the convexity of
the local potentials. Thus, homogenization preserves the generalized
standard structure of the local response, with the microscopic viscous
strain fields playing the role of macroscopic internal variables albeit of
infinite dimension. The purpose of the approximate scheme presented
in the next section is to reduce the dimensionality of the macroscopic
internal variables to a finite number.

2.3. Extension to a class of hereditary responses

Thermal strains in polymers near the glass transition temperature
are time dependent and can exhibit significant differences depend-
ing on whether heating or cooling occurs. Hereditary laws are often
employed to describe such behavior (e.g., Knauss and Emri, 1987; Pet-
termann and DeSimone, 2018). While the formalism presented above
along with the model reduction presented below are cast in terms
of internal-variable laws, the ensuing description for the mechanical
3

response remains valid ut stat for more general constitutive laws of the
form (5)–(6) with the dependence on temperature change 𝜃 replaced by
a dependence on temperature change history 𝜃𝑡 up to time 𝑡 as defined
by 𝜃𝑡(𝜏) = 𝜃(𝑡−𝜏) for 0 ≤ 𝜏 < ∞, provided the replacement maintains the
alidity of the homogenization procedure leading to the macroscopic
escription (9)–(10). This is because the equilibrium conditions and
he evolution laws for the internal variables within such representa-
ive volume element still follow from the macroscopic potentials (11)
nd (12) —now functionals of the macroscopic temperature change
istories 𝜃

𝑡
—, and the incremental statement (14) still constitutes a

valid time discretization of those evolution laws. On the other hand,
the thermodynamic status of the potentials and the ensuing thermal
response will be altered (cf., e.g., Gurtin and Hrusa, 1991; Boussaa,
2011).

3. Reduced-order description

3.1. Model reduction

Central to our purposes is the observation that the model reduction
for viscoelastic composites proposed by Lahellec and Suquet (2007a)
carries over to thermo-viscoelastic composites unaltered, regardless of
the variation of mechanical properties with temperature. This model
reduction relies on an implicit Euler discretization in time of the
macroscopic evolution law (9)2, so that the internal variables at the
current instant are solution to the algebraic equation

𝛿𝑤
𝛿𝜶(𝐱)

(𝜺,𝜶, 𝜃) + 𝛿𝜑
𝛿𝜶̇(𝐱)

(𝜶 − 𝜶𝑛
𝛥𝑡

, 𝜃
)

= 𝟎, (13)

where 𝜶𝑛 are the values of the internal variables in the previous instant
and 𝛥𝑡 is the time step. In view of the convexity of the macroscopic
potentials, this equation is the optimality condition of the variational
problem

inf
𝜶

[

𝑤(𝜺,𝜶, 𝜃) + 𝛥𝑡 𝜑
(𝜶 − 𝜶𝑛

𝛥𝑡
, 𝜃
)]

. (14)

As recently elicited by Idiart et al. (2020a), the model reduction of La-
hellec and Suquet (2007a) is effected upon estimating each phase
average in the discretized dissipation (12) by Cauchy–Schwarz lower
bounds. In practice, these bounds are applied on suitably chosen pro-
jections by expressing the constitutive tensors as

L(𝑟,𝑢)(𝜃) =
𝐵
∑

𝑏=1
𝓁(𝑟,𝑢,𝑏)(𝜃) B(𝑟,𝑢,𝑏) and M(𝑟,𝑢)(𝜃) =

𝐵
∑

𝑏=1
𝑚(𝑟,𝑢,𝑏)(𝜃) B(𝑟,𝑢,𝑏),

(15)

where B(𝑟,𝑢,𝑏) are fourth-order symmetric tensors such that B(𝑟,𝑢,𝑏)

B(𝑟,𝑢,𝑑) = 0 if 𝑏 ≠ 𝑑 and the moduli 𝓁(𝑟,𝑢,𝑏) and 𝑚(𝑟,𝑢,𝑏) are all positive
functions of temperature (e.g., Walpole, 1984). For instance, within an
isotropic phase use can be made of the decomposition B(𝑟,𝑢,1) = J and
B(𝑟,𝑢,2) = K with 𝐵 = 2, where J and K are the standard fourth-order,
isotropic, hydrostatic and shear projection tensors, respectively. The
macroscopic potentials can then be written as

𝑤(𝜺,𝜶, 𝜃) = inf
𝜺∈(𝜺)

𝑁
∑

𝑟=1

𝑈
∑

𝑢=1

𝐵
∑

𝑏=1
𝑐(𝑟)𝓁(𝑟,𝑢,𝑏)(𝜃)

⟨ 1
2

(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)
)

⋅B(𝑟,𝑢,𝑏)
(

𝜺 − 𝜷(𝑟)(𝜃) − 𝜶(𝑢)
)⟩(𝑟)

+
𝑁
∑

𝑟=1
𝑐(𝑟)𝑓 (𝑟)(𝜃) (16)

and

𝜑
(𝜶 − 𝜶𝑛

𝛥𝑡
, 𝜃
)

=

𝑁
∑

𝑟=1

𝑈
∑

𝑢=1

𝐵
∑

𝑏=1
𝑐(𝑟)𝑚(𝑟,𝑢,𝑏)(𝜃)

⟨

1
2
𝜶(𝑢) − 𝜶(𝑢)

𝑛
𝛥𝑡

⋅ B(𝑟,𝑢,𝑏) 𝜶
(𝑢) − 𝜶(𝑢)

𝑛
𝛥𝑡

⟩(𝑟)

. (17)

Now, each term in this last expression for the discretized dissipation
potential can be bounded from below as (Idiart et al., 2020a)
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⟨(

𝜶(𝑢) − 𝜶(𝑢)
𝑛

𝛥𝑡

)

⋅ B(𝑟,𝑢,𝑏)

(

𝜶(𝑢) − 𝜶(𝑢)
𝑛

𝛥𝑡

)⟩(𝑟)

≥
⟨𝜶(𝑢)

⟩

(𝑟) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑟)

𝛥𝑡

⋅ B(𝑟,𝑢,𝑏) ⟨𝜶
(𝑢)
⟩

(𝑟) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑟)

𝛥𝑡
+
⎛

⎜

⎜

⎝

𝐶 (𝑟,𝑢,𝑏)1∕2
𝛼 − 𝐶 (𝑟,𝑢,𝑏)1∕2

𝛼𝑛
𝛥𝑡

⎞

⎟

⎟

⎠

2

, (18)

here
(𝑟,𝑢,𝑏)
𝛼 =

⟨

(𝜶(𝑢) − ⟨𝜶(𝑢)
⟩

(𝑟)) ⋅ B(𝑟,𝑢,𝑏)(𝜶(𝑢) − ⟨𝜶(𝑢)
⟩

(𝑟))
⟩(𝑟) (19)

nd 𝐶 (𝑟,𝑢,𝑏)
𝛼𝑛 are traces of the intraphase fluctuations of the viscous strain

ields 𝜶(𝑢) and 𝜶(𝑢)
𝑛 , respectively. The discretized dissipation functional

s thus approximated by the discretized dissipation function

𝜑
( 𝜶 − 𝜶𝑛

𝛥𝑡
, 𝜃
)

≈𝜑̂

⎛

⎜

⎜

⎜

⎝

{

⟨𝜶(𝑢)
⟩

(𝑟) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑟)

𝛥𝑡

}

,

⎧

⎪

⎨

⎪

⎩

𝐶(𝑟,𝑢,𝑏)1∕2
𝛼 − 𝐶(𝑟,𝑢,𝑏)1∕2

𝛼𝑛
𝛥𝑡

⎫

⎪

⎬

⎪

⎭

, 𝜃

⎞

⎟

⎟

⎟

⎠

= 1
2

𝑁
∑

𝑟=1

𝑈
∑

𝑢=1
𝑐(𝑟)

⎡

⎢

⎢

⎢

⎢

⎣

⟨𝜶(𝑢)
⟩

(𝑟) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑟)

𝛥𝑡
⋅M(𝑟,𝑢)(𝜃)

⟨𝜶(𝑢)
⟩

(𝑟) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑟)

𝛥𝑡
+

𝐵
∑

𝑏=1
𝑚(𝑟,𝑢,𝑏)(𝜃)

⎛

⎜

⎜

⎜

⎝

𝐶(𝑟,𝑢,𝑏)1∕2
𝛼 − 𝐶(𝑟,𝑢,𝑏)1∕2

𝛼𝑛
𝛥𝑡

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎥

⎦

, (20)

which depends on the viscous strain fields only through their phase
averages and intraphase fluctuations. Here, {⋅} refers to an entire
collection of variables for all 𝑟 = 1,… , 𝑁 , 𝑢 = 1,… , 𝑈 , and 𝑏 =
1,… , 𝐵. Making use of this estimate in the discretized evolution law
(14) generates the variational approximation

inf
𝜶

⎡

⎢

⎢

⎢

⎣

𝑤(𝜺,𝜶, 𝜃) + 𝛥𝑡 𝜑̂

⎛

⎜

⎜

⎜

⎝

{

⟨𝜶(𝑢)
⟩

(𝑟) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑟)

𝛥𝑡

}

,

⎧

⎪

⎨

⎪

⎩

𝐶 (𝑟,𝑢,𝑏)1∕2
𝛼 − 𝐶 (𝑟,𝑢,𝑏)1∕2

𝛼𝑛

𝛥𝑡

⎫

⎪

⎬

⎪

⎭

, 𝜃

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

,

(21)
hich, upon partitioning the infimum problem, can be written as

inf
𝜶(𝑟,𝑢)

𝛼(𝑟,𝑢,𝑏)≥0

[

𝑤̂
(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

+

𝛥𝑡 𝜑̂

⎛

⎜

⎜

⎜

⎝

{

⟨𝜶(𝑢)
⟩

(𝑢) − ⟨𝜶(𝑢)
𝑛 ⟩

(𝑢)

𝛥𝑡

}

,

⎧

⎪

⎨

⎪

⎩

𝐶 (𝑟,𝑢,𝑏)1∕2
𝛼 − 𝐶 (𝑟,𝑢,𝑏)1∕2

𝛼𝑛
𝛥𝑡

⎫

⎪

⎬

⎪

⎭

, 𝜃

⎞

⎟

⎟

⎟

⎠

⎤

⎥

⎥

⎥

⎦

, (22)

where

𝑤̂
(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

= inf
𝜶∈

({

𝜶(𝑟,𝑢)
}

,{𝛼(𝑟,𝑢,𝑏)}
)

𝑤
(

𝜺,𝜶, 𝜃
)

(23)

and


({

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

)

=
{

𝜶 ∶
⟨

𝜶(𝑢)⟩(𝑟) = 𝜶(𝑟,𝑢) and 𝐶 (𝑟,𝑢,𝑏)1∕2
𝛼 = 𝛼(𝑟,𝑢,𝑏)

}

, (24)

for 𝑟 = 1,… , 𝑁, 𝑢 = 1,… , 𝑈 , 𝑏 = 1,… , 𝐵. For later reference, we
note that the internal variable fields 𝜶(𝑢)(𝐱) minimizing the free-energy
density (23) can be shown to be
(

𝜶(𝑢)(𝐱) − 𝜶(𝑟,𝑢)
)

=
𝐵
∑

𝑏=1

𝛼(𝑟,𝑢,𝑏)

𝐶 (𝑟,𝑢,𝑏)1∕2
𝜀

B(𝑟,𝑢,𝑏) (𝜺(𝐱) − ⟨𝜺⟩(𝑟)
)

in 𝛺(𝑟), (25)

where use has been made of the decomposition (15), and the symbols
𝐶 (𝑟,𝑢,𝑏)
𝜀 = B(𝑟,𝑢,𝑏) ⋅ C𝜀

(𝑟) have been introduced to denote traces of the
ourth-order covariance tensors of the strain field within phase 𝑟 as

given by

C𝜀
(𝑟) =

⟨

(𝜺 − ⟨𝜺⟩(𝑟))⊗ (𝜺 − ⟨𝜺⟩(𝑟))
⟩(𝑟) . (26)

The infimum problem (22) is now seen to constitute an implicit
Euler discretization of the continuous evolution laws
𝜕𝑤̂

𝜕𝜶(𝑟,𝑢)

(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

+
𝜕𝜑̂

𝜕𝜶̇(𝑟,𝑢)

({

𝜶̇(𝑟,𝑢)}
,
{

̇̃𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

= 𝟎,
4

(27)
𝜕𝑤̂
𝜕𝛼(𝑟,𝑢,𝑏)

(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

+
𝜕𝜑̂

𝜕 ̇̃𝛼(𝑟,𝑢,𝑏)
({

𝜶̇(𝑟,𝑢)}
,
{

̇̃𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

= 0,

(28)

for 𝑟 = 1,… , 𝑁 , 𝑢 = 1,… , 𝑈 , and 𝑏 = 1,… , 𝐵, where

𝑤̂
(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)} , 𝜃
)

= inf
𝜺∈(𝜺)

𝑁
∑

𝑟=1

𝑈
∑

𝑢=1

𝑐(𝑟)

2
×

[

(

⟨𝜺⟩(𝑟) − 𝜷 (𝑟)(𝜃) − 𝜶(𝑟,𝑢)
)

⋅ L(𝑟,𝑢)(𝜃)
(

⟨𝜺⟩(𝑟) − 𝜷 (𝑟)(𝜃) − 𝜶(𝑟,𝑢)
)

+
𝐵
∑

𝑏=1
𝓁(𝑟,𝑢,𝑏)(𝜃)

(

𝐶 (𝑟,𝑢,𝑏)1∕2
𝜀 − 𝛼(𝑟,𝑢,𝑏)

)2
]

+
𝑁
∑

𝑟=1
𝑐(𝑟)𝑓 (𝑟)(𝜃) (29)

nd

̂
({

𝜶̇(𝑟,𝑢)}
,
{

̇̃𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

=
𝑁
∑

𝑟=1

𝑈
∑

𝑢=1

𝑐(𝑟)

2
×

[

𝜶̇(𝑟,𝑢)
⋅M(𝑟,𝑢)(𝜃)𝜶̇(𝑟,𝑢)

+
𝐵
∑

𝑏=1
𝑚(𝑟,𝑢,𝑏)(𝜃) ̇̃𝛼(𝑟,𝑢,𝑏)

2
]

. (30)

Expression (29) follows from expression (23) evaluated at the min-
imizing internal variable fields (25), while expression (30) follows
from expression (20) evaluated at a vanishing time step 𝛥𝑡 → 0 (see
diart et al., 2020a, for details). The main observation in the context
f these expressions is that the system of Eqs. (27)–(28) provides a
educed-order description of the macroscopic thermo-viscoelastic evolution
roblem in terms of a finite set of effective internal variables identified
ith the first moments of the viscous strains over each phase 𝜶(𝑟,𝑢) and

the second moments of their intraphase fluctuations 𝛼(𝑟,𝑢,𝑏), and a pair of
reduced effective potentials identified with a free-energy density 𝑤̂ and a
dissipation potential 𝜑̂; in addition, the reduced free-energy density provides
the estimates

𝝈 = 𝜕𝑤̂
𝜕𝜺

(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

and

𝜂 = − 𝜕𝑤̂
𝜕𝜃

(

𝜺,
{

𝜶(𝑟,𝑢)
}

,
{

𝛼(𝑟,𝑢,𝑏)
}

, 𝜃
)

(31)

for the macroscopic stress and entropy density.
Evaluating the various derivatives in these expressions we obtain

the reduced mechanical relation

𝝈 =
𝑁
∑

𝑟=1

𝑈
∑

𝑢=1
𝑐(𝑟)L(𝑟,𝑢)(𝜃)

(

𝜺(𝑟) − 𝜷(𝑟)(𝜃) − 𝜶(𝑟,𝑢)
)

(32)

along with the reduced evolution equations

M(𝑟,𝑢)(𝜃) 𝜶̇(𝑟,𝑢)
+ L(𝑟,𝑢)(𝜃) 𝜶(𝑟,𝑢) = L(𝑟,𝑢)(𝜃)

(

𝜺(𝑟) − 𝜷(𝑟)(𝜃)
)

(33)

𝑚(𝑟,𝑢,𝑏)(𝜃) ̇̃𝛼(𝑟,𝑢,𝑏) + 𝓁(𝑟,𝑢,𝑏)(𝜃) 𝛼(𝑟,𝑢,𝑏) = 𝓁(𝑟,𝑢,𝑏)(𝜃) 𝜀(𝑟,𝑢,𝑏) (34)

or 𝑟 = 1,… , 𝑁 , 𝑢 = 1,… , 𝑈 , and 𝑏 = 1,… , 𝐵, where 𝜺(𝑟) = ⟨𝜺⟩(𝑟) and
𝜀(𝑟,𝑢,𝑏) = 𝐶 (𝑟,𝑢,𝑏)1∕2

𝜀 are the phase averages and intraphase fluctuations
of the strain field that minimizes the reduced free-energy density (29)
at the prescribed macroscopic strain 𝜺 and temperature change 𝜃. The
Euler–Lagrange equations for the minimizing strain field, along with
the minimizing internal variable fields (25), also imply the intraphase
reduced stress statistics

𝝈(𝑟) = ⟨𝝈⟩(𝑟) =
𝑈
∑

𝑢=1
L(𝑟,𝑢)(𝜃)

(

𝜺(𝑟) − 𝜷(𝑟)(𝜃) − 𝜶(𝑟,𝑢)
)

(35)

and

𝜎(𝑟,𝑏) =
𝑈
∑

𝑢=1

⟨

(𝝈 − ⟨𝝈⟩(𝑟)) ⋅ B(𝑟,𝑢,𝑏)(𝝈 − ⟨𝝈⟩(𝑟))
⟩(𝑟)1∕2

=
|

|

|

|

|

|

𝑈
∑

𝑢=1
𝓁(𝑟,𝑢,𝑏)(𝜃)

(

𝜀(𝑟,𝑢,𝑏) − 𝛼(𝑟,𝑢,𝑏)
)

|

|

|

|

|

|

, (36)

which will serve to quantify the amount of residual stresses present
within each phase 𝑟 of the composite. Finally, the reduced entropic re-

lation can be similarly obtained. When the elastic moduli are insensitive



European Journal of Mechanics / A Solids 98 (2023) 104859C.A. Suarez-Afanador et al.

E
i
c
f

L

𝝉

w
r
t
a

𝑤

w
w
l
S
e
e

⟨

w
L
s
c

w
s
e
e
i

4
s

p
c
i

𝜷

L

𝑢
d
t
m
l
t
I
a
d

𝜷

b

L

B

s
w

𝑤

𝜑



I
m

to temperature changes, the relation can be written as

𝜂 =
𝑁
∑

𝑟=1
𝑐(𝑟)

[

𝝈(𝑟) ⋅
𝜕𝜷(𝑟)

𝜕𝜃
(𝜃) −

𝜕𝑓 (𝑟)

𝜕𝜃
(𝜃)

]

. (37)

3.2. Mean-field homogenization

Instrumental to the above order reduction is the fact that the re-
duced constitutive relation and evolution Eqs. (32)–(34) depend on the
strain field only through its first and second moments over each phase,
and that these moments can be evaluated via linear homogenization
techniques. This is evident by noting that, even though the mini-
mization problem (29) for the strain field is nonlinear, the associated
uler–Lagrange equations are those of a linear thermoelastic compar-
son solid with the same microstructure as the thermo-viscoelastic
omposite but with piecewise uniform stiffness tensor and eigenstress
ield given by

0
(𝑟) =

𝑈
∑

𝑢=1

𝐵
∑

𝑏=1
𝓁(𝑟,𝑢,𝑏)
0 B(𝑟,𝑢,𝑏) and

0
(𝑟) =

𝑈
∑

𝑢=1
L(𝑟,𝑢)(𝜃)

(

𝜺(𝑟) − 𝜷(𝑟)(𝜃) − 𝜶(𝑟,𝑢)
)

− L0
(𝑟)𝜺(𝑟). (38)

where

𝓁(𝑟,𝑢,𝑏)
0 = 𝓁(𝑟,𝑢,𝑏)(𝜃) 𝜀(𝑟,𝑢,𝑏) − 𝛼(𝑟,𝑢,𝑏)

𝜀(𝑟,𝑢,𝑏)
, (39)

Therefore, the minimizing strain field in (29) is exactly identical to that
of a linear comparison problem

𝑤̂0(𝜺, 𝜃) = stat
𝜺∈(𝜺)

𝑁
∑

𝑟=1
𝑐(𝑟)

⟨ 1
2
𝜺 ⋅ L0

(𝑟)𝜺 + 𝝉0(𝑟) ⋅ 𝜺
⟩

(𝑟) (40)

ith constitutive tensors given self-consistently by (38). The stationary
ather than extremal character of the variational problem (40) is due
o the fact that the tensors L0

(𝑟) are not necessarily positive definite. In
ny event, this comparison energy density can be expressed as

̂ 0(𝜺, 𝜃) =
1
2
𝜺 ⋅ L̃0𝜺 + 𝝉̃0 ⋅ 𝜺 + 𝑔0, (41)

here L̃0, 𝝉̃0 and 𝑔0 are effective properties that can be determined
ith any suitable mean-field homogenization technique for 𝑁-phase

inear thermoelastic solids (see, for instance, Ponte Castañeda and
uquet, 1998). The first and second moments of the strain field within
ach phase can then be determined from this comparison energy by
valuating the derivatives

𝜺⟩(𝑟) = 1
𝑐(𝑟)

𝜕𝑤̂0

𝜕𝝉 (𝑟)0
(𝜺, 𝜃) and ⟨𝜺⊗ 𝜺⟩(𝑟) = 2

𝑐(𝑟)
𝜕𝑤̂0

𝜕L(𝑟)
0

(𝜺, 𝜃) (42)

for 𝑟 = 1,… , 𝑁 , which follow from well-known relations for field statis-
tics in linear heterogeneous media and, together with relations (38),
constitute a set of algebraic non-linear equations for those moments.
Whenever these equations exhibit multiple roots, the root giving the
minimum value of (29) with positive-definite phase covariances of the
strain field must be selected. In any event, the reduced free-energy
density (23) and ensuing relations (32)–(34) are completely determined
by the linear homogenization scheme of choice.

Since the stress fields associated with both variational problems
agree exactly as well, the reduced constitutive relation (32) can also
be obtained from the comparison energy density as

𝝈 =
𝜕𝑤̂0

𝜕𝜺
(𝜺, 𝜃) = L̃0𝜺 + 𝝉̃0, (43)

here the partial derivative has been taken with comparison properties
(𝑟)
0 and 𝝉0(𝑟) held fixed. Finally, relations (42) provide the first- and
econd-order intraphase statistics of the underlying strain field, and the
orresponding stress statistics follow from the identities

𝝈(𝑟) = L(𝑟)𝜺(𝑟) + 𝝉 (𝑟) and C (𝑟) = L (𝑟)C (𝑟)L (𝑟), (44)
5

0 0 𝜎 0 𝜀 0
here C(𝑟)
𝜀 and C(𝑟)

𝜎 are the fourth-order covariance tensors of the
train and the stress fields, respectively, within phase 𝑟. When the
lastic moduli are insensitive to temperature changes, the macroscopic
ntropy density can then be obtained by introducing the relations (42)
nto (37).

. Specialization to rigidly reinforced solids with isotropic con-
tituents

Viscoelastic solids containing elastically rigid reinforcements are of
articular practical interest. We consider reinforced systems (𝑁 = 2)
omposed of a viscoelastic matrix phase (𝑟 = 1) characterized by
sotropic constitutive tensors of the form
(1)(𝜃) = 𝛽(1)(𝜃)𝐈, L(1,𝑢)(𝜃) = L(𝑢), M(1,𝑢)(𝜃) = τ(𝑢)(𝜃) L(𝑢) with
(𝑢) = 3𝜅(𝑢)J + 2𝜇(𝑢)K (45)

= 1,… , 𝑈 , where 𝐈 denotes the second-order identity tensor, J and K
enote the standard fourth-order isotropic bulk and shear projection
ensors, respectively, 𝜅(𝑢) and 𝜇(𝑢) represent bulk and shear elastic
oduli, respectively, and the τ(𝑢) represent temperature-dependent re-

axation times. These constitutive assumptions are typically employed
o model the response of amorphous polymers (e.g., Christensen, 1982).
n turn, the corresponding tensors in the reinforcement phase (𝑟 = 2)
re all set to infinity. Thus, the reinforcements undergo purely thermal
eformations given by

(2)(𝜃) = 𝛽(2)(𝜃)𝐈. (46)

Results reported below make use of the simplest possible choice of
asis tensors given by

(𝑢) = 𝓁(𝑢) B(𝑢) where 𝓁(𝑢)2 = 9𝜅(𝑢)2 + 20𝜇(𝑢)2 and

(𝑢) = 3𝜅(𝑢)

𝓁(𝑢)
J + 2𝜇(𝑢)

𝓁(𝑢)
K, (47)

o that B(𝑢) ⋅B(𝑢) = 1. The reduced potentials (29) and (30) can then be
ritten as

̂
(

𝜺,
{

𝜶(𝑢)
}

,
{

𝛼(𝑢)
}

, 𝜃
)

= inf
𝜺∈∗

(

𝜺−𝜷(2)(𝜃)
)

1 − 𝑐
2

𝑈
∑

𝑢=1

[(

𝜺 − 𝜷(𝜃)
1 − 𝑐

− 𝜶(𝑢)
)

⋅L(𝑢)

(

𝜺 − 𝜷(𝜃)
1 − 𝑐

− 𝜶(𝑢)
)

+𝓁(𝑢) (𝜀(𝑢) − 𝛼(𝑢)
)2

]

+
2
∑

𝑟=1
𝑐(𝑟)𝑓 (𝑟)(𝜃) (48)

and

̂
(

{

𝜶̇
(𝑢)}

,
{

̇̃𝛼(𝑢)
}

, 𝜃
)

= 1 − 𝑐
2

𝑈
∑

𝑢=1
τ(𝑢)(𝜃)

[

𝜶̇
(𝑢)

⋅ L(𝑢)𝜶̇
(𝑢)

+ 𝓁(𝑢) ̇̃𝛼(𝑢)2
]

, (49)

where 𝑐 = 𝑐(2) is the reinforcement content, 𝜷 = 𝑐(1)𝜷(1) + 𝑐(2)𝜷(2) is the
average thermal strain, 𝜶(𝑢) ≡ 𝜶(1,𝑢) and 𝛼(𝑢) ≡ 𝛼(1,𝑢,1) are the effective
internal variables associated with the viscoelastic matrix, 𝜀(𝑢) ≡ 𝜀(1,𝑢,1)

is a measure of the strain fluctuations within the matrix phase given by

𝜀(𝑢) =
√

B(𝑢) ⋅ C(1)
𝜀 =

√

2𝜇(𝑢)

𝓁(𝑢)
𝜀(1)

2

𝑑 + 9𝜅(𝑢)

𝓁(𝑢)
𝜀(1)

2
𝑚 (50)

in terms of the fluctuations of the mean and deviatoric parts of the
strain field 𝜀(1)

2
𝑚 = J ⋅ C(1)

𝜀 ∕3 and 𝜀(1)𝑑 = K ⋅ C(1)
𝜀 , respectively, and

∗(𝜺 − 𝜷(2)(𝜃)) is the set of kinematically admissible strain fields with
average 𝜺− 𝜷(2)(𝜃) that vanish identically within the reinforcing phase.
n deriving this expression for the free-energy density, use has been
ade of the change of variables 𝜺 → 𝜺 + 𝜷(2)(𝜃) for convenience; the

strain fluctuations (50) are insensitive to this change.
Following the arguments provided in the previous subsection, and

invoking well-known relations for two-phase composites derived by
Levin (1967), the effective constitutive relations and intraphase strain
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statistics generated by (48) can be conveniently computed from the
comparison energy density

𝑤̂0(𝜺, 𝜃) =
1
2
(𝜺 − 𝜷(2)(𝜃)) ⋅ L̃0(𝜺 − 𝜷(2)(𝜃)) + 𝝉0 ⋅ (𝜺 − 𝜷(2)(𝜃)), (51)

where L̃0 is the effective elasticity tensor of a rigidly reinforced solid
with the same microstructural morphology as the reinforced solid of
interest but with matrix properties

L0 = 3𝜅0 J + 2𝜇0 K ≡
𝑈
∑

𝑢=1
𝓁(𝑢)
0 B(𝑢) and

0 =
𝑈
∑

𝑢=1
L(𝑢)

(

𝜺 − 𝜷(𝜃)
1 − 𝑐

− 𝜶(𝑢)
)

− L0
𝜺 − 𝜷(2)(𝜃)

1 − 𝑐
(52)

iven in terms of the comparison moduli 𝓁(𝑢)
0 defined by

(𝑢)
0 = 𝓁(𝑢) 𝜀(𝑢) − 𝛼(𝑢)

𝜀(𝑢)
𝑢 = 1,… , 𝑈 , (53)

nd determined self-consistently by the accompanying identities

𝜀(1)𝑑 = 1
1 − 𝑐

√

√

√

√

(

𝜺 − 𝜷(2)(𝜃)
)

⋅

[

(1 − 𝑐)
𝜕L̃0

𝜕(2𝜇0)
−K

]

(

𝜺 − 𝜷(2)(𝜃)
)

and

𝜀(1)𝑚 = 1
1 − 𝑐

√

√

√

√

(

𝜺 − 𝜷(2)(𝜃)
)

⋅

[

(1 − 𝑐)
𝜕L̃0

𝜕(9𝜅0)
− 1

3
J

]

(

𝜺 − 𝜷(2)(𝜃)
)

. (54)

Note that expressions (47)3 and (52)1 imply the relations

0 =
𝑈
∑

𝑢=1

𝓁(𝑢)
0

𝓁(𝑢)
𝜅(𝑢) and 𝜇0 =

𝑈
∑

𝑢=1

𝓁(𝑢)
0

𝓁(𝑢)
𝜇(𝑢), (55)

hich should be invoked to express the strain fluctuations (54) in terms
f the comparison moduli 𝓁(𝑢)

0 , and with (53), in terms of the strain
luctuations 𝜀(𝑢). Evaluation of the reduced free-energy density (48)
equires introducing the resulting expressions into (50) to generate a set
f equations for the quantities 𝜀(𝑢) to be solved for given temperature
hange 𝜃, macroscopic deformation 𝜺 and internal variables 𝛼(𝑢) (𝑢 =
1,… , 𝑈). In general, the set of equations requires numerical treatment.

Differentiation of (51) with respect to the macroscopic deformation
generates the effective constitutive relations

𝝈 = L̃0

(

𝜺 − 𝜷(2)(𝜃)
)

+ 𝝉0, (56)

while differentiation of the reduced potentials (48) and (49) with
respect to the internal variables generates the evolution laws

τ(𝑢)(𝜃) 𝜶̇(𝑢)
+𝜶(𝑢) =

𝜺 − 𝜷(𝜃)
1 − 𝑐

and τ(𝑢)(𝜃) ̇̃𝛼(𝑢) + 𝛼(𝑢) = 𝜀(𝑢) 𝑢 = 1,… , 𝑈 .

(57)

Finally, the macroscopic entropy density (37) reduces to

𝜂 = −
2
∑

𝑟=1
𝑐(𝑟)

[

𝑝(𝑟)𝛽(𝑟)
′
(𝜃) + 𝑓 (𝑟)′ (𝜃)

]

, (58)

where 𝑝(𝑟) = −tr𝝈(𝑟) is the average hydrostatic pressure over phase 𝑟
nd the prime denotes differentiation with respect to 𝜃.

5. Exact results for a class of rigidly reinforced solids with
isotropic constituents

In order to assess the capabilities of the reduced-order mean-field
description proposed above, results are generated in this section for a
special class of rigidly reinforced solids whose effective response can
be determined exactly by means of the correspondence principle. The
viscoelastic matrix is characterized by constitutive tensors of the form
(45) with relaxation times (e.g., Christensen, 1982)

τ(𝑢)(𝜃) = τ(𝑢)𝑎 (𝜃) 𝑢 = 1,… , 𝑈 . (59)
6

◦ 𝑇
Thus, each rheological unit 𝑢 can exhibit a viscosity characterized
by a different relaxation time constant τ(𝑢)◦ but the same temperature
dependence through the common shift function 𝑎𝑇 (𝜃); the ratio between
relaxation times of different units is insensitive to temperature changes.
For a given thermomechanical loading program, the constitutive re-
lation and evolution laws within the matrix phase are then given
by

𝝈(𝑡) =
𝑈
∑

𝑢=1
L(𝑢)

(

𝜺(𝑡) − 𝜷(1)(𝜃(𝑡)) − 𝜶(𝑢)(𝑡)
)

and

(𝑢)
◦ 𝑎𝑇

(

𝜃(𝑡)
)

𝜶̇(𝑢)(𝑡) + 𝜶(𝑢)(𝑡) = 𝜺(𝑡) − 𝜷(1)(𝜃(𝑡))

for 𝑢 = 1,… , 𝑈 . This form of evolution laws permits the introduction
of an ‘‘internal’’ time variable defined as

𝜉 = ∫

𝑡

0

d𝜏

𝑎𝑇
(

𝜃(𝜏)
) , (60)

o that, with a slight abuse of notation, the constitutive relations are
ommonly rewritten as

(𝜉) =
𝑈
∑

𝑢=1
L(𝑢) (𝜺(𝜉) − 𝜷(1)(𝜉) − 𝜶(𝑢)(𝜉)

)

and

(𝑢)
◦ 𝜶̊(𝑢)(𝜉) + 𝜶(𝑢)(𝜉) = 𝜺(𝜉) − 𝜷(1)(𝜉), (61)

here ̊(⋅) denotes differentiation with respect to 𝜉. Application of the
aplace–Carson transform to these expressions yields

∗(𝑝) = L∗(𝑝)
(

𝜺∗(𝑝) − 𝜷(1)∗(𝑝)
)

with L∗(𝑝) =
𝑈
∑

𝑢=1

𝑝

𝑝 + τ(𝑢)
−1

◦

L(𝑢), (62)

where (⋅)∗ refers to a transformed function. The correspondence princi-
le together with the Levin relations then imply the effective response

𝝈∗(𝑝) = L̃∗(𝑝)
(

𝜺∗(𝑝) − 𝜷(2)∗(𝑝)
)

+ L∗(𝑝)
(

𝜷(2)∗(𝑝) − 𝜷(1)∗(𝑝)
)

(63)

long with intraphase stress averages

𝝈(1)∗(𝑝) = B(1)∗(𝑝)𝝈∗(𝑝) and 𝝈(2)∗(𝑝) = B(2)∗(𝑝)𝝈∗(𝑝) (64)

with B(1)∗(𝑝) = L∗(𝑝)[(1−𝑐)L̃∗(𝑝)]−1 and B(2)∗(𝑝) such that (1−𝑐)B(1)∗(𝑝)+
B(2)∗(𝑝) = I, where L̃∗(𝑝) depends on the microstructural morphology
f the composite. When this dependence is of the form

̃∗(𝑝) =
R
∑

𝜌=1

𝑝

𝑝 + τ(𝜌)
−1

∗

Ã(𝜌), (65)

the inverse transform of (63) for time-continuous loadings yields

𝝈(𝜉) =
R
∑

𝜌=1
Ã(𝜌)

∫

𝜉

0

(

𝜺̊(𝑠) − 𝜷̊(2)(𝑠)
)

𝑒
− 𝜉−𝑠

τ(𝜌)∗ d𝑠

+
𝑈
∑

𝑢=1
L(𝑢)

∫

𝜉

0

(

𝜷̊(2)(𝑠) − 𝜷̊(1)(𝑠)
)

𝑒
− 𝜉−𝑠

τ(𝑢)◦ d𝑠. (66)

Two particular cases are considered next.

5.1. Particulate composites under hydrostatic loadings

We consider particulate composites with isotropic microstructural
statistics such that the effective bulk modulus is given exactly by the
Hashin–Shtrikman lower bound; thus (e.g., Willis, 1982)

3𝜅∗(𝑝) =
𝑈
∑

𝑢=1

𝑝

𝑝 + τ(𝑢)
−1

◦

3𝜅(𝑢) + 4𝑐𝜇(𝑢)

1 − 𝑐
, (67)
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which is of the form (65) with 𝑅 = 𝑈 and τ(𝑢)∗ = τ(𝑢)◦ . The
macroscopic response (66) for spherical deformations 𝜺(𝜉) = 𝜀𝑚(𝜉)𝐈 is
hen given by

𝜎𝑚(𝜉) =
𝑈
∑

𝑢=1
∫

𝜉

0

[

3𝜅(𝑢) + 4𝑐𝜇(𝑢)

1 − 𝑐

(

𝜀̊𝑚(𝑠) − 𝛽(2)(𝑠)
)

+3𝜅(𝑢) (𝛽(2)(𝑠) − 𝛽(1)(𝑠)
)

]

𝑒
− 𝜉−𝑠

τ(𝑢)◦ d𝑠. (68)

orresponding results in the absence of thermal strains were given
y Hashin (1965) and Ricaud and Masson (2009).

.2. Fiber-reinforced composites under thermal loadings

We now consider fiber-reinforced composites with transversely
sotropic microstructural statistics such that the effective elasticity ten-
or is given exactly by the Hashin–Shtrikman lower bound; thus (e.g.,
illis, 1982)

̃∗(𝑝) =
𝑈
∑

𝑢=1

𝑝

𝑝 + τ(𝑢)
−1

◦

[

6𝜅(𝑢) + 2(1 + 3𝑐)𝜇(𝑢)

3(1 − 𝑐)
E1

+
(1 − 3𝑐)3𝜅(𝑢) − (1 + 3𝑐)2𝜇(𝑢)

3(1 − 𝑐)
(E2 + E3)

+2𝜇(𝑢)

∑𝑈
𝑣=1

(

𝑝 + τ(𝑣)
−1

◦

)−1
[

3(1 + 𝑐)𝜅(𝑣) + (7 + 𝑐)𝜇(𝑣)]

(1 − 𝑐)
∑𝑈

𝑣=1

(

𝑝 + τ(𝑣)
−1

◦

)−1
[

3𝜅(𝑣) + 7𝜇(𝑣)
]

E5

+2𝜇(𝑢) 1 + 𝑐
1 − 𝑐

E6

⎤

⎥

⎥

⎥

⎦

, (69)

here the set of tensors E𝑖 corresponds to the basis for transversely
sotropic tensors of Walpole (1984). This expression is of the form (65)
ith R depending on 𝑈 . For a given number of units 𝑈 , the param-
ters τ(𝜌)∗ and corresponding tensors Ã(𝜌) (𝜌 = 1,… ,R) are obtained
y identifying the zeros of the rational polynomials in this expres-
ion. Alternatively, they can be obtained by means of the method-
logy presented in Jalocha et al. (2015) for frequency dependent
esponses. This procedure combines a highly accurate approximation
f the discrete time spectra derived from the Nevanlinna Pick inter-
olation problem (Byrnes and Lindquist, 2000) with a conventional
ean-squares procedure for the computation of the associated moduli
istributions (see Suarez-Afanador et al., 2022).

. Sample comparisons and discussion

.1. Particulate composites under hydrostatic loadings

We consider the particulate composites of Section 5.1 subject to
pherical deformations 𝜺 = 𝜀𝑚𝐈. The reduced description based on
ffective internal variables require the effective bulk modulus of the
omparison solid, which is given by (e.g., Willis, 1982)

𝜅0 =
3𝜅0 + 4𝑐𝜇0

1 − 𝑐
. (70)

Expression (54) can then be easily evaluated, and upon introducing this
expression into (50) we obtain the expression

𝜀(𝑢) =

√

12𝑐𝜇(𝑢)

𝓁(𝑢)

|𝜀𝑚 − 𝛽(2)𝑚 (𝜃)|
1 − 𝑐

(71)

for the intraphase strain fluctuations. In turn, symmetry implies that
𝜶(𝑢) = 𝛼(𝑢)𝐈 for all 𝑢 = 1,… , 𝑈 throughout the deformation history,
rovided all internal variables depart from zero. The reduced effective
otentials (48) and (49) are thus given by

̂
(

𝜀𝑚𝐈,
{

𝛼(𝑢)
}

,
{

𝛼(𝑢)
}

, 𝜃
)

= 1 − 𝑐
2

𝑈
∑

⎡

⎢

⎢

9𝜅(𝑢)

(

𝜀𝑚 − 𝛽(𝜃)
1 − 𝑐

− 𝛼(𝑢)
)2

+

7

𝑢=1
⎣

d

𝓁(𝑢)
⎛

⎜

⎜

⎝

√

12𝑐𝜇(𝑢)

𝓁(𝑢)

|𝜀𝑚 − 𝛽(2)(𝜃)|
1 − 𝑐

− 𝛼(𝑢)
⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

+
2
∑

𝑟=1
𝑐(𝑟)𝑓 (𝑟)(𝜃) and (72)

𝜑̂
({

𝛼̇
(𝑢)}

,
{

̇̃𝛼(𝑢)
}

, 𝜃
)

= 1 − 𝑐
2

𝑈
∑

𝑢=1
τ(𝑢)(𝜃)

[

9𝜅(𝑢)𝛼̇
(𝑢)2 + 𝓁(𝑢) ̇̃𝛼(𝑢)

2
]

,

(73)

where 𝛽 = (1 − 𝑐)𝛽(1) + 𝑐𝛽(2). These reduced potentials are explicit and
ompletely characterize the overall response of the composite under
ny hydrostatic thermomechanical loading conditions. However, while
he reduced dissipation potential is a convex function of the internal
ariable rates, the reduced free-energy density is not a convex function
f the macroscopic deformation and internal variables conjointly.4
his non-convexity is introduced by the model reduction performed

n Section 3.1 for reasons already elicited by Idiart et al. (2020a) in
he context of isothermal viscoelasticity. The negative consequences on
nsuing predictions for the macroscopic response have been assessed in
epth by Idiart et al. (2020b). However, it was also found in that work
hat an efficacious convexification of this reduced free-energy could be
arried out in some simple cases like the one considered here. This
onvexification amounts to eliminating the absolute value in the last
erm of (72) and adopting the function

̂
(

𝜀𝑚𝐈,
{

𝛼(𝑢)
}

,
{

𝛼(𝑢)
}

, 𝜃
)

= 1 − 𝑐
2

𝑈
∑

𝑢=1

⎡

⎢

⎢

⎣

9𝜅(𝑢)

(

𝜀𝑚 − 𝛽(𝜃)
1 − 𝑐

− 𝛼(𝑢)
)2

+

𝓁(𝑢)
⎛

⎜

⎜

⎝

√

12𝑐𝜇(𝑢)

𝓁(𝑢)

𝜀𝑚 − 𝛽(2)(𝜃)
1 − 𝑐

− 𝛼(𝑢)
⎞

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

+
2
∑

𝑟=1
𝑐(𝑟)𝑓 (𝑟)(𝜃) (74)

as the reduced free-energy density. This function is now convex. Upon
differentiating these reduced potentials we obtain the effective consti-
tutive relation

𝜎𝑚 =
𝑈
∑

𝑢=1

⎡

⎢

⎢

⎣

3𝜅(𝑢)

(

𝜀𝑚 − 𝛽(𝜃)
1 − 𝑐

− 𝛼(𝑢)
)

+

√

4𝑐𝜇(𝑢)𝓁(𝑢)

3

⎛

⎜

⎜

⎝

√

12𝑐𝜇(𝑢)

𝓁(𝑢)

𝜀𝑚 − 𝛽(2)(𝜃)
1 − 𝑐

− 𝛼(𝑢)
⎞

⎟

⎟

⎠

⎤

⎥

⎥

⎦

(75)

along with the evolution laws for the internal variables

τ(𝑢)(𝜃)𝛼̇(𝑢) + 𝛼(𝑢) =
𝜀𝑚 − 𝛽(𝜃)
1 − 𝑐

and

τ(𝑢)(𝜃) ̇̃𝛼(𝑢) + 𝛼(𝑢) =

√

12𝑐𝜇(𝑢)

𝓁(𝑢)

𝜀𝑚 − 𝛽(2)(𝜃)
1 − 𝑐

. (76)

The reduced description (75)–(76) admits any choice of relaxation
times τ(𝑢)(𝜃). Now, it is easy to show that for the special choice (59), it
reproduces the exact response (68). Indeed, in that case the Laplace–
Carson transform of the evolution laws (76) expressed in terms of the
internal time (60) yields

𝛼(𝑢)∗(𝑝) = 1
1 + τ(𝑢)◦ 𝑝

𝜀∗𝑚(𝑝) − 𝛽
∗
(𝑝)

1 − 𝑐
and

4 It is emphasized that the reduced-order description remains thermody-
amically consistent, notwithstanding, in view of the convexity of the reduced
issipation potential.
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𝛼(𝑢)∗(𝑝) = 1
1 + τ(𝑢)◦ 𝑝

√

12𝑐𝜇(𝑢)

𝓁(𝑢)

𝜀∗𝑚(𝑝) − 𝛽(2)∗(𝑝)
1 − 𝑐

, (77)

nd introducing these expressions into the corresponding Laplace–
arson transform of (75) yields

𝜎∗𝑚(𝑝) =
𝑈
∑

𝑢=1

𝑝

𝑝 + τ(𝑢)
−1

◦

[

3𝜅(𝑢) + 4𝑐𝜇(𝑢)

1 − 𝑐
(

𝜀∗𝑚(𝑝) − 𝛽(2)∗(𝑝)
)

+3𝜅(𝑢) (𝛽(2)∗(𝑝) − 𝛽(1)∗(𝑝)
)

]

, (78)

whose inverse transform is precisely (68). This remarkable result is
in line with earlier results already reported in the context of isother-
mal viscoelasticity with simpler rheologies by Idiart et al. (2020b)
and Cotelo et al. (2020). It shows that the variational model reduction
performed in Section 3.1 has the capability of reproducing exact ther-
momechanical responses for composite materials with complex local
responses and microstructural morphologies, even in the presence of
multiple relaxation mechanisms.

Under stress-free conditions, the reduced description (75)–(76) pre-
dicts a macroscopic strain

𝜀𝑚 = 𝛽(𝜃)+
4𝑐𝜇
3𝜅

(

𝛽(2)(𝜃) − 𝛽(1)(𝜃)
)

+
𝑈
∑

𝑢=1

⎡

⎢

⎢

⎣

𝜅(𝑢)

𝜅
𝛼(𝑢) +

√

4𝑐𝜇(𝑢)𝓁(𝑢)

27𝜅2
𝛼(𝑢)

⎤

⎥

⎥

⎦

(79)

and evolution laws

τ(𝑢)(𝜃)𝛼̇(𝑢) + 𝛼(𝑢) −
𝑈
∑

𝑣=1

[

𝜅(𝑣)

𝜅
𝛼(𝑣)

1 − 𝑐
+

√

4𝑐𝜇(𝑢)𝓁(𝑢)

3
𝛼(𝑣)

1 − 𝑐

]

= 𝑐
1 − 𝑐

4𝜇
3𝜅

(

𝛽(2)(𝜃) − 𝛽(1)(𝜃)
)

(80)

τ(𝑢)(𝜃) ̇̃𝛼(𝑢) + 𝛼(𝑢) −
𝑈
∑

𝑣=1

[

𝜅(𝑣)

𝜅
𝛼(𝑣)

1 − 𝑐
+

√

4𝑐𝜇(𝑢)𝓁(𝑢)

3
𝛼(𝑣)

1 − 𝑐

]

= 𝑐3∕2

1 − 𝑐
12𝜇(𝑢)

𝓁(𝑢)

(

𝛽(2)(𝜃) − 𝛽(1)(𝜃)
)

. (81)

Casting expressions in this form makes it plain that the source of
viscous deformations within the matrix phase is solely the mismatch
between microscopic thermal strains, which consequently generate a
dependence of the macroscopic thermal strain on cooling or heating
rate even when the microscopic thermal strains are rate insensitive.

6.2. Fiber-reinforced composites under monotonic cooling

We now consider the unidirectional fiber-reinforced composites of
Section 5.2. But for illustrative purposes, however, we adopt thermal
strains within the matrix phase characterized by a hereditary law
as given by a functional rather than a function of temperature; the
functional is (e.g., Knauss and Emri, 1987; Pettermann and DeSimone,
2018)

𝛽(1)(𝜃𝜉 ) = ∫

𝜉

0
α(1)(𝜉 − 𝑠) 𝜃̊(𝑠)d𝑠, (82)

where 𝜉 is the internal time defined by (60), 𝜃𝜉 is the temperature
change history up to the internal instant 𝜉 with notation introduced
in Section 2.3, and α(1) is a thermal creep function given by

α(1)(𝜉) = α(1)0 −
𝑉
∑

𝑣=1
α(1,𝑣)𝑒−𝜉∕τ

(𝑣)
𝑡ℎ . (83)

In this expression, τ(𝑣)𝑡ℎ and α(1,𝑣) represent thermal relaxation times
and thermal expansion coefficients, respectively, and α(1)0 represents a
thermal expansion coefficient at high temperature. With this choice,
the mechanical relations (5)–(6) become hereditary laws of the single-
integral type like the ones studied in Gurtin and Hrusa (1991). On the
other hand, the thermal relation (8) can no longer be described by an
expression of that form, which is inherent to thermal strain functions.
We do not dwell on this issue given that the focus here is on mechanical
8

responses under prescribed temperature histories.5 In any event, this
model takes into account the influence of heating and cooling rates on
thermal expansion. On the other hand, the thermal strain within the
fibers is chosen as

𝛽(2)(𝜃) = α(2)𝜃, (85)

here α(2) is a thermal expansion coefficient.
The composites are taken as representative of a lamina situated

n the bulk of a symmetric cross-ply laminate undergoing monotonic
ooling at constant pressure as in a consolidation process. The pres-
nce of contiguous orthogonal laminae is mimicked by subjecting the
omposite lamina to mixed boundary conditions of the form

𝜀11 = 𝜀33 = 𝛽(2)(𝜃), 𝜎22 = 0, 𝜀12 = 𝜀13 = 𝜀23 = 0, (86)

where tensor components are referred to a basis with directions 2 and
3 aligned with the directions of lamination and of the lamina fibers,
respectively. Under these circumstances, the exact mechanical response
is given by suitable specialization of expression (66) with (69). It is
noted that despite their derivation in terms of thermal strain functions,
those expressions remain valid for thermal strain functionals like (82).
The numerical calculations required to evaluate the resulting expres-
sions have been carried out following the strategy of Suarez-Afanador
et al. (2022). In turn, the reduced description for the reinforced lam-
ina depends on the effective in-plane bulk and shear moduli of the
comparison solid, which are given by (e.g., Willis, 1982)

𝑘0 =
2𝜅0 + (2∕3)(1 + 3𝑐)𝜇0

1 − 𝑐
and 𝑚̃0 =

3(1 + 𝑐)𝜅0 + (7 + 𝑐)𝜇0
3𝜅0 + 7𝜇0

𝜇0
1 − 𝑐

,

(87)

respectively. Expressions (54) for the intraphase strain fluctuations then
become

𝜀(1)𝑚 = 1
1 − 𝑐

√

√

√

√

1 − 𝑐
9

(

𝜕𝑘̃0
𝜕(2𝜅0)

+
𝜕𝑚̃0
𝜕𝜅0

)

− 1
9
|𝜀22 − 𝛽(2)(𝜃)| and (88)

𝜀(1)𝑑 = 1
1 − 𝑐

√

√

√

√

1 − 𝑐
2

(

𝜕𝑘̃0
𝜕(2𝜇0)

+
𝜕𝑚̃0
𝜕𝜇0

)

− 2
3
|𝜀22 − 𝛽(2)(𝜃)|, (89)

hich should be introduced in (50) to generate the set of equations
or the strain fluctuations 𝜀(𝑢) required to evaluate the reduced free-
nergy density for the boundary conditions (86). For a given cooling
rogram 𝜃(𝑡), the evolution laws (57) are discretized in time following
n implicit Euler scheme and taken as additional equations which,
ogether with the previous set of equations, are solved numerically
or the quantities 𝜶(𝑢), 𝛼(𝑢), 𝜀(𝑢), and 𝜀22. Once these quantities are

determined, the macroscopic stress component 𝜎11 is computed from
(56), while the statistics of the stress field within the matrix phase are
computed from (35) and (36).

Specific results are reported below for matrix responses described
with nineteen viscoelastic units (𝑈 = 19) characterized by constitutive
ensors of the form (45) with relaxation times of the form (59). Fig. 2
hows the choice of elastic moduli and relaxation times (𝜅(𝑢), 𝜇(𝑢), τ(𝑢)◦ )
long with the choice of shift factor 𝑎𝑇 (𝜃). In turn, we adopt only
ne term (𝑉 = 1) in (83) with α(1)0 = 1.02 × 10−4 ◦C−1, α(1,1) =

4.22 × 10−5 ◦C−1 and τ(1)𝑡ℎ = 0.2017 s. This set of material parameters
is taken to represent the thermomechanical response of an amorphous
thermoplastic like polyetherimide (see Suarez-Afanador et al., 2022).

5 A possible expression for the entropy density compatible with (82)–(83)
nder the proviso that 𝑉 ≤ 𝑈 is

(𝜉) = ∫

𝜉

0

𝑈
∑

𝑢=1
3𝜅(𝑢)α̌(𝑢)𝑒

− 𝜉−𝑠

τ(𝑢)◦
(

𝜀̊(𝑠) − α̌(𝑢)𝜃̊(𝑠)
)

d𝑠 − 𝑓 (1)′ (𝜃), (84)

where α̌(𝑢) are suitably chosen parameters.
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Fig. 2. Material parameters adopted for the viscoelastic matrix: (a) elastic moduli 𝜇(𝑢) and 𝜅(𝑢) as a function of the relaxation times 𝜏 (𝑢)◦ and (b) shift factor function 𝑎𝑇 versus

temperature.
In particular, it is noted that the choice of shift factor pertains to a ma-
terial response that transitions from negligible elasticity at the higher
temperatures to negligible viscosity at the lower temperatures. Finally,
the choice α(2) = 2.21 × 10−5 ◦C−1 is adopted for the thermal expansion
coefficient of the fibers. A composite with reinforcement content 𝑐 = 0.3
is subject to monotonic cooling from a processing temperature of 250 ◦C
down to the room temperature 25 ◦C, so that the total macroscopic
temperature change relative to the initial temperature is 𝜃0 = −225 ◦C.
Various cooling rates 𝜃̇ in the wide range between −225×10−12 ◦C∕s and
−225 × 1020 ◦C∕s are considered. These unrealistically extreme values
have been chosen so that elastic deformations are negligible at the
slowest rate while viscous deformations are negligible at the fastest
rate. This last case is considered as representative of non-dissipative
material models based on purely thermoelastic constitutive laws.

Fig. 3 displays predictions for the macroscopic stress (𝜎11) and strain
(𝜀22) versus temperature drop for the various cooling rates, normalized
by the final stress and strain levels (𝜎𝑒11, 𝜀

𝑒
22) produced by the fastest

cooling rate. The main observation in the context of this figure is that
the reduced and exact predictions are quantitatively indistinguishable
for the entire range of temperature drops and cooling rates consid-
ered. As a consequence of the choice of shift factor, the stresses and
strains at the end of the cooling process do not relax but remain as
residual instead. These residual stresses and deformations increase with
increasing cooling rate, as expected. The reduced description is seen to
provide accurate predictions for both of these quantities. In practice,
cooling rates in the order of 1 ◦C/min (0.017 ◦C∕s) are commonly
employed. At such rates, the residual stress levels predicted by the
thermo-viscoelastic model are in the order of 40% of those predicted by
a purely thermoelastic model; the residual thermal shrinkages, in turn,
are seen to be in the order of 80%. Also displayed in the figure are cor-
responding reduced predictions for the average values and fluctuations
of the mean (𝜎𝑚) and deviatoric (𝜎𝑑) stresses within the matrix phase
(𝑟 = 1). Exact results for stress fluctuations are not reported due to
the well-known limitations of descriptions based on the correspondence
principle to predict intraphase stress statistics of order higher than one.
The reduced and exact predictions are seen to remain indistinguishable
for the average stresses over the matrix phase. The predicted residual
stress field within that phase is seen to exhibit fluctuation levels of
about half of the average values. Once again, values for realistic cooling
rates are seen to be well below the values for the fastest cooling rate.
The associated evolution of the effective internal variables is provided
for five representative units out of the nineteen, for the cooling rate
2.25 ◦C∕s. It is recalled that the reduced variables 𝛼(𝑢) depend on traces
of the intraphase fluctuations of the reduced internal variables 𝜶(𝑢)

dictated by the choice of tensors B(𝑢) introduced in (47) . In all cases
9

3

the internal variables are seen evolve from the outset and up to certain
temperature below which they remain constant. This is a manifestation
of the viscous-to-elastic transition effected by the choice of shift factor.
The saturation value and temperature change of each internal variable
is dictated by the associated relaxation time τ(𝑢)◦ shown in Fig. 2a.
In any event, these results suggest that purely thermoelastic analyses
which neglect all viscous mechanisms will, in general, provide quite
inaccurate predictions for residual stresses resulting from consolidation
processes of this sort.

We conclude this discussion by noting that the free-energy den-
sity of the fiber-reinforced composite employed by this reduced de-
scription is non-convex and cannot be convexified like the reduced
free-energy density of the particulate composites considered in the
previous subsection. Consequently, predictions will exhibit spurious
transients for certain classes of non-monotonic thermomechanical pro-
grams for which the intraphase fluctuations of some thermodynamic
forces may vanish (Idiart et al., 2020a,b). However, the non-convex
reduced free-energy density (29) does agree exactly with its convex-
ification whenever the deformation history is such that all reduced
internal variables 𝛼(𝑢) increase monotonically (Idiart et al., 2020a). This
is precisely what occurs in the above example and it is likely to occur
during thermomechanical programs commonly employed in consolida-
tion processes of practical interest. The reduced mean-field descriptions
derived in this work are thus expected to provide a valuable tool to
identify processing routes to lower residual stresses or use them to our
advantage. The expectation should be confirmed by pursuing similar
studies for material systems with other relevant microgeometries such
as, for instance, discontinuous fiber-reinforced solids. In those cases,
the linearly elastic properties required by the reduced mean-field de-
scriptions are likely to introduce an additional degree of approximation.
Given the complications associated with the use of the correspondence
principle in those cases, the studies will certainly benefit from full-field
simulations based on Fast Fourier Transform algorithms (e.g., Wicht
et al., 2020; Krause and Bölhke, 2020; Suarez-Afanador et al., 2022).

7. Final comments

We have proposed a thermodynamically consistent framework for
generating mean-field descriptions for the viscoelastic response of re-
inforced solids undergoing small deformations but large temperature
changes. The main novelty of the work lies in the recognition that the
variational model reduction of Lahellec and Suquet (2007a) originally
conceived for simple rheologies can also be exploited for a fairly large
class of complex thermorheologies. In the absence of thermal effects,
the mean-field descriptions generated in this work reduce to those

previously generated by Idiart et al. (2020a). In all these descriptions
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Fig. 3. Reduced-order estimates (EIV) and exact results versus temperature change for fiber-reinforced composites subject to monotonic cooling at various cooling rates: (a)
macroscopic stress, (b) macroscopic strain, (c) and (d) average stress and stress fluctuations within the matrix phase, (e) and (f) evolution of effective internal variables for the
cooling rate 2.25 ◦C∕s. Stress and strain quantities are normalized, respectively, by the macroscopic residual stress and strain for the fastest cooling rate. The reinforcement content
is 𝑐 = 0.3.
the mechanical fields entering the potentials are the strains and internal
variables. Dual mean-field descriptions wherein the mechanical fields
entering the potentials are the stresses and thermodynamic forces
have been proposed by Lahellec and Suquet (2013) and applied to
viscoelastic composites and polycrystals in several studies (Badulescu
et al., 2015; Agoras et al., 2016; Cotelo et al., 2020; Shuvrangsu and
Ponte Castañeda, 2021). The predictions generated by this alternative
descriptions are different from those generated by the primal descrip-
tions considered in this work, and their relative merits have been
discussed by Idiart and Lahellec (2016) and Lahellec et al. (2021). This
10
last work casts the dual descriptions within an alternative formalism
to that of Lahellec and Suquet (2013) which makes the generalization
of dual descriptions to thermorheologically complex solids mathemat-
ically similar to the one carried out here for the primal description.
A thorough comparison between the primal and dual versions of the
reduced descriptions, along with approximate extensions of the corre-
spondence principle to ageing behaviors (Masson et al., 2012; Vu et al.,
2012), will be reported elsewhere.
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In any event, the mean-field descriptions provided in this work
admit further generalizations with ease. For instance, they can in-
corporate nonlinear viscous mechanisms via non-quadratic dissipation
potentials together with well-known linearization strategies (e.g., La-
hellec and Suquet, 2007b; Idiart and Lahellec, 2016; Boudet et al.,
2016). More importantly, they can incorporate curing deformations
arising in thermosetting composites (e.g., Bogetti and Gillespie, 1992)
via homogenization results for well-known curing kinetic laws (Amasov
et al., 2013). They can even be employed to study the influence of
other types of second-phase inclusions, including voids, on the overall
behavior. Future efforts will be directed towards these problems.
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