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Parkinson’s Disease & higher order functional representations

• Single gene mutations?
• Mitochondrial genetics?
• Environmental factors (toxins)?
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Diagnosis is clinical & difficult Schematic representation of metabolic networks
Source: The Origin and Evolution of Metabolic
Pathways: Why and How did Primordial Cells
Construct Metabolic Routes?
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High throughput omics data into higher order functional features
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KEGG = Kyoto Encyclopedia of Genes and Genomes
m = number of samples
n = number of single-level features (i.e. genes, metabolites, etc)
p = number of higher order functional aggregates (e.g. number of pathways) 

Aggregation statistics &
principal curves “Pathifier” 

deregulation scores



Statistical differential analyses & time course analyses
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Establishment of protein localization to postsynaptic membrane (GOBP)
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Transcriptomics aggregated temporal profilesMetabolomics aggregated data on ‘de novo’ patients
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Purine Metabolism, (Hypo) Xanthine/Inosine containing



Predictive PD diagnosis with ML models on transcriptomics
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External two-level cross-validation was used (including nested feature selection)
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Line chart of crossvalidated AUC scores from models & data types on temporal features
Line chart of crossvalidated AUC scores from models & pooling types on transcriptomics data



Predictive PD diagnosis with ML models on metabolomics
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External two-level cross-validation was used (including nested feature selection)

Line chart of crossvalidated AUC scores from models on metabolomics data*

*Pooling aggregations based on KEGG



Relevant features from predictive PD diagnosis met/transc
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Shap values of (pathifier -aggregated) KEGG metabolic pathways predictors on random forest model



Relevant features from predictive PD diagnosis on metabolomics
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Top 20 most relevant features per pooled aggregation based on shapley values

Phenylalanine Metabolism
Gamma-glutamyl Amino Acid
Xanthine Metabolism
Tryptophan Metabolism
Purine Metabolism, (Hypo)Xanthine/Inosine containing
Fatty Acid Metabolism (Acyl Choline)
Partially Characterized Molecules
Phospholipid Metabolism



Limitations & outlook for future analyses

• Modelling other PD prognostic outcomes (e.g. motor dysfunction scores)
• Use a graph representation of the data via protein-protein interactions and metabolic networks
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Gene expression profile as a graph signal of the molecular network
Source: Chereda, H., 2022. Explaining decisions of graph convolutional neural networks for analyses of molecular
subnetworks in cancer [Doctoral thesis, Georg-August-Universität Göttingen]

Unknown confounders 
Large variability among PD patients makes identifying common trends dfficult
Data represents late stages of the disease 
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