
FEniCSx Preconditioning Tools
(FEniCSx-pctools)

Martin Řehoř∗ Jack S. Hale†

November 28, 2023

Abstract

FEniCSx Preconditioning Tools (FEniCSx-pctools) is a software pack-
age for easing the specification of PETSc-based block preconditioning
strategies in the DOLFINx finite element solver of the FEniCS Project.
It attaches all of the necessary metadata to the block-structured linear
systems in order that block-structured preconditioners can be applied
straightforwardly via PETSc’s options-based configuration system. Fast
prototyping is facilitated thanks to the implementation in Python, and all
intensive operations are executed in C/C++. FEniCSx-pctools is avail-
able under the LGPLv3 or later license.

Introduction
Overview

FEniCSx Preconditioning Tools (FEniCSx-pctools) is a Python package for eas-
ing the specification of complex PETSc-based block-structured linear solvers in
the DOLFINx finite element software of the FEniCS Project. FEniCSx-pctools
was produced as a supporting tool in a larger research project focused on fluidic
topology optimisation.

A classic example of a block-structured system is the symmetric saddle point
problem stemming from the H(div) × L2 flux-potential mixed finite element
discretisation of the Poisson problem[

A BT

B O

] [
q
p

]
=

[
0
g

]
, (1)

where A is a square matrix arising from the bilinear form (qh, q̃), B is a non-
square matrix arising from the bilinear form (div(qh), p̃), O is a square matrix

∗martin.rehor@rafinex.com Rafinex S.à r.l., Luxembourg.
†jack.hale@uni.lu Institute of Computational Engineering, Department of Engineering,

Faculty of Science, Technology and Medicine, University of Luxembourg.

1

martin.rehor@rafinex.com
jack.hale@uni.lu


of zeros, q is a vector of unknowns related to the flux, p is a vector of unknowns
related to the pressure, 0 is a vector of zeros and g is a vector arising from the
linear form −(f, p̃).

It is now well established that such block-structured systems can only be
solved scalably (ideally, in linear time in the number of unknowns on high-
performance computing systems) using Krylov subspace methods in conjunction
with suitably designed preconditioning strategies [1, 8].

FEniCSx-pctools consists of a set of algorithms that can analyse the high-
level Unified Form Language (UFL) representation of a block-structured finite
element problem and subsequently create the necessary PETSc (Portable, Ex-
tensible Toolkit for Scientific Computation) data structures describing the same
block structure on the algebraic level. With this information, advanced block
preconditioning strategies can be specified straightforwardly using PETSc’s stan-
dard options-based configuration system.

We include three fully documented demos. The first one is a motivational
demo that introduces FEniCSx-pctools as a useful complement to DOLFINx;
an elementary system of algebraic equations is used to illustrate the ability to
change the solver configuration at runtime independently of the model formu-
lation. The other two demos are slightly more involved; one of them sets up
a Schur complement preconditioner for the mixed Poisson problem in eq. (1)
based on a design proposed in [15], whereas the other one sets up a Schur com-
plement preconditioner of the velocity-pressure Navier-Stokes equations using
the pressure-convection-diffusion (PCD) approach proposed in [8].

Related work

We focus on software that provides a high-level interface to block precondi-
tioning strategies exposed by lower-level sparse linear algebra libraries such as
Trilinos and PETSc.

1. CBC.Block [13] provides block preconditioning tools within the legacy
DOLFIN library using the Trilinos linear algebra backend. A particularly
strong aspect of CBC.Block is its domain specific language for specifying
block linear algebra preconditioners.

2. The Firedrake Project [14] builds directly on top of the PETSc DM pack-
age [12] allowing for the straightforward specification of block-structured
algebraic systems and composable physics-based preconditioners. By con-
trast, DOLFINx is backend agnostic and contains only low-level routines
for assembly into PETSc sparse data structures. FEniCSx-pctools bridges
this gap, bringing advanced preconditioning specification from PETSc to
users of DOLFINx.

3. FENaPack [3] is a preconditioning package for the legacy DOLFIN library
using the PETSc linear algebra backend. It is particularly focused on
providing an implementation of the PCD approach for preconditioning

2



the Navier-Stokes equations. An implementation of PCD is also provided
in FEniCSx-pctools.

4. PFIBS [6], like FENaPack, is a parallel preconditioning package for the
legacy DOLFIN library using the PETSc linear algebra backend. It con-
tains a class BlockProblem that can split a monolithic PETSc matrix into
blocks. It also contains an example of PCD preconditioning of the Navier-
Stokes equations.

Use in research

In this section we show scaling results demonstrating the relevance of the soft-
ware to solving real-world problems involving the solution of partial differential
equations (PDE) at scale on high-performance computers (HPC).

We perform weak scalability tests up to 8192 MPI processes on a three-field
(temperature, pressure and velocity) Rayleigh-Bénard convection problem pre-
conditioned with algebraic multigrid and a pressure-convection-diffusion (PCD)
approach [8]. The PDE and problem data (domain, boundary conditions etc.)
are exactly the same as the ones described in [10] and solved with Firedrake [14],
so for brevity’s sake we do not repeat the details. The solution is visualised in
fig. 1. We use a slightly different design for the PCD aspect of our precondi-
tioner [2], which results in fewer outer Newton-Raphson iterations and fewer
inner Krylov solver iterations than the design proposed in [10].

Figure 1: Visualisation of the Rayleigh-Bénard solution.

3



The computational experiments were performed on the University of Lux-
embourg Aion cluster [16]. The Aion cluster consists of 354 nodes each with
two 64 core AMD Epyc ROME 7H12 processors attached to 256 GB RAM. The
nodes are connected with an Infiniband HDR network in a ‘fat-tree’ topology.
We built DOLFINx 0.7.0 against PETSc 3.20.0, OpenMPI 4.0.5 and Python
3.8.6 using the GCC 10.2.0 compiler suite with -march=znver2 -O3 optimisa-
tion flags. All experiments were performed at 50% core utilisation per node,
i.e. 64 cores per node as these low-order finite element problems are typically
memory-bandwidth constrained. The node allocation was taken in exclusive
mode, i.e. with no other jobs running.

In the weak scaling test we solve the problem on 1 node and double the
number of nodes until we reach 128 nodes, for a total of 8 192 MPI processes.
We simultaneously increase the problem size so that the number of degrees of
freedom (DOF) per MPI rank remains fixed at around 100 000.

A breakdown of timings for the weak scaling study are shown in table 1.
The code to execute these experiments and our raw timing data is available in
the supplementary material. In summary, the time to solution stays roughly
constant, demonstrating the excellent parallel performance of DOLFINx and
PETSc for this problem when using a scalable preconditioner design imple-
mented via the FEniCSx-pctools package.

DOF MPI Nonlinear Linear Navier-Stokes Temperature Time to
(×106) processes iterations iterations iterations iterations solution (s)
6.359 64 2 8 115 (14.4) 49 (6.1) 26.7
12.6 128 2 8 117 (14.6) 49 (6.1) 27.2
25.64 256 2 9 133 (14.8) 56 (6.2) 31.2
101.7 1024 2 7 103 (14.7) 43 (6.1) 25.9
203.5 2048 2 7 102 (14.6) 44 (6.3) 26.1
408.9 4096 2 5 82 (16.4) 31 (6.2) 22.4
816.8 8192 2 6 102 (17) 41 (6.8) 27.1

Table 1: Performance metrics for Rayleigh-Bénard problem with PCD-AMG
preconditioning, weak scaling at 100k (DOF) per process. Aion Cluster, 50%
utilisation. The number in brackets is the average iterations per outer linear
solve.

Implementation and architecture
Existing low-level assembly routines in DOLFINx can be used to build up a
block-structured matrix in two consecutive steps:

1. Create PETSc sparse data structures based on an array of bilinear forms;
this involves creation of a merged sparsity pattern with the block layout
dictated by the arrangement of forms in the array.

2. Assemble the matrix object initialised in the first step in a blockwise man-
ner; this involves creation of index sets that can be used to extract and

4



assemble each individual submatrix.

The extraction of a submatrix is the key mechanism exploited by PETSc’s
fieldsplit-based preconditioners [4]. The core of FEniCSx-pctools is a set of
functions that attaches the necessary metadata to the PETSc block-structured
matrix produced by DOLFINx so that PETSc’s options-based preconditioning
system can be applied straightforwardly, see fig. 2.

a_dolfinx A_block
assemble_matrix_block()

create_splittable_matrix_block()

DOLFINx Form PETSc Mat

A_splittable

PETSc Mat 
of type ‘python’

A_context

SplittableMatrixBlock

A_index_sets

PETSc IS

linear_solver

preconditioner

PETSc PC of type ‘python’

pc_context

WrappedPC

PETSc KSP

pc_wrapped

PETSc PC of type ‘fieldsplit’

KSP.setOperators()

Figure 2: Architecture diagram with the FEniCSx-pctools interface shown in
bold.

Let us emphasize that the same configuration of the linear solver can be
achieved using the alternative DOLFINx’s assembly routines that produce the
PETSc block-structured matrix of type ‘nest’ [4], while it is not necessary to
use any high-level wrappers. The main advantage offered by FEniCSx-pctools is
the possibility to change the preconditioner setup at runtime without the need
to modify the model specification (typically, the arrangement of finite element
function spaces that determines the block layout of the system matrix). This is
best illustrated/explained in the motivational demo already mentioned above.

Quality control
FEniCSx-pctools contains unit tests that assert that the package functions cor-
rectly. In addition, there are three demo problems with checks for correctness.
These tests are run as part of a continuous integration pipeline. Users can run
these tests themselves by following the instructions in the README.rst file. The
package is fully documented.

5



Reuse potential
The design of parameter and discretisation robust block preconditioning strate-
gies is an active research topic in numerical analysis and computational sciences.
We can point to recent developments in designs for the Navier–Stokes [9] equa-
tions, poroelasticity equations [7], magnetohydrodynamic equations [11] and
multiphysics interface problems [5]. Together, FEniCSx-pctools, DOLFINx and
PETSc support the straightforward expression and testing of these precondi-
tioning strategies in code, and therefore are useful for researchers in who wish
to quickly verify the performance of their preconditioning designs. In addi-
tion, block preconditioning strategies are an important tool for solving large
real-world problems in computational sciences and engineering.

Users can post issues on our GitLab issue tracker at the above repository.

Availability
Operating system
DOLFINx, and consequently FEniCSx-pctools, can be built on any modern
POSIX-like system, e.g. macOS, Linux, FreeBSD etc. Windows is not currently
supported.

Programming language
FEniCSx-pctools is written in Python and is compatible with the CPython
intepreter version 3.8 and above.

Additional system requirements
FEniCSx-pctools and its main dependencies DOLFINx and PETSc are designed
with scalability on parallel distributed memory systems in mind. Consequently,
they can run on laptops through to large HPC systems.

Dependencies
FEniCSx-pctools primarily depends on the Python interface to DOLFINx which
in turn depends on petsc4py. These dependencies are specified in the stan-
dard Python packaging configuration file. We aim to make tagged releases of
FEniCSx-pctools that are compatible with DOLFINx releases along with the
latest stable release of PETSc. FEniCSx-pctools can be installed straightfor-
wardly alongside any build of the FEniCS Project components.

Supplementary material
Permanent archive:

6



• Name: Figshare [17]

• Persistent identifier: https://doi.org/10.6084/m9.figshare.21408294

• Licence: LGPLv3 or later

• Publisher: Martin Řehoř on behalf of Rafinex S.à r.l.

• Version published: git tag: v0.7.2

• Date published: 27/10/2022 (ongoing)

Development repository:

• Name: gitlab.com

• Persistent identifier: https://gitlab.com/rafinex-external-rifle/
fenicsx-pctools

• Licence: LGPLv3 or later

• Date published: 27/10/2022 (ongoing)

Acknowledgements
The experiments presented in this work were carried out using the HPC facilities
of the University of Luxembourg [16] (see https://hpc.uni.lu).

Jack S. Hale has a family member that works at Rafinex S.à r.l. This family
member was not involved in this research project. Martin Řehoř declares no
competing interests.

Funding statement
This research was funded in whole, or in part, by the Luxembourg National Re-
search Fund (FNR), grant reference RIFLE/13754363. For the purpose of open
access, and in fulfilment of the obligations arising from the grant agreement,
the author has applied a Creative Commons Attribution 4.0 International (CC
BY 4.0) license to any Author Accepted Manuscript version arising from this
submission.

References
[1] Michele Benzi, Gene H. Golub, and Jörg Liesen. “Numerical solution of

saddle point problems”. en. In: Acta Numerica 14 (May 2005). Publisher:
Cambridge University Press, pp. 1–137. issn: 1474-0508, 0962-4929. doi:
10.1017/S0962492904000212. (Visited on 10/28/2022).

7

https://doi.org/10.6084/m9.figshare.21408294
https://gitlab.com/rafinex-external-rifle/fenicsx-pctools
https://gitlab.com/rafinex-external-rifle/fenicsx-pctools
https://hpc.uni.lu
https://doi.org/10.1017/S0962492904000212


[2] Jan Blechta. “Towards efficient numerical computation of flows of non-
Newtonian fluids”. PhD thesis. Univerzita Karlova, June 2019. url: https:
//dspace.cuni.cz/handle/20.500.11956/108384 (visited on 10/13/2023).

[3] Jan Blechta and Martin Řehoř. “FENaPack – FEniCS Navier-Stokes pre-
conditioning package”. In: Proceedings of the FEniCS Conference 2017.
(University of Luxembourg, Luxembourg.). Ed. by Jack S. Hale. June
2017, pp. 14–15. doi: 10.6084/m9.figshare.5086369.

[4] Jed Brown et al. “Composable Linear Solvers for Multiphysics”. In: 2012
11th International Symposium on Parallel and Distributed Computing.
2012 11th International Symposium on Parallel and Distributed Comput-
ing (ISPDC). Munich, Germany: IEEE, June 2012, pp. 55–62. isbn: 978-
1-4673-2599-8. doi: 10.1109/ISPDC.2012.16. url: http://ieeexplore.
ieee.org/document/6341494/ (visited on 03/18/2021).

[5] Ana Budiša et al. “Rational Approximation Preconditioners for Multiphysics
Problems”. en. In: Numerical Methods and Applications. Ed. by Ivan Georgiev
et al. Lecture Notes in Computer Science. Cham: Springer Nature Switzer-
land, 2023, pp. 100–113. isbn: 978-3-031-32412-3. doi: 10.1007/978-3-
031-32412-3_9.

[6] Justin Chang, Ken Protasov, and Jeffery M. Allen. PFIBS: a Parallel
FEniCS Implementation of Block Solvers. 2022. url: https://github.
com/NREL/pfibs.

[7] Shuangshuang Chen et al. “Robust block preconditioners for poroelastic-
ity”. In: Computer Methods in Applied Mechanics and Engineering 369
(Sept. 2020), p. 113229. issn: 0045-7825. doi: 10.1016/j.cma.2020.
113229.

[8] Howard Elman, David Silvester, and Andy Wathen. Finite Elements and
Fast Iterative Solvers: with Applications in Incompressible Fluid Dynamics.
Oxford University Press, June 2014. isbn: 978-0-19-967879-2. doi: 10.
1093/acprof:oso/9780199678792.001.0001.

[9] Patrick E. Farrell et al. “A Reynolds-robust preconditioner for the Scott-
Vogelius discretization of the stationary incompressible Navier-Stokes equa-
tions”. In: The SMAI Journal of Computational Mathematics 7 (2021),
pp. 75–96. issn: 2426-8399. doi: 10.5802/smai-jcm.72.

[10] Robert C. Kirby and Lawrence Mitchell. “Solver Composition Across the
PDE/Linear Algebra Barrier”. en. In: SIAM Journal on Scientific Com-
puting 40.1 (Jan. 2018), pp. C76–C98. issn: 1064-8275, 1095-7197. doi:
10.1137/17M1133208.

[11] Fabian Laakmann, Patrick E. Farrell, and Lawrence Mitchell. “An Aug-
mented Lagrangian Preconditioner for the Magnetohydrodynamics Equa-
tions at High Reynolds and Coupling Numbers”. In: SIAM Journal on
Scientific Computing 44.4 (Aug. 2022). Publisher: Society for Industrial
and Applied Mathematics, B1018–B1044. issn: 1064-8275. doi: 10.1137/
21M1416539. (Visited on 11/17/2023).

8

https://dspace.cuni.cz/handle/20.500.11956/108384
https://dspace.cuni.cz/handle/20.500.11956/108384
https://doi.org/10.6084/m9.figshare.5086369
https://doi.org/10.1109/ISPDC.2012.16
http://ieeexplore.ieee.org/document/6341494/
http://ieeexplore.ieee.org/document/6341494/
https://doi.org/10.1007/978-3-031-32412-3_9
https://doi.org/10.1007/978-3-031-32412-3_9
https://github.com/NREL/pfibs
https://github.com/NREL/pfibs
https://doi.org/10.1016/j.cma.2020.113229
https://doi.org/10.1016/j.cma.2020.113229
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.1093/acprof:oso/9780199678792.001.0001
https://doi.org/10.5802/smai-jcm.72
https://doi.org/10.1137/17M1133208
https://doi.org/10.1137/21M1416539
https://doi.org/10.1137/21M1416539


[12] Michael Lange et al. “Efficient Mesh Management in Firedrake Using
PETSc DMPlex”. In: SIAM Journal on Scientific Computing 38.5 (Jan.
2016). Publisher: Society for Industrial and Applied Mathematics, S143–
S155. issn: 1064-8275. doi: 10.1137/15M1026092.

[13] Kent-Andre Mardal and Joachim Berdal Haga. “Block preconditioning of
systems of PDEs”. en. In: Automated Solution of Differential Equations by
the Finite Element Method. Ed. by Anders Logg, Kent-Andre Mardal, and
Garth Wells. Lecture Notes in Computational Science and Engineering 84.
Springer Berlin Heidelberg, Jan. 2012, pp. 643–655. isbn: 978-3-642-23098-
1 978-3-642-23099-8. doi: 10.1007/978-3-642-23099-8_35.

[14] Florian Rathgeber et al. “Firedrake: Automating the Finite Element Method
by Composing Abstractions”. In: ACM Transactions on Mathematical
Software (TOMS) 43.3 (Dec. 2016), 24:1–24:27. issn: 0098-3500. doi:
10.1145/2998441.

[15] Torgeir Rusten, Panayot Vassilevski, and Ragnar Winther. “Interior penalty
preconditioners for mixed finite element approximations of elliptic prob-
lems”. en. In: Mathematics of Computation 65.214 (1996), pp. 447–466.
issn: 0025-5718, 1088-6842. doi: 10.1090/S0025-5718-96-00720-X.

[16] Sebastien Varrette et al. “Management of an Academic HPC & Research
Computing Facility: The ULHPC Experience 2.0”. In: Proceedings of the
2022 6th High Performance Computing and Cluster Technologies Con-
ference. HPCCT ’22. New York, NY, USA: Association for Computing
Machinery, Oct. 2022, pp. 14–24. doi: 10.1145/3560442.3560445.

[17] Martin Řehoř and Jack S. Hale. “FEniCSx Preconditioning Tools”. In:
(Oct. 2022). doi: 10.6084/m9.figshare.21408294.

9

https://doi.org/10.1137/15M1026092
https://doi.org/10.1007/978-3-642-23099-8_35
https://doi.org/10.1145/2998441
https://doi.org/10.1090/S0025-5718-96-00720-X
https://doi.org/10.1145/3560442.3560445
https://doi.org/10.6084/m9.figshare.21408294

