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Abstract 1 

The human gastrointestinal tract contains diverse microbial communities, including archaea. Among them, 2 
Methanobrevibacter smithii represents a highly active and clinically relevant methanogenic archaeon, being involved in 3 
gastrointestinal disorders, such as IBD and obesity. Herein, we present an integrated approach using sequence and 4 
structure information to improve the annotation of M. smithii proteins using advanced protein structure prediction and 5 
annotation tools, such as AlphaFold2, trRosetta, ProFunc, and DeepFri. Of an initial set of 873 481 archaeal proteins, 6 
we found 707 754 proteins exclusively present in the human gut. Having analysed archaeal proteins together with 87 7 
282 994 bacterial proteins, we identified unique archaeal proteins and archaeal-bacterial homologs. We then predicted 8 
and characterized functional domains and structures of 73 unique and homologous archaeal protein clusters linked the 9 
human gut and M. smithii. We refined annotations based on the predicted structures, extending existing sequence 10 
similarity-based annotations. We identified gut-specific archaeal proteins that may be involved in defense mechanisms, 11 
virulence, adhesion, and the degradation of toxic substances. Interestingly, we identified potential glycosyltransferases 12 
that could be associated with N-linked and O-glycosylation. Additionally, we found preliminary evidence for interdomain 13 
horizontal gene transfer between Clostridia species and M. smithii, which includes sporulation stage V proteins AE and 14 
AD. Our study broadens the understanding of archaeal biology, particularly M. smithii, and highlights the importance of 15 
considering both sequence and structure for the prediction of protein function.  16 

Introduction 17 

In 1977, Woese and Fox, and colleagues discovered the kingdom of Archaebacteria, later renamed Archaea, revealing 18 
a new branch in the tree of life [1]–[4]. The discovery of the Asgard superphylum and its close relationship with the 19 
eukaryotic branch supports the notion of an archaeal origin for eukaryotes, yet ongoing debates continue regarding 20 
whether the archaeal ancestor of eukaryotes belongs within the Asgard superphylum or represents a sister group to all 21 
other archaea [5], [6]. Historically, archaea were associated with extreme environments but have since been recognized 22 
for their general importance and prevalence [7], [8]. Their ability to thrive in extreme environments and to resist 23 
chemicals is attributed, in part, to their unique cell envelope structures. In nature, archaea perform distinctive 24 
biogeochemical functions, such as methanogenesis, anaerobic methane oxidation, and ammonia oxidation [9], [10]. By 25 
employing diverse ecological strategies for energy production, archaea can inhabit a wide variety of environments [11]. 26 
Archaea are also host-associated, such as on plants, in human and animal gastrointestinal tracts [12], [13], on human 27 
skin [14], [15], in respiratory airways [16] and in the oral cavity [17]. Based on recent estimates, archaea comprise up 28 
to 10% of the human gut microbiota [18]. 29 

Methanobrevibacter smithii, a ubiquitous and highly active methanogen in the human gut microbiome, has remarkable 30 
clinical relevance and is relatively well annotated [19]. It plays an important role in the degradation of complex 31 
carbohydrates, leading to the production of methane, which has significant physiological effects on human physiology. 32 
Imbalances in the population of M. smithii have been implicated as factors contributing to gastrointestinal disorders 33 
such as inflammatory bowel disease (IBD) [20], [21] and obesity [22]–[24]. Given the prevalence of M. smithii in the gut, 34 
further research aimed at M. smithii is key to understanding their role in disease. Archaeal proteins, including those of 35 
M. smithii, play a crucial role in adapting to diverse environments and showcase their unique biology. The knowledge 36 
about diverse archaea, including novel species, in the human gut microbiome has expanded, underscoring their 37 
significance [25]. Some host-associated taxa, like Methanomassilicoccales, have potential beneficial effects on human 38 
health [26],  while others like Methanosphaera stadtmanae have been linked to pro-inflammatory immune processes 39 
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[27]. Given the current interest in the role of archaea in human health and disease, understanding the archaeal proteome 40 
is crucial for understanding the functional potential of archaea.  41 

Studying archaeal proteins presents challenges both in experimental and computational aspects. Previous research by  42 
Lyu et al. has highlighted the potential for biotechnological applications in various archaeal genera [28]. However, 43 
genetic toolboxes for targeted genomic modifications are currently limited to mesophilic Methanococcus and 44 
Methanosarcina genera [29]. While alternative methods like mass spectrometry-based searches exist, difficulties arise 45 
from inaccurate predictions of protein coding sequences due to limited knowledge of ribosomal binding sites and 46 
promoter consensus sequences [30]. Another unresolved challenge lies in the isolation and cultivation of archaea under 47 
laboratory conditions, although recent progress has been made in this area [31], [32]. To overcome these challenges, 48 
metagenomic sequencing has emerged as a promising approach to study archaea and their ecological relationships. 49 
Metagenomics has enhanced our understanding of the archaeal branches within the tree of life [31]–[33] whereby 50 
assembled sequences allow prediction of protein coding sequences (CDS) and their functional characterization in silico. 51 
However, metagenome-assembled genomes (MAGs) face challenges in functional assignment due to incomplete 52 
sequences and difficulties in predicting and annotating open-reading frames (ORFs) [34], [35]. Sequence-based protein 53 
function annotation, commonly used but limited in cases of distant protein homologies, proves to be not particularly 54 
effective [36]. Moreover, the databases containing information about archaeal proteins and functions are not 55 
consistently updated, creating a twofold challenge in the sequence-based annotation of archaeal proteins. On one hand, 56 
Makarova et al. [37] report that archaeal ribosomal proteins L45 and L47, experimentally identified in 2011 [38] and pre-57 
rRNA processing and ribosome biogenesis proteins of the NOL1/NOP2/fmu family characterized in 1998 [39] were not 58 
added to annotation pipelines by 2019 and were labelled as ‘hypothetical’. On the other hand, sequence similarity-59 
based approaches fail to capture relationships between highly divergent proteins when aligned with a known database 60 
protein [40]–[42]. Archaea, the least characterized domain of life, suffer from spurious and incorrect protein annotations 61 
due to insufficient experimental data and outdated databases [43]. Furthermore, the study by Makarova et al. indicates 62 
that a substantial proportion of genes within archaeal genomes, estimated to be between 30% and 80%, have not been 63 
thoroughly characterized, leading to their classification as archaeal "dark matter” [37]. Poorly annotated proteins limit 64 
our study of microbial functionality and their roles in specific processes. However, protein structure prediction represents 65 
an alternative strategy to address the gap in sequence-function annotation [44]. It complements sequence-based 66 
approaches, particularly when annotations are limited or conflicting across databases, by utilizing the conservation of 67 
tertiary structure to infer functional roles [45], [46]. Advanced computational techniques, such as AlphaFold2 [47] and 68 
trRosetta [48], offer accurate predictions of three-dimensional structures, thus providing valuable functional insights.  69 

In this study, we introduce an integrated in silico approach that aims to refine the functional characterization of proteins, 70 
thus enhancing the accuracy of protein annotations in the archaeon M. smithii. Having compared archaeal gut-specific 71 
proteins to bacterial gut proteins, we found 73 unique and homologous archaeal protein clusters. Our approach 72 
incorporates advanced protein structure prediction and annotation tools, such as AlphaFold2, trRosetta, ProFunc, and 73 
DeepFri, into a comprehensive workflow. We predict and characterize the functional domains and structures of 73 gut-74 
specific archaeal protein clusters. The predicted functions are linked to the adaptation to changing environments, 75 
survival, and nutritional capabilities of M. smithii within the human gut microbiome. We additionally identified sporulation-76 
related archaeal proteins, presumably horizontally transferred to archaea from Clostridium species. 77 
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Materials and Methods 78 

Selection of gut-specific archaeal proteins  79 

To select specific proteins of gut-associated archaea, we utilized archaeal MAGs obtained from the Genomes from 80 
Earth's Microbiomes (GEM) catalog [49] and the Unified Human Gastrointestinal Genome (UHGG) collection [50], along 81 
with bacterial MAGs from the UHGG collection (accessed in November 2020). Genomes were extracted based on 82 
available metadata and filtered by taxonomy to specifically target archaea. 83 

Gene prediction was performed using Prodigal (V2.6.3: February, 2016) [51] on the archaeal and bacterial MAGs from 84 
the UHGG collection, while CDSs from the GEM catalog were downloaded from the provided source 85 
(https://portal.nersc.gov/GEM). Archaeal and bacterial proteins were further separately clustered using MMseqs2 86 
(MM2) (v12.113e3-2) [52], [53] (Fig. 1) with the following parameters: --cov-mode 0 --min-seq-id 0.9 -c 0.9.  87 

To identify unique functionalities of gut-associated archaea, we selected proteins that are specific to the human gut and 88 
encoded by gut-associated archaea. MAGs were selected based on available metadata indicating their sampling 89 
location. First, we included protein clusters containing at least one protein from a MAG sampled in the human gut. We 90 
then excluded protein clusters that had proteins from MAGs sampled in other environments, as these were outside the 91 
scope of the study. The final selection included protein clusters where all proteins were encoded by MAGs sampled 92 
exclusively from the human gut. 93 

From the selected gut-specific protein clusters, only those with complete KEGG annotations were included. Fully 94 
annotated MM2 clusters were additionally clustered with Sourmash (v4.0.0) into sourmash clusters  [54], [55]. Archaeal 95 
protein clusters were categorized into two groups: those sharing KEGG Orthology identifiers (KOs) with bacterial 96 
proteins (prefix h) and those with unique KOs (prefix u) (Fig. 1). 97 

Protein function annotation 98 

Archaeal and bacterial proteins were annotated with KEGG orthologs (KOs) using Mantis (release 1.5.4) [56] (Fig. 1).  99 
AlphaFold2 (AF) [47], [57] and TrRosetta (TR) [48] were used as structure-prediction tools. For each tool, the predicted 100 
protein structure was then annotated separately. The TR-based model was annotated using templates with the highest 101 
identity and coverage features. TR used a template for prediction if it met the criteria of confidence > 0.6, e-value < 102 
0.001, and coverage > 0.3. The protein model generated by AF was submitted to the ProFunc (PF) [58] web server for 103 
structure-based annotation. Sequence search vs existing PDB entries and 3D functional template searches sections 104 
from the ProFunc report were used for structure-based protein annotation. Structure matches were selected according 105 
to the reported highest possible likelihood of being correct as follows: certain matches (E-value <10-6), probable 106 
matches (10-6 < E-value <0.01), possible matches (0.01 < E-value < 0.1), and long shots (0.1 < E-value < 10.0). Only 107 
certain matches were used for the functional assignment. DeepFri [59] was used as an auxiliary tool, providing broad 108 
and general descriptions to verify or refute suggestions from AF and/or TR. DeepFri predictions with a certainty score 109 
> 0.7 were considered. Our combined approach integrates multiple methods to enhance the resolution of functional 110 
annotation, particularly for challenges faced by traditional sequence-based methods. 111 
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When TR- and AF-based annotations provided consistent results, the consensus was used as the final annotation of 112 
the protein function. However, when the reports gave different results, we prioritized the result with highest confidence. 113 
For instance, when the confidence of the  model predicted by TR was very high and template matches were provided, 114 
and AF-based ProFunc reported a match with a lower confidence (anything but certain match), the template hit by TR 115 
was used as the primary source for the annotation. The relationship between PF likelihood and TR Template Modeling 116 
scores (TM-scores) generated in our analysis is shown in Table 1. Similarly, any protein with a TR template match was 117 
considered as more reliable than an annotation with the long shot likelihood. In cases where there were no 3D functional 118 
hits, TR annotation was given priority. In cases when PF and TR provided annotations with the same level of 119 
significance/likelihood, the protein structure with highest coverage and identity was chosen. In this case, we define 120 
coverage as coverage feature in TR and the ratio !"#$%&'	)*''%+	&%$,%#'	

-.%/0	&%-.%#1%	!%#$'2
 as in PF, and for identity we take identity as in 121 

TR and percentage sequence identity as in PF. 122 

The appropriateness of an annotation was determined based on the extent to which the assigned function of a protein 123 
was found to be directly relevant to archaea and supported by relevant literature. Any other annotations were classified 124 
as incorrect. Following this initial step, sensitivity was calculated as 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 	 𝑁𝑠𝑡𝑟

𝑁𝑠𝑡𝑟+𝑁𝑠𝑒𝑞
 , specificity as 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =125 

𝑁𝑠𝑒𝑞
𝑁𝑠𝑒𝑞+𝑁𝑠𝑡𝑟

, positive likelihood ratio (PLR) as 𝑃𝐿𝑅 =	 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
1−𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦, negative likelihood ratio (NLR) as 𝑁𝐿𝑅 =	 1	−𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 , 126 

where 𝑁&%- and 𝑁&'/ are the numbers of correct sequence- and structure-based annotations, respectively. 127 

Protein relative occurrence calculation 128 

Relative occurrence or frequency of protein functions in the groups of unique and homologous proteins was calculated. 129 
The measure was calculated as the ratio of the number of proteins with a specific KO to the total number of proteins of 130 
bacterial or archaeal proteins. For example, the relative occurrence of unique archaeal proteins annotated as K20411 131 
(sourmash cluster 1) is: 0&'(')*

0*+*,(
∗ 101	, where 𝑁&%!%' is the amount of proteins annotated with K20411 and 𝑁'"'3! is the 132 

total number of archaeal proteins. The reason for using a constant factor of 101 in the equation is to scale the values 133 
and generate numbers better suited for graphical representation. 134 

Gene expression analysis 135 

To assess the expression of archaeal proteins in the context of human health and disease, gene expression was verified 136 
using an in-house dataset, by mapping metatranscriptomic reads of faecal samples of healthy individuals and patients 137 
with type 1 diabetes mellitus (T1DM) [60] to nucleotide sequences of genes of interest using bwa mem [61]. Mapping 138 
files were processed with SAMtools (v1.6) [62]. Mosdepth (v0.3.3) [63] was used to calculate mean read coverage per 139 
gene of interest. 140 

Horizontal gene transfer analysis 141 

To assess the stability of gene structures in M. smithii genomes, we conducted a horizontal gene transfer (HGT) analysis 142 
using metaCHIP (v1.10.12) [64] on all M. smithii MAGs available in the included datasets. One Methanobrevibacter_A 143 
oralis MAG derived from UHGG were also included for the comparison of the number of HGT events.  144 
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Gene synteny analysis 145 

pyGenomeViz (v0.3.2) [65] was used to build gene synteny for all archaeal genes of interest. Gene coordinates 146 
predicted with Prodigal were used as an input. An interval of 10kb up- and downstream of the gene of interest was 147 
selected from the protein predictions. KEGG KOs were allocated based on the sequence-based annotations generated 148 
using Mantis [56]. The M. smithii type strain DSM 861 was used to assess the presence of genes from flanking regions 149 
of specific genes in an archaeal culture. In our study, we exclusively focused on M. smithii, as our analysis revealed 150 
that all the gut-specific proteins encoded by gut-associated archaea were encoded by M. smithii. 151 

Phylogenetic analysis  152 

In order to build phylogenetic trees for selective sourmash clusters, additional similar sequences were added from 153 
Uniprot [66] using BLAST (v2.0.15.153) [67] with default parameters on the consensus sequences representing 154 
sourmash clusters of interest, namely h9 and h20. Furthermore, Uniprot sequences and sourmash cluster sequences 155 
were used to build trees. Multiple sequence alignments were built using MAFFT (v7) [68] and trimmed with BMGE 156 
(v1.12) [69] using BLOSUM95 similarity matrix and the default cut-off 0.5. Maximum likelihood phylogenetic trees were 157 
built with IQ-TREE (v1.6.12) [70] and visualized using the R library ggtree (v3.6.2) [71]. 158 

  159 
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Results & Discussion 160 

Our study aimed to analyze the gut-specific proteins encoded by M. smithii in the human gastrointestinal tract. As we 161 
focused on identifying archaeal unique proteins and archaea-bacterial homologs, we analysed gut-specific archaeal 162 
and gut bacterial proteins together. Having compared the two subsets based on their sequence-based annotation, we 163 
categorized archaeal gut-specific proteins into two groups: unique and homologous proteins. To annotate them, we 164 
used KEGG KOs due to their consistent functional annotations across organisms and widespread usage. For structure-165 
based functional assignment, we utilized a combination of structure prediction and annotation tools (Fig. 1), leveraging 166 
the higher prediction accuracy of AlphaFold2 and the rapid and accurate de novo predictions obtained via TrRosetta. 167 
Utilizing representative sequences of unique and homologous proteins, AlphaFold2 produced protein structures, and 168 
subsequent functional annotations were accomplished by integrating ProFunc and DeepFRI. trRosetta was employed 169 
to predict structures of unique and homologous proteins showing detectable homologous matches in the Protein Data 170 
Bank, which were subsequently used for further structure annotation. 171 

Enhancing annotations of proteins encoded by Methanobrevibacter smithii 172 

To explore the uncharted functional space of M. smithii, we first selected gut-specific proteins of gut-associated archaea. 173 
We collected the encoded proteins of a total of 1 190 archaeal and 285 835 bacterial MAGs, resulting in 873 481 174 
archaeal proteins and 87 282 994 bacterial proteins (Fig. 1). We focused on proteins associated with archaea of the 175 
human gut microbiome, which represented 37% (707 754 proteins) of all predicted archaeal proteins. These proteins 176 
were grouped into 61 123 MMseqs2 clusters for archaea (≥2 proteins per cluster) and 1 967 480 MM2 clusters for 177 
bacteria (≥10 proteins per cluster). By retaining fully annotated protein clusters, we obtained 55 117 archaeal MM2 178 
clusters and 1 481 580 bacterial MM2 clusters. Using our proposed functional prediction strategy (Fig. 1A), we analyzed 179 
the gut-associated archaeal proteins alongside bacterial proteins, resulting in 45 homologous sourmash clusters, i.e., 180 
shared between archaea and bacteria, and 28 unique sourmash clusters, i.e., composed exclusively of archaeal 181 
proteins. The bacterial data served as a reference to distinguish unique proteins encoded and transcribed by archaea, 182 
as well as archaeal proteins with homologs to bacterial ORFs. A summary of the annotations is provided in the 183 
Supplementary Materials (Supp. Tab. 1-2). 184 

All archaeal proteins from the abovementioned sourmash clusters were classified as M. smithii. We thus sought to 185 
extend our knowledge of M. smithii by exploring functions that could have implications for human health and disease. 186 
The investigation of the relative abundance of identified proteins and their associated processes revealed distinct types 187 
of functions in unique and homologous protein clusters (Fig. 2). The most frequently identified functions in the unique 188 
sourmash clusters were related to adaptation to changing environments and protection mechanisms, e.g., defense 189 
against foreign DNA and oxidative stress, while processes such as RNA and DNA regulation, energy metabolism, and 190 
cell wall integrity and maintenance were less represented (Supp. Tab. 3). Homologous sourmash clusters showed 191 
frequent functions related to adaptation, various protection mechanisms, energy metabolism, and cell structural integrity 192 
(Supp. Tab. 4). Analysis of fecal metatranscriptomic data confirmed the transcription of the majority of encoded genes, 193 
with some unique and homologous genes exhibiting higher expression levels (Fig. 2). Two unique and 19 homologous 194 
sourmash clusters with relatively high expression levels were identified, including genes associated with adaptation to 195 
changing environments, defense against foreign DNA and oxidative stress, DNA/RNA regulation, and energy 196 
metabolism, while the rest were unannotated (Fig. 2).  197 

Our analysis demonstrated disparity in annotations between sequence- and structure-based approaches. Notably, 46% 198 
(13 out of 28) and 31% (14 out of 45) of the unique and homologous sourmash clusters, respectively, lacked structure-199 
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based annotations, suggesting a reliance on sequence information for their functional annotation thus far. However, 200 
literature searches suggest that the KEGG annotations may not provide reasonable or meaningful functional 201 
assignments for most of these unannotated proteins. For instance, a protein annotated as mitochondrial import receptor 202 
subunit TOM40 by KEGG is predicted to be a putative intimin/invasin-like protein based on its structure, which is more 203 
relevant in the context of archaeal biology than being a eukaryotic protein involved in mitochondrial protein import. 204 
Similarly, a protein annotated as Endophilin-A, a eukaryotic protein involved in membrane curvature, shows structural 205 
similarity to PilC, a type IVa pilus subunit of a prokaryotic adhesion filament. While the presence of eukaryotic proteins 206 
in archaea is not surprising from an evolutionary perspective, the assignment of a protein to its evolutionary homolog 207 
from a different kingdom may not provide precise functional assignment of protein function. 208 

In general, the agreement between the sequence- and structure-based methods was limited, with 4% (1 out of 28) and 209 
25% (11 out of 45) of the unique and homologous proteins showing consistent annotations, respectively (Supp. Tab. 3-210 
5). The rest of the proteins exhibited disparity between sequence- and structure-based annotations, which was 211 
assessed by comparing their reported functions. For example, unique sourmash cluster u24 yielded different 212 
annotations using EGGNOG, KEGG, and Pfam databases which we used to potentially resolve disparities in the 213 
annotations (Supp. Tab. 3). However, a consensus structure-based annotation identified it as polypeptide N-214 
acetylgalactosaminyltransferase, providing additional annotation beyond sequence analysis. Similarly, the homologous 215 
protein clusters h15-h18 had the same functional assignments as novobiocin biosynthesis protein NovC using KEGG, 216 
but structure-based annotation revealed further distinctions: h16 and h18 were classified as members of the LytR-217 
Cps2A-Psr (LCP) protein family, h15 was annotated as 78 kDa glucose-regulated protein, and h17 remained 218 
unannotated (Supp. Tab. 4). The incorporation of structural information in protein annotation enables the distinction 219 
between closely related sequences, offering additional insights into protein function, which highlights the crucial role of 220 
structural data in understanding protein functionality. 221 

We further identified glycosyltransferases responsible for N and O-linked glycosylation from clusters h1-h6 as prevalent 222 
archaeal gut-specific proteins. These proteins may contribute to the viability and adaptability of archaeal cells in the 223 
gut. For instance, the most prevalent unique archaeal glycosyltransferase is 4-amino-4-deoxy-L-arabinose (L-Ara4N) 224 
transferase, which is essential for the protection from environmental stress, symbiosis, virulence and resistance against 225 
antimicrobial activity [72], [73]. Moreover, one of the six glycosyltransferases is a dolichyl-diphosphooligosaccharide – 226 
protein glycosyltransferase subunit STT3B (h5) which functions as an accessory protein in N-glycosylation and provides 227 
its maximal efficiency [74]. Archaeal N-glycosylation is known to play an important role in the viability and adaptivity of 228 
archaeal cells to external conditions such as high salinity [75], elevated temperatures [76] and an acidic environment 229 
[77] while also maintaining the structural integrity of cells [78], [79]. Four out of the six identified glycosyltransferases 230 
are dolichyl-phosphate-mannose-protein mannosyltransferases 1 (POMT1), which are responsible for O-linked 231 
glycosylation of proteins in eukaryotes. Another O-glycosylation associated protein, polypeptide N-232 
acetylgalactosaminyltransferase, was found in the subset of unique archaeal proteins (u24). M. smithii has been found 233 
to decorate its cellular surface with sugar residues mimicking those present in the glycan landscape of the intestinal 234 
environment [80]. The presence of human mucus- and epithelial cell surface-associated glycans in M. smithii, along 235 
with the coding potential for enzymes involved in O-linked glycosylation in archaeal gut species, suggests that M. smithii 236 
cells might have the capability to emulate the surfaces of eukaryotic cells in the intestinal mucus. Beyond their structural 237 
role in proteins, O-glycans can also act as regulators of protein interactions, influencing both interprotein and cell-to-238 
cell communication processes involved in cell trafficking and environmental recognition [81].  239 

Further findings suggest that 2-aminoethylphosphonate-pyruvate (2-AEP) aminotransferase, transthyretin-like protein  240 
and phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) system encoded by M. smithii contribute 241 
to energy metabolism. 2-AEP is an enzyme commonly found in bacteria [82] and is known to play a critical role in 242 
phosphonate degradation [83], which serves as an important source and production pathway for methane [84]. 243 
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Additionally, cold-shock domains of Unr protein potentially provide M. smithii with adaptation strategies through stress-244 
induced control of gene expression [85]. Furthermore, the predicted involvement of proteins such as the Specificity 245 
subunit of type I restriction-modification EcoKI enzyme [86] and type II restriction endonuclease BglII [87] suggests their 246 
potential role in host defense strategies employed by M. smithii to protect themselves in the gut environment. 247 
Additionally, it is conceivable that archaeal proteins may play a role in protecting against toxicity from other organisms 248 
in the gut using propanediol utilization protein pduA [88]–[90], as well as acquiring genes of bacterial origin through 249 
horizontal gene transfer. If this is the case, the presence of adhesin-like proteins in archaea could potentially enable 250 
them to form symbiotic relationships with bacterial neighbors with diverse metabolic potentials [91].  Figure 5 provides 251 
a schematic representation emphasizing specific proteins identified in this study, which could potentially play a 252 
significant role in the functional dynamics of archaea within the human intestine. A more detailed description of all 253 
identified M. smithii proteins is provided in Supplementary Materials.  254 

Characterization of select proteins and gene structures in 255 

Methanobrevibacter smithii genomes 256 

To elucidate the level of conservation among the identified genes recovered in our analyses, we assessed the level of 257 
genomic conservation within genomes of 2 strains of M. smithii, 2 strains of Ca. Methanobreviabcter intestini and the 258 
related species Methanobrevibacter_A oralis as a reference. Ca. M. intestini has been recently classified as an 259 
independent species within the Methanobrevibacter smithii clade [92]. We analysed HGT events and evaluated gene 260 
structure stability. Using 1022 available MAGs, we noted an increase in HGT events between 319 genomes of two M. 261 
smithii strains: Methanobrevibacter_A smithii and GCF_000016525.1 (based on GTDB classification) (Supp. Fig. 1). 262 
Specifically, 2.6% of the MAGs (n=27) exhibited HGT events involving the transfer of approximately 10±3 genes to 263 
other MAGs. Intriguingly, MAGs exhibiting HGT events were sampled in diverse geographical locations such as Austria, 264 
France, the UK and the US. Our results suggest that the propensity of these MAGs to exchange genomic segments 265 
may be attributed to similarities in their respective local environments [93], including dietary and lifestyle factors of the 266 
individuals. Thus, it is plausible that exposure to similar diets or stresses may have influenced the evolution of these 267 
MAGs via HGT along comparable trajectories. Conversely, the low occurrence of HGT events among the majority 268 
(97.4%) of available M. smithii genomes indicates their overall genomic conservation and stability. This could be 269 
explained by the fact that these MAGs were sampled from individuals living under similar dietary and lifestyle conditions. 270 
Importantly, our findings support the concept of genomic stability in M. smithii, as we observed a high degree of 271 
conservation in the flanking regions of the genes of interest across various M. smithii genomes. Through synteny 272 
analyses, we found compelling evidence of conserved synteny for genes encoded in M. smithii genomes 273 
(https://doi.org/10.5281/zenodo.8024791). 274 

Among the proteins specific for gut-associated archaea, we identified stage V sporulation proteins AE (spoVAE) and 275 
AD (spoVAD) (h9 and h20). Using BLAST searches, we extracted 250 bacterial protein sequences for SpoVAE and 276 
SpoVAD from Uniprot, including 12 spoVAE and 38 spoVAD proteins from environmental samples and the rest from 277 
isolate bacterial genomes belonging to the Firmicutes phylum. Phylogenetic trees demonstrated that proteins from h9 278 
and h20 are phylogenetically and compositionally distinct from other sequences and form separate branches (Supp. 279 
Fig. 2-3). Gene synteny analyses revealed that sporulation genes are grouped in operons (K06405, K06406 and 280 
K06407; Fig. 3). Moreover, the flanking regions around sporulation genes include genes with key archaeal as well as 281 
methanogenic functions. In addition, the flanking regions of both spoVAE and spoVAD genes are also encoded in the 282 
M. smithii isolate DSM 861 genome (Fig. 4). However, in contrast to our MAGs, the isolate’s genome did not encode 283 
the spoVAE and spoVAD genes. To assess whether spoVAE and spoVAD genes were acquired by M. smithii via HGT, 284 
we performed synteny analysis of bacterial sequences obtained from our human gut dataset that shared similarities 285 
with the archaeal sequences in clusters h9 and h20.  This analysis revealed that in the bacterial genomes found in the 286 
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human intestine, the flanking regions of spoVAE and spoVAD genes include genes mediating and facilitating HGT, 287 
such as a site-specific DNA recombinase (K06400) encoded upstream from spoVAE and type IV pilus assembly 288 
proteins (K02662, K02664) encoded downstream from spoVAD (Supp. Fig. 4-5). Genes originating from clusters h9 289 
and h20 are found within bacterial genomes of Firmicutes phylum members, specifically Clostridium sp. CAG-302 and 290 
CAG-269, which highlights their association with known bacterial taxa in the gut and indicates horizontal gene transfer 291 
between these distantly related taxa. 292 

While sporulation has been primarily observed in spore-forming bacteria and not in archaea, it is known that non-293 
sporulating bacterial species also encode sporulation genes. In these bacterial taxa, the genes likely encode regulatory 294 
proteins involved in peptidoglycan (PPG) turnover, thereby playing a role in cell division and/or development [94], [95]. 295 
Archaea lack PPG but methanogenic archaea, including Methanobrevibacter species, use pseudopeptidoglycan 296 
(pseudo-PPG) instead, which functions similarly to PPG in a bacterial cell and results in Gram positive staining [96]. 297 
Certain structural similarities between methanogens and bacteria described above leave open the question of whether 298 
sporulation proteins could play a similar role in pseudopeptidoglycan turnover in methanogenic archaea, analogous to 299 
their function in non-sporulating bacteria. The identification of these genes holds significant interest, especially in light 300 
of the work by Nelson Sathi et al., suggesting that methanogens frequently acquire functionally active genes through 301 
horizontal transfer from bacteria. Comprehensive experimental analysis is required to determine their specific functions, 302 
but these findings present an exciting opportunity for further exploration [97]. Phylogenetic analysis of spoVAE and 303 
spoVAD has demonstrated that sequences from the abovementioned clusters are compositionally homogeneous but 304 
phylogenetically distant from other known similar sequences in Uniprot, and therefore might be unique to the human 305 
gut environment. Moreover, archaeal and bacterial sequences from sourmash clusters h9 and h20 branch out together, 306 
which suggests that sporulation genes encoded in archaea are the result of horizontal gene transfer from bacteria to 307 
archaea. This study provides evidence that archaeal genomes exhibit clustered sporulation genes surrounded by genes 308 
linked to archaea-specific functions like pyrimidine, thiamine, and methane metabolism. Moreover, genes in flanking 309 
regions up- and downstream of spoVAE and spoVAD genes are indeed encoded in the representative M. smithii isolate 310 
DSM 861. As bacteria encoding similar spoVAE and spoVAD proteins and bacterial sequences from clusters h9 and 311 
h20 belong to various species of the Clostridium genus, HGT probably occurred in the direction from the 312 
abovementioned species to M. smithii. Moreover, Ruaud, Esquivel-Elizondo, de la Cuesta-Zuluaga et al. [98] have 313 
provided evidence of a syntrophic relationship between Firmicutes bacteria and Methanobrevibacter smithii. The co-314 
occurrence of these microorganisms is likely facilitated by physical and metabolic interactions. In addition to this, genes 315 
h9 and h20 as well as their surrounding genes are expressed by the archaeal genomes sampled from human faecal 316 
samples. 317 

Conclusion 318 

Our study aimed to uncover the potential functions of archaeal proteins, particularly those encoded by M. smithii, in the 319 
human gut. Sequence similarity-based methods, while effective for highly similar proteins (>70-80% identity), may not 320 
accurately represent the functions of archaeal proteins due to the lack of experimental validation. More specifically, 321 
publicly available databases have limited experimentally validated archaeal sequences compared to bacterial and 322 
eukaryotic proteins (~7 000 000 archaeal, ~166 000 000 bacterial and ~70 000 000 eukaryotic proteins, UniProtKB Jun 323 
2023)  making sequence-based protein annotations applicable to only a subset of archaeal proteins. In contrast, recent 324 
deep learning-based methods enable protein structure prediction and annotation without relying on high sequence 325 
similarity, allowing for functional similarity beyond close sequence matches. We used structural methods to improve the 326 
annotation of archaeal proteins, gaining better insights into their functions compared to traditional sequence-based 327 
methods. This approach allowed us to refine some existing annotations and discover new functions for others, giving 328 
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us valuable insights into the roles of archaeal genes in the human gut. Our findings focus on the characterization of 329 
human-associated and gut-specific proteins identified in M. smithii, a metabolically proficient and clinically relevant 330 
methanogenic archaeon known to be linked to gastrointestinal disorders, including IBD and obesity. Future work should 331 
help in resolving the predicted structures and protein functions using experimental approaches. 332 
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Figure 1. A, Flowchart demonstrating major steps of the analysis. The Venn diagram demonstrates the number of 
shared KOs assigned to archaeal and bacterial smash clusters. B, Funnels illustrating the protein count at each 
stage of protein selection. MM2 – Mmseqs2 clusters, SCs – smash clusters.  

 

Figure 2. Relative occurrence and average metatranscriptomic read coverage of proteins in the A, unique and B, 
homologous groups of clusters with archaeal proteins. MG – metagenomics, MT – metatranscriptomics.  
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Figure 3. Gene synteny for sporulation stage V genes AE and AD from their respective smash clusters A, h9, and 
B, h20. Gene expression of target genes (spoVAE and spoVAD, in red) as well as genes from flanking regions are 
demonstrated below each sequence and are colored correspondingly. Genes with key archaeal functions: A, 
pyrimidine metabolism (K18678, phytol kinase), methane metabolism (K11781, 5-amino-6-(D-ribitylamino)uracil–
L-tyrosine 4-hydroxyphenyl transferase) and thiamine metabolism (K00878, hydroxyethylthiazole kinase; K00788, 
thiamine-phosphate pyrophosphorylase); B, pyrimidine metabolism (K22026, nucleoside kinase; K18678, phytol 
kinase) and methane metabolism (K11781, 5-amino-6-(D-ribitylamino)uracil–L-tyrosine 4-hydroxyphenyl 
transferase). 
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Figure 4. Genomic context of the archaeal flanking regions up- and downstream of the A, spoVAE and B, spoVAD 
gene clusters in the M. smithii strain DSM 861.  
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Figure 5. Schematic proposal highlighting proteins specific to gut-associated archaea  with described functions: 
u1 - Type II restriction endonuclease BglII, u2 - Intimin/invasin-like protein with a Ig-like domain, u3 - Intimin/invasin-
like protein, u4 - Unr protein, u22 - Type I restriction-modification EcoKI enzyme, specificity subunit, u24 - 
Polypeptide N-acetylgalactosaminyltransferase, h1 - 4-amino-4-deoxy-L-arabinose transferase or related 
glycosyltransferases of PMT family, h2,3,4,6 - Dolichyl-phosphate-mannose – protein mannosyltransferase 1, h5 
- Dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit STT3B, h7 - Propanediol utilisation 
protein pduA, h11 - Phosphoenolpyruvate-dependent PTS system, IIA component, h28 - Transthyretin-like protein, 
h31 - 2-aminoethylphosphonate-pyruvate aminotransferase. 
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Figure 1. Heatmaps demonstrating the intensity of HGT events between M. smithii genomes. A, HGT between 
taxonomic groups named as follows: A - Methanobrevibacter_A smithii, B - Methanobrevibacter_A smithii_A (Ca. 
Methanobreviabcter intestini), C - Methanobrevibacter_A oralis, E - GCF_000016525.1 (M. smithii), F - 
GCF_002252585.1 (Ca. Methanobreviabcter intestini); B, HGT events between individual genomes of same 
groups. The legend depicts the frequency of HGT events among the genomes of A, taxonomic groups and B, 
individual genomes. 
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Figure 2. Phylogenetic tree of stage V sporulation proteins AE from identified SC h9 and Uniprot. Bacterial and 
archaeal proteins from cluster h9 are depicted as GUT_bacteria and GUT_archaea in dark blue and pink, 
respectively.  
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Figure 3. Phylogenetic tree of stage V sporulation proteins AD from identified SC h20 and Uniprot. Bacterial and 
archaeal proteins from cluster h9 are depicted as GUT_bacteria and GUT_archaea in dark blue and pink, 
respectively. 
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Figure 4. Gene synteny of homologous bacterial sequences obtained from the human gut dataset that share 
similarities with the archaeal sequences from cluster h9 encoding stage V sporulation protein AE (spoVAE).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 10, 2023. ; https://doi.org/10.1101/2023.02.01.526569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.02.01.526569
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

Figure 5. Gene synteny of homologous bacterial sequences obtained from the human gut dataset that share 
similarities with the archaeal sequences from cluster h20 encoding stage V sporulation protein AD (spoVAD). 
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