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Parkinson’s Disease & higher order functional representations

Transmitting Receiving

—
Receptors ) [ 1 1%

€ 0=

Normal neuron

i

o £
——
i FS >—@
HA )
v <11 | { $ 4 4
| Sl I . § 1¢ %
ST S R b i
i I - ! )
Dopamine & { t
4 et —d : i
] 2 ey |
{ (PR PSR - o
{ -
! { | i Metabolism of
s
'\‘ 4
abols | = { Z T y
i Ee 41 } b
3 i
b ' . } J@DY Amino Acid
= 1 tab m .
!

. . - e v«g—-ﬁ_{—w_« -
SUbStantla nigra Metabolism of ‘f __Fc__:i\-—-i—-.—-d Biodegradation of
Complex Carbohydrates S l Xenobiotics
o e L ’
7
&

Metabolism of |
Complex Lipids NS I—— s—
s U —
8 gy o2
f i ‘ o !

[Ié

Neuron affected by Parkinson

Source: Adapted from shutterstock

« Single gene mutations?
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Schematic representation of metabolic networks

DiagnOSiS IS C“nical & dlfﬁCUIt Source: The Origin and Evolution of Metabolic
. EnV|ronmenta| faCtOFS (tox'ns)f) Pathways: Why and How did Primordial Cells

Construct Metabolic Routes?

« Mitochondrial genetics? o

: uni.ln | G



High throughput omics data into higher order functional features

Abundance matrix Aggregation based on Higher order Aggregated abundance
(mxn) database mappings aggregated matrix (mxp)
abundance

KEGG Aggregation statistics &
principal curves “Pathifier’
deregulation scores

)

Database Mappings

KEGG = Kyoto Encyclopedia of Genes and Genomes

m = number of samples

n = number of single-level features (i.e. genes, metabolites, etc)

p = number of higher order functional aggregates (e.g. number of pathways) | eessss



I Statistical differential analyses & time course analyses

Metabolomics aggregated data on ‘de novo’ patients Transcriptomics aggregated temporal profiles

Purine Metabolism, (Hypo) Xanthine/inosine containing Establishment of protein localization to postsynaptic membrane (GOBP)
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I Predictive PD diagnosis with ML models on transcriptomics

Line chart of crossvalidated AUC scores from models & pooling types on transcriptomics data
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Predictive PD diagnosis with ML models on metabolomics

Line chart of crossvalidated AUC scores from models on metabolomics data*
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External two-level cross-validation was used (including nested feature selection)
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Relevant features from predictive PD diagnosis met/transc

Shap values of (pathifier -aggregated) KEGG metabolic pathways predictors on random forest model

Polyamine Metabolism

Fructose, Mannose and Galactose Metabolism
Tryptophan Metabolism

Dihydrosphingomyelins

Glycolysis, Gluconeogenesis, and Pyruvate Metabolism
Purine Metabolism, (Hypo)Xanthine/Inosine containing
Phenylalanine Metabolism

Xanthine Metabolism

Nicotinate and Nicotinamide Metabolism

Fatty Acid Metabolism (Acyl Choline)

Gamma-glutamyl Amino Acid

Acetylated Peptides

Partially Characterized Molecules

Phospholipid Metabolism

Fatty Acid, Dihydroxy

Methionine, Cysteine, SAM and Taurine Metabolism
Androgenic Steroids

Lysoplasmalogen

Fatty Acid Metabolism (Acyl Carnitine, Monounsaturated)

Corticosteroids
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Relevant features from predictive PD diagnosis on metabolomics

Top 20 most relevant features per pooled aggregation based on shapley values

Median Pathifier

Phenylalanine Metabolism

Gamma-glutamyl Amino Acid

Xanthine Metabolism

Tryptophan Metabolism

Purine Metabolism, (Hypo)Xanthine/Inosine containing
Fatty Acid Metabolism (Acyl Choline)

Partially Characterized Molecules

Phospholipid Metabolism
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I Limitations & outlook for future analyses

X Unknown confounders

X Large variability among PD patients makes identifying common trends dfficult
X Data represents late stages of the disease

®» Modelling other PD prognostic outcomes (e.g. motor dysfunction scores)

®» Use a graph representation of the data via protein-protein interactions and metabolic networks
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Gene expression profile as a graph signal of the molecular network

Source: Chereda, H., 2022. Explaining decisions of graph convolutional neural networks for analyses of molecular
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