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Parameter estimation of discretely observed interacting particle

systems

Chiara Amorino∗, Akram Heidari∗, Vytautė Pilipauskaitė†, Mark Podolskij∗

Abstract

In this paper, we consider the problem of joint parameter estimation for drift and dif-
fusion coefficients of a stochastic McKean-Vlasov equation and for the associated system of
interacting particles. The analysis is provided in a general framework, as both coefficients
depend on the solution and on the law of the solution itself. Starting from discrete obser-
vations of the interacting particle system over a fixed interval [0, T ], we propose a contrast
function based on a pseudo likelihood approach. We show that the associated estimator is
consistent when the discretization step (∆n) and the number of particles (N) satisfy ∆n → 0
and N → ∞, and asymptotically normal when additionally the condition ∆nN → 0 holds.

Keywords: Asymptotic normality, consistency, interacting particle systems, McKean-Vlasov
equation, nonlinear diffusion, parameter estimation.
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1 Introduction

In this paper we focus on parametric estimation of interacting particle system of the form







dXθ,i,N
t = b

(
θ1,X

θ,i,N
t , µθ,N

t

)
dt+ a

(
θ2,X

θ,i,N
t , µθ,N

t

)
dW i

t , i = 1, ..., N, t ∈ [0, T ],

L
(
Xθ,1,N

0 , ...,Xθ,N,N
0

)
:= µ0 × ...× µ0.

(1)

Here the unknown parameter θ := (θ1, θ2) belongs to the set Θ := Θ1×Θ2, where Θj ⊂ R
pj , j =

1, 2, are compact and convex sets; we set p := p1+p2. The processes (W
i
t )t∈[0,T ], i = 1, . . . , N , are

independent R-valued Brownian motions, independent of the initial value (Xθ,1,N
0 , . . . ,Xθ,N,N

0 )

of the system and µθ,N
t is the empirical measure of the system at time t, i.e.

µθ,N
t :=

1

N

N∑

i=1

δ
Xθ,i,N

t
.

The model coefficients are functions b : U1×R×P2 → R and a : U2×R×P2 → R, where U1 and
U2 are two open sets containing Θ1 and Θ2, respectively, and P2 denotes the set of probability
measures on R with a finite second moment, endowed with the Wasserstein 2-metric

W2(µ, ν) :=
(

inf
m∈Γ(µ,ν)

∫

R2

|x− y|2m(dx, dy)
) 1

2

, (2)
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and Γ(µ, ν) denotes the set of probability measures on R
2 with marginals µ and ν. The under-

lying observations are
(
Xθ,i,N

tj,n

)i=1,...,N

j=1,...,n
,

where tj,n := Tj/n and ∆n := T/n is the discretization step. We assume that the time horizon
T is fixed, and N,n → ∞.

The interacting particle system is naturally associated to its mean field equation as N → ∞.
The latter is described by the 1-dimensional McKean-Vlasov SDE

dX̄θ
t = b

(
θ1, X̄

θ
t , µ̄

θ
t

)
dt+ a

(
θ2, X̄

θ
t , µ̄

θ
t

)
dWt, t ∈ [0, T ], (3)

where µ̄θ
t is the law of X̄θ

t and (Wt)t∈[0,T ] is a standard Brownian motion, independent of the

initial value X̄θ
0 having the law µ̄θ

0 := µ0. This equation is non-linear in the sense of McKean, see
e.g. [47, 48, 57]. It means, in particular, that the coefficients depend not only on the current state
but also on the current distribution of the solution. It is well known that, under appropriate
assumptions on the coefficients a and b, it is possible to obtain a phenomenon commonly named
propagation of chaos (see e.g. [57]). It implies that the empirical law µθ,N

t weakly converges to
µ̄θ
t as N → ∞. The McKean-Vlasov SDE in (3) links to a non-linear non-local partial differential

equation on the space of probability measures (see e.g. [10]), which naturally arises in several
applications in statistical physics. Indeed, stochastic systems of interacting particles and the
associated McKean non-linear Markov processes have been introduced in 1966 in [47] starting
from statistical physics, to model the dynamics of plasma. Their importance has increased in
time, and a huge number of probabilistic tools have been progressively developed in this context
(see [10, 24, 45, 49], just to name a few).

On the other hand, however, statistical inference in this framework remained out of reach
for many years (except for the early work of Kasonga in [41]), mainly as microscopic particle
systems derived from statistical physics are not directly observable. Later on, McKean-Vlasov
models found applications in several other fields, in which the data is observable. Nowadays,
these models are used in finance (smile calibration in [36]; systemic risk in [27]) as well as social
sciences (opinion dynamics in [12]) or mean-field games (see e.g. [9, 21, 33]). Moreover, some
applications in neuroscience and population dynamics can be found respectively in [4] and [50].
At the same time, the interest in analysis of statistical models related to PDEs has gradually
increased. A clear illustration of that is provided by the works on nonparametric Bayes and
uncertainty quantification for inverse problems, as in [1, 53, 54].

Motivated by the increasing interest in statistical inference for McKean-Vlasov processes,
we aim at estimating jointly the parameters θ1, θ2 starting from the discrete observations of
the interacting particle systems (1) over a fixed time interval [0, T ]. Despite recent interest in
the study of the McKean-Vlasov SDEs, the problem of parameter estimation for this class has
received relatively little attention. In [59] the authors established asymptotic consistency and
normality of the maximum likelihood estimator for a class of McKean-Vlasov SDEs with con-
stant diffusion coefficient, based on the continuous observation of the trajectory. This has been
extended to the path dependent case in [44]. The mean field regime has been firstly considered
by Kasonga in [41], who studied a system of interacting diffusion processes depending linearly in
the drift coefficient on some unknown parameter. Starting from continuous observation of the
system over a fixed time interval [0, T ], he showed that the MLE is consistent and asymptoti-
cally normal as N → ∞. This has been extended in [55] to the case where the parametrisation
is not linear, while Bishwal [6] extended it to the case where only discrete observations of the
system are available and the parameter to be estimated is a function of time. In [33] the au-
thors develop an asymptotic inference approach based on the approximation of the likelihood
function for mean-fields models of large interacting financial systems. Moreover, Chen [13] has
established the optimal convergence rate for the MLE in the large N and large T case. Even in
this work the drift coefficient is linear and the diffusion coefficient is constant.
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Let us also mention the works [31, 32], where parametric inference for a particular class of
nonlinear self-stabilizing SDEs is studied, starting from continuous observation of the non-linear
diffusion. Some different asymptotic regimes are considered, such as the small noise and the
long time horizon. The problem of the semiparametric estimation of the drift coefficient starting
from the observation of the particle system at time T , for T → ∞ is studied in [5], while [17]
considers non-parametric estimation of the drift term in a McKean-Vlasov SDE, based on the
continuous observation of the associated interacting particle system over a fixed time horizon.

None of these works, however, consider the problem of the joint estimation of the drift
and diffusion coefficients. Moreover, not only we are not aware of any work about parameter
estimation for interacting particle system where the diffusion coefficient can depend on the
solution and on the law of the solution itself, but in the majority of the above mentioned work
the diffusion coefficient is directly assumed to be constant. We consider a more general model,
as in (1), motivated by several applications in which the diffusion coefficient depends on the
law. For example, this is the case in mathematical finance for the calibration of local and
stochastic volatility models, with applications connected to the Dupire’s local volatility function
(see [7, 37, 43]). Moreover, they are used to capture the diversity of a financial market, as in
[51].

We underline that the joint estimation of the two parameters introduces some significant
difficulties: since the drift and the diffusion coefficient parameters are not estimated at the same
rate, we have to deal with asymptotic properties in two different regimes. Another challenge
comes from the fact that both coefficients depend on the empirical law of the process. This
introduces some complexity compared to the case where a is constant.

A natural approach to estimation of unknown parameters in our context would be to use a
maximum likelihood estimation. However, the likelihood function based on the discrete sample
is not tractable in this setting, since it depends on the transition densities of the process, which
are not explicitly known. To overcome this difficulty several methods have been developed, in
the case of high frequency estimation for discretely observed classical SDEs. A widely-used
method is to consider a pseudo likelihood function, for instance based on the high frequency
approximation of the dynamic of the process by the dynamic of the Euler scheme, see for example
[25, 42, 60].

Our statistical analysis is based upon minimisation of a contrast function, which is similar in
spirit to the methods [25, 42, 60] that have been proposed in the setting of classical SDEs. The
main result of the paper is the consistency and asymptotic normality of the resulting estimator,
which is showed by using a central limit theorem for martingale difference triangular arrays.
The convergence rates for estimation of the two parameters are different, which leads us to
the study of the asymptotic properties of the contrast function in two different asymptotic
schemes. Moreover, to illustrate our main results, we present numerical experiments for two
models of interacting particle systems. Specifically, the first model is linear, while the second is
a stochastic opinion dynamics model. While it is feasible to express the estimator explicitly for
the linear model, the estimator for the stochastic opinion dynamics model is implicit and can
only be obtained numerically. Our results show that the proposed estimators perform well in
both cases.

We emphasize that our inference is made on the time horizon [0, T ] with T being fixed.
It is well known that it is impossible to estimate the drift parameter of a classical SDE on a
finite time horizon. However, due to increasing number of particles, we are able to consistently
estimate the drift even when T is fixed. Moreover, it is worth remarking that our results apply
to the system of N independent copies of a diffusion process as a special case. Non-parametric
statistical inference for this type of system can be found for example in [14, 46, 20] (see also
references therein). Closer to the purpose of our work, [16, 19] discuss parameter estimation
from discrete observations of independent copies of a diffusion process with mixed (or fixed)
effects. Specifically, joint estimation of a fixed effect in the diffusion coefficient and parameters
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of the special distribution of a random effect (or a fixed effect) in the drift coefficient of the
SDE is shown possible with the same rates of convergence in the same asymptotic framework
as ours. Interested readers can find further references about SDEs with random effects in the
aforementioned papers.

The outline of the paper is as follows. In Section 2 we present the estimation approach, list
the required assumptions and demonstrate some examples. Section 3 is devoted to main results
of the paper, which include consistency and asymptotic normality of the estimator. Section 4 is
devoted to numerical experiments. In Section 5 we provide the technical lemmas we will use in
order to show our main results. The proofs of the main results are collected in Section 6 while
the technical results are shown in Section 7.

Notation

Throughout the paper all positive constants are denoted by C or Cq if they depend on an
external parameter q. All vectors are row vectors, ‖ · ‖ denotes the Euclidean norm for vectors.
We write f(θ) = f(θ1, θ2) for θ = (θ1, θ2). For r = 0, 1, . . . , we denote by Cr(X;R) the set of r
times continuously differentiable functions f : X → R. We denote by ∂xf the partial derivative
of a function f(x, y, . . . ) with respect to x. We denote by ∇θjf the vector (∂θj,1f, . . . , ∂θj,pj f),

j = 1, 2, and ∇θf = (∇θ1f,∇θ2f). We say that a function f : R×Pl → R has polynomial growth
if

|f(x, µ)| ≤ C(1 + |x|k +W l
2(µ, δ0)) (4)

for some k, l = 0, 1, . . . and all (x, µ) ∈ R×Pl, where Pl denotes the set of probability measures
on R with a finite l-th absolute moment. For p ∈ [1,∞), the Wasserstein p-metric between two
probability measures µ and ν in Pp is given as

Wp(µ, ν) :=
(

inf
m∈Γ(µ,ν)

∫

R2

|x− y|pm(dx, dy)
) 1

p
;

where Γ(µ, ν) denotes the set of probability measures on R
2 with marginals µ and ν. Finally,

we suppress the dependence of several objects on the true parameter θ0. In particular, we write
P := P

θ0 , E := E
θ0 , Xi,N

t := Xθ0,i,N
t , X̄t := X̄θ0

t , µN
t := µθ0,N

t and µ̄t := µ̄θ0
t . Furthermore, we

denote by
P−→,

L−→,
Lp

−→ the convergence in probability, in law, in Lp respectively. We also denote
the value a2(θ2, x, µ) as c(θ2, x, µ).

2 Minimal contrast estimator, assumptions and examples

We aim at estimating the unknown parameter θ0 = (θ0,1, θ0,2) ∈ Θ◦ given equidistant discrete
observations of the system introduced in (1). We study the asymptotic regime N,n → ∞.

The estimator we propose is based upon a contrast function, which originates from the
Gaussian quasi-likelihood. Starting from discrete observations of the model there are difficulties
due to the fact that the transition density of the process is unknown. A common way to overcome
this issue is to base the inference on a discretization of the continuous likelihood (see for example
[29], [42] and [60] where classic SDEs are considered). This motivates us to consider the following
contrast function:

SN
n (θ) :=

N∑

i=1

n∑

j=1

{(
Xi,N

tj,n
−Xi,N

tj−1,n
−∆nb

(
θ1,X

i,N
tj−1,n

, µN
tj−1,n

))2

∆nc
(
θ2,X

i,N
tj−1,n

, µN
tj−1,n

) + log c
(
θ2,X

i,N
tj−1,n

, µN
tj−1,n

)

}

,

(5)
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for θ = (θ1, θ2). The estimator θ̂Nn = (θNn,1, θ
N
n,2) of θ0 is obtained as

θ̂Nn ∈ argmin
θ∈Θ

SN
n (θ).

Comparing SN
n (θ) with the contrast function for parameter estimation for classical SDEs, the

main difference consists in the fact that we have now an extra sum over the number of interacting
diffusion processes. The interaction depends on the empirical measure of the system. The
dependence of the drift and diffusion coefficients on the measure can take a general form. In
order to meet this challenge and prove some asymptotic properties for θ̂Nn we need to introduce
a set of assumptions. The first two assumptions ensure the system’s existence and uniqueness,
while the next two impose additional regularity conditions on the coefficients a and b.

A1. (Boundedness of moments) For all k ≥ 1,
∫

R

|x|kµ0(dx) ≤ Ck.

A2. (Lipschitz condition) The drift and diffusion coefficients are Lipschitz continuous in (x, µ),
i.e. for all θ there exists C such that for all (x, µ), (y, ν) ∈ R× P2,

|b(θ1, x, µ)− b(θ1, y, ν)|+ |a(θ2, x, µ)− a(θ2, y, ν)| ≤ C(|x− y|+W2(µ, ν)).

A3. (Regularity of the diffusion coefficient) The diffusion coefficient is uniformly bounded away
from 0:

inf
(θ2,x,µ)∈Θ2×R×P2

c(θ2, x, µ) > 0.

A4. (Regularity of the derivatives) (I) For all (x, µ), the functions b(·, x, µ), a(·, x, µ) are in
C3(U1;R), C3(U2;R) respectively. Furthermore, all their partial derivatives up to order three
have polynomial growth, in the sense of (4), uniformly in θ.
(II) The first and second order derivatives in θ are locally Lipschitz in (x, µ) with polynomial
weights, i.e. for all θ there exists C > 0, k, l = 0, 1, . . . such that for all r1 + r2 = 1, 2, h1, h2 =
1, ..., p1, h̃1, h̃2 = 1, ..., p2, (x, µ), (y, ν) ∈ R× P2,
∣
∣∂r1

θ1,h1
∂r2
θ1,h2

b(θ1, x, µ)− ∂r1
θ1,h1

∂r2
θ1,h2

b(θ1, y, ν)
∣
∣+
∣
∣∂r1

θ
2,h̃1

∂r2
θ
2,h̃2

a(θ2, x, µ)− ∂r1
θ
2,h̃1

∂r2
θ
2,h̃2

a(θ2, y, ν)
∣
∣

≤ C(|x− y|+W2(µ, ν))
(
1 + |x|k + |y|k +W l

2(µ, δ0) +W l
2(ν, δ0)

)
.

Remark 2.1. (i) It is possible to relax assumption A2 on the drift coefficient to allow for a
locally Lipschitz condition in x with polynomial weights, cf. [22, Assumption 2.1]. In this setting
the boundedness of moments shown in our Lemma 5.1 can be replaced by [23, Theorem 3.3] and
the propagation of chaos needed in order to prove Lemma 5.2 would follow from [22, Proposition
3.1]. As a consequence the main results of this paper still hold.

(ii) A4(I) is sufficient to show consistency of the estimator θ̂Nn . We require the additional
condition (II) of A4 to prove the asymptotic normality.

We now state an assumption on the identifiability of the model and some further conditions
that are required to prove the asymptotic normality. For this purpose we define the functions
I : Θ → R, J : Θ2 → R as

I(θ) :=

∫ T

0

∫

R

(b(θ1, x, µ̄t)− b(θ0,1x, µ̄t))
2

c(θ2, x, µ̄t)
µ̄t(dx)dt, (6)

J(θ2) :=

∫ T

0

∫

R

(c(θ0,2, x, µ̄t)

c(θ2, x, µ̄t)
+ log c(θ2, x, µ̄t)

)

µ̄t(dx)dt, (7)

where recall that µ̄t stands for µ̄
θ0
t . The next set of conditions are the following assumptions.
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A5. (Identifiability) The functions I, J defined above satisfy that for every ε > 0,

inf
θ∈Θ:‖θ1−θ0,1‖≥ε

I(θ) > 0 and inf
θ2∈Θ2:‖θ2−θ0,2‖≥ε

(J(θ2)− J(θ0,2)) > 0.

A6. (Invertibility) We define a p × p block diagonal matrix Σ(θ0): = diag(Σ(1)(θ0),Σ
(2)(θ0))

whose main-diagonal blocks Σ(j)(θ0) = (Σ
(j)
kl (θ0)) are defined via

Σ
(j)
kl (θ0): =







2

∫ T

0

∫

R

∂θ1,kb(θ0,1, x, µ̄t) ∂θ1,lb(θ0,1, x, µ̄t)

c(θ0,2, x, µ̄t)
µ̄t(dx)dt, j = 1, k, l = 1, . . . , p1,

∫ T

0

∫

R

∂θ2,kc(θ0,2, x, µ̄t) ∂θ2,lc(θ0,2, x, µ̄t)

c2(θ0,2, x, µ̄t)
µ̄t(dx)dt, j = 2, k, l = 1, . . . , p2.

We assume that det(Σ(j)(θ0)) 6= 0, j = 1, 2.

A7. (Integral condition on the diffusion coefficient) At θ0,2 for all (x, µ) the diffusion coefficient
takes the form

a(θ0,2, x, µ): = ã
(

x,

∫

R

K(x, y)µ(dy)
)

for some functions ã,K ∈ C2(R2;R), which satisfy |∂r1
x ∂r2

y ã(x, y)| + |∂r1
x ∂r2

y K(x, y)| ≤ C(1 +

|x|k + |y|l) for some k, l = 0, 1, . . . and all r1 + r2 = 1, 2, (x, y) ∈ R
2.

Assumptions A1-A5 are required to prove the consistency of our estimator and are relatively
standard in the literature for statistics of random processes. However, Assumption A5 deserves
some extra attention, as the quantities I(θ) and J(θ) are not at all explicit due to the presence
of µ̄t. Hence, it may be difficult to check Assumption A5 in practice and the identifiability of
all parameters may not always be possible. In order to delve deeper into the topic, we refer to
Section 2.4 in [18], where the authors have provided a thorough analysis. More specifically, for es-
timating the drift from continuous observations, they have identified explicit criteria that enable
obtaining both identifiability and non-degeneracy of the Fisher information matrix. Notably, for
a certain type of likelihood, they have established a connection between global identifiability and
non-degeneracy of the Fisher information, which is highlighted in [18, Proposition 16]. It could
be interesting to understand if it possible to prove an analogous proposition in our context, even
if this is out of the purpose of the paper and it is therefore left for further investigation.

The additional conditions A6-A7 are needed to obtain the central limit theorem, even if they
are not of the same type. Indeed, A6 is an invertibility condition which is always required when
one wants to prove asymptotic normality. InA6, note that ∂θ1,kb(θ0,1, x, µ̄t) and ∂θ2,kc(θ0,2, x, µ̄t)

are respectively ∂θ1,kb(θ0,1, x, µ)|µ=µ̄t and ∂θ2,kc(θ0,2, x, µ)|µ=µ̄t , whereas µ̄t stands for µ̄θ0
t . On

the other hand, A7 is a technical condition needed in order to obtain the first statement of
Lemma 5.3. We shed light to the fact that the bounds in Lemma 5.3 are stated for θ0 and
similarly we ask to A7 to be valid exclusively for the true parameter value θ0,2. Naturally, both
ã and K in A7 can be functions on Θ2 × R

2 with the first argument fixed at θ0,2.
We also remark that, in the case where the unknown parameter θ appears only in the drift

coefficient, there is no need to add a further assumption on the derivatives of the diffusion
coefficient to estimate it, even if the diffusion coefficient still depends on the law of the process.

Example 2.2. A number of interacting particle models (and associated mean field equations)
have been analyzed in the literature. We highlight a few here to illustrate the scope of our paper.
We start by considering some examples where the diffusion coefficient is a constant on a compact
set that does not include the origin. This case has several applications (see (i) and (ii)). After
that, some more general examples are presented.

(i) The Kuramoto model is the most classical model for synchronization phenomena in large
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populations of coupled oscillators such as a clapping crowd, a population of fireflies or a system
of neurons (see Section 5.2 of [11] and references therein). Let N oscillators be defined by N
angles Xi,N

t , i = 1, . . . , N (defined modulo 2π, in this way they can actually be considered as
elements of the circle), evolving in t ∈ [0, T ] according to

dXi,N
t = −θ0,1

N

N∑

j=1

sin
(
Xi,N

t −Xj,N
t

)
dt+ θ0,2dW

i
t .

This variant of the model satisfies our assumptions.

(ii) A popular model for opinion dynamics (see e.g. [12, 52]) takes the form

dXi,N
t = − 1

N

N∑

j=1

ϕθ0,1

(∣
∣Xi,N

t −Xj,N
t

∣
∣
)(
Xi,N

t −Xj,N
t

)
dt+ θ0,2dW

i
t

for i = 1, . . . , N , t ∈ [0, T ], where ϕθ0,1(x) := θ0,1,11[0,θ0,1,2](x), x ∈ R, is the influence function
which acts on the “difference of opinions” between agents. To have our regularity assumptions
hold true in practice we can replace the function ϕθ0,1 by its infinitely differentiable approxi-
mation as it is done in Section 5.2 of [55]. In [55] we also note that the proxy of ϕθ0,1 depends
non-linearly on the parameter θ0,1,2.

(iii) Another example is

dXi,N
t =

(

θ0,1,1 +
θ0,1,2
N

N∑

j=1

Xj,N
t − θ0,1,3X

i,N
t

)

dt+ θ0,2

√

1 +
(
Xi,N

t

)2
dW i

t

for i = 1, . . . , N , t ∈ [0, T ]. We note that in the case θ0,1,2 = 0 the interacting particle system
reduces to N independent samples of a special case of the Pearson diffusion, which has applica-
tions in finance, see [26] and references therein.

(iv) We consider the dynamic of the system

dXi,N
t =

(

θ0,1,1 +
θ0,1,2
N

N∑

j=1

Xj,N
t − θ0,1,3X

i,N
t

)

dt+
(

θ0,2,1 + θ0,2,2

√
√
√
√

1

N

N∑

j=1

(
Xj,N

t

)2
)

dW i
t

for i = 1, . . . , N in t ∈ [0, T ], where both the coefficients b and a depend on the law argument. We
remark that the mean field limit of the above interacting particle system is a time-inhomogeneous
Ornstein-Uhlenbeck process. See [41] for the case θ0,1,1 = θ0,2,2 = 0.

Some remarks are in order. Example (iv), where θ0,2,2 = 0, has been thoroughly discussed
in Section 4.1 of [18], specifically, with regard to the restrictions on µ0 and θ0,1 that ensure the
latter parameter satisfies A5, A6. In examples (i), (iii) and (iv), where either θ0,2,1 or θ0,2,2 is set
to 0, it is obvious that A5, A6 hold for θ0,2 6= 0. Finally, we note that in examples (i), (iii), and
(iv), where either θ0,2,1 or θ0,2,2 is set to 0, the drift and diffusion coefficients are respectively
linear and multiplicative functions of θ, which allows us to solve our estimator in closed form.

3 Main results

Our main results demonstrate the consistency and the asymptotic normality of the estimator
θ̂Nn .
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Theorem 3.1. (Consistency) Assume that A1-A5 hold, with only condition (I) in A4. Then
the estimator θ̂Nn is consistent in probability:

θ̂Nn
P−→ θ0 as n,N → ∞.

In order to obtain the asymptotic normality of our estimator we need to add an assumption on
the relation between the rates N and ∆n. In particular, we require that N∆n → 0 as N,n → ∞.

Theorem 3.2. (Asymptotic normality) Assume that A1-A7 hold. If N∆n → 0 then

(√
N(θ̂Nn,1 − θ0,1),

√

N/∆n(θ̂
N
n,2 − θ0,2)

) L−→ N
(
0, 2(Σ(θ0))

−1
)

as n,N → ∞,

where
2(Σ(θ0))

−1: = 2diag
(
(Σ(1)(θ0))

−1, (Σ(2)(θ0))
−1
)

with Σ(j)(θ0), j = 1, 2, being defined in A6.

As common in the literature on contrast function based methods, understanding the asymptotic
behaviour of SN

n (θ1, θ2) and its derivatives is key to obtain the statements of Theorems 3.1 and
3.2. In particular, we show that, under proper normalisation, the first derivative of SN

n (θ1, θ2)
converges to a Gaussian law with mean 0 and covariance matrix 2Σ(θ0) (see Proposition 6.2),
while the second derivative converges in probability to the matrix Σ(θ0) defined in A6 (see
Proposition 6.3). These results lead to the statement of Theorem 3.2.

The condition on the rate, at which the discretization step ∆n converges to 0, has been
discussed in detail in the framework of classical SDEs. In this context, one disposes discrete
observations of the trajectory of only one particle up to a time T := n∆n → ∞. In [25] the
corresponding condition was T∆n = n∆2

n → 0 as n → ∞, which has been later improved to
n∆3

n → 0 in [60] thanks to a correction introduced in the contrast function. Finally, Kessler
[42] proposed a contrast function based on a Gaussian approximation of the transition density,
which allowed him to consider a weaker condition n∆p

n → 0 for an arbitrary integer p. Similar
developments have been made in the setting of classical SDEs with jumps in [2, 3, 34, 56].

One may wonder if it possible to weaken the condition on the discretization step in the
context of interacting particle systems. For a system of independent copies of a diffusion process
with random and/or fixed effects, [15, 16, 19] require it in the same asymptotic framework as
ours. In [16] also the rates of convergence of the estimators towards the parameters θ1 of the
distribution of a random effect in the drift coefficient, and the fixed effect θ2 in the diffusion
coefficient, are shown to be the same as ours. On the one hand, the condition N∆n → 0 allows
us to approximate the derivative of the contrast function with a triangular array of martingale
increments, as it is the case for classical SDEs. For this step, higher order approximations,
similar to those in [42], could potentially help us relax this condition. On the other hand, we
need it because of the correlation between particles and higher order approximations do not
seem to solve this issue. Thus, we leave this investigation for future research.

A recent paper [18] establishes the LAN property for drift estimation in d-dimensional
McKean-Vlasov models under continuous observations and with diffusion coefficient being a
function of (t, X̄t) only. The authors show that the Fisher information matrix is given as

(
∫ T

0

∫

Rd

∂θ1,k(c
− 1

2 b)(θ0,1, t, x, µ̄t)
⊤∂θ1,l(c

− 1

2 b)(θ0,1, t, x, µ̄t)µ̄t(dx)dt

)

1≤k,l≤p1

(8)

(cf. [55] where the diffusion coefficient is an identity matrix). This is consistent with our Theorem
3.2 when restricted to drift estimation. In other words, our drift estimator is asymptotically
efficient. When considering joint estimation of the drift and diffusion coefficients, the LAN
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property has not yet been shown, although the results of Gobet [35] in the classical diffusion
setting give some hope. Indeed, Gobet [35] has shown that for classical SDEs, in the ergodic
case, the Fisher information for the drift parameter is given by

(Γθ0
b )k,l =

∫

R

∂θ1,kb(θ0,1, x) ∂θ1,lb(θ0,1, x)

c(θ0,2, x)
π(dx)

for k, l = 1, . . . , p1, while the one for the diffusion parameter is given by

(Γθ0
a )k,l =

∫

R

∂θ2,kc(θ0,2, x) ∂θ2,lc(θ0,2, x)

c2(θ0,2, x)
π(dx)

for k, l = 1, ..., p2, where π is the invariant density associated to the diffusion. As Γθ0
b modifies to

(8) for McKean-Vlasov models, one could expect that Γθ0
a modifies to our asymptotic variance

as well. This is left for further investigation.

4 Numerical examples

We will now examine the finite-sample performance of the introduced estimator θ̂Nn on two
examples of interacting particle systems.

4.1 Linear model

Consider an interacting particle system of the form:

dXi,N
t = −

(

θ1,1X
i,N
t +

θ1,2
N

N∑

j=1

(Xi,N
t −Xj,N

t )
)

dt+
√

θ2dW
i
t , (9)

where i = 1, ..., N , t ∈ [0, T ], for some θ1 = (θ1,1, θ1,2) ∈ R
2, θ1,1 6= 0, θ1,1 + θ1,2 6= 0, θ2 > 0

and
∫

R
xµ0(dx) 6= 0. In this model, the parameter θ1,1 determines the intensity of attraction

of each individual particle towards zero, while θ1,2 governs the degree of interaction, which is
the attraction of each individual particle towards the empirical mean. Notably, for θ1,2 = 0, the

processes (Xi,N
t )t∈[0,T ], i = 1, . . . , N , are independent.

Recall that for θ2 = 1, estimation of the parameter θ1 from a continuous observation of the
system has been studied in [41, 55]. Since the drift and squared diffusion coefficients in (9) are
linear in θ := (θ1, θ2), it is possible to find our estimator θ̂Nn in the closed form similarly as in
[41, 55]:

θ̂Nn,1,1 =
AN

n −BN
n

DN
n − CN

n

, θ̂Nn,1,2 =
AN

n DN
n −BN

n CN
n

(CN
n )2 − CN

n DN
n

, (10)

where

AN
n :=

1

N

N∑

i=1

n∑

j=1

(Xi,N
tj−1,n

− X̄N
tj−1,n

)(Xi,N
tj,n

−Xi,N
tj−1,n

), BN
n :=

1

N

N∑

i=1

n∑

j=1

Xi,N
tj−1,n

(Xi,N
tj,n

−Xi,N
tj−1,n

),

CN
n :=

∆n

N

N∑

i=1

n∑

j=1

(Xi,N
tj−1,n

− X̄N
tj−1,n

)2, DN
n :=

∆n

N

N∑

i=1

n∑

j=1

(Xi,N
tj−1,n

)2

with X̄N
tj−1,n

:= N−1
∑N

k=1X
k,N
tj−1,n

, and then

θ̂Nn,2 =
1

NT

N∑

i=1

n∑

j=1

(

Xi,N
tj,n

−Xi,N
tj−1,n

+∆n

(

θ̂Nn,1,1X
i,N
tj−1,n

+
θ̂Nn,1,2
N

N∑

j=1

(Xi,N
tj−1,n

−Xj,N
tj−1,n

)
))2

.

(11)
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To illustrate the finite sample performance of θ̂Nn , we choose θ = (θ1,1, θ1,2, θ2) = (0.5, 1, 1)
and µ0 = δ1 as in [55]. We simulate 1000 solutions of the system given by (9) using the Euler
method with a step size of 0.01. We obtain observations of the system — data sets for all
possible combinations of T = 50, 100, ∆n = 0.1, 0.05, 0.01 and N = 50, 100. Table 3 presents the
effect of N , ∆n, T on the performance of θ̂Nn . As N or T increases, the sample RMSE and bias
of θ̂Nn,1 decrease, whereas that of θ̂Nn,2 do not change significantly. However, as ∆n gets smaller,

the performance of θ̂n,2 improves, as well as that of θ̂Nn,1,2.

N = 50 100 50 100
(∆n, T ) = (0.1, 50) (0.1, 50) (0.1, 100) (0.1, 100)

θ̂Nn,1,1 0.10 (0.00) 0.08 (0.00) 0.08 (0.00) 0.07 (0.00)

θ̂Nn,1,2 0.15 (-0.10) 0.13 (-0.10) 0.13 (-0.10) 0.12 (-0.10)

θ̂Nn,2 0.12 (-0.12) 0.12 (-0.12) 0.12 (-0.12) 0.12 (-0.12)

(∆n, T ) = (0.05, 50) (0.05, 50) (0.05, 100) (0.05, 100)

θ̂Nn,1,1 0.10 (0.01) 0.08 (0.01) 0.08 (0.01) 0.07 (0.00)

θ̂Nn,1,2 0.12 (-0.05) 0.10 (-0.05) 0.10 (-0.05) 0.09 (-0.05)

θ̂Nn,2 0.06 (-0.06) 0.06 (-0.06) 0.06 (-0.06) 0.06 (-0.06)

(∆n, T ) = (0.01, 50) (0.01, 50) (0.01, 100) (0.01, 100)

θ̂Nn,1,1 0.11 (0.01) 0.08 (0.01) 0.09 (0.01) 0.07 (0.01)

θ̂Nn,1,2 0.11 (-0.02) 0.09 (-0.01) 0.09 (-0.01) 0.07 (-0.01)

θ̂Nn,2 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

Table 1: Sample RMSE (and bias in brackets) of θ̂Nn for θ = (0.5, 1, 1) and different values of N ,
∆n, T . The number of replications is 1000.

We note that the numerical results presented above for ∆n = 0.01 can be viewed as the
maximum likelihood estimation. Indeed, our contrast function up to a negative constant is the
log-likelihood function for the Euler approximation with the same step ∆n. Therefore, it is
difficult to improve upon the estimation provided in the last lines of Table 1. Interestingly, the
performance of our estimator for ∆n = 0.1 and ∆n = 0.05 is quite similar to that of ∆n = 0.01,
particularly with respect to the RMSE for the estimation of θ̂Nn,1,1 and θ̂Nn,1,2.

One possible application of our Theorem 3.2 is to test the hypothesis of noninteraction of
particles similarly as in [41]. Consider the null hypothesis H0 : θ1,2 = 0 and the alternative
H1 : θ1,2 6= 0. According to Theorem 3.2, if N∆n → 0, then

√
N(θ̂Nn,1,2 − θ1,2)

L−→ N (0, V (θ)),

where
V (θ) := 2Σ

(1)
11 (θ)/(Σ

(1)
11 (θ)Σ

(1)
22 (θ)−Σ

(1)
12 (θ)Σ

(1)
21 (θ)),

and for all i, j = 1, 2,

Σ
(1)
ij (θ) :=







2θ−1
2

∫ T

0

∫

R

x2µ̄t(dx)dt, i = j = 1,

2θ−1
2

∫ T

0

∫

R

(

x−
∫

R

yµ̄t(dy)
)2

µ̄t(dx)dt, else,

can be explicitly computed in terms of the model parameters, see [41, 55]. By using Lemma
5.2 and Theorem 3.1, we have that

V N
n :=θ̂Nn,2D

N
n /((DN

n −CN
n )CN

n )
P−→ V (θ) as n,N → ∞.
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Therefore, if N∆n → 0, under H0, we can conclude that

ZN
n :=θ̂Nn,1,2

√

N/V N
n

L−→ N (0, 1) as n,N → ∞.

Thus, we reject H0 if
|ZN

n | > zα/2,

where α ∈ (0, 1) is the chosen level of significance and zα denotes the α-quantile of the standard
normal distribution.

Next, we examine the performance of the test statistic ZN
n . We simulate 1000 solutions of the

system given by (9) with µ0 = δ1, using the Euler method with a step size of 0.01. Table 2 reports
the rejection rates of H0 in favor of H1 at a significance level of α = 5% using ZN

n for all possible
combinations of N,T = 50, 100, ∆n = 0.1 and θ = (0.5, θ1,2, 1), where θ1,2 = 0, 0.1, 0.25, 0.5,
or 1. The empirical size is quite well observed. Rejection rates of incorrect H0 increase with
increasing θ1,2 or N and T .

θ1,2 (N,T ) = (50, 50) (100, 50) (50, 100) (100, 100)

0 4.8 4.6 4.2 4.1
0.1 17.8 22.5 21.4 28.9
0.25 61.3 78.2 75.6 87.0
0.5 97.2 99.7 99.8 99.9
1 100.0 100.0 100.0 100.0

Table 2: Rejection rates (in %) of H0 : θ1,2 = 0 vs. H1 : θ1,2 6= 0 at level α = 5% with ZN
n for

θ = (0.5, θ1,2, 1), ∆n = 0.1 and different values of N,T . The number of replications is 1000.

4.2 Stochastic opinion dynamics model

We now consider an interacting particle system that can model opinion dynamics:

dXi,N
t = − 1

N

N∑

j=1

ϕθ1(|Xi,N
t −Xj,N

t |)(Xi,N
t −Xj,N

t )dt+
√

θ2dW
i
t , (12)

where i = 1, ..., N , t ∈ [0, T ], and

ϕθ1(x) := θ1,2 exp
(

− 0.01

1− (x− θ1,1)2

)

1[θ1,1−1,θ1,1+1](x), x ∈ R,

for some −1 < θ1,1 ≤ 1, θ1,2 > 0, θ2 > 0. The interaction kernel ϕθ1(x) provides an infinitely dif-
ferentiable approximation to the scaled indicator function θ1,21[0,θ1,1+1](x), x ≥ 0. We interpret
that θ1,1 governs the intensity of attraction of each individual particle towards the scaled em-
pirical mean of all the others within a distance θ1,1+1. The position of each particle represents
its opinion, and over time, the opinions of particles merge into metastable ”soft clusters”. For
further information on this stochastic opinion dynamics model, see [55] and references therein.

Note that the squared diffusion coefficient is a multiplicative function of θ2 which enables us
to express θ̂Nn,2 in terms of (θ̂Nn,1,1, θ̂

N
n,1,2). However, the latter estimator is implicit and can only

be found using a numerical method. To illustrate the performance of θ̂Nn = (θ̂Nn,1,1, θ̂
N
n,1,2, θ̂

N
n,2) we

choose the parameter θ = (θ1,1, θ1,2, θ2) = (−0.5, 2, 0.04) as in [55], and the initial distribution
µ0 = N (0, 1) for each individual particle. We simulate 1000 solutions of the system given by
(12) using the Euler method with a step size of 0.01. We obtain 1000 data sets for ∆n = 0.1
and all possible combinations of N,T = 50, 100 as in the previous subsection. Table 3 presents
the effect of N , T on the performance of θ̂Nn . As N increases, the sample RMSE and bias of θ̂Nn
decrease, whereas they do not change that much with increasing T . We can also see that θ̂Nn,1,1
is more accurate than θ̂Nn,1,2.

11



(N,T ) = (50, 50) (100, 50) (50, 100) (100, 100)

θ̂Nn,1,1 0.0340 (0.0159) 0.0263 (0.0145) 0.0280 (0.0154) 0.0206 (0.0137)

θ̂Nn,1,2 0.1652 (-0.1378) 0.1503 (-0.1347) 0.1526 (-0.1420) 0.1472 (-0.1416)

θ̂Nn,2 0.0027 (-0.0026) 0.0026 (-0.0025) 0.0033 (-0.0032) 0.0033 (-0.0033)

Table 3: Sample RMSE (and bias in brackets) of θ̂Nn for θ = (−0.5, 2, 0.04), ∆n = 0.1 and
different values of N,T . The number of replications is 1000.

5 Technical lemmas

Before proving the main statistical results stated in previous section, we need to introduce some
additional notations and to state some lemmas which will be useful in the sequel.

Define FN
t := σ{(W k

u )u∈[0,t], X
k,N
0 ; k = 1, ..., N} and Et[·] := E[·|FN

t ]. For a set (Y i,N
t,n ) of

random variables and δ ≥ 0, the notation

Y i,N
t,n = Ri

t(∆
δ
n)

means that Y i,N
t,n is FN

t -measurable and the set (Y i,N
t,n /∆δ

n) is bounded in Lq for all q ≥ 1,
uniformly in t, i, n,N . That is

E
[∣
∣Y i,N

t,n /∆δ
n

∣
∣q
]1/q ≤ Cq

for all t, i, n,N , q ≥ 1.
We will repeatedly use some moment inequalities gathered in the following lemma.

Lemma 5.1. Assume A1-A2. Then, for all p ≥ 1, 0 ≤ s < t ≤ T such that t − s ≤ 1,
i ∈ {1, ..., N}, N ∈ N, the following hold true.

1. supt∈[0,T ] E[|Xi,N
t |p] < C, moreover, supt∈[0,T ] E[W

q
p (µN

t , δ0)] < C for p ≤ q.

2. E[|Xi,N
t −Xi,N

s |p] ≤ C(t− s)
p

2 .

3. Es[|Xi,N
t −Xi,N

s |p] ≤ C(t− s)
p
2Ri

s(1).

4. E[W p
2 (µ

N
t , µN

s )] ≤ C(t− s)
p

2 .

5. Es[W
p
2 (µ

N
t , µN

s )|] ≤ C(t− s)
p

2Rs(1).

The asymptotic properties of the estimator are deduced by the asymptotic behaviour of our
contrast function. To study it, the following lemma will be useful.

Lemma 5.2. Assume A1-A2. Let f : R × Pl → R satisfy for some C > 0, k, l = 0, 1, . . . and
all (x, µ), (y, ν) ∈ R×Pl,

|f(x, µ)− f(y, ν)| ≤ C(|x− y|+W2(µ, ν))(1 + |x|k + |y|k +W l
l (µ, δ0) +W l

l (ν, δ0)). (13)

Moreover, let the mapping (x, t) 7→ f(x, µ̄t) be integrable with respect to µ̄t(dx)dt over R× [0, T ].
Then

∆n

N

N∑

i=1

n∑

j=1

f(Xi,N
tj−1,n

, µN
tj−1,n

)
P−→
∫ T

0

∫

R

f(x, µ̄t)µ̄t(dx)dt as n,N → ∞.

It is worth underlining that the boundedness of the moments and the convergence of the
Riemann sums, which are obtained almost for free in the classical SDE case, are more complex
in our setting. In particular, the proof of Lemma 5.2 consists now in three steps, the first
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deals with the convergence of the proper Riemann sums, in the second step we move from the
interacting particle system to the iid system though the propagation of chaos property, while
the third step is an application of the law of large numbers.
Another challenge compared to the classical SDE case is gathered in next lemma. Indeed,
our main results heavily rely on the study of derivatives of our contrast function and so on the
moment bounds of its numerator. To accomplish this, we need to use Itô’s lemma on the squared
diffusion coefficient as a function of the particle system’s state. Therefore, we must understand
how to express derivatives of a with respect to the measure argument. That is the purpose of
the extra hypothesis A7, thanks to which the problem reduces to study the derivatives of K.
We recall that, in the sequel, we will denote by c(θ2, x, µ) the value a2(θ2, x, µ).

Lemma 5.3. Assume A1-A2. Then, the following hold true.

1. If also A7 is satisfied, then
Etj,n [(X

i,N
tj+1,n

−Xi,N
tj,n

−∆nb(θ0,1,X
i,N
tj,n

, µN
tj,n))

2] = ∆nc(θ0,2,X
i,N
tj,n

, µN
tj,n) +Ri

tj,n(∆
2
n).

2. Etj,n [(X
i,N
tj+1,n

−Xi,N
tj,n

−∆nb(θ0,1,X
i,N
tj,n

, µN
tj,n))

4] = 3∆2
nc

2(θ0,2,X
i,N
tj,n

, µN
tj,n) +Ri

tj,n(∆
5

2
n ).

3. |Etj,n [X
i,N
tj+1,n

−Xi,N
tj,n

−∆nb(θ0,1,X
i,N
tj,n

, µN
tj,n)]| = Ri

tj,n(∆
3

2
n ).

We underline that A7 is needed in order to prove that the size of the remainder function in

the first point is ∆2
n. Without it, the size of the rest function would have been ∆

3

2
n , which would

not have been enough to obtain the asymptotic normality as in Proposition 6.2 (see the proof
of (36)). The proof of the lemmas stated in this section can be found in Section 7.

6 Proofs

6.1 Consistency

Let us prove the (asymptotic) consistency of θ̂Nn = (θ̂Nn,1, θ̂
N
n,2) component-wise. Our approach

is similar to that taken in the proof of [58, Theorem 5.7]. In particular, we consider a criterion
function θ 7→ SN

n (θ) as a random element taking values in (C(Θ;R), ‖ · ‖∞). The uniform
convergence of criterion functions is proved in the following lemma.

Lemma 6.1. Assume A1-A3, A4(I), A5. Then as N,n → ∞,

sup
(θ1,θ2)∈Θ

∣
∣
∣
∆n

N
SN
n (θ1, θ2)− J(θ2)

∣
∣
∣

P−→ 0, (14)

sup
(θ1,θ2)∈Θ

∣
∣
∣
1

N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2))− I(θ1, θ2)

∣
∣
∣

P−→ 0, (15)

where the functions I, J are defined in (6), (7) respectively.

Proof. It suffices to show the following steps:

1. ∆n

N SN
n (θ1, θ2)

P−→ J(θ2) for every (θ1, θ2) ∈ Θ.

2. The sequence (θ1, θ2) 7→ ∆n

N SN
n (θ1, θ2) is tight in (C(Θ;R), ‖ · ‖∞).

3. 1
N (SN

n (θ1, θ2)− SN
n (θ0,1, θ2))

P−→ I(θ1, θ2) for every (θ1, θ2) ∈ Θ,

4. The sequence (θ1, θ2) 7→ 1
N (SN

n (θ1, θ2)− SN
n (θ0,1, θ2)) is tight in (C(Θ;R), ‖ · ‖∞).
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Let us omit the notation for dependence on N,n, in particular, write Xi
t for X

i,N
t , µt for µ

N
t , tj

for tj,n. Denote f(·,Xi
t , µt) by f i

t (·) for a function f , for example equal to h or g defined as

h(θ, x, µ) =
(b(θ0,1, x, µ)− b(θ1, x, µ))

2

c(θ2, x, µ)
, g(θ, x, µ) =

b(θ0,1, x, µ)− b(θ1, x, µ)

c(θ2, x, µ)
(16)

for all θ = (θ1, θ2) ∈ Θ1 ×Θ2 = Θ, x ∈ R, µ ∈ P2.

• Step 3. We start proving that for every θ = (θ1, θ2) ∈ Θ1 ×Θ2 = Θ,

1

N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2))

P−→ I(θ) =

∫ T

0

∫

R

h(θ, x, µ̄t)µ̄t(dx)dt.

Let us first decompose the left hand side as a sum of a main term and remainder. We have

SN
n (θ1, θ2) =

N∑

i=1

n∑

j=1

(H i
j +∆n(b

i
tj−1

(θ0,1)− bitj−1
(θ1)))

2

∆nc
i
tj−1

(θ2)
+ (log c)itj−1

(θ2),

where H i
j = Xi

tj−1
−Xi

tj−1
−∆nb

i
tj−1

(θ0,1) for all i, j. We decompose

1

N
(SN

n (θ1, θ2)− SN
n (θ0,1, θ2)) = INn (θ) + 2ρNn (θ), (17)

where

INn (θ) =
∆n

N

N∑

i=1

n∑

j=1

hitj−1
(θ), ρNn (θ) =

1

N

N∑

i=1

n∑

j=1

gitj−1
(θ)H i

j. (18)

Then
INn (θ)

P−→ I(θ)

follows from Lemma 5.2 if the function h(θ, ·) is locally Lipschitz with polynomial growth.
To check this assumption we note that the functions b(θ0,1, ·) − b(θ1, ·), a(θ2, ·) are Lipschitz
continuous and have linear growth by A2. We also recall that infx,µ c(θ2, x, µ) > 0 by A3.
Hence, h(θ, ·) satisfies the assumption of Lemma 5.2.

It remains to show that
ρNn (θ)

P−→ 0. (19)

With H i
j = Bi

j +Ai
j , where

Bi
j =

∫ tj

tj−1

(bis(θ0,1)− bitj−1
(θ0,1))ds, Ai

j =

∫ tj

tj−1

ais(θ0,2)dW
i
s ,

for all i, j, let us further decompose

ρNn (θ) = ρNn,1(θ) + ρNn,2(θ), (20)

where

ρNn,1(θ) =
1

N

N∑

i=1

n∑

j=1

gitj−1
(θ)Bi

j, ρNn,2(θ) =
1

N

N∑

i=1

n∑

j=1

gitj−1
(θ)Ai

j .

It is enough to show that

ρNn,k(θ)
Lk

−→ 0, k = 1, 2. (21)

First, let us show (21) in case k = 2. Note that for all i1 = i2 and j1 6= j2,

E[gi1tj1−1
(θ)Ai1

j1
gi2tj2−1

(θ)Ai2
j2
] = 0 (22)

14



follows from Etj1−1
[Ai1

j1
] = 0, whereas independence of Brownian motions implies (22) for all

i1 6= i2 and j1, j2. We conclude that

E[(ρNn,2(θ))
2] =

1

N2

N∑

i=1

n∑

j=1

E[(gitj−1
(θ)Ai

j)
2]. (23)

Next, the Itô isometry gives

E[(gitj−1
(θ)Ai

j)
2] =

∫ tj

tj−1

E[(g2)itj−1
(θ)cis(θ0,2)]ds,

where E[(g2)itj−1
(θ)cis(θ0,2)] = O(1) uniformly in tj−1 ≤ s ≤ tj, j, i thanks to infx,µ c(θ2, x, µ) > 0

by A3, linear growth of a(θ0,2, ·), b(θ1, ·) by A2 and moment bounds in Lemma 5.1(1). We
conclude that E[(gitj−1

(θ)Ai
j)

2] = O(∆n) uniformly in i, j, which in turn implies

E[(ρNn,2(θ))
2] = O

(
N−1

)
.

Finally, let us show (21) in case k = 1. For this purpose, use

E[|gitj−1
(θ)Bi

j |] ≤
∫ tj

tj−1

E[|gitj−1
(θ)(bis(θ0,1)− bitj−1

(θ0,1))|]ds

and then the Cauchy–Schwarz inequality. Note E[(g2)itj−1
(θ)] = O(1) uniformly in j, i follows

in the same way as above. Lipschitz continuity of b(θ0,1, ·) by A2 and moment bounds in
Lemma 5.1(2) and (4) imply E[(bis(θ0,1)− bitj−1

(θ0,1))
2] = O(∆n) uniformly in tj−1 ≤ s ≤ tj, j, i.

We conclude that

E[|ρNn,1|] = O(∆
1

2
n ).

This completes the proof of Step 3.

• Step 4. Recall the decomposition (17), (20). It is enough to show tightness of

θ 7→ INn (θ), θ 7→ ρNn,k(θ), k = 1, 2.

Our approach to showing tightness of both sequences are based upon [40, Theorem 14.5]. We
need to show that for all N,n:

E
[
sup
θ

‖∇θI
N
n (θ)‖

]
≤ C, E

[
sup
θ

‖∇θρ
N
n,1(θ)‖

]
≤ C. (24)

The above bounds follow if for all N,n, and i, j, tj−1 ≤ s ≤ tj,

E
[
sup
θ

‖∇θh
i
tj−1

(θ)‖
]
≤ C, E

[
|bis(θ0,1)| sup

θ
‖∇θg

i
tj−1

(θ)‖
]
≤ C, (25)

where h, g : Θ×R×P2 → R are defined by (16). In ∇θkh,∇θkg, k = 1, 2, we note ∇θ1(b(θ0,1, ·)−
b(θ1, ·)) = −∇θ1b(θ1, ·). Moreover, by the mean value theorem, |b(θ0,1, ·)−b(θ1, ·)| ≤ C supθ1 ‖∇θ1b(θ1, ·)‖
for all θ1 ∈ Θ1, since Θ1 is convex, bounded. Additionally using infθ2,x,µ c(θ2, x, µ) > 0 by A3,
we get

‖∇θ1g(θ, ·)‖ ≤ C sup
θ1

‖∇θ1b(θ1, ·)‖, ‖∇θ2g(θ, ·)‖ ≤ C sup
θ1

‖∇θ1b(θ1, ·)‖ sup
θ2

‖∇θ2a(θ2, ·)‖,

and

‖∇θ1h(θ, ·)‖ ≤ C sup
θ1

‖∇θ1b(θ1, ·)‖2, ‖∇θ2h(θ, ·)‖ ≤ C sup
θ1

‖∇θ1b(θ1, ·)‖2 sup
θ2

‖∇θ2a(θ2, ·)‖

15



for all θ. We have the polynomial growth of supθ1 ‖∇θ1b(θ1, ·)‖, supθ2 ‖∇θ2a(θ2, ·)‖ thanks to
assumption A4 and linear growth of b(θ0,1, ·) thanks to A2. The Cauchy-Schwarz inequality
and moment bounds in Lemma 5.1(1) yield (25) and so (24).

Following the approach of [39, Theorem 20 in Appendix 1], we want to show that for all N,n
and θ, θ′ ∈ Θ,

E[|ρNn,2(θ)|2] ≤ C, E[|ρNn,2(θ)− ρNn,2(θ
′)|2] ≤ C‖θ − θ′‖22.

We note that the second relation implies the first one because ρNn,2(θ) = 0 with θ1 = θ0,1 and Θ2

is bounded. In the same way as in (23) we get

E[|ρNn,2(θ)− ρNn,2(θ
′)|2] = 1

N2

N∑

i=1

n∑

j=1

E[|(gitj−1
(θ)− gitj−1

(θ′))Ai
j |2],

where the Itô isometry gives

E[|(gitj−1
(θ)− gitj−1

(θ′))Ai
j |2] =

∫ tj

tj−1

E[(gitj−1
(θ)− gitj−1

(θ′))2cis(θ0,2)]ds.

By the mean value theorem,

|g(θ, ·)− g(θ′, ·)| ≤ ‖θ − θ′‖ sup
θ

‖∇θg(θ, ·)‖

since Θ is convex. Then
E
[
sup
θ

‖∇θg
i
tj−1

(θ)‖2cis(θ0,2)
]
≤ C

for all tj−1 ≤ s ≤ tj, j, i and N,n follows in a similar way as the second bound in (25) does
using, in addition, linear growth of a(θ0,2, ·), which follows from its Lipschitz continuity by A2.

• Step 1. We want to prove that for every θ ∈ Θ,

∆n

N
SN
n (θ)

P−→ J(θ2) =

∫ T

0

∫

R

f(θ2, x, µ̄t)µ̄t(dx)dt, (26)

where

f(θ2, x, µ) =
c(θ0,2, x, µ)

c(θ2, x, µ)
+ log c(θ2, x, µ)

for every (θ2, x, µ) ∈ Θ2×R×P2. For this purpose, in ∆nS
N
n (θ) let us decompose every term as

(Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1))
2

citj−1
(θ2)

+ ∆n(log c)
i
tj−1

(θ2) = ∆nf
i
tj−1

(θ2) + rij. (27)

We can decompose rij further with

Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1) = Bi
j(θ1) +Ai

j , (28)

where

Bi
j(θ1) =

∫ tj

tj−1

bis(θ0,1)ds −∆nb
i
tj−1

(θ1), Ai
j =

∫ tj

tj−1

ais(θ0,2)dW
i
s , (29)

note

Etj−1
[(Ai

j)
2] =

∫ tj

tj−1

cis(θ0,2)ds.

We get

rij =
2∑

k=0

rij,k, where rij,k =
H i

j,k

citj−1
(θ2)

, k = 0, 1, 2, (30)
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and

H i
j,2 = (Ai

j)
2 − Etj−1

[(Ai
j)

2], H i
j,1 = 2Ai

jB
i
j(θ1) + (Bi

j(θ1))
2,

H i
j,0 = Etj−1

[(Ai
j)

2]−∆nc
i
tj−1

(θ0,2).

Our proof of (26) consists of the following steps:

∆n

N

N∑

i=1

n∑

j=1

f i
tj−1

(θ2)
P−→ J(θ2),

1

N

N∑

i=1

n∑

j=1

rij,k
L1

−→ 0, k = 0, 1, 2. (31)

Let us start from the convergence in (31) for k = 2. It is enough to show that supi E[(
∑

j r
i
j,2)

2] =

o(1). We note that E[rij1,2r
i
j2,2

] = 0, j1 6= j2, since Etj−1
[rij,2] = 0. We are left to show that

supi
∑

j E[(r
i
j,2)

2] = o(1). Thanks to assumption A3 it reduces to showing supi
∑

j E[(H
i
j,2)

2] =

o(1), where Etj−1
[(H i

j,2)
2] = Etj−1

[(Ai
j)

4] − (Etj−1
[(Ai

j)
2])2 leads to E[(H i

j,2)
2] ≤ E[(Ai

j)
4] for all

i, j. Furthermore, by the Burkholder-Davis-Gundy inequality and Jensen’s inequality,

E[(Ai
j)

4] ≤ CE

[( ∫ tj

tj−1

cis(θ0,2)ds
)2]

≤ C∆n

∫ tj

tj−1

E[(c2)is(θ0,2)]ds = O(∆2
n) (32)

uniformly in i, j, where the last relation follows thanks to linear growth of a(θ0,2, ·) by A2 and
moment bounds in Lemma 5.1(1). We conclude that supi,j E[(R

i
j,2)

2] = O(∆2
n).

We now turn to the convergence in (31) for k = 1. It is enough to show that n supi,j E[|rij,1|] =
o(1). Assumption A3 implies E[|rij,1|] ≤ CE[|H i

j,1|] for all i, j, where supi,j E[(A
i
j)

2] = O(∆n)
follows from (32). Moreover, by Jensen’s inequality,

E[(Bi
j(θ1))

2] ≤ 2∆n

∫ tj

tj−1

E[(bis(θ0,1))
2]ds+ 2∆2

nE[(b
i
tj−1

(θ1))
2] = O(∆2

n)

uniformly in i, j, where the last relation follows thanks to linear growth of b(θ1, ·) for every θ1

by A2 and moment bounds in Lemma 5.1(1). We conclude that supi,j E[|rij,1|] = O(∆
3

2
n ).

Next, we consider the convergence in (31) for k = 0. It is enough to show that n supi,j E[|rij,0|] =
o(1). Assumption A3 implies E[|rij,0|] ≤ CE[|H i

j,0|], where

E[|H i
j,0|] ≤

∫ tj

tj−1

E[|cis(θ0,2)− citj−1
(θ0,2)|]ds.

Lipschitz continuity of a(θ0,2, ·) and Lemma 5.1(2) and (4) imply E[(ais(θ0,2) − aitj−1
(θ0,2))

2] =
O(∆n) uniformly in tj−1 ≤ s ≤ tj, j, i. Finally, linear growth of a(θ0,2, ·) and moment bounds
in Lemma 5.1(1) guarantee E[(ais(θ0,2) + aitj−1

(θ0,2))
2] = O(1) uniformly in tj−1 ≤ s ≤ tj, j, i.

We conclude by Cauchy-Schwarz inequality that E[|cis(θ0,2)− citj−1
(θ0,2)|] = O(∆

1

2
n ) uniformly in

tj−1 ≤ s ≤ tj, j, i, whence supi,j E[|rij,0|] = O(∆
3

2
n ).

The first relation in (31) follows from Lemma 5.2 if the function f(θ2, ·) is locally Lipschitz
with polynomial growth. To check this assumption, use | log y1 − log y2| ≤ |y1 − y2|/min(y1, y2)
for y1, y2 > 0 and assumption A3. Note b(θ1, ·), a(θ2, ·) are Lipschitz continuous and have linear
growth by A2. Hence, the function f(θ2, ·) satisfies the assumption of Lemma 5.2.
• Step 2. We want to prove that the sequence ∆n

N SN
n (θ) in (C(Θ;R), ‖ · ‖∞) is tight. So we have

to show that for all N,n,

∆n

N
E

[

sup
θ

2∑

k=1

‖∇θkS
N
n (θ)‖

]

≤ C.
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We have

∇θkS
N
n (θ) =

N∑

i=1

n∑

j=1

ζ ij,k(θ), k = 1, 2,

where

ζ ij,1(θ) = −
2(Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ1))

citj−1
(θ2)

∇θ1b
i
tj−1

(θ1),

ζ ij,2(θ) = −
(Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ1))
2

∆n(c2)itj−1
(θ2)

∇θ2c
i
tj−1

(θ2) +
1

citj−1
(θ2)

∇θ2c
i
tj−1

(θ2).

It suffices to show that for all N,n and i, j,

E
[
sup
θ

‖ζ ij,k(θ)‖
]
≤ C, k = 1, 2. (33)

Using A3 and the Cauchy-Schwarz inequality, we get

E
[
sup
θ

‖ζ ij,1(θ)‖
]
≤ C

(
E
[
sup
θ1

|Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1)|2
]) 1

2
(
E
[
sup
θ1

‖∇θ1b
i
tj−1

(θ1)‖2
]) 1

2 ,

E
[
sup
θ

‖ζ ij,2(θ)‖
]
≤ C

∆n

(
E
[
sup
θ1

|Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1)|4
]) 1

2
(
E
[
sup
θ2

‖∇θ2a
i
tj−1

(θ2)‖2
]) 1

2

+ CE
[
sup
θ2

‖∇θ2a
i
tj−1

(θ2)‖
]
.

We use polynomial growth of supθ1 ‖∇θ1b(θ1, ·)‖, supθ2 ‖∇θ2a(θ2, ·)‖ and moment bounds in
Lemma 5.1(1). Moreover, Lemma 5.1(2) gives supi,j E[|Xi

tj −Xi
tj−1

|4] = O(∆2
n). Finally, b(θ0,1, ·)

has a linear growth and the mean value theorem implies b(θ1, ·) − b(θ0,1, ·) =
∫ 1
0 ∇θ1b(θ0,1 +

(θ1 − θ0,1)u, ·)du · (θ1 − θ0,1) for all θ1 in Θ1, where Θ1 is convex, bounded and we recall
that supθ1 ‖∇θ1b(θ1, ·)‖ has polynomial growth. The moment bounds in Lemma 5.1(1) imply
E[supθ1 |bitj−1

(θ1)|4] ≤ C, completing the proof of (33).

6.1.1 Proof of Theorem 3.1

Proof. Assumption A5 implies that for every ε > 0 there exists η > 0 such that J(θ2)−J(θ0,2) >

η for every θ2 with ‖θ2 − θ0,2‖ ≥ ε. Thus {‖θ̂Nn,2 − θ0,2‖ ≥ ε} ⊆ {J(θ̂Nn,2) − J(θ0,2) > η}. The
probability of the latter event converges to 0 in view of

J(θ̂Nn,2)− J(θ0,2) = JN
n,0 + JN

n,1,

where the definition of θ̂Nn and (14) imply respectively

JN
n,0 :=

∆n

N
(SN

n (θ̂Nn,1, θ̂
N
n,2)− SN

n (θ̂Nn,1, θ0,2)) ≤ 0,

JN
n,1 := J(θ̂Nn,2)− J(θ0,2)− JN

n,0 ≤ 2 sup
(θ1,θ2)∈Θ

∣
∣
∣
∆n

N
SN
n (θ1, θ2)− J(θ2)

∣
∣
∣ = oP(1).

Consistency of θ̂Nn,1 follows in a similar way. Assumption A5 implies that for every ε > 0 there

exists η > 0 such that I(θ1, θ2) > η for every (θ1, θ2) with ‖θ1 − θ0,1‖ ≥ ε. Thus {‖θ̂Nn,1 − θ0,1‖ ≥
ε} ⊆ {I(θ̂Nn,1, θ̂Nn,2) > η}. The probability of the latter event converges to 0 because

I(θ̂Nn,1, θ̂
N
n,2) = INn,0 + INn,1,

where the definition of θ̂Nn and (15) imply respectively

INn,0 :=
1

N
(SN

n (θ̂Nn,1, θ̂
N
n,2)− SN

n (θ0,1, θ̂
N
n,2)) ≤ 0,

INn,1 := I(θ̂Nn,1, θ̂
N
n,2)− INn,0 = oP(1).
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6.2 Asymptotic normality

The proof of the asymptotic normality of our estimator is obtained following a classical route.
It consists in proving the asymptotic normality of the first derivative of the contrast function
(5) (see for example [30, Section5a]). We introduce in particular the appropriate normalization
matrix

MN
n := diag

( 1√
N

, . . . ,
1√
N

︸ ︷︷ ︸

p1 times

,

√

∆n

N
, . . . ,

√

∆n

N
︸ ︷︷ ︸

p2 times

)

.

The proof of Theorem 3.2 is based on the following proposition.

Proposition 6.2. Assume A1-A4(I) and (II), A7. If N∆n → 0 then as N,n → ∞,

∇θS
N
n (θ0)M

N
n

L−→ N (0, 2Σ(θ0)),

where Σ(θ0) is a p× p matrix defined in A6.

We observe that, as ∇θS
N
n (θ̂Nn ) = 0, by Taylor’s formula we obtain

(θ̂Nn − θ0)

∫ 1

0
∇2

θS
N
n (θ0 + s(θ̂Nn − θ0))ds = −∇θS

N
n (θ0). (34)

Multiplying the equation (34) by MN
n , we obtain

(θ̂Nn − θ0)(M
N
n )−1

∫ 1

0
ΣN
n (θ0 + s(θ̂Nn − θ0))ds = −∇θS

N
n (θ0)M

N
n , (35)

where

ΣN
n (θ) := MN

n ∇2
θS

N
n (θ)MN

n =

(

Σ
N,(1)
n (θ) Σ

N,(12)
n (θ)

Σ
N,(21)
n (θ) Σ

N,(2)
n (θ)

)

with

ΣN,(1)
n (θ) = (1/N)∇2

θ1S
N
n (θ),

ΣN,(21)
n (θ) = (

√

∆n/N)∇θ2∇θ1S
N
n (θ),

ΣN,(12)
n (θ) = (

√

∆n/N)∇θ1∇θ2S
N
n (θ),

ΣN,(2)
n (θ) = (∆n/N)∇2

θ2S
N
n (θ).

The analysis of the second derivatives of the contrast function is gathered in the following
proposition, which will be proven at the end of this section.

Proposition 6.3. Assume A1-A5 with both (I) and (II) in A4. Then as N,n → ∞,

1. ΣN
n (θ0)

P−→ Σ(θ0),

2. sups∈[0,1] ‖ΣN
n (θ0 + s(θ̂Nn − θ0))−ΣN

n (θ0)‖ P−→ 0, where ‖ · ‖ refers to the operator norm on
the space of p× p matrices induced by the Euclidean norm for vectors.

By Proposition 6.3 assumption A6 implies that the probability that
∫ 1
0 ΣN

n (θ0 + s(θ̂Nn − θ0))ds
is invertible tends to 1. Applying its inverse to the equation (35), by Proposition 6.2 and the
continuous mapping theorem, we get

(√
N(θ̂Nn,1 − θ0,1),

√

N/∆n(θ̂
N
n,2 − θ0,2)

)
= (θ̂Nn − θ0)(M

N
n )−1 L−→ N

(
0, 2(Σ(θ0))

−1
)
.
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6.3 Proof of Proposition 6.2

Proof. As in the proof of consistency, we omit the notation for dependence onN,n. In particular,
we writeXi

t forX
i,N
t , µt for µ

N
t , tj for tj,n. Denote by f i

tj−1
(θ) the values of f(θ,Xi

tj−1
, µtj−1

). We

note that−∇θS
N
n (θ)MN

n consists of −∂θ1,hS
N
n (θ)/

√
N =:

∑n
j=1 ξ

(1)
j,h(θ) and−

√

∆n/N∂θ
2,h̃

SN
n (θ) =:

∑n
j=1 ξ

(2)

j,h̃
(θ), where

ξ
(1)
j,h(θ): =

1√
N

N∑

i=1

2
∂θ1,hb

i
tj−1

(θ1)

citj−1
(θ2)

(Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1)),

ξ
(2)

j,h̃
(θ): =

√

∆n

N

N∑

i=1

∂θ
2,h̃

citj−1
(θ2)

∆n(c
i
tj−1

(θ2))2
(Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ1))
2 −

∂θ
2,h̃

citj−1
(θ2)

citj−1
(θ2)

for h = 1, . . . , p1, h̃ = 1, . . . , p2. To prove the asymptotic normality of −∇θS
N
n (θ0)M

N
n we want

to use a central limit theorem for martingale difference arrays, in accordance with Theorems 3.2
and 3.4 of [38]. Approximation of −∇θS

N
n (θ0)M

N
n by a martingale array follows from

n∑

j=1

Etj−1
[ξ

(1)
j,h(θ0)]

P−→ 0,

n∑

j=1

Etj−1
[ξ

(2)

j,h̃
(θ0)]

P−→ 0 (36)

for h = 1, . . . , p1, h̃ = 1, . . . , p2. Moreover, application of the central limit theorem requires that
for some r > 0 the following convergences hold:

n∑

j=1

Etj−1
[ξ

(1)
j,h1

(θ0)ξ
(1)
j,h2

(θ0)]
P−→ 4

∫ T

0

∫

R

∂θ1,h1 b(θ0,1, x, µ̄t)∂θ1,h2 b(θ0,1, x, µ̄t)

c(θ0,2, x, µ̄t)
µ̄t(dx)dt, (37)

n∑

j=1

Etj−1
[ξ

(2)

j,h̃1

(θ0)ξ
(2)

j,h̃2

(θ0)]
P−→ 2

∫ T

0

∫

R

∂θ
2,h̃1

c(θ0,2, x, µ̄t)∂θ
2,h̃2

c(θ0,2, x, µ̄t)

c2(θ0,2, x, µ̄t)
µ̄t(dx)dt, (38)

n∑

j=1

Etj−1
[ξ

(1)
j,h(θ0)ξ

(2)

j,h̃
(θ0)]

P−→ 0, (39)

n∑

j=1

Etj−1
[|ξ(1)j,h(θ0)|2+r]

P−→ 0,
n∑

j=1

Etj−1
[|ξ(2)

j,h̃
(θ0)|2+r]

P−→ 0, (40)

where h, h1, h2 = 1, . . . , p1, h̃, h̃1, h̃2 = 1, . . . , p2.

• Proof of (36).
Assumptions A3 and A4(I) imply that F i

j,h := 2∂θ1,hb
i
tj−1

(θ0,1)(c
i
tj−1

(θ0,2))
−1 satisfies |F i

j,h| ≤
C(1+|Xi

tj−1
|k1+W l1

2 (µtj−1
, δ0)). Hence, from Lemma 5.1(1) it is easy to see that F i

j,h = Ri
tj−1

(1).
If N∆n → 0 then Lemma 5.3(3) implies

n∑

j=1

Etj−1
[ξ

(1)
j,h(θ0)] =

1

N
1

2

N∑

i=1

n∑

j=1

Ri
tj−1

(1)Ri
tj−1

(∆
3

2
n )

L1

−→ 0

20



and so the convergence in probability. In a similar way, using Lemma 5.3(1), we obtain

n∑

j=1

Etj−1
[ξ

(2)

j,h̃
(θ0)] =

(∆n

N

) 1

2

N∑

i=1

n∑

j=1

∂θ
2,h̃

citj−1
(θ0,2)

∆n(c
i
tj−1

(θ0,2))2
(∆nc

i
tj−1

(θ0,2) +Ri
tj−1

(∆2
n))−

∂θ
2,h̃

citj−1
(θ0,2)

citj−1
(θ0,2)

=
(∆n

N

) 1

2

N∑

i=1

n∑

j=1

∂θ
2,h̃

citj−1
(θ0,2)

∆n(citj−1
(θ0,2))2

Ri
tj−1

(∆2
n)

=
(∆n

N

) 1

2

N∑

i=1

n∑

j=1

Ri
tj−1

(∆n),

which converges to 0 in L1 and so in probability if N∆n → 0.

• Proof of (37).
We have

Etj−1
[ξ

(1)
j,h1

(θ0)ξ
(1)
j,h2

(θ0)] =
1

N

N∑

i1,i2=1

Etj−1
[(Ai1

j +Bi1
j )(Ai2

j +Bi2
j )]F i1

j,h1
F i2
j,h2

, (41)

where

F i
j,h := 2

∂θ1,hb
i
tj−1

(θ0,1)

citj−1
(θ0,2)

= Ri
tj−1

(1),

and

Bi
j :=

∫ tj

tj−1

(bis(θ0,1)− bitj−1
(θ0,1))ds, Ai

j :=

∫ tj

tj−1

ais(θ0,2)dW
i
s . (42)

We have Etj−1
[(Bi

j)
2] = Ri

tj−1
(∆3

n) and Etj−1
[(Ai

j)
2] = Ri

tj−1
(∆n), whereas if i1 6= i2 then

Etj−1
[Ai1

j A
i2
j ] = 0 because of the independence of Brownian motions. Hence, by the Cauchy-

Schwarz inequality,

Etj−1
[(Ai1

j +Bi1
j )(Ai2

j +Bi2
j )] = Etj−1

[(Ai1
j )

2]1(i1 = i2) +Ri1,i2
tj−1

(∆2
n).

We get

n∑

j=1

Etj−1
[ξ

(1)
j,h1

(θ0)ξ
(1)
j,h2

(θ0)] =
1

N

n∑

j=1

N∑

i=1

Etj−1
[(Ai

j)
2]F i

j,h1
F i
j,h2

+
1

N

n∑

j=1

N∑

i1,i2=1

Ri1,i2
tj−1

(∆2
n),

where the last sum converges to 0 in L1 and so in probability if N∆n → 0. We can therefore
focus on the first sum. We decompose the term Etj−1

[(Ai
j)

2] into ∆nc
i
tj−1

(θ0,2) and

Etj−1
[(Ai

j)
2]−∆nc

i
tj−1

(θ0,2) =

∫ tj

tj−1

Etj−1
[cis(θ0,2)− citj−1

(θ0,2)]ds = Ri
tj−1

(∆
3

2
n ).

The result follows from ∆n → 0 and application of Lemma 5.2.

• Proof of (40), first convergence.
We want to show (40) with r = 2. We use the same notation as in (41) and consider the terms

Etj−1
[(Ai1

j +Bi1
j )(Ai2

j +Bi2
j )(Ai3

j +Bi3
j )(Ai4

j +Bi4
j )]F i1

j,hF
i2
j,hF

i3
j,hF

i4
j,h. (43)

We have F i
j = Ri

tj−1
(1), moreover, Etj−1

[(Ai
j)

4] = Ri
tj−1

(∆2
n), Etj−1

[(Bi
j)

4] = Ri
tj−1

(∆6
n) and so

Etj−1
[(Ai

j + Bi
j)

4] = Ri
tj−1

(∆2
n). Application of the Cauchy-Schwarz inequality shows that the
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term in (43) is also Ri1,i2,i3,i4
tj−1

(∆2
n). In case where i1, i2, i3, i4 are pairwise distinct we decompose

Ai
j into

Ai
j,2 :=

∫ tj

tj−1

(ais(θ0,2)− aitj−1
(θ0,2))dW

i
s , Ai

j,1 :=

∫ tj

tj−1

aitj−1
(θ0,2)dW

i
s , (44)

which satisfy Etj−1
[(Ai

j,k)
4] = Ri

tj−1
(∆2k

n ), k = 1, 2. In particular the independence of the
Brownian motions implies

Etj−1
[Ai1

j,1A
i2
j,1A

i3
j,1A

i4
j,k]F

i1
j,hF

i2
j,hF

i3
j,hF

i4
j,h = 0

for k = 1, 2. The term converging to 0 at the slowest rate in (43) is then, up to a permutation
of the indices i1, i2, i3, i4,

Etj−1
[Ai1

j,1A
i2
j,1A

i3
j,2A

i4
j,2 +Ai1

j,1A
i2
j,1A

i3
j,1B

i4
j ]F i1

j,hF
i2
j,hF

i3
j,hF

i4
j,h = Ri1,i2,i3,i4

tj−1
(∆3

n).

We get
n∑

j=1

Etj−1
[(ξ

(1)
j,h(θ0))

4] =
1

N2

n∑

j=1

(∑

i∈I

Ri
tj−1

(∆3
n) +

∑

i∈Ic

Ri
tj−1

(∆2
n)
)

, (45)

where I denotes a set of all i = (i1, i2, i3, i4) ∈ {1, . . . , N}4 such that i1, i2, i3, i4 are pairwise dis-
tinct. We note that card(I) = O(N4) and card(Ic) = O(N3). We conclude that (45) converges
to 0 in L1 and so in probability if N∆n → 0.

• Proof of (38).
We rewrite the left hand side of (38) as

∆n

N

n∑

j=1

N∑

i1,i2=1

∆−2
n Ci1

j,h̃1

Ci2
j,h̃2

Etj−1
[Di1

j Di2
j ], (46)

where

Ci
j,h̃

:=
∂θ

2,h̃
citj−1

(θ0,2)

(citj−1
(θ0,2))2

= Ri
tj−1

(1), Di
j := (Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ0,1))
2 −∆nc

i
tj−1

(θ0,2).

We consider the term Etj−1
[Di1

j D
i2
j ] in (46). By Lemma 5.3(1) it equals

Etj−1
[(Xi1

tj
−Xi1

tj−1
−∆nb

i1
tj−1

(θ0,1))
2(Xi2

tj
−Xi2

tj−1
−∆nb

i2
tj−1

(θ0,1))
2] (47)

−∆nc
i1
tj−1

(θ0,2)∆nc
i2
tj−1

(θ0,2) +Ri1,i2
tj−1

(∆3
n).

If i1 = i2 then Lemma 5.3(2) implies

Etj−1
[(Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ0,1))
4] = 3∆2

n(c
i
tj−1

(θ0,2))
2 +Ri

tj−1
(∆

5

2
n ),

whence

Etj−1
[(Di

j)
2] = 2∆2

n(c
i
tj−1

(θ0,2))
2 +Ri

tj−1
(∆

5

2
n ). (48)

If i1 6= i2 then to deal with the term in (47) we decompose

Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ0,1) = Ai
j,1 +Ai

j,2 +Bi
j

as in (42), (44), where Etj−1
[(Ai

j,k)
4] = Ri

tj−1
(∆2k

n ), k = 1, 2, and Etj−1
[(Bi

j)
4] = Ri

tj−1
(∆6

n). We
note that

Etj−1
[(Ai1

j,1)
2(Ai2

j,1)
2] = ∆nc

i1
j (θ0,2)∆nc

i2
j (θ0,2).
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Moreover, we have

Etj−1
[(Ai1

j,1)
2Ai2

j,1A
i2
j,2] = ci1tj−1

(θ0,2)a
i2
tj−1

(θ0,2)V
i1,i2
j ,

where independence of Brownian motions together with Itô isometry implies

V i1,i2
j := Etj−1

[

(W i1
tj

−W i1
tj−1

)2
∫ tj

tj−1

dW i2
s

∫ tj

tj−1

(ai2s (θ0,2)− ai2tj−1
(θ0,2))dW

i2
s

]

=

∫ tj

tj−1

Etj−1
[(W i1

tj
−W i1

tj−1
)2(ai2t (θ0,2)− ai2tj−1

(θ0,2))]dt. (49)

Assumption A7 allows us to apply Itô’s lemma to ai2t (θ0,2). We get that the conditional expec-
tation in (49) equals

Etj−1

[

(W i1
tj

−W i1
tj−1

)2
∫ t

tj−1

N∑

k=1

(

bks(θ0,1)∂xk
ai2s (θ0,2) +

1

2
cks(θ0,2)∂

2
xk
ai2s (θ0,2)

)

ds
]

+ Etj−1

[

(W i1
tj

−W i1
tj−1

)2
∫ t

tj−1

N∑

k=1

aks(θ0,2)∂xk
ai2s (θ0,2)dW

k
s

]

.

The first term is clearly a Ri1,i2
tj−1

(∆2
n) function. Regarding the second one, for k 6= i1, the

independence of the Brownian motions makes it directly equal to 0. For k = i1, instead, we have

Etj−1

[

(W i1
tj

−W i1
tj−1

)2
∫ t

tj−1

ai1s (θ0,2)∂xi1
ai2s (θ0,2)dW

i1
s

]

,

where under A7 we obtain

∂xi1
ai2s (θ0,2) := ∂yã

(

Xi2
s ,

1

N

N∑

l=1

K(Xi2
s ,X l

s)
) 1

N
∂yK(Xi2

s ,Xi1
s )

with ∂yã, ∂yK having polynomial growth. Using the Cauchy-Schwarz inequality, it follows that
the above quantity is upper bounded by

(

3∆2
nEtj−1

[(∫ t

tj−1

ai1s (θ0,2)∂xi1
ai2s (θ0,2)dW

i1
s

)2]) 1

2

=
(

3∆2
n

∫ t

tj−1

Etj−1
[(ai1s (θ0,2)∂xi1

ai2s (θ0,2))
2]ds

) 1

2

=
1

N
Ri1,i2

tj−1
(∆

3

2
n ).

It implies

Etj−1
[(Ai1

j,1)
2Ai2

j,1A
i2
j,2] = Ri1,i2

tj−1
(∆3

n) +
1

N
Ri1,i2

tj−1
(∆

5

2
n ). (50)

We conclude that

Etj−1
[(Xi1

tj
−Xi1

tj−1
−∆nb

i1
tj−1

(θ0,1))
2(Xi2

tj
−Xi2

tj−1
−∆nb

i2
tj−1

(θ0,1))
2]

= ∆nc
i1
j (θ0,2)∆nc

i2
j (θ0,2) +Ri1,i2

tj−1
(∆3

n) +
1

N
Ri1,i2

tj−1
(∆

5

2
n ),

whence

Etj−1
[Di1

j D
i2
j ] = Ri1,i2

tj−1
(∆3

n) +
1

N
Ri1,i2

tj−1
(∆

5

2
n ) (51)
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if i1 6= i2. Finally, we plug (48), (51) back into (46), where use of the conditions N∆n → 0,
∆n → 0 and Lemma 5.2 completes the proof of the convergence in (38).

• Proof of (40), second convergence.
We prove it for r = 2. We use the same notation as in (46) and rewrite the left hand side of
(40) as

∆2
n

N2

n∑

j=1

N∑

i1,i2,i3,i4=1

∆−4
n Ci1

j,h̃
Ci2
j,h̃

Ci3
j,h̃

Ci4
j,h̃

Etj−1
[Di1

j Di2
j D

i3
j Di4

j ]. (52)

We have Etj−1
[(Di

j)
4] = Ri

tj−1
(∆4

n) and card(Ic) = O(N3), where I denotes a set of all i =

(i1, i2, i3, i4) ∈ {1, . . . , N}4 such that i1, i2, i3, i4 are pairwise distinct. In (52) the sum over
i ∈ Ic converges to 0 in L1 and so in probability since N∆n → 0. In case i ∈ I we use the
decomposition

Di
j = (Ai

j,1 +Ai
j,2 +Bi

j)
2 −∆nc

i
tj−1

(θ0,2)

= (Ai
j,2 +Bi

j)(2A
i
j,1 +Ai

j,2 +Bi
j) + (Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2).

We note that

Etj−1
[((Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2))
4] = Ri

tj−1
(∆4

n),

Etj−1
[(Ai

j,k)
8] = Ri

tj−1
(∆4k

n ), k = 1, 2, Etj−1
[(Bi

j)
8] = Ri

tj−1
(∆12

n ).

Moreover, because of the independence of Brownian motions, we have

Etj−1

[ 4∏

k=1

((Aik
j,1)

2 −∆nc
ik
tj−1

(θ0,2))
]

= 0

and in a similar manner as in (50) under A7 we have

Etj−1

[

Ai1
j,2A

i1
j,1

4∏

k=2

((Aik
j,1)

2 −∆nc
ik
tj−1

(θ0,2))
]

= ai1tj−1
(θ0,2)

4∏

k=2

ciktj−1
(θ0,2)

∫ tj

tj−1

Etj−1

[

(ai1s (θ0,2)− ai1tj−1
(θ0,2))

4∏

l=2

((W il
tj
−W il

tj−1
)2 −∆n)

]

ds

= Ri1,i2,i3,i4
tj−1

(∆5
n) +

1

N
Ri1,i2,i3,i4

tj−1
(∆

9

2
n ),

whence it follows

Etj−1
[Di1

j Di2
j D

i3
j Di4

j ] = Ri1,i2,i3,i4
tj−1

(∆5
n) +

1

N
Ri1,i2,i3,i4

tj−1
(∆

9

2
n ).

We recall that card(I) = O(N4). Since N∆n → 0, ∆n → 0, the sum over i ∈ I in (52) converges
to 0 in L1 and so in probability.

• Proof of (39).
We rewrite the left hand side of (39) as

∆
1

2
n

N

n∑

j=1

N∑

i1,i2=1

Etj−1
[(Ai1

j,1 +Ai1
j,2 +Bi1

j )Di2
j ]∆−1

n Ci2
j,h̃

F i1
j,h, (53)

where

Di
j = (Ai

j,2 +Bi
j)(2A

i
j,1 +Ai

j,2 +Bi
j) + (Ai

j,1)
2 −∆nc

i
tj−1

(θ0,2)
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with the notations introduced above. We recall that F i
j,h = Ri

tj−1
(1), Ci

j,h̃
= Ri

tj−1
(1), Etj−1

[(Bi
j)

4] =

Ri
tj−1

(∆6
n), Etj−1

[(Ai
j,k)

4] = Ri
tj−1

(∆2k
n ), k = 1, 2, and so Etj−1

[((Ai
j,1)

2 − ∆nc
i
tj−1

(θ0,2))
2] =

Ri
tj−1

(∆2
n). We note that

Etj−1
[Ai1

j,1((A
i2
j,1)

2 −∆nc
i2
tj−1

(θ0,2))] = 0

for all i1, i2. This is a consequence of the independence of the Brownian motions for i1 6= i2,
while for i1 = i2 it derives from the fact that the odd moments are centered. Hence, in case
i1 = i2 = i the term Etj−1

[(Ai
j,1)

2Ai
j,2] makes the main contribution to

Etj−1
[(Ai

j,1 +Ai
j,2 +Bi

j)D
i
j ] = Ri

tj−1
(∆2

n).

Now we can see that the sum over i1 = i2 in (53) converges to 0 in L1 and so in probability. In
case i1 6= i2 we have

Etj−1
[Ai1

j,2((A
i2
j,1)

2 −∆nc
i2
tj−1

(θ0,2))] = 0.

Moreover,

Etj−1
[Ai1

j,1A
i2
j,1A

i2
j,2] = ai1tj−1

(θ0,2)a
i2
tj−1

(θ0,2)

∫ tj

tj−1

Etj−1
[(W i1

tj
−W i1

tj−1
)(ai2s (θ0,2)− ai2tj−1

(θ0,2)]ds.

The application of Itô’s lemma to ai2s (θ0,2) under A7 similarly as in the proof of (50) provides

Etj−1
[Ai1

j,1A
i2
j,1A

i2
j,2] = Ri1,i2

tj−1
(∆

5

2
n ) +

1

N
Ri1,i2

tj−1
(∆2

n).

We conclude that

Etj−1
[(Ai1

j,1 +Ai1
j,2 +Bi1

j )Di2
j ] = Ri1,i2

tj−1
(∆

5

2
n ) +

1

N
Ri1,i2

tj−1
(∆2

n).

in case i1 6= i2. Hence, the sum over i1 6= i2 in (53) converges to 0 in L1 and so in probability when
N∆n → 0, ∆n → 0. This concludes the proof of the asymptotic normality of −∇θS

N
n (θ0)M

N
n .

6.4 Proof of Proposition 6.3

Proof. The proof relies on the computation of the second derivatives of the contrast function.
We have that, for any k, l = 1, ..., p1,

∂θ1,k∂θ1,lS
N
n (θ) = 2

N∑

i=1

n∑

j=1

{

∆n

∂θ1,kb
i
tj−1

(θ1)∂θ1,lb
i
tj−1

(θ1)

citj−1
(θ2)

−
∂θ1,k∂θ1,lb

i
tj−1

(θ1)

citj−1
(θ2)

(Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1))
}

,

where the last factor can further be decomposed into ∆n(b
i
tj−1

(θ0,1)−bitj−1
(θ1)) and Xi

tj −Xi
tj−1

−
∆nb

i
tj−1

(θ0,1). We can see that ∂θ1,k∂θ1,lS
N
n (θ)/N converges to

Σ
(1)
kl (θ) := 2

∫ 1

0

∫

R

{∂θ1,kb(θ1, x, µ̄t)∂θ1,lb(θ1, x, µ̄t)

c(θ2, x, µ̄t)
(54)

−
∂θ1,k∂θ1,lb(θ1, x, µ̄t)

c(θ2, x, µ̄t)
(b(θ0,1, x, µ̄t)− b(θ1, x, µ̄t))

}

µ̄t(dx)dt

uniformly in θ in probability. Indeed, the proof follows along the lines of the proof of (14). We
refer to Steps 3, 4 of the proof of Lemma 6.1, where in (18) in INn (θ), ρNn (θ) it is enough to replace
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the functions h(θ, ·) and g(θ, ·) with the integrand of (54) and ∂θ1,k∂θ1,lb(θ1, ·)/c(θ2, ·) respec-
tively, and to check them for the respective conditions. We note that both functions have poly-
nomial growth. Moreover, the integrand in (54) is locally Lipschitz continuous, which allows us
to apply Lemma 5.2 and yields the convergence in probability of the sequence ∂θ1,k∂θ1,lS

N
n (θ)/N

for every θ. To get tightness in (C(Θ;R), ‖·‖∞), we use that uniformly in θ the partial derivatives
with respect to θi′,j′ , j

′ = 1, . . . , pi′ , i
′ = 1, 2, of the two functions have polynomial growth.

In the same way as above we get that for any k = 1, ..., p1, l = 1, ..., p2, once multiplied by√
∆n/N ,

∂θ1,k∂θ2,lS
N
n (θ) = 2

N∑

i=1

n∑

j=1

∂θ1,kb
i
tj−1

(θ1)∂θ2,lc
i
tj−1

(θ2)

(citj−1
(θ2))2

(Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1)),

converges to 0 uniformly in θ in probability.
Finally, we have that for any k, l = 1, . . . , p2,

∂θ2,k∂θ2,lS
N
n (θ) =

N∑

i=1

n∑

j=1

{∂θ2,k∂θ2,lc
i
tj−1

(θ2)c
i
tj−1

(θ2)− ∂θ2,kc
i
tj−1

(θ2)∂θ2,lc
i
tj−1

(θ2)

(citj−1
(θ2))2

+
2∂θ2,kc

i
tj−1

(θ2)∂θ2,lc
i
tj−1

(θ2)− ∂θ2,k∂θ2,lc
i
tj−1

(θ2)c
i
tj−1

(θ2)

∆n(c
i
tj−1

(θ2))3

× (Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1))
2
}

,

where the last factor can further be decomposed into (Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1))
2−∆nc

i
tj−1

(θ0,2)

and ∆nc
i
tj−1

(θ0,2). We note that (∆n/N)∂θ2,k∂θ2,lS
N
n (θ) converges to

Σ
(2)
kl (θ) :=

∫ T

0

∫

R

{∂θ2,k∂θ2,lc(θ2, x, µ̄t)c(θ2, x, µ̄t)− ∂θ2,kc(θ2, x, µ̄t)∂θ2,lc(θ2, x, µ̄t)

c(θ2, x, µ̄t)2

+
2∂θ2,kc(θ2, x, µ̄t)∂θ2,lc(θ2, x, µ̄t)− ∂θ2,k∂θ2,lc(θ2, x, µ̄t)c(θ2, x, µ̄t)

c(θ2, x, µ̄t)3

× c(θ0,2, x, µ̄t)
}

µ̄t(dx)dt

uniformly in θ in probability. We will prove the uniform in θ convergence to the second term of

Σ
(2)
kl (θ) only:

n∑

j=1

χN
n,j(θ)

P−→ Σ̃
(2)
kl (θ) :=

∫ T

0

∫

R

f̃(θ2, x, µ̄t)c(θ0,2, x, µ̄t)µ̄t(dx)dt, (55)

where

χN
n,j(θ) =

1

N

N∑

i=1

f̃ i
tj−1

(θ2)(X
i
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1))
2

and function f̃ : Θ2 × R × P → R is given by (2(∂θ2,kc)(∂θ2,lc) − (∂θ2,k∂θ2,lc)c)/c
3. For every θ

the convergence in (55) follows from

n∑

j=1

Etj−1
[χN

n,j(θ)]
P−→ Σ̃

(2)
kl (θ),

n∑

j=1

Etj−1
[(χN

n,j(θ))
2]

P−→ 0

by [30, Lemma 9]. Indeed, the above relations hold, because by Lemma 5.3(1),

Etj−1
[χN

n,j(θ)] =
1

N

N∑

i=1

f̃ i
tj−1

(θ2)(∆nc
i
tj−1

(θ0,2) +Ri
tj−1

(∆3/2
n )),
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by Jensen’s inequality and Lemma 5.3(2),

Etj−1
[(χN

n,j(θ))
2] ≤ 1

N

N∑

i=1

(f̃ i
tj−1

(θ2))
2Ri

tj−1
(∆2

n),

by polynomial growth of ∂i′

θ2,j′
c(θ2, ·), i′ = 0, 1, 2, j′ = 1, . . . , p2, A3 and Point 1. of Lemma 5.1,

(f̃ i
tj−1

(θ2))
2 = Ri

tj−1
(1).

The tightness in (C(Θ;R), ‖ · ‖∞) follows from E[supθ ‖∇θ
∑n

j=1 χ
N
n,j(θ)‖] = O(1). Indeed, we

have

∇θ1χ
N
n,j(θ) = −2

∆n

N

N∑

i=1

∇θ1b
i
tj−1

(θ1)f̃
i
tj−1

(θ2)(X
i
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1)),

∇θ2χ
N
n,j(θ) =

1

N

N∑

i=1

∇θ2 f̃
i
tj−1

(θ2)(X
i
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1))
2,

where by polynomial growth of supθ1 ‖∇θ1b(θ1, ·)‖, supθ2 |∂i′

θ2,j′
c(θ2, ·)|, i′ = 0, 1, 2, 3, j′ =

1, . . . , p2, and A3,

sup
θ

‖∇θ1b
i
tj−1

(θ1)f̃
i
tj−1

(θ2)‖ = Ri
tj−1

(1), sup
θ2

‖∇θ2 f̃
i
tj−1

(θ2)‖ = Ri
tj−1

(1)

and
sup
θ1

|Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ1)| ≤ |Xi
tj −Xi

tj−1
|+∆n sup

θ1

|bitj−1
(θ1)|

with supθ1 |bitj−1
(θ1)| = Ri

tj−1
(1). Finally, we have E[|Xi

tj −Xi
tj−1

|4] ≤ C∆2
n uniformly in i, j and

N,n by Lemma 5.1(2).
We conclude that the matrix ΣN

n (θ) converges to Σ(θ) = diag(Σ(1)(θ),Σ(2)(θ)) uniformly in
θ and so at θ = θ0 in probability. Hence,

‖ΣN
n (θ0 + s(θ̂Nn − θ0))− ΣN

n (θ0)‖ ≤ oP(1) + ‖Σ(θ0 + s(θ̂Nn − θ0))− Σ(θ0)‖,

where the uniform convergence in probability (in s) of the last term to 0 follows from continuity
of Σ(θ) at θ = θ0 and consistency of the estimator sequence θ̂Nn .

7 Proof of technical results

7.1 Proof of Lemma 5.1

Proof. Proof of Lemma 5.1(1).
We have, for any i = 1, . . . , N , 0 ≤ t ≤ T , p ≥ 2,

E[|Xi
t |p] ≤ E

[∣
∣
∣Xi

0 +

∫ t

0
biu(θ0,1)du+

∫ t

0
aiu(θ0,2)dW

i
u

∣
∣
∣

p]

≤ C
(

E[|Xi
0|p] + tp−1

∫ t

0
E[|biu(θ0,1)|p]du+ t

p

2
−1

∫ t

0
E[|aiu(θ0,2)|p]du

)

,

where we have used the Burkholder-Davis-Gundy and Jensen inequalities. We observe that, as
a consequence of the lipschitzianity gathered in A2, for the true value of the parameter both
coefficients are upper bounded by C(1+ |Xi

u|+W2(µu, δ0)). Due to Jensen’s inequality, we have

E[W p
2 (µu, δ0)] ≤

1

N

N∑

j=1

E[|Xj
u|p] = E[|Xi

u|p].
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The last identity follows from the fact that the particles are equally distributed. We obtain

E[|Xi
t |p] ≤ C

(

E[|Xi
0|p] + (tp−1 + t

p

2
−1)
(

t+ 2

∫ t

0
E[|Xi

u|p]du
))

. (56)

We infer by Gronwall’s lemma that

E[|Xi
t |p] ≤ C(E[|Xi

0|p] + T p + T
p

2 ) exp(C ′(T p + T
p

2 )).

As the constants do not depend on t ≤ T and E[|Xi
0|p] < ∞ by A1, we have the wanted result

for p ≥ 2. Then, by a Jensen argument and the boundedness of the moments for p ≥ 2, it follows
the result also for p < 2.

Proof of Lemma 5.1(2).
We have for any 0 ≤ s < t ≤ T , p ≥ 2,

E[|Xi
t −Xi

s|p] = E

[∣
∣
∣

∫ t

s
biu(θ0,1)du+

∫ t

s
aiu(θ0,2)dW

i
u

∣
∣
∣

p]

≤ C
(

(t− s)p−1

∫ t

s
E[|biu(θ0,1)|p]du+ (t− s)

p

2
−1

∫ t

s
E[|aiu(θ0,2)|p]ds

)

,

where we have used the Jensen and Burkholder-Davis-Gundy inequalities. Because of (4) and
the just shown Lemma 5.1(1), the result follows letting t− s ≤ 1.

Proof of Lemma 5.1(3).
According to the definition of Ri

s(1), we want to evaluate the Lq norm of Es[|Xi
t − Xi

s|p]. For
any 0 ≤ s < t ≤ T such that t− s ≤ 1 and p ≥ 2, q ≥ 1,

E
[∣
∣Es[|Xi

t −Xi
s|p]
∣
∣q
] 1
q ≤ E[|Xi

t −Xi
s|pq]

1

q ≤ C(t− s)
p
2

follows by conditional Jensen’s inequality and Lemma 5.1(2).

Proof of Lemma 5.1(4).
This is a straightforward consequence of

W p
2 (µt, µs) ≤

( 1

N

N∑

j=1

|Xj
t −Xj

s |2
) p

2 ≤ 1

N

N∑

j=1

|Xj
t −Xj

s |p (57)

by Jensen’s inequality for any 0 ≤ s < t ≤ T such that t− s ≤ 1, p ≥ 2 and Lemma 5.1(2).

Proof of Lemma 5.1(5).
It follows directly from (57), where we use Minkowski’s inequality as follows:

E
[∣
∣Es[W

p
2 (µt, µs)]

∣
∣q
] 1
q ≤ 1

N

N∑

j=1

E
[∣
∣Es[|Xj

t −Xj
s |pq]

∣
∣
] 1
q ,

and then Lemma 5.1(3).

7.2 Proof of Lemma 5.2

Proof. Step 1. We prove that

∆n

N

N∑

i=1

n∑

j=1

f(Xi,N
tj−1,n

, µN
tj−1,n

)− 1

N

N∑

i=1

∫ T

0
f(Xi,N

s , µN
s )ds

L1

−→ 0.
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Here we note ∆n = tj,n−tj−1,n and decompose the above integral into integrals over [tj−1,n, tj,n).
We can see that the above convergence follows from

n∑

j=1

∫ tj,n

tj−1,n

E[|f(Xi,N
tj−1,n

, µN
tj−1,n

)− f(Xi,N
s , µN

s )|]ds → 0, N, n → ∞,

for fixed i, which in turn follows using the condition (13), Cauchy-Schwarz inequality and mo-
ment bounds in Lemma 5.1(1), (2) and (4). In particular, E[|Xi,N

tj−1,n
− Xi,N

s |2] ≤ C∆n for all
tj−1,n ≤ s ≤ tj,n, j and n,N .

Step 2. Next, let us prove that

1

N

N∑

i=1

∫ T

0
f(Xi,N

s , µN
s )ds − 1

N

N∑

i=1

∫ T

0
f(X̄i

s, µ̄s)ds
L1

−→ 0, N → ∞,

where each (X̄i
t)t∈[0,T ] satisfies (3) with (Wt)t∈[0,T ] = (W i

t )t∈[0,T ] and X̄i
0 = Xi,N

0 . It suffices to
prove

∫ T

0
E[|f(Xi,N

s , µN
s )− f(X̄i

s, µ̄s)|]ds → 0,

where i is fixed and the integral is over a bounded interval. For this purpose, let us use again
the condition (13) and the Cauchy-Schwarz inequality. Following the same arguments as in the
proof of Lemma 5.1(1) and Gronwall lemma, it is easy to show that for all p > 0 there exists
Cp > 0 such that for all s, i,N it holds E[|X̄i

s|p] < Cp. Moreover we have

E[|Xi,N
s − X̄i

s|2] ≤
C√
N

for all 0 ≤ s ≤ T and i,N , thanks to Theorem 3.20 in [11], based on Theorem 1 of [28]. We
remark that, from the boundedness of the moments, the quantity q appearing in the statement
of Theorem 3.20 in [11] is larger than 4. Hence, the rate N−(q−2)/q is negligible compared to
N−1/2. The propagation of chaos stated above implies

E[W 2
2 (µ

N
s , µ̄s)] ≤

C√
N

.

Indeed, to get the last relation, we introduce the empirical measure µ̄N
s = N−1

∑N
i=1 δX̄i

s
of the

independent particle system at time s and use the triangle inequality for W2. Then

E[W 2
2 (µ

N
s , µ̄N

s )] ≤ 1

N

N∑

i=1

E[|Xi,N
s − X̄i

s|2] ≤
C√
N

,

whereas Theorem 1 of [28] implies

E[W 2
2 (µ̄

N
s , µ̄s)] ≤

C√
N

.

Step 3. Finally, the law of large numbers gives

1

N

N∑

i=1

∫ T

0
f(X̄i

s, µ̄s)ds
P−→ E

[ ∫ T

0
f(X̄s, µ̄s)ds

]

, N → ∞.
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7.3 Proof of Lemma 5.3

Proof. We use the same notation as before.

Proof of Lemma 5.3(2). We decomposeXi
tj−Xi

tj−1
−∆nb

i
tj−1

(θ0,1) into A
i
j,1 andH i

j,2 := Ai
j,2+Bi

j ,
where

Ai
j,1 :=

∫ tj

tj−1

aitj−1
(θ0,2)dW

i
s , Ai

j,2 :=

∫ tj

tj−1

(ais(θ0,2)− aitj−1
(θ0,2))dW

i
s ,

Bi
j :=

∫ tj

tj−1

(bis(θ0,1)− bitj−1
(θ0,1))ds,

(58)

are the same as in (42), (44).
Firstly, we will show that for any p ≥ 2,

E[|H i
j,2|p] ≤ C∆p

n. (59)

Using Jensen’s inequality and Lipschitz continuity of b(θ1, ·) we get

E[|Bi
j |p] ≤ E

[

∆p−1
n

∫ tj

tj−1

|bis(θ0,1)− bitj−1
(θ0,1)|pds

]

≤ C∆p−1
n

∫ tj

tj−1

(E[|Xi
s −Xi

tj−1
|p] + E[W p

2 (µs, µtj−1
)])ds

≤ C∆p−1
n

∫ tj

tj−1

(s− tj−1)
p
2 ds = C∆

3

2
p

n , (60)

where the last inequality follows from Lemma 5.1(2) and (4). Further use of the Burkholder-
Davis-Gundy and Jensen inequalities gives

E[|Ai
j,2|p] ≤ CE

[( ∫ tj

tj−1

|ais(θ0,2)− aitj−1
(θ0,2)|2ds

) p

2
]

≤ C∆
p

2
−1

n

∫ tj

tj−1

E[|ais(θ0,2)− aitj−1
(θ0,2)|p]ds

≤ C∆p
n, (61)

where the last inequality follows from Lipschitz continuity of a(θ2, ·) and Lemma 5.1(2) and (4)
as so does (60). Hence, we have shown (59).

Next, we have

E[|Ai
j,1|p] = C∆

p

2
nE[|aitj−1

(θ0,2)|p] ≤ C∆
p

2
n (62)

since we know the absolute moments of a centered normal distribution and have linear growth
of a(θ0,2, ·), moment bounds in Lemma 5.1(1). In particular, we note

Etj−1
[(Ai

j,1)
4] = 3∆2

n(c
2)itj−1

(θ0,2).

Finally, we have

Etj−1
[(Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ0,1))
4] = 3∆2

n(c
2)itj−1

(θ0,2)+
3∑

k=0

(
4

k

)

Etj−1
[(Ai

j,1)
k(H i

j,2)
4−k]. (63)

For any k = 0, 1, 2, 3 and q ≥ 1, using Jensen’s inequality for conditional expectation, we get

E
[∣
∣Etj−1

[(Ai
j,1)

k(H i
j,2)

4−k]
∣
∣q
]
≤ E

[∣
∣(Ai

j,1)
k(H i

j,2)
4−k
∣
∣q
]
≤ C∆

(4− k
2
)q

n ,
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where the last inequality follows from (61), (59) using Cauchy-Schwarz inequality. Hence, the
term converging to 0 in Lq at the slowest rate is the one for which k = 3. We therefore obtain

that the remaining sum on the right hand side of (63) is an Ri
tj−1

(∆
5

2
n ) function.

Proof of Lemma 5.3(3). This follows directly from (60) by decomposing the dynamics of Xi

as in (58) and remarking that the stochastic integral is centered.

Proof of Lemma 5.3(1). We decompose Xi
tj −Xi

tj−1
−∆nb

i
tj−1

(θ0,1) into

Ai
j := Ai

j,1 +Ai
j,2 =

∫ tj

tj−1

ais(θ0,2)dW
i
s ,

and Bi
j satisfying respectively E[|Ai

j|2p] ≤ C∆p
n and E[|Bi

j |2p] ≤ C∆3p
n , whence E[|Ai

jB
i
j|p] ≤

C∆2p
n for any p ≥ 1, see (60)-(62). We conclude that

Etj−1
[(Xi

tj −Xi
tj−1

−∆nb
i
tj−1

(θ0,1))
2] =

∫ tj

tj−1

Etj−1
[cis(θ0,2)]ds +Ri

tj−1
(∆2

n).

We are left to show that we can replace Etj−1
[cis(θ0,2)] with citj−1

(θ0,2) and that the remaining

integral is an Ri
tj−1

(∆2
n) function.

Under A7 we have that for any i,

(x1, . . . , xN ) 7→ c
(

θ0,2, xi,
1

N

N∑

j=1

δxj

)

= ã2
(

xi,
1

N

N∑

j=1

K(xi, xj)
)

=: gi(x1, . . . , xN )

is a twice continuously differentiable function from R
N to R. Given a vector (X1

s , . . . ,X
N
s )s∈[0,T ]

of processes, we denote
(∂l

xk
c)is(θ0,2) := ∂l

xk
gi(X1

s , . . . ,X
N
s ).

We apply the multidimensional Itô’s formula to gi(X1
s , . . . ,X

N
s ) = cis(θ0,2) as follows:

cis(θ0,2)− citj−1
(θ0,2) =

N∑

k=1

∫ s

tj−1

(

(∂xk
c)iu(θ0,2)b

k
u(θ0,1) +

1

2
(∂2

xk
c)iu(θ0,2)c

k
u(θ0,2)

)

du

+

N∑

k=1

∫ s

tj−1

(∂xk
c)iu(θ0,2)a

k
u(θ0,2)dW

k
u .

Since the driving (W 1
u , . . . ,W

N
u )u∈[tj−1,s] is independent of FN

tj−1
, it follows that

Etj−1
[cis(θ0,2)]− citj−1

(θ0,2)

= Etj−1

[ N∑

k=1

∫ s

tj−1

(

(∂xk
c)iu(θ0,2)b

k
u(θ0,1) +

1

2
(∂2

xk
c)iu(θ0,2)c

k
u(θ0,2)

)

du
]

. (64)

To conclude, we need to bound each (∂l
xk
c)iu(θ0,2), l = 1, 2. To do that, we rely on the as-

sumption about the dependence of the diffusion coefficient on the convolution with a prob-
ability measure gathered in A7. To compute the derivatives with respect to xk we need to
consider two different cases, depending on whether k 6= i or k = i. When k 6= i we have
(∂xk

c)iu(θ0,2) = 2aiu(θ0,2)(∂xk
a)iu(θ0,2), where

(∂xk
a)iu(θ0,2) := ∂yã

(

Xi
u,

1

N

N∑

j=1

K(Xi
u,X

j
u)
) 1

N
∂yK(Xi

u,X
k
u), (65)
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while for k = i we have (∂xi
c)iu(θ0,2) = 2aiu(θ0,2)(∂xi

a)iu(θ0,2), where

(∂xi
a)iu(θ0,2) := ∂xã

(

Xi
u,

1

N

N∑

j=1

K(Xi
u,X

j
u)
)

+ ∂yã
(

Xi
u,

1

N

N∑

j=1

K(Xi
u,X

j
u)
)

×
( 1

N

N∑

j=1

∂xK(Xi
u,X

j
u) +

1

N
∂yK(Xi

u,X
i
u)
)

.

From polynomial growth of the l-th order partial derivatives of K, ã for l = 0, 1, that of b(θ0,1, ·),
moment bounds in Lemma 5.1(1) applying Jensen’s inequality it follows that

∑N
k=1(∂xk

c)iu(θ0,2)b
k
u(θ0,1)

is bounded in Lp for any p ≥ 1 uniformly in u, i. We proceed similarly to compute (∂2
xk
c)iu(θ0,2).

Then from polynomial growth of the l-th order partial derivatives of K, ã for l = 0, 1, 2, moment
bounds in Lemma 5.1(1) applying Jensen’s inequality it follows that

∑N
k=1(∂

2
xk
c)iu(θ0,2)c

k
u(θ0,2)

is bounded in Lp for any p ≥ 1 uniformly in u, i. For any p ≥ 1, tj−1 ≤ s ≤ tj , repeatedly
applying Jensen’s inequality to (64) we get

E
[∣
∣Etj−1

[cis(θ0,2)]− citj−1
(θ0,2)

∣
∣p
]
≤ C(s− tj−1)

p,

whence

E

[∣
∣
∣

∫ tj

tj−1

(
Etj−1

[cis(θ0,2)]− citj−1
(θ0,2)

)
ds
∣
∣
∣

p]

≤ C∆2p
n .

which completes the proof.
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