Machine learning for the study of Parkinson's Disease diagnosis and associated mechanisms

Elisa Gómez de Lope

Biomedical Data Science

University of Luxembourg, Luxembourg Center for Systems Biomedicine (LCSB)

Parkinson's Disease & higher order functional representations

Source: Adapted from shutterstock

- Single gene mutations?
- Mitochondrial genetics?
- Environmental factors (toxins)?

Diagnosis is clinical & difficult

Schematic representation of metabolic networks Source: The Origin and Evolution of Metabolic Pathways: Why and How did Primordial Cells Construct Metabolic Routes?

High throughput omics data into higher order functional features

KEGG = Kyoto Encyclopedia of Genes and Genomes

m = number of samples

n = number of single-level features (i.e. genes, metabolites, etc)

p = number of higher order functional aggregates (e.g. number of pathways)

Statistical differential analyses & time course analyses

Metabolomics aggregated data on 'de novo' patients

Transcriptomics aggregated temporal profiles

Predictive PD diagnosis with ML models on transcriptomics

External two-level cross-validation was used (including nested feature selection)

15-Nov-22

Predictive PD diagnosis with ML models on metabolomics

*Line chart of crossvalidated AUC scores from models on metabolomics data**

External two-level cross-validation was used (including nested feature selection)

15-Nov-22

Relevant features from predictive PD diagnosis met/transc

Shap values of (pathifier -aggregated) KEGG metabolic pathways predictors on random forest model

Relevant features from predictive PD diagnosis on metabolomics

Top 20 most relevant features per pooled aggregation based on shapley values

Phenylalanine Metabolism Gamma-glutamyl Amino Acid Xanthine Metabolism Tryptophan Metabolism Purine Metabolism, (Hypo)Xanthine/Inosine containing Fatty Acid Metabolism (Acyl Choline) Partially Characterized Molecules Phospholipid Metabolism

Limitations & outlook for future analyses

- VINKNOWN confounders
- X Large variability among PD patients makes identifying common trends dfficult
- ✗ Data represents late stages of the disease
- Modelling other PD prognostic outcomes (e.g. motor dysfunction scores)
- Use a graph representation of the data via protein-protein interactions and metabolic networks

Gene expression profile as a graph signal of the molecular network Source: Chereda, H., 2022. Explaining decisions of graph convolutional neural networks for analyses of molecular subnetworks in cancer [Doctoral thesis, Georg-August-Universität Göttingen]

Machine learning for the study of Parkinson's Disease diagnosis and associated mechanisms

Elisa Gómez de Lope Biomedical Data Science group Luxembourg Center for Systems Biomedicine (LCSB)

Find my poster here!

Enrico Glaab

A. Rauschenberger

L.-C. Tranchevent Q. Klopfenstein

R. Loo M. Ledda

M. Ali

