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Abstract 19 

Host genetics, sex, and other within-source factors have been associated with characteristic effects on 20 

the fecal microbiome in mice, however, the commercial source of mice remains the dominant factor. 21 

Increasing evidence indicates that supplier-specific microbiomes in particular confer differences in 22 

disease susceptibility in models of inflammatory conditions, as well as baseline behavior and body 23 

morphology. However, current knowledge regarding the compositional differences between suppliers is 24 

based on 16S rRNA amplicon sequencing data, and functional differences between these communities 25 

remain poorly defined. Here, we applied a meta-omic (metagenomic and metatranscriptomic) approach 26 

to biomolecules (DNA/RNA) extracted from murine fecal samples representative of two large U.S. 27 

suppliers of research mice, which differ in composition, and influence baseline physiology and behavior 28 

as well as disease severity in mouse models of intestinal disease. We reconstructed high-quality 29 

metagenome-assembled genomes (MAGs), frequently containing genomic content unique to each 30 

supplier.  These differences were observed both within pangenomes of dominant taxa as well as the 31 

epibiont Saccharimonadaceae. Additionally, transcriptional activity and pathway analyses revealed key 32 

functional differences between the metagenomes associated with each supplier, including differences 33 
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in carbohydrate enzyme activity and dissimilatory sulfate reduction by sulfate-reducing bacteria (SRB). 34 

These data provide a detailed characterization of the baseline differences in the fecal metagenome of 35 

laboratory mice from two U.S. commercial suppliers suggesting that these functional differences are 36 

influenced by differences in the initial inoculum of colony founders, as well as additional taxa gained 37 

during growth of the production colony. 38 

Key words (5-10): gut microbiome • metagenomics • metatranscriptomics • metagenome-assembled 39 

genomes • Jackson Laboratory • Envigo Laboratory 40 

Introduction 41 

Host-associated microbiomes, such as the gut microbiome (GM), exert strong effects on host 42 

physiology, susceptibility or resistance to various conditions, and response to treatment and dietary 43 

challenges. Investigations at the population-level suggest that differences in the human GM are 44 

responsible for a large portion of the variability within individual host responses to a given dietary 45 

challenge1,2 or medical treatment,3–5 implying that the GM is an important consideration in precision 46 

health and medicine strategies. Similarly, the GM of laboratory mice within the biomedical research 47 

community is highly variable due to numerous covariates,6,7 and these compositional differences have 48 

been associated with differences in host fitness in the context of uniform host genetics and 49 

environment.8–12 One of the dominant factors contributing to the population-level variability in specific 50 

pathogen-free (SPF) mouse microbiomes is the commercial source of mice.13–15 Previous studies have 51 

demonstrated reproducible differences in the GM richness and beta-diversity, irrespective of host 52 

genotype (i.e., strain) within each supplier.12,13 Specifically, the GM of mice supplied by the Jackson 53 

Laboratory (Jackson) and Envigo are characteristically of low and high richness, relative to each other, 54 

and each comprises unique taxa, in addition to an apparent core population of bacteria common to both 55 

sources. The latter includes members of the semi-standardized altered Schaedler flora (ASF),16,17 56 

reflecting the common procedures used to establish mouse production colonies on a commercial scale. 57 

Suppliers often surgically transfer embryos of the desired genotype to a pseudopregnant surrogate dam 58 

colonized with ASF, which then seeds the initial generation of offspring with that limited microbiome 59 

comprising 8 to 10 cultivable bacteria.18 These mice are then used to establish multiple generations of 60 

filial mating to expand the colony, during which time mice are housed in large open-top caging systems 61 

and allowed to become colonized with additional bacteria from the environment. It is believed that 62 

subtle environmental differences are responsible for the reported supplier-origin differences, as well as 63 

the differences between multiple distribution facilities of the same supplier13 or changes within a 64 

supplier over time.19,20 65 
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However, GMs with different taxonomic compositions may possess qualitatively similar functional 66 

capacities.21,22 It is therefore unclear whether the different GMs colonizing mice from Jackson and 67 

Envigo are functionally different. Owing to the reported influence of these GMs in multiple mouse 68 

models of disease,23–25 we hypothesized that the compositional differences result in substantial 69 

functional differences, as evaluated by the metatranscriptome. Any detected differences in the 70 

functional capacity of the fecal microbiome could therefore be due to differences in the ASF isolates 71 

maintained by each institution, the environmental exposures during colony expansion, or both. As 72 

researchers continue to leverage the inherent differential effects of these complex GMs as a 73 

population-level model of human host/microbe interactions, it is important to understand the differences 74 

in the metagenome and transcriptional activity of mice from these different suppliers, and the origin of 75 

any detected differences. With those goals in mind, fecal samples from healthy adult CD-1 mice 76 

colonized with a Jackson-origin or Envigo-origin GM (GM1 and GM4, respectively) were collected and 77 

used as the source of DNA and RNA for metagenomic and metatranscriptomic analyses using a re-78 

iterative co-assembly procedure. We report here the identification of 86 high- and medium-quality novel 79 

and previously identified metagenome-assembled genomes (MAGs), analyzed and compared in the 80 

context of the two source GMs, and a detailed description of the functional differences between mice 81 

from these two commercial sources of SPF mice.  82 

Results 83 

Metagenomic, metatranscriptomic and taxonomic summary 84 

To establish a taxonomic and functional profile, using IMP26 (v3, commit #9672c874; available at 85 

https://git-r3lab.uni.lu/IMP/imp3) 2.09 x 109 metagenomic and metatranscriptomic reads were co-86 

assembled and binned into MAGs. Subsequently, the completeness and contamination were assessed 87 

using CheckM. Per established criteria in the field,27 Table 1 lists the 29 high-quality (>90% completion 88 

and < 5% contamination) MAGs from the entire dataset (Figure 1A). An additional 35 medium-quality 89 

(> 80% completion and <10% contamination) MAGs, 22 medium-quality MAGs with completeness 90 

>50%, 17 low-quality (partial)  MAGs with between 31% and 49% completeness, and 25 MAGs with 91 

>50% completeness but >10% contamination were identified (Figure 1A). A complete list of the 128 92 

identified MAGs is provided as Supplementary Table 1. Over 75% of MAGs contained greater than 20 93 

tRNA-encoding genes, with over half encoding 30 or more tRNA genes (Figure 1B). Over 75% of the 94 

128 assembled MAGs had an average coverage of 10× or greater (median 24.4×, range 2.1× to 1540×; 95 

Supplementary Table 1) and roughly 65% of MAGs (including the majority of high-quality MAGS) were 96 

assembled from less than 200 scaffolds (Figure 1C). Comparison of metagenomic composition and the 97 

metatranscriptome revealed a strong correlation, suggesting transcriptional activity of the majority of 98 
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detected genes (Figure 1D). As expected, there was also a strong correlation between the number of 99 

genes detected and total size of the assembled MAGs (Supplementary Figure 1). 100 

Of the 64 high- and medium-quality MAGs with > 80% completion and <10% contamination listed in 101 

Supplementary Table 1, over one third (23/64) were identified as members of the Gram-positive family 102 

Lachnospiraceae (phylum Bacillota). The second most common family was the Gram-negative 103 

Muribaculaceae, within the phylum Bacteroidota. Other MAGs within the phylum Bacillota included 104 

several members of the Ruminococcaceae, Clostridiacae, Bacillaceae, and Lactobacillaceae, among 105 

others. Additional MAGs within the Bacteroidota included members of the genera Alistipes, 106 

Bacteroides, Parabacteroides, Odoribacter, and Prevotella. Six of the high- and medium-quality 64 107 

MAGs in Supplementary Table 1 were external to either of those two dominant phyla, including one 108 

identified as Parasutterella excrementihominis (Burkholderiaceae within phylum Pseudomonadota), and 109 

five identified as members of the family Saccharimonadaceae (phylum Patescibacteria). 110 

Candidate Phyla Radiation taxa demonstrate strain-level differences between vendors 111 

As newly recognized epibionts within the candidate phylum radiation (CPR), the Saccharimonadaceae 112 

were of particular interest since their reports in laboratory mouse strains are limited. MAGs identified as 113 

Saccharimonadaceae have been found in diverse environmental samples including deep sea 114 

hydrothermal vents, glacial-fed stream biofilms,28 and petrochemical plant sludge.29 Regarding host-115 

associated samples, Saccharimonadaceae are most commonly identified in human oral cavity 116 

samples,30,31 although a handful of rumen32 and fecal33 samples have also yielded MAGs. A thorough 117 

search of the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) 118 

found 321 MAGs within this phylum, including four MAGs from mouse feces. Comparison of the 119 

phylogenetic relationship of the newly generated five MAGs within Saccharimonadaceae revealed 120 

similarity to other host-associated isolates, and particularly the mouse-origin MAGs (Figure 2A). 121 

Construction of a Saccharimonadaceae pangenome from the current data revealed portions of highly 122 

conserved core genomic content, and regions of genomic material specific to MAGs from either of the 123 

two supplier-dependent microbiomes (Figure 2B), suggesting the vendors each harbor distinct strains 124 

of this taxonomy, with distinct functional capacities. These data also suggested the co-evolution and 125 

transfer of genetic material between bacterial strains within each source.  126 

Distinct source-dependent MAGs within multiple taxonomies 127 

To further investigate the genomic heterogeneity within other common taxonomies, separate 128 

pangenomes were created for various members of the Gram-negative phylum Bacteroidota, including 129 

Alistipes spp. (10 MAGs, Figure 3A), Prevotella spp. (9 MAGs, Figure 3B), and family Muribaculaceae 130 
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(17 MAGs, Figure 3C). As in the Saccharimonadaceae pangenome comparison, each genus or family 131 

revealed regions of genomic content conserved between multiple MAGs from each of the supplier-132 

origin microbiomes, along with conserved core genomic content encoding for single copy gene (SCG) 133 

clusters, suggesting that the transfer of genetic material is an ongoing process within each of these 134 

taxonomies, at each production source. Similarly, pangenomes were constructed from dominant 135 

members of the Gram-positive phylum Bacillota, including Lactobacillus spp. (14 MAGs, Figure 4A) 136 

and family Lachnospiraceae (20 MAGs, Figure 4B). These pangenomes revealed conserved genomic 137 

content including highly conserved SCG clusters within each taxonomy, as well as source-dependent 138 

differences in the genomic content of MAGs, which may be interpreted as evidence of distinct lineages 139 

of Gram-positive taxonomies in mice from each supplier. Collectively, these data indicate the presence 140 

of substantial differences in the functional capacity of the dominant bacterial families detected in the 141 

microbiome of mice from different suppliers. 142 

Functional differences between source-dependent GM  143 

Based on the above observations and our original hypothesis, the metatranscriptome was compared 144 

between GM profiles to determine if the detected differences in metagenomic content were also 145 

associated with differences in transcriptional activity. Transcripts were compared to (and cross-146 

referenced against) multiple databases including the Kyoto Encyclopedia of Genes and Genomes 147 

(KEGG),34,35 the Protein family (Pfam) database,36 and the CAZy database37 of carbohydrate active 148 

enzymes and accessory molecules. Figure 5A shows KEGG-identified microbial-associated pathways 149 

comprising a multitude of differentially expressed KEGG orthologs (Figure 5B). A list of differentially 150 

expressed KEGG-identified host-associated pathways is shown in Supplementary Figure 2. Similarly, 151 

comparison of the bulk metatranscriptome annotations against the Pfam (Figure 5C) and CAZy (Figure 152 

5D) databases resulted in many differences, with greater transcriptional activity of different genes in 153 

each GM. Supplementary File 1 lists all significantly differing KEGG, Pfam, and CAZyme annotations 154 

as determined by DESeq238 (p < 0.05). 155 

Source-dependent differences within the KEGG annotations included several GM1- and GM4-specific 156 

genes involved in a wide range of functions. To increase our ability to discern biologically meaningful 157 

differences in the function of these GMs, the top 25% most significant KEGG IDs (lowest p values 158 

identified by DESeq2) found to significantly differ between GM1 and GM4 were manually reviewed and 159 

curated to identify multiple KEGG IDs within a pathway, and thus likely representing true differences in 160 

the functional activity of that pathway (Figure 5A-B). Several GM1-specific genes involved in diverse 161 

metabolic functions were identified including starch and sucrose (CBH1, K01225; SI, K01203), and 162 
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fructose and mannose (algG, K01795; mtlK, K00045), arachidonic acid (EPHX2, K08726), and 163 

phenylalanine (mhpF, K04073; DDC, K1593) metabolism. 164 

Source-dependent differences within the KEGG annotations also included several GM4-specific genes 165 

involved in numerous functions including flagellar assembly (flgH, K02393; flgI, K02394, flgA, K02386), 166 

quorum sensing (srfATE, K15657), lipopolysaccharide biosynthesis (lpxC, K02535; lpxI, K09949), and 167 

sulfur metabolism (dsrA, K11180). Pfam annotations also identified increased expression of genes 168 

within the dissimilatory sulfite reduction pathway (DsrC, DsrD, and FdhE) and chemotactic responses 169 

(CheZ, TarH) by bacteria within GM4. Among the many genes found to be differentially expressed, 170 

patterns emerged suggesting increased activity of certain pathways in GM4, including the tricarboxylic 171 

acid (TCA) cycle and cytochrome c oxidase activity. Increased TCA cycle activity is suggested by 172 

increased expression of enzymes within the TCA cycle (succinate dehydrogenase D; sdhD); enzymes 173 

involved in acetyl-CoA production (malonyl-CoA/succinyl-CoA reductase; mcr); three different ccb-type 174 

cytochrome c oxidase subunits (I, II, and III) and the fixS cytochrome c oxidase maturation protein; and 175 

the cytochrome c-type biogenic protein ccmE. Additionally, GM4 had increased expression of enzymes 176 

associated with acetate (acetoacetate decarboxylase, adc), propanoate (methylmalonyl-CoA mutase, 177 

mcmA1), and butanoate production (mcr) using TCA cycle compounds, suggesting that the increased 178 

release of stored energy by the GM may be associated with increased production of compounds 179 

beneficial to the host such as short chain fatty acids (SCFAs).  180 

Lastly, numerous source-dependent differences in carbohydrate active enzymes (CAZymes) and 181 

accessory molecules were identified (Figure 5D). The glycoside hydrolase (GH) family 48 (GH48.hmm) 182 

including chitinase and cellulobiohydrolases enzymes was differentially expressed in GM1 using both 183 

CAZyme and Pfam (Glyco_hydro_48) annotations. Other GM1-associated CAZyme molecules included 184 

the auxiliary activities (AA) of multicopper oxidases (AA1.hmm) and glycosyltransferase (GT) families 185 

that bind the LPS inner core polysaccharide39 (GT99.hmm) and the host-produced extracellular 186 

polysaccharide heparan40 (GT64.hmm). GM4-associated CAZymes included multiple non-catalytic 187 

carbohydrate binding motifs (CBMs) with diverse targets including β-1,3-glucan and LPS 188 

(CBM39.hmm), cyclodextrins (CBM20.hmm), lactose (CBM71.hmm), and fucose (CBM47.hmm). CBMs 189 

specific to cellulose and chitin were identified in both GM1 (CBM2.hmm, CBM72.hmm) and GM4 190 

(CBM28.hmm). Collectively, these data demonstrate extensive differences in the baseline 191 

transcriptional activity at the enzyme and pathway levels of supplier-origin gut microbiomes.  192 

 193 

 194 
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Supplier-origin GMs indicate variable levels of enzymatic activity associated with eukaryotes 195 

While most studies focus on bacterial abundances and differences, we observed eukaryotic organisms 196 

present within each GM (Methods). The largest portion of eukaryotes identified belonged to the phylum 197 

Ochrophyta followed by Dinoflagellata and Chlorophyta, all within the kingdom Protista (Supplemental 198 

Figure 3). Eukaryotes identified within the kingdom Fungi were constrained to the phylum Ascomycota 199 

with limited taxonomic resolution. No significant differences in the relative abundance of eukaryotic 200 

phyla were observed between GMs. Interestingly, while no differences in the relative abundance of 201 

eukaryotic phyla were observed between GM1 and GM4 (Supplemental Figure 3), glycoside 202 

hydrolase CAZyme expression was negatively correlated with GM1 eukaryotes while positively 203 

correlated to GM4 eukaryotes (Supplemental Figure 4). Lastly, we identified several genes with 204 

increased expression in GM1 previously associated with a wide range of host metabolism and disease 205 

pathways (Supplementary Figure 2), however, the biological significance of the differential expression 206 

of these pathways remains unclear. 207 

Discussion 208 

The Jackson (GM1)- and Envigo (GM4)-origin GMs influence many host phenotypes including intestinal 209 

inflammation,23 colonization resistance,25 and behavior and body morphology.24 The robust taxonomic 210 

differences between these supplier-origin GMs influencing phenotypic differences have previously been 211 

identified using targeted amplicon (e.g., 16S rRNA) sequencing, however, this approach yields limited 212 

taxonomic resolution of detected amplicons, and a complete lack of information regarding functional 213 

capacity or transcriptional activity. Using an iterative co-assembly procedure, we combined 214 

metagenomic and metatranscriptomic sequencing of the fecal microbiome of laboratory mice to provide 215 

a valuable resource describing the baseline metagenomic and transcriptional differences of Jackson- 216 

and Envigo-origin GMs (GM1 and GM4, respectively). The current data build upon earlier reports of 217 

differences in the composition of the GM in mice from different suppliers25,41,42 by providing a more 218 

detailed assessment of those differences as well as functional differences. 219 

Many of those functional differences were attributable to differences in bacteria associated with the 220 

ancestral ASF used in the colony founders, including Lactobacillus murinus [ASF361] and L. intestinalis 221 

[ASF360]. These differences could therefore ostensibly be controlled or changed during the initiation of 222 

new production colonies. An additional notable aspect of the source-dependent differences in 223 

Lactobacillus function is the growing body of evidence supporting Lactobacillus spp. as psychobiotics,43 224 

or live organisms capable of conferring benefits to mental health when ingested. Recent studies have 225 

demonstrated differences in anxiety-related behavior and spontaneous locomotor and exploratory 226 

behavior between isogenic mice harboring GM1 or GM424 and L. intestinalis and related species have 227 
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both been shown to confer vagus nerve-dependent effects on behavior.44–46 Differences in the genomic 228 

content of these MAGs provides one possible explanation for the host phenotypic differences. 229 

Numerous differentially expressed KEGG orthologs representing several microbial- and host-230 

associated pathways were identified between the supplier-origin GMs (Figure 5A-B, Supplemental 231 

Figure 2). Consistent with the previously reported differences in Pseudomonadota13 of GM1 relative to 232 

GM4, the Jackson-origin GM was associated with decreased expression of lipopolysaccharide 233 

biosynthesis and flagellar assembly. Low richness microbiomes have been associated with increased 234 

body weight, growth,47 and intestinal inflammation.23 Here we have identified that, in addition to fatty 235 

acid degradation, multiple carbohydrate metabolic pathways including starch and sucrose, galactose, 236 

and fructose metabolism were increased in the low-richness GM. The differential expression of these 237 

metabolic pathways may increase energy availability to the host likely contributing to the GM1-238 

associated increase in body weight and growth24 and increased intestinal inflammation in models of 239 

intestinal disease.10,48,49 240 

A differentially expressed KEGG pathway in GM4 that can be linked to previously recognized 241 

compositional differences is the dissimilatory sulfite reduction (DSR) pathway, expressed by sulfate-242 

reducing bacteria (SRB) such as Desulfovibrio and Bilophila spp. These taxa, identified as unique GM4-243 

associated features50 are responsible for production of H2S, a compound with biphasic effects on 244 

inflammation, hypertension, and tumorigenesis depending on its intra- and extracellular 245 

concentrations.51–57 Thus, augmentation of intracellular H2S production by luminal SRB may result in 246 

the low levels adequate to confer protective effects in certain scenarios, or sufficiently high to adversely 247 

influence disease susceptibility in others.  248 

These data are also of interest from an evolutionary perspective, as they provide a glimpse of the short-249 

term evolutionary landscape within the GM at each supplier. Pathogenic bacteria frequently undergo 250 

rapid evolution within a host organism through recombination and mutation,58,59 and the same events 251 

occur between and within commensal members of the microbiota.60,61 Moreover, pathobionts can arise 252 

from commensal organisms through the same mechanisms.62 In the data presented here, the 253 

consistent finding of source-specific genomic content within genera suggests separate evolutionary 254 

trajectories at each supplier, occurring in all dominant taxonomies with multiple closely related 255 

members. Notably, this feature was particularly evident in the relatively small pangenome of 256 

Saccharimonadaceae. These findings are in agreement with the recent study from Yilmaz et al. 257 

demonstrating the long-term evolution of microbiota and development of multiple co-existing substrains 258 

of bacteria within individual taxonomies.63 259 
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Lastly, we were surprised to recover a large number of high-quality MAGs associated with the family 260 

Saccharimonadaceae (formerly known as TM7), epibionts64,65 which were unrecognized until their 261 

identification using molecular methods. Successful culture requires co-culture with the cognate host 262 

bacteria, including Actinomyces odontolyticus and other members of the human oral cavity.65,66 That 263 

being said, these highly auxotrophic epibionts with extremely limited genomes are found in virtually all 264 

environmental conditions while being surprisingly scarce in metagenomic data from fecal microbiomes. 265 

Our analysis agrees with that by Dinis et al.,67 which demonstrated that the vast majority of host-266 

associated MAGs from this phylum were from human oral cavity samples or rumen contents, with much 267 

fewer fecal samples represented. It is unclear which bacteria serve as the host for fecal members of 268 

Saccharibacteria. 269 

Detecting differences in microbial diversity and composition between Jackson- and Envigo-origin GMs 270 

has previously relied upon targeted amplicon sequencing of the 16S rRNA gene.13,24 While informative, 271 

this approach is limited by taxonomic resolution and does not provide the baseline functional capacity 272 

or transcriptional activity of these GMs. Our metagenomic and metatranscriptomic sequencing of 273 

Jackson- and Envigo origin GMs has established that distinct differences in both the functional capacity 274 

and baseline transcriptional activity at the gene and metabolic pathway levels exist amongst the 275 

dominant taxa within supplier-origin GMs. Collectively, these data will serve as a valuable resource to 276 

leverage the host-microbiome relationship in mouse models of disease and behavior in future.  277 

Methods 278 

Mice and sample collection 279 

Mice contributing fecal samples were eight-week-old, female, CD-1 mice produced by breeding 280 

colonies maintained at the MU Mutant Mouse Resource and Research Center in accordance with the 281 

Guide for the Care and Use of Laboratory Animals approved by the University of Missouri Institutional 282 

Animal Care and Use Committee (IACUC, protocol 9587). Mice colonized with a Jackson-origin GM 283 

(GM1) or Envigo-origin GM (GM4)42 were housed in microisolator polycarbonate cages on individually 284 

ventilated racks, under positive pressure. A sample size of three mice per GM was selected to attain a 285 

power of 80% and a 5% alpha error rate reflecting changes in microbial composition, based on 286 

previously observed robust differences in beta-diversity and the presence of unique taxa within each 287 

supplier-origin GM.24,25,42 All husbandry was performed in accordance with barrier conditions including 288 

use of autoclaved, irradiated chow, autoclaved, acidified water, and autoclaved bedding.  Biweekly 289 

cage changes occurred in a laminar flow hood using bead-sterilized forceps to transfer mice between 290 

cages, by personnel wearing bleach-disinfected latex gloves. Mice were on a 14:10 light/dark cycle and 291 
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were determined to be free of all known pathogens based on comprehensive quarterly sentinel testing 292 

through IDEXX BioAnalytics. 293 

Fecal samples were collected by placing each mouse into an empty, autoclaved, microisolator cage, 294 

allowing the mouse to defecate normally, and collecting the pellet into a sterile 1 mL cryovial using an 295 

autoclaved wooden toothpick. Cryovials were then sealed and flash-frozen in liquid nitrogen. Separate 296 

fecal pellets were collected from each mouse for DNA and RNA extraction. 297 

DNA extraction 298 

Fecal DNA was extracted using PowerFecal kits (Qiagen) per the manufacturer’s protocol, with the 299 

exception that the initial sample disaggregation was performed with a TissueLyser II (Qiagen), operated 300 

at 30 Hz. DNA yields were eluted in 50 µL sterile water, quantified using Qubit 2.0 fluorometer and 301 

Quant-iT dsDNA Broad Range (BR) Assay kits, and diluted to a uniform volume and concentration. 302 

RNA extraction 303 

Fecal RNA was extracted using MagMAX mirVana Total RNA Isolation kits (Thermo Fisher) per the 304 

manufacturer’s protocol. RNA yields were eluted in 50 µL sterile water, quantified using Qubit 2.0 305 

fluorometer and Quant-iT RNA Broad Range (BR) Assay kits, and diluted to a uniform volume and 306 

concentration. 307 

Metagenomic library preparation 308 

Metagenomic libraries were generated from genomic DNA (250 ng) per manufacturer’s protocol with 309 

reagents supplied in the Illumina DNA Prep, Tagmentation Kit.  The sample concentration was 310 

determined using the Qubit dsDNA high-sensitivity (HS) assay kit.  Genomic DNA was fragmented, and 311 

short adapter sequences ligated to the ends by bead-link transposomes.  Tagmented DNA was 312 

amplified using a minimum number of PCR cycles (5) to complete adapter sequences required for 313 

cluster generation and the addition of unique dual indexes. Final libraries were purified by addition of 314 

Axyprep Mag PCR Clean-up beads.  The final construct of each purified library was evaluated using the 315 

Fragment Analyzer, quantified using the Qubit HS dsDNA assay kit, and diluted according to Illumina’s 316 

standard sequencing protocol. 317 

Metatranscriptomic library preparation 318 

Metatranscriptomic libraries were generated from total RNA (800 ng) per manufacturer’s protocol with 319 

reagents supplied in NEBNext® rRNA Depletion Kit (Bacteria) followed by fragmentation and synthesis 320 

of cDNA using the Illumina Stranded mRNA Prep, Ligation Kit.  The sample concentration was 321 

determined using the Qubit RNA high-sensitivity (HS) assay kit, and the RNA integrity checked using 322 
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the Agilent Fragment Analyzer automated electrophoresis system.  The rRNA was first removed from 323 

total RNA by hybridization probes using the NEBNext kit instead of poly-A RNA enrichment. The rRNA-324 

depleted samples were then precipitated and fragmented, and double-stranded cDNA was generated 325 

from fragmented RNA, and short adapter sequences ligated to the ends.  The cDNA constructs were 326 

amplified using a minimum number of PCR cycles (10) to complete adapter sequences required for 327 

cluster generation and the addition of unique dual indexes. Final libraries were purified by addition of 328 

Axyprep Mag PCR Clean-up beads.  The final construct of each purified library was evaluated using the 329 

Fragment Analyzer, quantified using the Qubit HS dsDNA assay kit, and diluted according to Illumina’s 330 

standard sequencing protocol. Paired-end 150 base pair length reads were sequences using an 331 

Illumina NovaSeq 6000 instrument. All six metagenomic and six metatranscriptomic libraries were 332 

pooled to yield approximately 40 Gb per metagenomic library and 190 million paired end reads per 333 

metatranscriptome library. 334 

Meta-omic preprocessing, assembly, binning, and analyses 335 

For processing metagenomic sequence data, we used the Integrated Meta-omic Pipeline (IMP) 336 

workflow68 to process paired forward and reverse reads using version 3.0 (commit# 9672c874; 337 

available at https://git-r3lab.uni.lu/IMP/imp3). IMP includes pre-processing, assembly, genome 338 

reconstructions and additional functional analysis of genes based on custom databases in a 339 

reproducible manner. Briefly, adapter trimming is followed by filtering the reads against the mouse 340 

reference genome (GRCm38, https://www.ncbi.nlm.nih.gov/assembly/GCF_000001635.20/) to remove 341 

any reads mapping to the host, i.e. mice. Thereafter, an iterative co-assembly of both the metagenomic 342 

and metatranscriptomic reads using MEGAHIT v1.2.969 is performed. Concurrently, MetaBAT2 343 

v2.12.1,70  MaxBin2 v2.2.7,71  and binny72 were used for binning the assembly, for reconstructing 344 

metagenome-assembled genomes (MAGs). Upon completion of binning, we used DASTool73 to select 345 

a non-redundant set of MAGs using a recommended threshold score of 0.7. Furthermore, CheckM 346 

v1.1.374 was used to assess the quality of the MAGs, and the GTDB-tooklit75 was used to assign the 347 

taxonomy per MAG. To estimate the overall abundances of eukaryotes, EUKulele v1.0.576 was used on 348 

the assemblies, with both the MMETSP and the PhyloDB databases. Each of the databases were run 349 

separately to confirm the detected eukaryotic profiles, whereby conflicts in assigned taxonomy were 350 

resolved by selecting the best hit score. To understand the overall metabolic and functional potential of 351 

the metagenome and reconstructed MAGs we used MANTIS77 which annotates both assemblies and 352 

MAGs alike using several databases such as KEGG,34,35 PFAM,36 and CAZyme.37 All the parameters, 353 

databases, and relevant code for the analyses described above are openly available at 354 

https://github.com/susheelbhanu/mice_multiomics_mmrrc and included in the Code availability section. 355 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 13, 2022. ; https://doi.org/10.1101/2022.09.12.507288doi: bioRxiv preprint 

https://doi.org/10.1101/2022.09.12.507288
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

Phylogenomics, pangenome construction and differential analyses 356 

To perform the pangenome analyses, bins with the same level of taxonomic resolution, i.e., genus or 357 

family level, were collected. They were subsequently subjected to the pangenome workflow as 358 

described here http://merenlab.org/2016/11/08/pangenomics-v2, by Meren et al. within the anvi’o78  359 

ecosystem. For the Saccharibacteria pangenome analysis, two existing genomes (accession IDs: 360 

CP040003 and CP040004.1) from Genbank were downloaded. The pangenome was run using the --361 

min-bit 0.5, --mcl-inflation 10 and --min-occurence 2 parameters, excluding the partial gene calls. A 362 

phylogenomic tree was built using MUSCLE v3.8.155179 and FastTree2 v2.1.1080 on all single-copy 363 

gene clusters in the pangenome that were present in at least 30 genomes and had a functional 364 

homogeneity index below 0.9, and geometric homogeneity index above 0.9. The phylogenomic tree 365 

was used to order the genomes, the frequency of gene clusters (GC) to order the GC dendrogram. For 366 

the Saccharibacteria phylogenetic tree, we used the Entrez Direct tools available at 367 

https://www.ncbi.nlm.nih.gov/books/NBK179288/, to fetch all genomes labelled as ‘Saccharibacteria’, 368 

within NCBI. Following this, the genomes were input to GToTree v1.5.5113081 pipeline with the -D 369 

parameter, allowing to retrieve taxonomic information for the NCBI accessions, where the tree was built 370 

using ‘Bacteria and Archaea’ marker genes. Briefly, HMMER3 v3.3.282 was used to retrieve the single-371 

copy genes after gene-calling with Prodigal v2.6.383 and aligned using TrimAl v1.4.rev15.84 The entire 372 

workflow is based on GNU Parallel v20210222134.  373 

Data analyses and figures 374 

The heatmaps were generated using the ggplot2 package while the volcano plots were built using the 375 

EnhancedVolcano package found at https://github.com/kevinblighe/EnhancedVolcano. The correlation 376 

matrices were generated using the corrplot package. Furthermore, for the differential analyses, we 377 

used DESeq238 with FDR and multiple-testing adjustments to assess enriched KOs, pathways, and 378 

expression levels. For the Saccharibacteria tree visualization the following packages from the R 379 

environment were used: ape, ggree, ggtreeExtra and treeio.  380 
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Data Availability 388 

Raw sequencing data samples and the MAGs are available at NCBI’s sequence read archive under 389 

BioProject accession PRJNA876568. The BioSample accession IDs and the metadata associated with 390 

each sample are listed in Supplementary Table 2.  391 

Code Availability 392 

The detailed code for the downstream analyses including the assemblies using IMP is available at 393 

https://github.com/susheelbhanu/mice_multiomics_mmrrc. The code used to generate the Figure 5 and 394 

Supplemental Figures 1-3 is available at https://github.com/ericsson-lab/metaG_metaT. 395 

Figure and Table Legends 396 

Figure 1. Dot plot showing the completeness (%) and contamination (%) among the 128 metagenome-397 

assembled genomes (MAGs) recovered from all six samples, legend in inset, dot size correlates to the 398 

number (1 to 6) MAGs represented (A); bar charts showing the number of tRNAs found in low-, 399 

medium-, and high-quality MAGs (B), and the number of contigs used to construct MAGs (C); and dot 400 

plot showing the number of expressed genes in relation to total detected genes in each MAG (D). 401 

Figure 2. Phylogenetic tree (ignoring branch lengths) showing the relationship between the newly 402 

identified Saccharimonadaceae MAGs and 321 MAGs within the NCBI Sequence Read Archive (SRA) 403 

annotated to the Saccharimonadaceae family, asterisk represents gut-associated samples (A); and 404 

pangenome of novel Saccharimonadaceae MAGs showing genomic content specific to MAGs from 405 

each source (B). 406 

Figure 3. Pangenomes of Alistipes (A), Prevotella (B), and family Muribaculaceae (C) constructed from 407 

the present data, each showing the conserved core genomic content, and additional genomic content, 408 

common to multiple MAGs from each supplier  409 

Figure 4. Pangenome of Lactobacillus (A) and family Lachnospiraceae (B) constructed from the 410 

present data, each showing the conserved core genomic content, and additional genomic content, 411 

common to multiple MAGs from each supplier. 412 

Figure 5. Heat map of differentially expressed select KEGG pathways (A) and volcano plots of 413 

individual KEGG (B), Pfam (C), and CAZyme (D) IDs between Jackson (GM1)- and Envigo (GM4)-414 

origin microbiomes. Differentially abundance testing was performed using DESeq2 with p < 0.05 415 

considered significant. 416 
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Supplemental Figure 1. Dot plot representing the significant correlation between the number of 417 

detected genes and assembled MAG size (Mb). Spearman correlation. R = 0.92, p < 0.001. 418 

Supplementary Figure 2. Heatmaps of host-associated pathways differentially expressed in fecal 419 

metatranscriptomic data in Jackson (GM1)- and Envigo (GM4)-origin microbiomes.  420 

Supplementary Figure 3. Relative abundance heatmaps of phyla representing greater than 1% of 421 

eukaryotes in Jackson (GM1)- and Envigo (GM4)-origin microbiomes.  422 

Supplementary Figure 4. Heatmaps demonstrating correlations between classes of CAZyme 423 

molecules and detected eukaryotes in GM1 (A) and GM4 (B). *: p < 0.05. 424 

Table 1. High quality MAGs (>90% completion and < 5% contamination) identified in GM1- and GM4-425 

origin gut microbiomes.  426 
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