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The melting of the cryosphere is among the most conspicuous consequences of climate

change, with impacts on microbial life and related biogeochemistry. However, we are missing

a systematic understanding of microbiome structure and function across cryospheric eco-

systems. Here, we present a global inventory of the microbiome from snow, ice, permafrost

soils, and both coastal and freshwater ecosystems under glacier influence. Combining phy-

logenetic and taxonomic approaches, we find that these cryospheric ecosystems, despite

their particularities, share a microbiome with representatives across the bacterial tree of life

and apparent signatures of early and constrained radiation. In addition, we use metagenomic

analyses to define the genetic repertoire of cryospheric bacteria. Our work provides a

reference resource for future studies on climate change microbiology.
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M icroorganisms dominate the biosphere, maintain eco-
system processes, and play key roles in global biogeo-
chemical cycles. The microbiome of cryospheric

ecosystems, the nearly 20% of Earth’s surface where water
remains frozen for at least one month of the year1, currently
figures among the least understood microbiomes on Earth2–6.
This is noteworthy given that the cryosphere is melting at an
unprecedented pace owing to climate change. Motivated by the
exploration of life in a planetary context7 and the discovery of
new biomolecules for biotechnology8, classical microbiology and
(more recently) advances in sequencing technologies have unra-
velled physiological and molecular processes underpinning the
adaptation of cold-adapted bacteria (i.e., psychrophiles) to the
cryospheric environment9,10. More specifically, metagenomics
has provided new insights into the structure and function of
complex microbial communities of some cryospheric ecosystems,
such as permafrost soils2,11, leading to a better understanding of
the role of these ecosystems in global biogeochemical cycles and
their vulnerability to climate change.

However, we are still missing an integrative understanding of the
microbiome across the various and often underexplored cryospheric
ecosystems on Earth3,5,6. Here we present a global catalogue of
microorganisms from various cryospheric ecosystems and at a
taxonomic resolution that allows detection of cryosphere-adapted
lineages and associated traits. We leverage sequence data from
numerous published studies ranging from snow to permafrost
ecosystems to shed light on the global cryospheric microbiome.
While also illuminating geographical biases and underexplored
habitats in the currently available cryospheric data, our study con-
stitutes an important resource for the study of cryospheric life in
general and its potential future in a warmer world.

Results and discussion
The dataset. We curated and explored 695 published 16S rRNA
gene samples from cryospheric ecosystems (Methods section and
Supplementary Table 7), including polar ice sheets, mountain gla-
ciers and their proglacial lakes, permafrost soils and the coastal
ocean under the influence of glacier runoff, and compared these to
3552 published 16S rRNA gene samples from non-cryospheric
ecosystems, including temperate and tropical lakes and soils (Sup-
plementary Table 7). This approach allowed us to identify and
explore features specific to the cryospheric microbiome and com-
pare it to other environmental microbiomes. However, we note a
geographical bias towards polar regions in current publicly available
repositories, and the paucity of alpine samples specifically highlights
the need to further characterise these habitats given that they are
among the most endangered cryospheric ecosystems globally. This
bias is further compounded by the inconsistent methodologies
applied across studies (e.g. primer pairs and sequencers used). To
account for potential primer biases, we analysed two 16S rRNA
primer pairs (Primer Pair 1, PP1: 341f-785r; Primer Pair 2, PP2:
515f-806r)12,13 commonly used in amplicon high-throughput
sequencing. In total, this dataset contains 241,502,708 paired
sequence reads, resulting in 530,254 and 410,931 amplicon sequence
variants (ASVs) for PP1 and PP2, respectively. Moreover, all taxo-
nomic analyses were performed at the genus level, to account for the
limitations of 16s rRNA amplicon data. To gain deeper insights into
the functional space of the cryospheric microbiome, we compared
34 published metagenomes from cryospheric ecosystems with 56
metagenomes from similar but non-cryospheric ecosystems
(Fig. 1A). Given the difficulty of obtaining high-quality metagen-
omes from cryospheric ecosystems, we restricted our analyses to
glacier surfaces, ice-covered lakes, and Antarctic soils. Although our
analyses were limited to samples where raw sequence data are
available (Methods section), the breadth of habitats covered are

representative of the most abundant cryospheric ecosystems, e.g.,
glacier ice, cryoconites, subglacial lakes and sea ice. On the other
hand, several niches such as glacier snow, glacier-fed rivers/streams,
and the full-breadth of permafrost may not entirely be represented
due to data unavailability. We reanalysed all metagenomes using the
same bioinformatic pipeline (IMP3; see Methods section) to avoid
analytical biases. Overall, the metagenomic analyses from
2,427,818,072 paired reads yielded 41,068,842 gene sequences. Thus,
we here present a catalogue representing a snapshot of the func-
tional diversity in the cryospheric microbiome, integrating across
diverse habitats. This represents what we believe to be the first global
overview of the functional repertoire of the Earth’s cryosphere
compared to other ecosystems.

A cryospheric microbiome. Given the communal constraints
imposed by the harsh environment of cryospheric ecosystems
(e.g., low temperature, oligotrophy), we expected them to harbour
a specific microbiome. Accordingly, machine-learning classifica-
tion (logistic regression models, Methods) based on community
composition was able to differentiate between cryospheric and
non-cryospheric microbiomes with high accuracy (balanced
accuracy >0.96, Supplementary Table 1). Both primer pairs
consistently yielded a high classification accuracy and especially a
high precision. Interestingly, many of the discriminating cryo-
spheric ASVs were spread widely across the bacterial tree of life
(Fig. 1A and Supplementary Fig. 1).

The notion that a part of the microbiome is specific to the
cryosphere is also strongly supported by phylogenetic analyses of
the 16 S rRNA gene amplicon dataset. First, we found higher
pairwise phylogenetic overlap among cryospheric samples than
among cryospheric/non-cryospheric or non-cryospheric samples
(Sorensen’s index, Fig. 1C; Wilcoxon test, Holm adj. p < 0.001).
This points towards a phylogenetic diversity that is specific to the
cryosphere. Second, when we examined cross-sample nearest
taxon distances (β-NTDs), we found that taxa in cryospheric
samples have lower β-NTDs in other cryospheric samples than in
non-cryospheric samples (Fig. 1D; Wilcoxon test, Holm adj.
p < 0.001). This was less evident for non-cryospheric samples
(Supplementary Table 2). Because phylogeny and functional
similarity usually correlate at short phylogenetic distances14, this
finding suggests higher niche similarity for cryospheric bacteria
compared to their non-cryospheric equivalents. This evokes
specific selective constraints of cryospheric environments acting
on taxa across the entire bacterial tree of life. Interestingly, when
we further examined radiation patterns, we found that taxa in a
given cryospheric microbial community had on average larger
phylogenetic distances (α-MPD) than their counterparts in a non-
cryospheric community (linear model, p < 0.001). This could
suggest early radiation events with subsequent “pruning” of
phylogenetic diversity, which would explain the observed
patterns15. However, we cannot exclude nor disentangle the
action of contemporary evolutionary and assembly processes that
can jointly shape community phylogenies. For example, trans-
duction and genome plasticity have repeatedly been linked with
cold adaptation in cryospheric bacteria. Moreover, horizontal
gene transfer has also been shown to promote the diffusion of
cold-adaptation genes16. Nevertheless, given the large number
and breadth of included cryospheric ecosystems, we posit that the
topologies of the inferred phylogenies are less prone to assembly
processes. We rather interpret that the observed patterns are signs
of early and constrained radiation in the cryospheric microbiome.
Collectively, these results point to similar evolutionary trajectories
in cryospheric microbiomes, probably owing to similar environ-
mental conditions across various cryospheric ecosystems, over
timescales, relevant for bacterial macroevolution.
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The abundance of a given species in an ecosystem generally reflects
its fitness and adaptive capacity to the respective environmental
conditions. Therefore, we explored patterns of differential abundance
(Methods section) and found 589 bacterial genera with higher
abundances in cryospheric compared to non-cryospheric samples
(Ancom, W statistic > 0.7, CLR mean difference > 0) that hereafter
will be referred to as cryospheric genera. These genera were
distributed widely across the bacterial tree of life and encompassed
46 different phyla. Despite this wide distribution, we found that
34.8% and 13.4% of the cryospheric genera were affiliated
Proteobacteria and Bacteroidota, respectively (Fig. 2A). The relevance
of Proteobacteria is in line with the high prevalence of Alpha- and
Gammaproteobacteria typically reported in the cryospheric

literature4,17. Genera belonging to the Alpha- and Gammaproteo-
bacteria classes displayed the highest differential abundance and
included Sphingomonas, Polaromonas, Rhodoferax, Brevundimonas,
and Acidiphilum (Fig. 2B) — some of them with taxa typically
reported to be psychrophiles10,18–20. Bacteroidota was the second
most important phylum of the cryospheric microbiome with
Hymenobacter, Ferruginibacter, and Polaribacter (for instance) as
dominant genera, all of which are known from permafrost soils and
ice ecosystems21,22. Furthermore, as previously reported23,24, the
cryospheric genera included members of the Actinobacteria,
Chloroflexi and Cyanobacteria phyla, alongside some Firmicutes.
The former two are particularly common in supraglacial
environments4, and Cyanobacteria are important components of

Fig. 1 A unique cryospheric microbiome. A Geographic distribution of the 16 S rRNA gene samples for the two primer pairs (PP) and metagenomes for
both cryospheric and non-cryospheric ecosystems, where GPS coordinates were available on NCBI. Symbol size denotes the number of samples per site
(see Supplementary Table 7). B Phylogenetic tree based on abundant ASVs (>0.5% relative abundance in at least one sample) in the PP1 dataset. The
heatmap (inner rings) shows the presence (at a > 0.5% relative abundance threshold) of ASVs in the four ecosystem types of the cryosphere (ice and
snow, terrestrial, coastal ocean and freshwater). The barplot (outer ring) represents the coefficient for the SVM classifier analysis, highlighting
discriminating ASVs. C Sorensen’s phylogenetic index of β-diversity (n1= n2= 84,461 for PP1, and n1= n2= 99,000 for PP2) and D β-MNTD calculated
across pairs of samples in the cryospheric samples (Cryo-Cryo), pairs of cryospheric and non-cryospheric samples (Cryo-Others) and pairs of non-
cryospheric (Others-Others) samples (sample sizes are listed in Supplementary Table 2). The top panel (shades of blue) is for PP1, the bottom one (shades
of red) for PP2; two-sided Wilcoxon tests were performed to assess significance in panels C and D; the Holm method was used to correct for multiple
testing (****: 0–0.0001). Boxplots depict the median and the 25th and 75th quartiles, whiskers extend to values within 1.5 times the interquartile range, and
the remaining points are outliers. Effect sizes and exact p-values are available in Supplementary Table 2. Source data are provided as a Source Data file.
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cryoconite microbiomes25. Our global analyses thus corroborate and
extend previous reports on microbiome composition in distinct
cryospheric ecosystems. Furthermore, our differential abundance
analysis unveiled genera (e.g., Oryzihumus or Pseudolabrys) that have
not been previously associated with the cryosphere (Fig. 2B). More
importantly, many of the detected cryospheric genera only have
placeholder names due to the lack of cultivated representatives (e.g.,
CL_500-29_marine_group, hgcl_clade, TRA3-20), underlining
unique bacterial groups that are yet to be described. Collectively,
these findings unveil an unexpectedly diverse and likely well-adapted
microbiome specific to the cryosphere, and supports the notion of the
cryosphere as a biome with its distinct association of microorganisms,
alongside plants and animals17.

Compositional patterns across cryospheric ecosystems. We next
explored how microbial community composition varies across
cryospheric ecosystems. Using similarity analyses, we found that the
microbiome composition differed significantly between cryospheric
ecosystem types (PERMANOVA, r2= 0.183, p < 0.001; pairwise.a-
donis, p < 0.001 for all pairwise comparisons) (Fig. 3A and Sup-
plementary Table 4). Most conspicuous was the segregation of
snow/ice and marine communities, bracketing freshwater and ter-
restrial cryospheric communities. We also found a significant but
relatively small effect of the primer pair (PERMANOVA, r2= 0.019,
p < 0.001) that could be attributable to primer bias, or inherent
differences related to sampling. To further assess these distributions,
we explored prevalence patterns to identify a core microbiome
across cryospheric ecosystems (Fig. 3B). We found 37 bacterial
genera, including Pseudomonas, Acinetobacter, and Flavobacterium,
for instance, to constitute the core microbiome. The dispropor-
tionate representation of these core genera in the above-identified
cryospheric genera (Fisher’s exact test, p < 0.001, odds ratio= 6.93)
underlines their high abundance in cryospheric ecosystems (Sup-
plementary Fig. 2). It also shows the prevalence and abundance of
some cryospheric genera, indicating their potential relevance for
ecosystem processes.

Additionally, analysing the relative abundance of the core
cryospheric genera for each primer pair and cryospheric
ecosystem types, we found that ice and snow microbiomes were
associated with the highest proportions of core genera (23.05%

and 24.8% for PP1 and PP2, respectively) (Fig. 3D). In contrast,
the marine cryospheric microbiome is only marginally composed
of these genera (16.9% and 13.3% for PP1 and PP2, respectively).
This pattern is in line with our unconstrained ordination analysis
(Fig. 3B) and suggests that snow and ice represent endmember
cryospheric systems, while the cryospheric component of the
microbiome dissipates in downstream freshwaters, soils and the
coastal ocean. Furthermore, the alpha-diversity was higher in
terrestrial (Shannon H= 3.67), marine (H= 3.25) and freshwater
(H= 2.99) ecosystems than in snow and ice (H= 2.86),
corresponding to increasing contributions of ancillary taxa to
their microbiomes (Supplementary Table 5). These differences in
diversity are likely attributable to environmental gradients
characterised by more diverse energy sources and niches, such
as when moving from snow and ice to aquatic and soil
ecosystems. Our analyses revealed compositional patterns of the
cryospheric microbiome suggesting that snow and ice ecosystems
including supraglacial habitats (e.g., mountain glaciers, ice sheets,
snow and cryoconites) may serve as a source of cold-adapted
bacterial diversity, upon losing which the downstream diversity
may become threatened as well.

Functional potential of the cryospheric microbiome. The
adaptive and survival strategies of microorganisms to the extreme
environmental conditions of the cryosphere have received sub-
stantial attention over the last years26–28. For example, genomic
insights from bacterial cultures have revealed mechanisms of
thermal adaptation linked to bulk genomic features, such as GC
content and genome size29. Moreover, genome streamlining has
been shown to be a relevant evolutionary force in the
cryosphere28. Therefore, we analysed the GC content and genome
size of 13,414 reference genome sequences from the NCBI Refseq
genomes database30 to investigate shared properties of cryo-
spheric genera, and to provide a framework to contrast future
cryospheric metagenomic results. By comparing these reference
genomes representing 660 bacterial genera present in our taxo-
nomic analyses (29.8% of which are cryospheric genera according
to our differential abundance analysis), we found that the cryo-
spheric genera had a significantly higher GC content (Supple-
mentary Fig. 3B; Wilcoxon test, Holm adj. p= 0.0011, median

Fig. 2 Cryospheric genera and shared genomic properties. A Taxonomic tree representing the number of cryospheric genera per taxon with colours. Only
taxa containing at least two cryospheric genera are shown (down to the class level). B Bar plot showing the bacterial genera significantly enriched in the
cryosphere with the highest centered log-ratio (CLR) mean difference (based on ANCOM analysis). The colours represent the phylum level taxonomic
classification. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30816-4

4 NATURE COMMUNICATIONS |         (2022) 13:3087 | https://doi.org/10.1038/s41467-022-30816-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


difference= 8.8%) compared to the other genera; a pattern also
supported by an enrichment in sequences that encode GC-rich
amino acids (e.g., Alanine, Arginine, Glycine) (Supplementary
Fig. 3A and Supplementary Table 6). Therefore, our findings
suggest that cryospheric genera indeed share an elevated GC
content31, in line with reports on cold-adapted Synechococcus
(SynAce01)32 and Actinobacteria33. We also report that the
average genome size of cryospheric genera is closely bracketed by
published values for psychrophilic bacteria34.

Next, using a gene-centric approach, we explored the
functional space of the cryospheric metagenomes dataset. Out
of 17,191 KEGG orthologues (KO), 980 KO were significantly
enriched in cryospheric samples. Cryospheric genera and
particularly cryospheric core members (e.g., Pseudomonas,
Sphingomonas and Novosphingobium) disproportionately
accounted for these gene families (Fig. 4A). Our analysis
highlighted the relevance of chemolithotrophic pathways (e.g.,
manganese and iron uptake, sulfur, nitrogen and hydrogen
metabolism), complementing earlier reports on these particular
functional attributes of cryospheric ecosystems (Fig. 4B)24,35,36.
The apparent relevance of chemolithotrophic pathways is likely
attributable to a relative scarcity of organic carbon in cryospheric
ecosystems. Interestingly, we consistently identified chitinase
genes, which are involved in permafrost carbon cycling, but may
also be an adaptation to freezing37. Finally, genes involved in
adhesion, motility and various secretion systems collectively point
to biofilm formation as an important strategy for life in
cryospheric ecosystems38, which are often characterised by
extended periods of oligotrophy and elevated UV-radiation.

Our cross-ecosystem metagenomic analyses not only shed light
on potential functions of the cryospheric microbiome across
ecosystems, but also unveiled a large uncharacterised functional
space with 43.4% of the protein coding genes in cryospheric
samples unannotated to a KEGG orthologous group. While this
does not seem unusual for environmental metagenomes in
general3, it is notable that we may lose this functional potential as
the cryosphere vanishes. In order to shed light on this
uncharacterised functional space, we clustered 41,068,842 gene
sequences based on a 30% sequence similarity and 80%
sequence coverage threshold, subsequently mapping representa-
tive sequences of the largest clusters (>29 sequences in at least
2 samples, n= 12,125) to the UniProt TrEMBL database (Fig. 4C).
While the KEGG assigned clusters overall had a high percentage
of sequences that matched genes in the UniProt database
(Table 1), we found that cryosphere specific sequences show a
large decrease in the clusters assigned to multiple KEGG (i.e.,
ambiguous) and even more in the ones containing exclusively
unassigned sequences, compared to non-cryospheric environ-
mental metagenomes. In addition to the low percentage of gene
sequences matching UniProt sequences, we found that the
cryosphere specific clusters that align to the database show a
largely decreased identity with the matching sequence (Supple-
mentary Fig. 4). These findings underline the lack of representa-
tion of cryospheric sequences in current gene sequences
databases, potentially linked to the specificity of certain taxa to
the cryosphere, and/or functions. Finally, the large nucleotide
similarity within these clusters (Supplementary Fig. 4) suggests
that these are conserved functions of particular importance to

Fig. 3 Microbiome structure across various cryospheric ecosystems. A The probability of presence of members of the core microbiome is shown across
cryospheric environments. Colours and facets separate phylum-level taxonomic affiliation. B Unconstrained ordination showing differences (Bray-Curtis
dissimilarity) of bacterial communities among different cryospheric ecosystems (k= 2, stress= 0.206). Hulls demark 95% confidence intervals for a
multivariate t distribution for the respective ecosystem types. C Mean relative abundance (in percentage) of core/ancillary and cryospheric/others
bacterial genera across the four ecosystem types and the two primer pairs. Source data are provided as a Source Data file.
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microbial life under cryospheric constraints, and corroborates the
notion of specific lineages of closely related taxa to dominate
microbial life in the cryosphere. Aside from being uncharac-
terised, 170 of the unassigned gene clusters were only detected in
cryospheric metagenomes and could thus represent unknown
gene families of importance to understanding the adaptation of
bacteria to these extreme ecosystems.

Collectively, our insights both at the taxonomic and functional
level reveal key microbiome features that are exclusive to
cryospheric ecosystems. Although entire taxonomic lineages are
not unique to cryospheric ecosystems, it is evident that specific
species and potentially strains are novel and adapted to these
environments. Similarly, the emergent functional properties
clearly demonstrate the exclusivity of functions, especially those
that are yet to be characterised or that can be classified based on
existing databases, within the cryosphere. On the contrary, we
find that in both the taxonomic and functional complements,

several taxa and functions are shared with non-cryospheric
ecosystems. This is expected since the underlying genomic
content supporting the taxonomic and functional annotations
are shared between the cryospheric and non-cryospheric
ecosystems. This is evident based on the >50% identity among
the shared gene clusters that had matching identities in the KEGG
database (Table 1).

Here we present what we believe is the first global data-driven
approach to unravel specific features of the cryospheric micro-
biome. Our meta-analysis revealed diverse, distinct and function-
ally specific bacterial communities that appear to have been
shaped by sustained evolutionary forces, suggesting an ancient
origin of this biodiversity. While our study highlights key
taxonomic groups such as Proteobacteria and Bacteroidota, our
findings also disclose the importance of yet-uncultured bacteria
and an uncharacterised genetic repertoire. In light of the
threatened nature of the cryosphere, targeted efforts to unravel
the phylogenetic and genomic underpinnings of bacterial
adaptation to cryospheric ecosystems, including prospecting for
cold-adapted biomolecules as well as the cultivation of cryo-
spheric bacteria, are urgently required.

Methods
16S rRNA datasets. Two primer pairs typically used in microbial ecology tar-
geting the prokaryotic 16S rRNA were assessed: 341f-785r and 515f-806r. They will
be referred to as Primer Pair 1 (PP1)13 and Primer Pair 2 (PP2)12, respectively. All
articles citing the PP1 and PP2 reference articles were retrieved using Web of
Science (All databases, searched on the 7 December 2019, 1727 articles). The first
selection based on title and abstract was performed as described herein. Only
studies having sequenced environmental samples were kept. Simultaneously, stu-
dies assessing pollution or contamination and involving major climatic or ecolo-
gical events, e.g. storms or blooms, were removed. Thereafter, a second selection
was performed based on the whole article, assessing technical criterions. Only
studies using the aforementioned primer pairs, Illumina paired-end sequencing
and having available data were kept; and the corresponding NCBI bioproject
accessions were extracted. At a later stage, a few studies meeting the filtering
criteria but not included in the Web of Science search were added.

The raw sequencing (fastq) data were downloaded using the ENA browser
(European Nucleotide Archive; www.ebi.ac.uk/ena/browser/). At this stage, only
the control samples were downloaded for experimental studies. The read files were
filtered as follows: First, Trimmomatic was used to remove low quality reads,
truncating the reads at the first instance of a sliding-window (5 bp) having a mean
quality below 1539. At this stage, the raw data from each BioProject was imported
into qiime240. Denoising was performed with the dada2 plugin using the primers
sequences length for the ‘–p-trim-left-r’ and ‘–p-trim-left-f’ parameters41. This step
removed integrally two studies in the PP1 dataset (“negative values in quality” and
“all samples discarded” errors). Only sequences assigned to bacterial taxa were
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1.00
Completion

Fig. 4 Functional enrichment analysis and taxonomy of enriched
functions. A Prevalence represented against the number of enriched KOs in
cryospheric samples across bacterial genera. The shading represents the
cryospheric and others bacterial genera whereas symbol size represents
the number of contigs taxonomically assigned to the respective genus
within cryospheric metagenomes. The insert represents the distribution of
the number of contigs harbouring cryospheric enriched KOs across the
cryospheric and others genera. B Heatmap representing the completion of
pathways across cryospheric samples based only on the KOs enriched in
the cryosphere. Source data are provided as a Source Data file.

Table. 1 Description of the gene sequences clustering
approach.

Annotation Category Number of
clusters

Uniprot
match (%)

KEGG Cryosphere 47 61.70
Shared 1663 54.18
Non-cryosphere 2325 55.14

Ambiguous Cryosphere 113 40.71
Shared 1056 52.65
Non-cryosphere 3105 54.17

Unassigned Cryosphere 170 17.65
Shared 1524 5.18
Non-cryosphere 2122 46.94

Table summarising the 12’125 largest gene sequence clusters present in at least two samples.
The annotation refers to the assignment of the genes to one KEGG Orthologous group (KO),
multiple KOs or unassigned (Ambiguous) and only unassigned (Unassigned). Distribution of
assigned (KEGG), ambiguous and unassigned functional gene clusters highlighting the bias
against cryospheric gene clusters. Shared refers to the representatives of both categories of
samples contained gene sequences in the cluster. The number of clusters is shown, along with
the proportion of clusters having a consensus sequence matching the UniProt database.
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kept, and chloroplast and mitochondrial sequences were also removed. Finally, all
samples with less than 5000 reads after this initial filtering were removed.

Taxonomy classification for PP1 and PP2 ASVs was performed using the
qiime2 ‘feature-classifier’ plugin and the Silva 138 nr99 database41,42. First, reads
were extracted from the reference sequences using the extract-reads method. For
this, the primer sequences were used for the ‘–p-r-primer’ and ‘–p-f-primer’
arguments. The length of the extracted reads was set to min. 250 and max. 450 for
the PP1 dataset and min. 200 and max. 400 for the PP2 dataset. A classifier was
then created using the fit-classifier-naïve-bayes method with the extracted reads
and the reference taxonomy. Finally, this classifier was run on the dataset’s
sequences using the ‘classify-sklearn’ method to get the sequences taxonomy41. To
keep only high-quality samples, all samples having <75% of their ASVs assigned to
the phylum level, and 50% assigned to the genus level were removed. This filtering
resulted in 2508 samples and 530,254 ASVs for PP1 and 1739 samples and
410,931ASVs for PP2. The ASV tables and metadata tables for these datasets can be
found on Zenodo, under the file names: ‘Data/PP1_table.tsv’, ‘Data/PP2_table.tsv’
and ‘Metadata/PP1_metadata.tsv’ and ‘Metadata/PP2_metadata.tsv’, respectively.

Metagenomic dataset. To address the functional aspect of identified taxa,
accession numbers of studies comprising of the following keywords: metagenomics,
whole genome shotgun, and environmental, were queried using NCBi’s EDirect43.
The results were manually curated to select studies from a broad Geographic
distribution, yielding a total of 382 datasets. The selection of metagenomic samples
was further restricted to raw fastq data, thus precluding the use of samples from
MG-RAST since only the metagenome assembly files were provided. Additionally,
all samples still under embargo in accordance with the Joint Genome Institute (JGI;
USA) policy, were excluded. From this collection, samples with fewer than 1
million reads or with a quality of reads less than Q25 were removed for a final
collection of 91 samples (Fig. 1A). Paired reads were processed using the Integrated
Meta-omic Pipeline (IMP)44. The workflow includes pre-processing such as pri-
mer/adaptor removal and trimming followed by an iterative assembly. Addition-
ally, functional annotation of genes based on custom databases was performed
(described below). The entire workflow is setup in a reproducible Snakemake
format45. Briefly, after preprocessing the reads, de novo assembly using MEGAHIT
(v1.2) assembler was performed46. All the methods and parameters used are listed
on the Github repository, in the ‘Preprocessing/IMP_config.yaml’ file. The meta-
genomic dataset KEGG Orthologs (KO) table, taxonomy table, and metadata are
available on Zenodo under the ‘Data/MTG_KEGG_counts.tsv’, ‘Data/MTG_ta-
ble.tsv’, and ‘Metadata/MTG_metadata.tsv’.

Metagenomic taxonomic classification and functional analyses. Functional
potential analyses from contigs were determined by predicting open-reading frames
using a modified version of Prokka47 including Prodigal48 gene predictions for
complete and incomplete open reading frames. Genes identified subsequently were
annotated with Hidden Markov Models (HMM)49, trained using an in-house
database50. The annotations were further annotated with KO51 groups using
‘hmmsearch’ from HMMER 3.149. Upon multiple functional group assignments, the
best hits based on bit scores were selected. FeatureCounts52 with the ‘-p’ and ‘-O’
arguments were then used to extract the number of reads per functional category.

Logistic regression classification of cryospheric bacterial communities. The
Logistic regression implemented in scikit-learn python module (version 0.23.2) was
trained on presence-absence ASV tables to classify cryospheric samples53. To reduce
the amount of ASVs considered, the table was filtered based on relative abundance:
presence was defined at a 0.005 relative abundance threshold. A stratified 5-fold
cross-validation (CV) was ran and the scores were averaged across the CVs. This
process was repeated 40 times and the mean and standard deviations are reported for
each metric. To ensure reproducibility, the seed was set as 23 for the classifier, and as
the iteration number for the stratified cross validation iterator (from 0 to 39). The C
parameter controlling L2 penalisation was turned off using the ‘none’ argument and
the lbfgs solver was used. ROC curves were plotted using the ‘plot_roc_curve’
function of the scikit-learn python module. Balanced accuracy, precision and recall
were computed using the ‘accuracy_score’, ‘precision_score’ and ‘recall_score’
methods, respectively, with sample weights correcting for the sample size of the
cryospheric and non-cryospheric datasets (Supplementary Table 1). The means and
standard deviations of scoring metrics for the classifiers can be found in table S1.
Odds ratios were calculated using the exponent of the logistics models coefficients.
The tables containing the ASVs logistic regressions odds ratios can be found in the
Data folder available on Zenodo under the name ‘PP1_Logistic_coefs.csv’ and
‘PP2_Logistic_coefs.csv’ for PP1 and PP2, respectively.

Phylogenetic analyses. Phylogenetic trees were built using the set of ASVs found
in the dataset used for the logistic regression classification. Due to the different 16 S
regions targeted, phylogenies for both PP1 and PP2 datasets were constructed
separately. The ASVs sequences were aligned using the FFT-NS-2 algorithm
implemented in the Mafft aligner with default parameters54. The alignments were
subsequently trimmed using TrimAl with the ‘-gt 0.95’ parameter, and the trees
built using IQ-TREE with the GTR model of nucleotide substitution and the ‘-fast’
option55,56. Phylogenetic tree visualisations were created using the ggtree and

ggtreeExtra R packages57,58. Only positive coefficients showing enriched presence
in cryospheric environments are shown in the phylogenetic barplots (Fig. 1). The
number of ASVs with an odds ratio above 1 was shown for taxonomic summaries
(Supplementary Fig. 1B, C).

ß-diversity phylogenetic metrics (Sorensen’s Index and ß-MNTD) were
computed using the ‘phylosor’ and ‘comdistnt’ functions of the Picante R
package59, using custom functions to compute pairwise comparisons. For each
metric, 50 iterations were performed where we calculated the pairwise distances
between and within 50 cryospheric, and 50 non-cryospheric samples. This random
sub-sampling approach was chosen to reduce computing time. Kruskal–Wallis tests
were used to determine whether the distribution was different across groups, and
Wilcoxon tests were used to calculate pairwise post-hoc comparisons. Wilcoxon
tests implemented in the compare_means function of the ggpubr R package were
used, effects sizes (r) were calculated with the wilcox_effsize function implemented
in the statix R package. Sample specific calculations of α-PD (and species richness),
α-MPD and α-MNTD were computed using the ‘pd’, ‘mpd’ and ‘mntd’ functions of
the Picante R package59. Linear models were used to compare the values of α-PD,
α-MPD, and α-MNTD across samples, taking the logarithm of the species richness
and the dataset (PP1 and PP2) as a fixed effect.

Differential abundance analysis. Using the Silva Taxonomic information42, ASV
raw counts were aggregated to the genus-level using a custom R script, removing
the ASVs not assigned taxonomically to the genus-level. Ancom v2.1 was used on
the count data for the differential abundance analysis, using the default W statistic
threshold of 0.760. The ‘zero-cut’ parameter was set to 0.995 to consider all bacterial
genera present in at least 21 samples (n= 4247), and the primer pair (PP1 and
PP2) variable was taken as a random effect with the rand_formula parameter (“~1|
Dataset”). We considered significantly enriched genera (i.e. cryospheric genera),
the ones with a W statistic above the threshold (0.7) and a positive value of CLR
mean difference. GGplot2 was used to modify the Ancom v2.1 figure showing the
results of the differential abundance analysis. The ‘heat_tree’ function of the
metacoder R package (version 0.3.4) was used to show the number of cryospheric
bacterial genera, at various taxonomic level, using taxonomic trees61. The results of
this analysis can be found in the Data/ folder available on Zenodo under the name
‘Ancom_amplicon_res.csv’ file.

NCBI Refseq genomes properties. To assess the genome size and GC content of
publicly available prokaryote genomes, a non-redundant list encompassing all the
genera in our datasets was compiled. Thereafter, the list of prokaryote genomes
(prokaryotes.txt) available on NCBI30 was downloaded on March 15th, 2021 from
https://ftp.ncbi.nlm.nih.gov/genomes/GENOME_REPORTS. The prokaryote list
was filtered based on the list of genera found in our dataset, simultaneously
retrieving the accession IDs. The accession IDs were used to download the com-
plete bacterial genome sequences using the ncbi-genome-download python package
(https://github.com/kblin/ncbi-genome-download). The genome sizes for the
downloaded genomes were additionally retrieved from the prokaryotes.txt meta-
data file. Subsequently, Prodigal48 was used to annotate the open-reading frames
per genome obtaining both the general feature format (gff) files and aminoacid
fasta (faa). These were used thereafter as input used to estimate the predicted
growth time (in hours) and their codon usage analyses (CUB) using gRodon and
coRdon (https://github.com/BioinfoHR/coRdon) R package respectively62,63. The
amino acid enrichment analysis was performed on by converting the codon counts
to amino acids using the R-package Biostrings using DEseq2 with default para-
meters (log-median ratio normalisation across genera). Wilcoxon tests imple-
mented in the compare_means function of the ggpubr R package were used, effects
sizes (r) were calculated with the wilcox_effsize function implemented in the statix
R package. The relevant scripts and information for these analyses are openly
available and included in the code availability section. The corresponding files used
for this analysis can be found in the Data/ folder available on Zenodo under the
names ‘prokaryotes.txt’, ‘merged_all_codon_counts.txt’ and
‘merged_all_growth_prediction.txt’.

Structure of the cryospheric microbiome. Non-metric multidimensional scaling
was used to visualise the composition of cryospheric bacterial communities
according to the ecosystem types and primer pairs. For this, the ‘metaMDS’
function implemented in the package vegan was used with Bray-Curtis distances64.
The stress for the chosen value of k= 2 was 0.206. The ‘adonis2’ function was used
to perform a PERMANOVA analysis to test the effect of the ecosystem type and
the primer pairs on the composition of bacterial communities (Supplementary
Table 4). Pairwise comparisons between ecosystem types were tested using the
function ‘pairwise.adonis2’65. P-values were adjusted using the default Bonferroni
method, to account for multiple comparisons.

The prevalence of each genus was modelled as the probability of presence using
a logistic binomial regression (with the R stats ‘glm’ method), using the ecosystem
type (snow/Ice, terrestrial, marine and freshwater) and the primer pair as fixed
effect. To calculate the probability of occurrence in the cryosphere for each genus,
the prediction was calculated for all ecosystem types and primer pair combinations,
and averaged. The core microbiome was defined at 0.1% abundance, and 20%
prevalence across the cryosphere, for genera present in at least one sample in all
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four ecosystem types (Supplementary Fig. 2B). The core microbiome presence in
the different ecosystem types was shown using an upset-plot using the complex-
upset R package66. The taxonomic tree available in Supplementary Fig. 2A was
created using the Metacoder R package61. The α-diversity was calculated using
Shannon’s index with a custom R functions67. To test the difference across
ecosystems and datasets, the Wald-Type statistics implemented in the ‘GFD’
function of the R GFD package was used (Supplementary Table 5). This test was
performed instead of an ANOVA, as the data was not normally distributed. The
mean values given by the function were used for the ecosystem comparison.

KEGG enrichment. The standard DESeq2 pipeline with default parameters was used
on raw KEGG counts for the enrichment analysis, using the default Wald tests51,68.
We considered significantly enriched Kegg Orthologs (KOs) with an FDR adjusted
p < 0.01 and a log2 fold-change >1. To unravel the contribution of these gene families
to functional pathways, we ran KEGGdecoder69 on the KOs enriched in cryospheric
samples, to identify environmental-associated pathways in all samples.

To understand and unravel the origins of the gene families specific to the
cryospheric metagenomes, contigs were taxonomically classified following which
the specific gene families were mapped to the contigs. We used Kraken2 to
taxonomically assign all the contigs present in the metagenomes followed by
custom python scripts (provided) to link the genes belonging to enriched KEGG
orthologs (KO and the corresponding NCBI taxon ID70,71. An R script using the
NCBI entrez package was used to retrieve the taxonomy based on the taxon ID, and
to get the genus-level taxonomy43. To link the Silva genus taxonomies with their
NCBI counterparts, the grep function included in R allowing partial matches was
used to find Silva genera name matching the NCBI genus name. The DEseq2
results, KEGG-decoder output and taxonomy matches can be found in the Data/
folder of the Zenodo under the names ‘KEGG_deseq_results.csv’,
‘KEGG_decoder_output’, and ‘KEGG_sign_tax_genera.csv’, respectively.

Gene clusters and unassigned protein coding sequences. Predicted gene
sequences annotated to the KEGG database and those unassigned were gathered
into individual groups based on KEGG ID or Unassigned using a custom python
script. ‘annotation2gene.py’. The fasta files were subsequently concatenated and
clustered to identify functional homologues within the dataset. We used mmseq2
‘linclust’72 to cluster the 41,068,842 gene sequences found in the entire metage-
nomic dataset. Subsequently, fasta sequences associated with each cluster were
retrieved into separated clusters (n= 12,125) and linked to the coverages to esti-
mate abundances. MAFFT54 was then used to create a multiple sequence alignment
of the sequences per cluster, while the ‘cons’ method from EMBOSS was used to
generate a consensus sequence. The generated consensus sequences from each
cluster were subsequently annotated and their identity verified against the UniProt
TrEMBL73 database. The pairwise identity of sequences within each cluster was
measured using CLUSTAL74 ‘distmat’ option with the ‘–percent-id’. Wilcoxon tests
implemented in the compare_means function of the ggpubr R package were used,
effects sizes (r) were calculated with the wilcox_effsize function implemented in the
statix R package. The unassigned clusters summary statistics and Uniprot matches
can be retrieved on Zenodo, in the Data/ folder under the names ‘Unassigned_-
clusters_stats.tsv’, and ‘unassigned_uniprot_matches.txt’.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data generated in this study have been deposited in Zenodo, under https://doi.org/
10.5281/zenodo.6541278. Source data used for figures are provided with this paper.

Code availability
All scripts used for analyses, along with the conda environments, and additional
information is provided in a Github repository archived on Zenodo: https://doi.org/10.
5281/zenodo.6587400.
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