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QUASI-CRITICAL FLUCTUATIONS FOR 2d DIRECTED POLYMERS

FRANCESCO CARAVENNA, FRANCESCA COTTINI, AND MAURIZIA ROSSI

ABSTRACT. We study the 2d directed polymer in random environment in a novel quasi-
critical regime, which interpolates between the much studied sub-critical and critical
regimes. We prove Edwards-Wilkinson fluctuations throughout the quasi-critical regime,
showing that the diffusively rescaled partition functions are asymptotically Gaussian, un-
der a rescaling which diverges arbitrarily slowly as criticality is approached. A key chal-
lenge is the lack of hypercontractivity, which we overcome deriving new sharp moment
estimates.

1. Introduction

We consider the partition functions of the 2d directed polymer in random environment:
N
Zﬁﬁ(z) — E[eZn:1{Bw(n75n)—>\(5)}| Sy = z] , (1.1)

where N € N is the system size, 5 > 0 is the disorder strength, z € 72 is the starting point,
and we have two independent sources of randomness:

e S = (S,)n=0 is the simple random walk on 7* with law P and expectation E;

o w=(w(n,z)) > are i.i.d. random variables with law P, independent of S, with

neN, zeZ
Elw] =0, E[w?] =1, Ag) :=1logE[¢"™] <o for3>0. (1.2)
The factor A(5) in (ILI]) has the effect to normalise the expectation:
E[Zns(2)] = 1. (1.3)

Note that (Zyg(2)),_,2 is a family of (correlated) positive random variables, depending
on the random variables w which play the role of disorder (or random environment).

In this paper we investigate the diffusively rescaled partition functions Zy s5(|vNx]),

where || denotes the integer part. For an integrable test function ¢ : R? - R we set

w w 1 W
Z35(0) = |, ZaVN) @) ds = 5 3] Zitale) ow(a), (14)
R 2e7?
where for R > 0 we define ¢p : Z® - R by
en2)i= [ el (15)

[z,2+(1,1))
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z

(note that pr(2) ~ gp(ﬁ) if ¢ is continuous). We look for the convergence in distribution
of Zﬁﬁ(gp) as N — oo, under an appropriate rescaling of the disorder strength g = [y.

NOTATION. We denote by ¢ € CC(IR{Z) the space of functions ¢ : R? — R that are contin-
uous and compactly supported. We write ay < by, any ~ by, axy » by to mean that the
ratio ap /by converges respectively to 0,1,00 as N — oo.

1.1. The phase transition. It is known since [CSZI7b|] that the partition functions
undergo a phase transition on the scale ﬁQ = ﬁ?\f = O(@

Let Ry be the expected replica overlap of two independent simple random walks S, S’:

), that we now recall.

. ®2 N N lOgN
Ry :=E®?| ) L _gy|= D P(Sa, =0) = — +0(1), (1.6)
n=1 n=1

see the local limit theorem (B8]). Using the more convenient parameter
0% = Var[e? A0 = A=A _y (1.7)
(note that og ~ B as 3| 0, since A(5) ~ %[32), we can rescale § = [y as follows:

A2 A2
2 _ B B

UBN:RN " logN’
Let us recall some key results on the scaling limit of Zy 5(¢) from (L4) for 8 = By.

with S € (0,00). (1.8)

e In the sub-critical regime ﬁ < 1, after centering and rescaling by +/log N
partition function Zy g, () is asymptotically Gaussian, see EEZ—_LZEM

Be©1):  iogN{Zg, (¢) —E[Z s, (@]} = N(0,02 ),  (1.9)

N—o0

the averaged

for an explicit limiting variance ai 5 € (0,00) (which diverges as 3 1 1).

e In the critical regime B = 1, actually in the critical window 5’2 =1+ O(@), th

averaged partition function Zy 5, () is asymptotically non Gaussian, see [CSZ23]:

B-140(ghy):  Zip,o) 7 20 - [ el 2@, (110)

N—0
where Z(dx) is a non-trivial random measure on R? called the Stochastic Heat Flow.

Note that the sub-critical convergence (L9 involves a rescaling factor y/log N, while
no rescaling is needed for the critical convergence (ILI0)). In view of this discrepancy, it is
natural to investigate the transition between these regimes.

1.2. Main result. To interpolate between the sub-critical regime B < 1 and the critical
regime $ = 1, we consider a quasi-critical regime in which 8 1 1 but slower than the critical

window 5% =1+ O(ﬁ). Recalling (6] and ([L8]), we fix § = [y such that

1 9
U%N = v (1 — logNN> for some 1« ¥y < logN . (1.11)

TThe result proved in [CSZI7hl Theorem 2.13] actually involves a space-time average, but the same result
for the space average as in ([L4)) follows by similar arguments, see [CSZ20].
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(Note that ¥ = O(1) would correspond to the critical window, while ¢, = (1 — 5’2) log N
with 3 € (0,1) would correspond to the sub-critical regime.)

Our main result shows that the averaged partition function Z}*\’;ﬂN(go) has Gaussian
fluctuations throughout the quasi-critical regime (LIT), after centering and rescaling by the
factor 4/U, whose rate of divergence can be arbitrarily slow. This shows that non-Gaussian
behavior does not appear before the critical regime. We call this result Fdwards- Wilkinson
fluctuations in view of its link with stochastic PDEs, that we discuss in Subsection

Theorem 1.1 (Quasi-critical Edwards-Wilkinson fluctuations). Let Zy 5(y) denote
the diffusively rescaled and averaged partition function of the 2d directed polymer model, see

(1) and [TA), for disorder variables w which satisfy (L2)). Then, for (Bx)nen in the quasi-

critical regime, see (L) and ([(LIT)), we have the convergence in distribution

Voe CuR?):  \In{ZR% 5, (9) —E[Z 5, ()]} =2 N(0,02), (1.12)

N—o0

where the limiting variance is given by

ai:: f o(x) K (x,2') p(z') dz da’ with K (x,z") f

R? xR?

- du. (1.13)

Our strategy to prove Theorem [[T] is inspired by the recent paper [CC22]: we apply a
Central Limit Theorem under a Lyapunov condition, which requires to estimate moments
of the partition function of order higher than two (see Section 2l for a detailed explanation).
A key point is [CC22] is to bound such high moments exploiting the hypercontractivity
of polynomial chaos expansions in the sub-critical regime 5’ < 1. Crucially, this fails in
the quasi-critical regime (LI1]), because the main contribution to the partition function no
longer comes from a finite number of chaotic components (see Section [3).

This is the key technical difficulty that we face in this paper, for which we need to use
model-specific arguments to estimate high moments. To this purpose, we exploit and extend
the strategy developed in [(CSZ23| [LZ21+4], deriving nowvel quantitative estimates
which are essential for our approach (see Sections [l and [H]). We believe that these estimates
will find several applications in future research.

1.3. Relevant context and future perspectives. The Gaussian fluctuations for Zy 5(¢)
in Theorem [T are closely connected to a stochastic PDE, the FEdwards- Wilkinson equation,
also known as Stochastic Heat Equation with additive noise:

8tv(s’c)(t,x) — %Amv(svc)(t,x) + cWi(t,z), (1.14)

where s, c > 0 are fixed parameters and W(t, x) is space-time white noise. This equation is
well-posed in any spatial dimension d > 1: its solution is the Gaussian process

t
O9ta) = 0002 + ¢ | asioaa =2 W dud

_gjp L=
where g,(z) == (2rt)"¥*e™ 2 is the heat kernel on R?. It is known that z — v>9 (¢, ) is
a (random) function only for d = 1, while for d > 2 it is a genuine distribution.
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Henceforth we focus on d = 2. The solution v (t,-) with initial condition (&9 (0,-) =0,

averaged on test functions ¢ € C'C(R2), is the centered Gaussian process with covariance

E[v®9(t, ) v (t, )] = f @) K y) wly) dedy,

where we set

(5¢) 2 (* S G =
KO w) = | e —pdu= & |7 e . (1.15)
Comparing with (ILI3), we can rephrase our main result (LIZ): for any ¢ € C,(R?)
1
7% _E[z7¢ _d 690 i 4° 7T 20 11
VI Ziap ()~ Bl ) o o) wib {272 (g

In other term, the diffusively rescaled partition functions in the quasi-critical regime con-
verge, after centering and rescaling, to the solution of the Edwards- Wilkinson equation.

Remark 1.2. Also relation (L9), in the sub-critical regime § € (0,1), can be rephrased as
a convergence to the Edwards- Wilkinson solution v(s’é)(l, ©) with € = /wB/\/1 — 5%

The reason why stochastic PDEs emerge naturally in the study of directed polymers
is that, by the Markov property of simple random walk, the diffusively rescaled partition
function uy(t,x) := Z[’j\;tjﬂ([\/ﬁxj) solves (up to a time reversal) a discretized version of
the Stochastic Heat Equation with multiplicative noise:

opu(t,z) = %Axu(t,m) + BW(t, x)u(t,z), (1.17)

with initial condition w(0,z) = 1. This gives a hint how the Edwards-Wilkinson equation
(CIZ) may arise in the scaling limit of directed polymer partition functions: intuitively, the
singular product W (¢, ) u(t, ) in (CIT) for u(t,z) = uy(t,z) converges to an independent
white noise as N — oo (see [CC22, Theorem 3.4] in the sub-critical regime).

Edwards-Wilkinson fluctuations were recently proved also for a mon-linear Stochastic
Heat Equation, see [DG22],[T22+], always in the sub-critical regime. It would be interesting
to extend these results in the quasi-critical regime, generalizing our Theorem [Tl

Remark 1.3. The multiplicative Stochastic Heat Equation (LIT) in the continuum is well-
posed in one space dimension d = 1, e.qg. by classical Ito-Walsh stochastic integration, but
it is ill-defined in higher dimensions d > 2. For this reason, directed polymer partition
functions can provide precious insight on the equation (LIT). In particular, for d = 2,
their scaling limit in the critical regime was obtained in [CSZ23] and called the critical
2d Stochastic Heat Flow, see (LI0), as a natural candidate for the ill-defined solution of

C17).

In the same spirit, the log-partition function hy (¢, z) := log Zﬁwjﬁ([\/ﬁxj) provides a
discretized approximation for the Kardar-Parisi-Zhang (KPZ) equation [KPZS6):

1 1 .
Oh(t,x) = SAh(tx) + SVA(t2)]* + BW(t,x),

with initial condition h(0,z) = 0. This equation too, in the continuum, is only fully un-
derstood in one space-dimension d = 1, via recent breakthrough techniques of regularity
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structures [H14] or paracontrolled distributions [GIPT5] [GP17]; see also [GJ14, [K16]. Sim-

ilar to (LY), Edwards-Wilkinson fluctuations have been proved for hy (¢, z) in the entire

sub-critical regime (LB) with 4 € (0,1) [CSZ20, [G20, [CD20]: for ¢ € C,(R?)
w w d ¢
Viog N {log Z3i 5, () — Ellog Z3 5, (9)]} —— vV (L), (1.18)

with s, ¢ as in Remark This was recently extended in [NN23|, which focuses on a
mollification (rather than discretization) of the Stochastic Heat Equation (LIT): phrased
in our setting, the results of [NN23|] prove Gaussian fluctuations in the sub-critical regime
for general transformations F(Zy g, ), besides F(z) = log 2, with general initial conditions.

It would be very interesting to extend (LIS)) to the quasi-critical regime (IIII), namely
to prove an analogue of our Theorem [LI8] for log Z]“\’fﬁN(go), which we expect to hold. A
natural strategy would be to generalize the linearization procedure established in [CSZ20] to
handle the logarithm. This requires estimating negative moments of the partition function,
which is a challenge in the quasi-critical regime (since Zy g, (2) — 0 for fixed z € /)

Local averages on sub-diffusive scales have also been investigated for the mollified KPZ
solution in the sub-critical regime, see [C23] [T23+]. Similar results can be expected for
the mollified solution of the Stochastic Heat Equation (LI, or for the directed polymer
partition function, which should be obtainable in the sub-critical regime as in [CSZI17b]. It
would be natural to study such local averages also in the quasi-critical regime.

We finally mention that Edwards-Wilkinson fluctuations like (L9) and (LIS have also
been obtained in higher dimensions d > 3, in the so-called L% -weak disorder phase where

the partition function has bounded second moment [CN21], [LZ22] [CNN22, [CCM21+], see
also the previous works [MUIS| [GRZ18, [CCM20, DGRZ20]. Unlike the two-dimensional

setting, for d > 3 the partition function admits a non-zero limit also beyond the L weak
disorder phase: see [J22 for recent results in this challenging regime. It would be
natural to investigate whether our approach can also be applied in higher dimensions d > 3,
in order to prove Gaussian fluctuations slightly beyond the L*-weak disorder phase.

1.4. Organization of the paper. The paper is structured as follows.

e In Section 2l we present the structure of the proof of Theorem [I.T] based on two key
steps, formulated as Propositions 2.1l and 2.2

e In Section [B] we prove Proposition 211

e In Section [ we derive upper bounds on the moments of the partition functions.
e In Section [l we prove Proposition

e Finally, some technical points are deferred to Appendix [Al

Acknowledgements. We gratefully acknowledge the support of INAAM/GNAMPA.

2. Proof of Theorem [L.1]
Let us call Xy the LHS of (LI2): recalling (L) and (L3]), we can write

Xy = \In{Z% s, () —E[Z% 5, (9)]}

VNS {5 ()~ 1 ().

2
2€Z

(2.1)

with ¢ as in ([LH). In this section, we prove Theorem [Tl via the following two main steps:
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(1) we first approximate X in L? by a sum sz\i1 X](\Z,) s of independent random variables,
for M = My — oo slowly enough;

(2) we then show that the random variables (X%?M)lgigM for M = My satisfy the
assumptions of the classical Central Limit Theorem for triangular arrays.

2.1. First step. In order to define the random variables X](\?M, forMeNand1 <1< M,
we introduce a variation of (I1J), for —o0 < A < B < o0:

ZEUA,B],ﬁ(Z) c= E[eZnE(A,B]nN{Bw(nﬂgn)*)‘(ﬂ)}‘ SO — Z] . (22)

We then define X](\i,)M replacing Zy 5 by szi—_lN i ), in the definition ZT) of Xy
) ’ MM

i VY w ,
XJ(V?M - NN Z {Z(i’lN,ﬁ'N]ﬁN(z) - 1}‘%’N(\/—ﬁ)- (2.3)

M
2
z€Z

Note that Z{4 g} (2) only depends on w(n,z) for A < n < B, moreover E[Z{4 g 5(2)] = 1.
As a consequence, X](é)M for 1 <i < M are independent and centered random variables.

The core of this first step is the following approximation result, proved in Section Bl

Proposition 2.1 (L2 approximation). For (fy)nen in the quasi-critical regime, see
(D) and [LIT), the following relations hold for any ¢ € C.(R?), with O'Z as in (LI3):

lim E[X%] =0’ VM eN:

Jim. 2, 0.  (24)

2

M
: _ (@)
xS,

L

From the second relation in (Z4)) it follows that, for any (My) yeny with My — oo slowly
enough as N — oo (see [CC22, Remark 4.2]),

My
lim H Xn = > XV
=1

N—w
i

~0, (2.5)

L2

that is we approximate X in L? by a sum of independent and centered random variables.
We then obtain, by the first relation in (2Z4]),

My 2 My " ,
. Z i . i 2
APL%OE[(i—l XJ(V?MN) ] N 1\}5%0 i—1E[(XN’MN) ] ~ - (2.6)

2.2. Second step. Recalling ([21), we can rephrase our goal (LIZ) as Xy 4N (0,03,).
In view of (Z5]), this follows if we prove the convergence in distribution

My

S XV = N(0,03). (2.7)

i=1

Since (X](é)MN)lgig M, are independent and centered, we apply the classical Central Limit

Theorem for triangular arrays, see e.g. [Bil95, Theorem 27.3]: since we have convergence of
the variance by (2.6]), it is enough to check the Lyapunov condition

My ‘
f 2 lim Y E|[x,, | =0 2.
or some p > Jim ; | N MN’ 0 (2.8)
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This follows from the next result, proved in Section [, where we focus on the case p = 4.

Proposition 2.2 (Fourth moment bound). For (By)yen in the quasi-critical regime,

see (IL7) and (LIL), and for any ¢ € C.(R?), there is a constant C' < o such that
VMeN, ViI<i<M: llmsupE[(X](V)M)4] < % (2.9)
N—0 M

Since the estimate ([Z9)) holds for any fixed M, it follows that we can let My — oo slowly
enough as N — o0 so that

i 4 2C .
E|(X0h,)"] < — Vi=l.. My.
N

This shows that (Z8]) holds with p = 4 (the sum therein is < 2C/My — 0 as N — ).

The proof of Theorem [[.Tlis then completed once we prove Propositions 2Tl and 221 The
next sections are devoted to these tasks.

3. Second moment bounds: proof of Proposition [2.1]

In this section we prove Proposition [Z1] exploiting a polynomial chaos expansion of the
partition function. We fix (Sy)yey in the quasi-critical regime, see (7)) and (LIT]), and
pE C’C(R2). We denote by C,C’, ... generic constants that may vary from place to place.

3.1. Polynomial chaos expansion. The partition function admits a key polynomial
chaos expansion [CSZ17a]. Let us define, for 8 > 0,

&s(n,x) == @) =AB) _q forneN, zeZ>. (3.1)

Recalling (L)), we note that ({3(n,)) > are independent random variables with

neN,zeZ
E[¢s] =0, E[¢3] =03,  E[&l"] < Crob VE=3, (3.2)

for some C}, < oo (for the bound on E[|£B|k] see, e.g., [CSZ1Tal eq. (6.7)]).
We denote by g, (z) the random walk transition kernel:

4u(2) = P(S, = | Sy = 0). (3.3)

Then, writing e %0 =2E} — 7 (1 4 £3(n,x)) and expanding the product, we can
write Z(w 4,8],3(2) in ([22) as the following polynomial chaos expansion:

0
Z(a,B), Z Z In, (21 — 2) €Ny, 1) %
k=1 A<n;<.. <nk<B
Tq,.. ,$k€Z (34)

xHann x — Ty )55( j’xj)’

where we agree that the time variables n; < ... < n;, are summed in the set (A, B] nZ (in
particular, the seemingly infinite sum over k can be stopped at B — A).

Plugging (3]) into ([Z1), we obtain a corresponding polynomial chaos expansion for X,
recall (ZI]) and (LH): if we define the averaged random walk transition kernel

qg(az) = Z an(z —2) f(2), for f: Y/ R, (3.5)

2
2€Z
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we obtain

N = @ Z Z g (x1) &g, (01, 1 an ny o (85 = wj1) gy (ngya5) - (3.6)

k=1 g<n,<..<ny<N J=2

T1,..,LLEL

The analogous polynomial chaos expanswn for the random variables X](V)M, see (23)), is
obtained from (BH) restricting the sum to AN <ny <... <ny < LN:

i In <
X](V?M = % > > an (1) €p, (N1, 1) X

= i—1 i

ml,...,xkEZQ (37)
H%-—n (; = j-1) gy (nj @) -

Remark 3.1. Since the random variables ({3(n,x)) 2 are independent and centered,

neN,zeZ

see (31)), the terms in the polynomial chaos (34), (3:0), (37) are orthogonal in L.

We finally recall the local limit theorem for the simple random walk on ZZ, see [LLI0
Theorem 2.1.3]: as n — oo, uniformly for = € 7* we havdl

) ) 2]l(n7z) 72 where g9(y) = , (3.8)

€Lgyen 27‘(

In(@ n/2< (
{y

and we set Zgyep = = (y1, Y2, y3)eZ y1+yo +ys € 2L }.
3.2. Proof of Proposition 2.1l Note that Zi‘i 1 X](\?M is a polynomial chaos where all
time variables ny < ... < n; belong to one of the intervals (%N, ﬁN], see ([B1). Tt

follows that X is a larger polynomial chaos than Zf\il X](\i,)

hence the difference X — le‘il X](\?M is orthogonal in L* to Zf\il X](\?M (see Remark B1)):

M .
> XN

i=1

A 1-€. it contains more terms,

2

M
= xwlze = 21Xz
L i=1

X7z ~

M " 2
? j—
H An - ZXN’M L2 -
As a consequence, to prove our goal (24]) it is enough to show that

2 2 2
Jim E[X}] = o2, YMeN:  lim Z |(x00)*] = 2. (3.9)

where we recall that 03, is defined in (LI3). The first relation in (39) follows from the

second one, because X = X](\;)l. Then the proof is completed by the next result. O

The scaling factor in (B3) is n/2 because the covariance matrix of the simple random walk on Z” is i1,

while the factor 2]l(m yezd is due to periodicity.
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Lemma 3.2 (Quasi-critical variance). Fiz (Oy)yen in the quasi-critical regime, see
(7)) and (LII), and ¢ € C.(R*). For any M € N, the following holds for all i =1,...,M:

® \V2_g2 N[ Lt /
A}linooE[(XNM) | = Ty (it i = f o(x) p(x") <fu 5 & 2o du |dedz . (3.10)
M

R xR’
Proof. Let us fix M € N and 1 <1 < M. We split the proof of (I0) in the two bounds
(1) )2 2
h]r\?j;lop E[(XN ) ] SOy (i1 iy (3.11)
and

lim inf IE[(X](\?)M)Q] > 027(1-_1 i (3.12)

Noowo pvatsvd

We first obtain an exact expression for the second moment of X](\? v by BI): since the

. . . . 2
random variables {z(n, ) are independent with zero mean and variance o, we have

) 0
E[(XJ(\?M 2] = FN Z UBN Z in 1‘1 HQn ] .%' — T 1)2'

EAN<n <..<np<EHEN

=M
xl,...,mkEZ2

We can sum the space variables xy,zy_1,..., 7y because >, _ > qn(x)2 = (9,,(0), see (B3),
while to handle the sum over z; we note that, recalling (3.3]),

Z ¢ (z)? = qfnf where we set ¢/ = Z am(z —2) f(2) f(£). (3.13)

zeZ? z,z'eZQ
We then obtain

i) 0 q2‘PN7‘PN k
n
E[(X ] = Z 0'5N Z ]\1[2 HQ2(njfnj,1)<O) : (314)
k=1 EAN<n <.<np<EHEN J=2

We then prove the upper bound [BI1]). We rename n; = n and enlarge the sum over the

other time variables n, ..., ny, by letting each increment m; :=n; —n;_; for j =2,... .k

vary in the whole interval (0, N]: since Z%:l ¢om(0) = Ry, see ([LG]), we obtain

PNPN DO

E[(X](V"?M)z] <oy Y B N aR )RRy

2
N
CIN<n<EN k=1

PNPN 2
qs 93

9
—1 N
_ZJM N<n< _Z‘z[ N Y

(3.15)

where we summed the geometric series since U%NR N=1- log 5 < 1 for large N, by (LITI).
We will prove the following Riemann sum approximation, for any given 0 < a < b < 1:

Y B f gp(m)gp(m')(fblg<x_x/> du) dede’,  (3.16)

3
N=o nvaan N atl Vu

R?xR?
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1 2
where g(y) = % e~ 2" is the standard Gaussian density on R?, see (BR). Plugging this
into (BI5), since 1*0123NRN = loéﬁ and O'%N ~ ﬁ ~ e as N — o0 by (CII) and ([T,

/ 72
we obtain precisely the upper bound (@II]) (note that 1 g(’”ﬁ ) = o exp(—%)).

Let us now prove ([BI0). This is based on the local limit theorem (B8] as n — oo, hence
the case a = 0 could be delicate, as the sum in (BI0) starts from n = 1 and, therefore, n
needs not be large. For this reason, we first show that small values of n are negligible for

(BI4). Since ¢ is compactly supported, when we plug f = ¢y into qzn , see (B.I3), we can
restrict the sums to |2’| < C+v/N, which yields the following uniform bound.

VmeN: YN < el DT Dl am(z—2) <C'|g|%N. (3.17)
|2|<CVN zez?

In particular, the contribution of n < eN to the LHS of ([B.I6]) is O(e). As a consequence,
it is enough to prove ([BI6]) when a > 0, which we assume henceforth.
Recalling (B.I3]) and applying (B8], we can write the LHS of ([BI0]) as follows:
q¢7§/V7SON 1 2 Z*Z/ z Z/
Yo e mm X N () o) el ) elR)

aN<n<bN aN<n<bN 2,2z’

(n,z—z )EZeven

where o(1) — 0 as N — o (because n > alN — o0 and we assume a > 0). The additive

term o(1) gives a vanishing contribution as N — oo, because we can bound % < alN and
lo()| < |l¢]s, and the sums contain O( 3) terms (since |z, |2'| < Cv/N). Introducing the
. . z / L z_/ .
rescaled variables u := - and x : \F = x> We can then rewrite the RHS as
1 2 .
N Z Z " <9<x\/5 )) p(x) (') + o(1),
ue(a,b]m% = mlei'
b \/ﬁ'

(Nuv\/ﬁ(xfm/))ezgven
which is a Riemann sum for the integral in the RHS of (BI0]). Note that the restriction
(Nu,v/N(z — ') € szen effectlvely halves the range of the sum: indeed, for any given u

' z’
and z, the sum over ' = jﬁ € Ux is restricted to points 2’ € 7% with a fixed parity (even

or odd, depending on u,x). This restriction is compensated by the multiplicative factor 2,
which disappears as we let N — o0. This completes the proof of (B.16]).

We finally prove the lower bound [BI2). We fix € > 0 small enough and we bound the
RHS of (BI4) from below as follows:

e we rename n = ny and we restrict its sum to the interval (%N, (1— 6)%]\7];

e for k > 2, we introduce the “displacements” m; := n;

J J
and we restrict the sum over ng,...,n; to the set 0 < my < ... <my, <

We thus obtain by (BI4)

—ny from ny, for j =2,...,k,

MN

(@) 9 q5 PNHPN
E[(XN,M) ] =y Z 7;\,2 X
Z'71N<n<(1—5)ﬁN

X < + Z UﬁN Z QQmQ(O)

O<my<..<mp<es; N

(3.18)

<.
Il >
w

)

N

(0)>-
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We now give a probabilistic interpretation to the sum over ms, ..., my,: following [CSZ19al

and recalling (6]), given N € N we define i.i.d. random variables (Ti(N))EN with distribu-
tion

» (0
P(Ti(N) =n) = qQR—](V)]l{l,...,N}(n), (3.19)

so that the second line of ([BI])) can be written, renaming ¢ = k — 1, as

0
o Sitnar o <)
(=1

0 (3.20)
— o3, (% - S @3B P(TY 4+ T > eMiN)> .
1- UﬁNRN =1
Plugging this into ([BI8]) and recalling ([BI7), we obtain
IE[(X](\?)M)Q] =N { Z qé&ng } n U%N
SN <<= 4 O (3.21)

0
2 2 2 ¢ N N
— (Cl¢l%) On By D@5 B P(TY + o+ T > 5N
=1
The first term in the RHS is similar to IH), just with (1—¢)+ instead of -7, therefore we
already proved that it converges to ai =1 gy 08 N — o0, see BI6) and the following
N M M
lines (recall also (BI0)). Letting ¢ | 0 after N — o0 we recover O'i (i=1 1}, hence to prove
>\ M M

(BI12) we just need to show that the second term in the RHS of ([B2]]) is negligible:

[00]
. 2 2 ‘ (N) (N) _
lim vyod, ;(UBNRN) P<T1 o+ TV > %N) ~0. (3.22)

Recall that the random variables (Ti(N))EN are i.i.d. with distribution BI9). Since
d2,(0) < € by the local limit theorem (BX), we have E[Ti(N)] = ﬁ SN nge,(0) < C%

and, by Markov’s inequality, we can bound

E[T™ + .. 4+ 7™M __ct
N

P(r™ 4.+ T > §N) < - <o
M M

Since 3,7, (ot = (12«)2’ we obtain

0723N eC}’% UggRN 2
a7 ity (1 —o03, Ry)

_CM Uy (U%N)2

¢ (1-— O'%NRN)Z .

N)

o0
Iy o3, Z(UgNRN)KP(Tl( +o+ T > ﬁN) <y
/=1

Note that 1 — O’%NRN = % and 01231\7 ~ % ~ en by (LII) and (L), hence the last

2
term is asymptotically equivalent to CTM g—N — 0 as N — oo, since 9 — o0, see ([LII)).

This shows that (3:222]) holds and completes the proof of Proposition 211 O
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4. General moment bounds

In this section we estimate the moments of the partition function Zfﬁ through a re-
finement of the operator approach from [CSZ23| Theorem 6.1] and Theorem 1.3]
(inspired by [GQT21]). We point out that these papers deal with the critical and sub-critical
regimes, while we are interested the quasi-critical regime (LIT]).

For transparency, and in view of future applications, we develop in this section a non
asymptotic approach which is independent of the regime of B: we obtain bounds with explicit
constants which hold for any given system size L and disorder strength 8. Some novelties

with respect to [CSZ23, [LZ21+] are described in Remarks 4] E1] These bounds will
be crucially applied in Section [B] to prove Proposition [Z2].

The section is organised as follows:

e in Subsection L] we give an exact expansion for the moments, see Theorem 5] in
terms of suitable operators linked to the random walk and the disorder;

e Subsection we deduce upper bounds for the moments, see Theorems .8 and [LT1T]
which depend on two pairs of quantities, that we call boundary terms and bulk terms;

e in Subsection we state some basic random walk bounds needed in our analysis
(we consider general symmetric random walks with sub-Gaussian tails);

e in Subsections [£.4] and we obtain explicit estimates on the boundary terms and
bulk terms, which plugged in Theorem 1Tl yield explicit bounds on the moments.

4.1. Moment expansion. The partition function Z4 g s(2) in [Z2) is called “point-
to-plane”; since random walk paths start at S; = z but have no constrained endpoint.
We introduce a “point-to-point” version, for simplicity when (A, B] = (0, L] for L € N,
restricting to random walk paths with a fixed endpoint S;, = w:

L—1

(we stop the sum at n = L — 1 for later convenience).
Given two “boundary conditions” f, g : 7* - R, we define the averaged version

2Z25(f.9) = D F(2) ZE 5(zw) g(w), (4.2)

z,weZ

where we use a different font to avoid confusions with the diffusively rescaled average (I4)).
We focus on the centred moments of Zf,ﬁ(f, g), that we denote by

w w h
M3 5(f,9) = E[ (28 5(f.9) — BIZE 5(f:9)])"|  for heN. (4.3)
Remark 4.1. Recalling 22)), 23) and ([LH), B38), by translation invariance we have

fl( )'_ SzaNlN( )
g(w) :==1.

To prove Proposition [2.3, in Section [d we will focus on M%ﬁ(f, g).

B[] = 2 ad

MyﬂN

(fivg), where { (4.4)

Henceforth we fix h € N with A > 2 (the interesting case is h > 3). We are going to give
an exact expression for M}Llﬁ( f,9), see Theorem We first need some notation.
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We denote by I - {1,...,h} a partition of {1,...,h}, i.e. a family I = (I',.... 1"} of
non empty disjoint subsets I’ < {1,...,h} with 'o...orm= {1,...,h}. We single out:

e the unique partition I = = := {{1},{2},...,{h}} composed by all singletons;
e the (g) partitions of the form I = {{a,b}, {c}: ¢ # a,c # b}, that we call pairs.

Example 4.2 (Cases h = 2,3,4). All partitions I — {1,2} are I = and I = {{1,2}}.
All partitions I = {1,2,3} are I = =, three pairs I = {{a, b}, {c}} and I = {{1,2,3}}.
All partitions I + {1,2,3,4} are I = %, siz pairs I = {{a, b}, {c},{d}}, siz double pairs

I = {{a,b},{c,d}}, four triples I = {{a,b,c},{d}} and the quadruple I = {{1,2,3,4}}.

Given a partition I = {Il,...,Im} F{1,...,h}, we define for x = (ml, . ,a;h) € (ZQ)h

b

2 =2 ifa,be I' for some 7,

4.5)

a

x ~ 1 if and only if b , , A , (
2" #x" ifael' be I’ for some i # j with [I'],|I7| = 2.

For instance x ~ {{1,2}, {3}, {4}} means z' = 2%, while x ~ {{1,2}, {3,4}} means z' = 2
and 7% = 2% with 2! # 2%, Note that x ~ * imposes no constraint. We also define

2z} = {xe @' x=(",...,a" ~ I}, (4.6)

which is essentially a copy of (Z®)™ embedded in (Z*)".
A family I, ..., I, of partitions I; = {Il-l, o MY {1, ... b s said to have full support
if any a € {1,...,h} belongs to some partition I; not as a singleton, i.e. a € I} with |I]| > 2.
Example 4.3 (Full support for h = 4). A single partition I, + {1,2,3,4} with full
support is either the quadruple Iy = {{1,2,3,4}} or a double pair I; = {{a,b},{c,d}}.

There are many families of two partitions Iy, I - {1,2,3,4} with full support, for instance
two non overlapping pairs such as Iy = {{1,3},{2}, {4}}, I, = {{2,4},{1},{3}}.

We now introduce h-fold analogues of the random walk transition kernel ([B:3]) and of its

averaged version (B3): given partitions I,.J - {1,...,h}, we define for x,z € (Z*)"
1,J - i i J - ‘
Qn7 <Z7X) = ]1{z~l,x~J} an(xl - ZZ)7 qg’ (X) = ]1{x~J} Hqg(xz) : (47)
i=1 i=1

Given m € Ny and J — {1,...,h} # *, we define for x,z € (Z*)" the weighted Green’s
kernel

0 k
Z E[fbl]k Z HQi’ini,l(Yz‘thi) iftm=1,
k=1

O0=mo<n <---<ng:=m i=1 (4 8)

2\h
VisYrp—16(Z7)
Y0i=%, Ypi=X

]l{z:x~J} ifm=0,

U,{%B(z,x) =

where for J = {J',...,J™} with J # = we define

Blgr) = [] ElS). (49)

i | =2

When J is a pair, this reduces to E[fg‘]] = E[gg] = a%, see (32).
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Remark 4.4 (On the definition of UJ). We point out that U’ was only defined in

[CSZ23| [LZ21+] when J is a pair. Defining u’ for any partition J makes formulas simpler,
as it avoids to distinguish between pairs and non-pairs in the sums (LI12]) and (LIS]).
For a pair J = {{a,b},{c} : ¢ # a,b}, by Chapman-Kolmogorov we can express

Um B(Z x) = Um,ﬁ(xa - Za) ]l{:vb:za,zb:za} 17&_[17 q?n(xc - Zc) ) (4.10)

where we define for x € 72

0 k
2\k 2
Un,p(x) 1= Z (05) Z HQni—ni_l(xi —xi1)”. (4.11)
k=1 0=mp<ng<--<ng:=m i=1
zq:=0, ml,...,:kaleZQ, Tpi=x

Given two functions qf(x), q?(x) and a family of matrices U;(z, x), Q;(z,x) for x,z € T,
where T is a countable set, we use the standard notation

(o ul{gaiuz} )i . ZET o (22) Us (5,7, {HQ 7ho1,2) Uai,20) | (1)

zl, ,z eT

We can now give the announced expansion for ./\/lliﬁ( f,9), that we prove in Appendix [Al

Theorem 4.5 (Moment expansion). Let Zfﬂ( f,g) be the averaged partition function
in (£2) with centred moments M%,B(f, 9), see [@3). For any h € N with h = 2 we have

MG 5(f.9) i > D {EE[Q?]} x

r=1 0<n;<my<--<n,.<m,.<L I, I +H{1,..,h}
with full support
and I,#I,_,, I,#% Vi (4.12)

f7I i—1s z 97['r
<q”11 ’ ml ni,B {HQ 1 m'—niﬁ }qL—mr>'

Remark 4.6 (Sanity check). In case h = 2, the conditions I; # I;_; and I; # = in [@LI2)
force r =1 and Iy = {{1,2}}. Then, recalling [EID)-@II), formula @I2) reduces to

M s(f.9) =Var[ZZ5(f,9)l =0F > ah(2) Unpplz—2) ), (x),

O<n<m<L
2
2,2l

which is a classical expansion for the variance, see e.g. [CSZ23| eq. (3.51)].

Remark 4.7 (Boundary conditions). In [CSZ23|[LZ21+], the quantity qn’ll1 in [@I12) is

expanded as QII’ 7" (recall @) and B3)); similarly for qg’ " . We keep these quantities
unexpanded in order to derive tailored estimates, see Subsectzon which could not be

derived by simply applying operator norm bounds on Q{}l’* as in [CSZ23| [LZ214].
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4.2. Moment upper bounds. We next obtain upper bounds from ([£I2)). For L € N we
define the summed kernels

L L
ALJ 1,J ~f Iy . N
2(x) = 3 Ql(mx),  art(x) =)l (%), (4.13)
n=1 n=1
Recalling ([A.8) and ([@3]) we set, with some abuse of notation,

|U|;{1_n,5(z,x) = U,‘;_n,ﬁ(z,x) from ({-8) with E[gé] replaced by |E[£‘B]]| (4.14)
Then, for L € N and A > 0, we define the Laplace sum

L
|U|i,)\,6(z’x) = ]l{z:x~J} + Z e_Am |U|;]n,5(Z,X) . (415)
m=1

Finally, we introduce a uniform bound on the right boundary function qg v in (E12):

a%’ (z) ;== max q% ( ). (4.16)

1<n<L

We can now state our first moment upper bound.

Theorem 4.8 (Moment upper bound, I). Let Zfﬁ(f, g) denote the averaged partition

function in (L2]) with centred moment ./\/(Zg(f, g), see [@3), for h € N with h = 2. For any
A = 0 we have the upper bound

ee}
IME 5(f,9) 2 =(r (4.17)
with
T IErL 71,1 - lgh 1,
2(r) = Z {H‘E[gﬁl] }<A ' |U|L>\B{ z ot ‘U‘L)\,B}_g > (4.18)
1177[7"7{177h} =1 =2
with full support
and I;#1;_q1, I;#% Vi
Proof. Replacing E[fél] f, g, Uin [@I2) respectively by \E[gé'“ If1, lg], U], every term
becomes non-negative. We next replace q‘g M by the uniform bound q|g T and then enlarge
the sum in (£I2)), allowing increments n; — m;_; and m; — n; to vary freely in {1,...,L}.
Plugging 1 < eM e < M e Lisa(Mimmi) e obtain @17). O

Remark 4.9 (On the right boundary condition). The function qg’ rin (EI12) s
controlled in [CSZ23, [LZ21+] by introducing an average over L, which fomes the function g

to be estimated in (. Our approach avoids such averaging, via the quantity a%"] from
[@IG): this lets us estimate the function g in £ also for ¢ < oo (see Proposition [{.21]).

We next bound Z(r) in ([IJ]), starting from the scalar product. Let us recall some
functional analysis: given a countable set T and a function f: T — R, we define

vy = Hfzpr—<2|f ) for pe [1,0). (4.19)

€T
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For a linear operator A : ¢4(T) — ¢4(T"), with p, ¢ € (1,00) such that % + % =1, we have

|A g o
|A oo = sup ———)

W = sup (fiAg). (4.20)
970 191l¢7(T) I£1,»

(’]1")<17 H9|\Z¢1(T)<1

By Holder’s inequality [(g,h)| < | g/ |k, so the scalar product in (ZIg]) is bounded by

_J‘{ 1_[ H P —JI} HngII

Remark 4.10 (Restricted (! spaces). Due to the constraint 1y, .y in @D), we
may regard Qé"] as a linear operator from ¢1((Z ) ) to 11((Z*)}), see @T). Similarly, we

HAIf\ Iy

(4.21)

VAN H

e 110

may view ‘O‘ixﬁ as a linear operator from (1((Z*)") to itself.
To make the bound ([@2I) more useful, we introduce a weight W : (Z*)" — (0, ), that
we also identify with the diagonal operator W(x) 1 {(x=y}» SO that in particular
1
W(y)
Inserting (W 35) between each pair of adjacent operators in ([@IT), we improve ([@2I) to
A fLT
“q‘[‘/flv 1

(WA %)(X,y) = W(x)A(x,y)

e W |U|L A et %
ATTIVE blrn Y Ol ol f VL

In view of ([fIT)-(I8]), this leads directly to our second moment upper bound.

(4.22)

Theorem 4.11 (Moment upper bound, II). Let Z} 5(f,g) be the averaged partition
function in [@2) with centred moment M}Ll,ﬁ(f, g) <M Yr L E(r), see [ED) and [EIT),
for )\ 0 and h = 2. For any weight W : (ZQ)h — (0,00) and for p,q € (1,00) with
5 + 5 = 1, we have the following upper bound on Z(r) from (EIF]):

= Sl 1 lgl,J —bulk
=) < (max [/ F o) (max [wa) o) =) (4.23)
with
s
—bulk 1 A 1 u,¢?
B (r) = > { ]} (Y (Ciig) (4.24)
Il?"'vl’r'_{lv"'?h‘} i=1
with full support
and I;#1;_, I;#% Vi
where we set for short
Q. I,J 1 Ut (14 1
o= f v HWQ y et Cong = Hax IWIUIE A oo - (4.25)
1#J

Note that the bound ([@23)-(@24]) depends on two pairs of quantities, that we call

alfll 1 IJ 1
W wQ
las ng and  bulk terms ” ”ZQHZQ . (4.26)

boundary terms o7
Iwai | |w |U|L7A,B ol
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We will estimate these terms in Subsections [£4] and respectively, exploiting some basic
random walk bounds that we collect in Subsection 3]

Remark 4.12 (Choice of the weight). We will choose a weight W = W, : (Z*)" —

(0,00) which is exponential of rate t > 0, that is for x = (z*,...,2") € (Z*)"
h .
Wi (x) = Hwt(azz) where wy(x) = el for v e7?. (4.27)
1=1

Note that by the triangle inequality we can bound, for all x,z € (ZQ)h,
h

Wt(z) < Het|zi71'i| ) (428)
i=1

Wi(x)

We will later need to consider an additional weight V., see @A) below.

We finally bound the product {[]/_;
and note that limg|p oz = 0.

@24). Recall o5 from ([LT) and B.2)

Proposition 4.13 (Moments of disorder). For any h € N there are 5y(h) > 0 and
C(h) < o0 (which depend on the disorder distribution) such that for < [y(h) we have

2 . ; )
if I = {{a,b},{c}: c # a,b} is a pair
E[£5]] < 7 5 7= {{a.b} e} bisap <oy ifl#x. (429
C(h)op if I # * is not a pair

Moreover

if Iy, ..., I+ {1,...,h} have full support: )T max{2r.h} (4.30)

Proof. We have |E[£é]| = O'% if I is a pair, while |E[£é]| = O(Jg) if I # * is not a pair.
Indeed, if |I|| :== >, ‘Il‘ﬂ{ui‘>2} denotes the number of a € {1,...,h} which are not
singletons in I = {I',..., 1™}  {1,...,h}, by B32) and @J) we have \E[§é]| = O(ayu)
(note that ||I| = 2 if I is a pair while ||| > 3 if I # = is not a pair).

Since limg| o5 = 0, we see that (#29)) holds for 5 > 0 for small enough, depending on h

(it suffices that E[&E] [55] = O'ﬁ 1forall ke {3,...,h}, see B2)). Finally, if I1,..., I,
have full support, then each a € {1 ., h}is a non—trlvial element (i.e. not a singleton)

of some partition I;, hence ||I;|| + ... + HI H > h which yields || 1| = O(O'g). This

proves ([A30) because [[;_; |E[ 55 | = ") by (£29). O

4.3. Random walk bounds. In this subsection we collect some useful random walk
bounds, stated in Lemmas [Z.10], 217 and I8l The proofs are deferred to Appendix

Instead of sticking to the simple random walk on ZQ, we can allow for any symmetric
random walk with sub-Gaussian tails, in the following sense.

Assumption 4.14 (Random walk). We consider a random walk S = (S,,),=q on 72
with a symmetric distribution, i.e. ¢;(x) = P(S; = z) = ¢1(—x) for any x € 72, and with
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. o s 12
sub-Gaussian tails, i.e. for some ¢ > 0 we have, writing v = (z",x°),

M

t

VieR, Va=1,2:  E[e'5]= Y g ) <7 (4.31)
2

Remark 4.15. The simple random walk on Z* satisfies (@3T)) with ¢ = 1: indeed, we can
compute 3, > gy (x) = (1 + cosh(t)) < exp(t2/2) (because cosh(t) < exp(t2/2)).

We derive useful bounds for the random walk transition kernel ¢,(z) = P(S,, = z).

Lemma 4.16 (Random walk bounds). Let Assumption hold. There is c € [1,00)
such that for allt =0 and ne N
2 2

2
Va=1,2: e g (z) < ec%", e an () <o, 4.32

2 2
T€Z TEZ

Moreover, recalling w;(z) = e~ from E27), we can bound

l

We next extend the bounds in (£33) to the averaged random walk transition kernel

q,{(a:), see ([B3), for any f : Z? — R. Let us agree that a® := 1 for any a > 0.

2ct2 n
an e
Wy

n,
Wt

C
= sup {etm qn(ﬂf)} <

2
z€Z

(4.33)

n

2
t|x 2ct™n
= E eHQn(x)éce ’ ’

2
z€Z

ZOO

Zl

Lemma 4.17 (Averaged random walk bounds). Let Assumption hold and let c

be the constant from Lemma [{-16. For anyt >0 and n € N we have, with w(z) = eft|m|,
f 5 f 2ct’n
VPG[LOO] : Iq—n <C62Ctn i , Iq_" < ce . i (4_34)
’U)t ZP wt ZP ’U)t Zw n; wt ZP

We finally consider the maximal averaged random walk transition kernel q{ 72 > R:

6{(3:) .= max ¢l (z). (4.35)

1<n<L

We prove a variant of Hardy-Littlewood maximal inequality, see Appendix[Blfor the details.

Lemma 4.18 (Maximal random walk bounds). Let Assumption hold and let c
be the constant from Lemma[f.16] For any t >0 and L € N we have, with w,(x) = e tlel,

Vpe(Lool:  |ahwilp < 25255 Cfwp  with C:=200mc? UL (4.36)
(with 224 == 1).

4.4. Boundary terms. In this section we estimate the boundary terms appearing in

(£23), see ([E26]). The proofs are deferred to Appendix [Cl

We recall that the weight W, : (Z%)" — (0, o0) is defined in {@ZT) for ¢ > 0. Our estimates
contain the following constants (with ¢ from Lemma FT6]):

2 _ 2
¢ :=ce®'t @ .= 5000w et (4.37)
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where L is the “time horizon”, see ([@26]). We anticipate that we will take

t= \/_IN with N > L. (4.38)

hence the constants € and € are uniformly bounded in this regime.

We start estimating the left boundary term which involves qlf W (see (I3) and [@7)). I
was proved] in [LZ21+] Proposition 3.4], extending ﬂm, Proposition 6.6], that for any
h = 2 there is C' = C'(h) < oo such that, for any p € (1,0)

SlfLT 1
max qL Wt

na (4.39)

oot H

2

For our goals it will be fundamental to have a linear dependence in L, which would amount
to take p = o0 in ([@39), but this is not allowed by our approach. To solve this problem,
we improve the estimate ([A39]), showing that for p € (0,00) We can still have a linear
dependence in L in the RHS, provided we replace one factor H [l by H || -

Proposition 4.19 (Left boundary term, I). Recall the weights W, and w; from ([E2T]).
For any h > 2,t >0, L eN we have, for any p € (1,0) and € as in [E37),

max Hq‘Lfl L <4¢"L H— - (4.40)
I# P ’U)t ZP
More generally, for any r € [1,00] we have (with % =00, 22g:=1)
AISLT -1 f "
max Hq g <4¢" min{ "5 = Ly L Et . Jt B (4.41)

We further improve the bound @Z0) through a restricted weight V! : (Z*)" — (0,0),
defined for a pair I+ {1,...,h} and s = 0 by

a b
VIx) = wy(a® — ab) = e 7%l for I = {{a,b},{c}: ¢ # a,b}. (4.42)
Note that ||z — 2= |2 — bu < |2 — 2% + |2® — 2°|, therefore we can estimate
1 a a b b
5§(()Z()) < es\z —z"|+s|z —a | ) (443)
S
In analogy with (£38]), we anticipate that we will take
5= (4.44)

Proposition 4.20 (Left boundary term, II). For any h > 3,¢t >0, s€ (0,1], Le N
we have, for any p € (1,0) and € as in (E3T),

h—2
~ 7 L
max ’qlLf"IV—S < 367 gt 2 f — (4.45)
i s il fun o

where 1 2 J, for I ={I",...,. 1™} and J = {{a,b},{c} : ¢ # a,b}, means I D {a,b} Vj.

"The factor ¢ = -£7 in the RHS of [@.3J), first identified in [LZ21+], is essential to allow for p which
can vary with the system size L.
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We next estimate the right boundary term which involves a‘Lg"J, see (AI6) and (Z7),
obtaining estimates analogous to (A1) and (£45).

Proposition 4.21 (Right boundary term). For any h > 2,t >0, L € N we have, for
any q € (1,00) and € as in [E37),

max [@f" Wil < (757 %)" lgwel o lg wel )
< (5 )" lgwl = lgw!

Moreover, for any h =3, s € (0,1] we have, for € as in [E3T),

J I —\h 1 2 h—2
max G WV < (756)" < lgwilie lgwly. (4.47)
pair Sa
J#x, JPI

where J 21, for J = {J*,...,J"} and I = {{a,b},{c} : ¢ # a,b}, means J' D {a,b} Vi.

Remark 4.22. We can bound |gw|,~ < |g|l= |welleo and ||gwe]e < [g]= [|we],e. By a
direct computation, see (C16), we have

1
_ q 36
[ =1, Jwy = ( e ) i (4.48)

q
z622 ta

therefore we obtain from (ZL.46])

917 n lglye
wax |4 Wil < (7% - 3677 20T (4.49)
Similarly, from ([EZT) we deduce that

h

lgl,J I l— h HgHg
I}I;’?l‘ii Hq ; Wt Vs qu < (ﬁ q Cg) m (450)

sa ta
J#£x, JDI

4.5. Bulk terms. In this section we estimate the the bulk terms appearing in [@L24)), i.e
q q
the constants CS’Z and Cg’i 5 from (£2Z8). The proofs are also given in Appendix [C]

We recall the weights W, and V!, see (@2T7) and @ZAZ). We will choose the parameters
t,s = O(ﬁ), see ([A38) and (@44, hence the following constants are uniformly bounded:

o~ 2 2
E = 40002 %P @ = 4000?52 (45)
c\gf o 2e4ct2L c}? o 2€4c(t+s)2L .

)

q ~
’ CS’Z which involves Qé"], see (A29).

We first estimate the “bulk random walk term’

Proposition 4.23 (Bulk random walk term). For any h > 2,t > 0, L € N we have,
for any g € (1,0) and € from (L5,

q
C%E = I,ngﬁ)l(ﬂ HWt IJ W ”zq_wq = h'Cg Lr (4.52)
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Moreover, for s =0 and ‘5 from (A351]),

|Wt AILJ

V L W V ngﬁgq S h (g q— (453)

max
I1,J pairs, I#J

(note that the weights VS ,VS appear in the denominator on both sides).

q ~
We next focus on the quantity Cg’i 5 in (Z219), which depends on the operator |U|£ A B>
see (L8) and (LI4). Recalling Ry from (L6) and ¢, (x) from B3], we define

Z e M o (0 (4.54)

which reduces to Ry for A = 0. In the next result we are going to assume that |E[§[g]\ < 0?;

for any partition I # %, which holds for 5 > 0 small enough (see Proposition EI3]).

Proposition 4.24 (Bulk interacting term). Let 5 > 0 satisfy maxj, |E[§[3]\ < 0?;.

For any h > 2,t>0, Le N, A\ >0 such that 0?3 R(LA) < 1 we have, for any q € (1,00) and
¢ from (E5T]),

~h 0’?3 R(LA)

uet I 1
CL,)\,B T r}lff H Wi U[L s W, ||Zq4>5q S1+¢ 1 0?3 R(A) : (4.55)
Moreover, for any s = 0 we have, for a € {+1,—1}and CK from (AE]),
()
N UBR
max || (Vs)* W t|U|£)\67Hq q\1+(5h7. (4.56)
XIS V.Y V A=Y ( )
you A — o5 Ry,

5. Proof of Proposition

In this section we prove Proposition The key difficulty is that our goal (Z3)) involves
the (optimal) 1/M? dependence on the width of the time interval (5£N, 45 N] (recall the

definition ([B.7) of the random variable X](\Z,? 7). This requires sharp ad hoc estimates.
5.1. Setup. By formula (£4]) from Remark 1] for [ = 1,..., M we can write

2
B[0x0)"] = 2 MEs(r0) (51)

where L, 8, f, g are given as follows:

L=%, B =Py in ([LII), f(-):q“f;_;ﬁN(.) in @)-GH), g()

We can bound M ﬁN(f’ g) exploiting ([@IT) for h = 4 and \ = 0, which yields
M>

O v Un <
E[(XN )] < I (: +E(2)+ Y E(r ) (5.3)
r=3

I
—
—
ot
[\
SN—
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where Z(r) is defined in ([@I8]). We show that the only non-negligible term in (5.3)) is Z(2):
more precisely, we will prove that there is C' < oo such that, for any M € N,

V3 C
limsup — Z(2) < —, 5.4
N, N1 @) M? (54)
while
I I &
Alfl_r}rloo Vi E(1)=0 and Alfl_r}ng@ Vi Z E(r)=0. (5.5)

This will complete the proof of Proposition
We estimate =(r) exploiting the bound (£23)-(Z24)) with the choice
p=q=2.
We need to control the boundary terms and the bulk terms, see ([L20]). We recall that the
weights W, and V! are defined in [@Z7) and [@ZZ), and we fix

t=\/—1N, 52%21/%. (5.6)

For notational lightness, we write a < b whenever a < C'b for some constant 0 < C' < 0.
We also denote by [l¢], := (§z2 ()" dx)l/p the usual L” norm of a function ¢ : R* — R.

5.2. Boundary terms. We estimate the left boundary term quf H H 22 applying (EEIII)

We recall from (2] that f(-) = ql,lN(-) for 1 <1< M. Let us estlmate H Hz” and H Hﬁa
58

starting from the former. By ([@34]), for | < M and t = \/ﬁ we have

I
w
Since ¢ is compactly supported, say in a ball B(0, R), we have that ¢y is supported in

B(0, RN ++/2) € B(0,2RV/N), see (LH). By wy(x) = ¢ 7l we then obtain

YN
Wy

c || PN
Wy

< ce

N
o

20° LN | PN
Wy

ZOO

ZOO

< 2BV o] o < <1, (57

ZOO

ol <1, hence H—

because |¢yll,» < [¢[s- We next estimate ”_th”ZQ' By a Riemann sum approximation, we

see from (L) that [on],2 < VN [¢]2, hence by ([@34) we obtain

[l <
Wy || 2

We can finally apply the estimate (£40]) for p = 2 and h = 4 to get, since L = %,

c||PN
Wy

S ce® Mt HapNsz <VN. (5.8)
¢

5
< —.
7 M

Af1 11

Wy

max
I#%

(5.9)

4%hLHi

We now estimate the mght boundary term Hq‘g 7 WtH 21 applying (#29) for ¢ = 2 and
h =4, sinceg=1andt= \/N’ we obtain

w

4
< (12)" 9= < N (5.10)

o tHf = JE

max a7
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Overall, we have shown that

N4
(max & Sl ) (macx [welf™],) < 57 (5.11)

In view of @ZZJ), it remains to estimate Z""(r) defined in ([@24).

2
5.3. Bulk terms. We next estimate the bulk terms, see (L25]). For the first term C%z ,
we apply directly the estimate (£52) with ¢ = 2 and h = 4 to get

Q¢ 1J 1 1oty <
it =, jmax W, Qy W leLpe <4€ 451 (5.12)
2
(Also note that Cg’z > W, (0 )QiJ(O 0) 3y t( y = Q,(0,0) 2 1.)
2
We then focus on the second term CY- L )\ - For L = & < N and B = By as in (1)
9
ogy B =21— O'%N Ry = ﬁ >0, in particular O'%N Rr<1. (5.13)

Then by (£55]) with A =0 (so that R%\) = Ry ) we obtain, recalling that ¥y « log N,

2
~—4 o3 R log N
<1+¢ BNQ L < o8
1_UBNRL ”9N

(5.14)

ng —maXHWt|U|L)\B wy e

Since Sy — 0, we can apply ([£29) which ensures that \E[géNH < a?;N < % = O(gew)

for any I # = and IV large, therefore there is C' < oo such that

I Q% U C
<I}l§i{ ’E[gﬁN]‘) C,w Cihgp < E . (5.15)

5.4. Terms r > 3. We are ready to prove the second relation in (&.3]), which shows that

the terms r > 3 give a negligible contributions to E[(X](\l,) M)4], recall (B.3)).
Let us denote by ¢(h) € N the number of partitions I - {1,...,h} with I # %. Then by
(£24]) we have the geometric bound

. r
oy < €)oo 1) 87 LY

and note that the term in brackets is < l for large N, by ([BI5]) and ¥ — o0, therefore
Y b I bulk 1
—Dbu — DU

Applying ([@23]) and (EIT]), we then obtain the second relation in (B.5):

0

I 9N bulk 1

SN E@r) < 2 S EPEr) < — 0.
1 () <3 ") = 359y 7wl
r=3 r=3

Remark 5.1. The same arguments can be applied to show that in the quasi-critical regime,

the contribution of the terms r > [%J for the h-th moment of X](\l,)M is negligible as N — 0.
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5.5. Term r = 1. We now prove the first relation in (&H). A partition I +~ {1,2,3,4}
with full support is either a double pair I = {{a, b}, {c,d}} or the quadruple I = {1, 2, 3,4},
hence E[&éN] < O'éN for large N, by (£9) and ([32)) (see also Proposition L13)). Then, by

@24,
1

bulk
(1) = Z E [fﬁN]‘ LABNUﬁwcLAB TN
I-{1,....,h} (log N) ¥y
with full support

where we applied (5I4]) and 0[231\7 < E = O(log ~)- Applying (E23) and (5I1)), and
recalling that ¥ « log N, we obtain the first relation in (&.3):

[1]

V3 V3 i
]\i (1) < N N Ebulk(l) g N
N M M log N N-wx

5.6. Term r = 2. We finally prove (&), which completes the proof of Proposition
We recall that =(2), defined by ([@I8]), is a sum over two partitions Iy, I - {1,...,h} with
Iy # %, Iy # % and I; # I5. We then split Z(2) = Z,;15(2) + Egthers(2) Where:

® Zpairs(2) is the contribution to (AI8)) when both I, I, are pairs;

° =

others(2) 1S the complementary contribution when I; and/or I, is not a pair.

We first focus on Z,04(2) and on the corresponding quantlty Jg;ﬂlgrs( 2), see ([@24)). If
either I or I5 is not a pair, by Proposition [Z.I3] we can bound |E[¢ BN] (€5 L2 = a?; , hence

2
—bulk 5 ~QUT /UL \2 1 <log N > 1
= 2 $ g C ’ C ’ $ S )
others( ) By L ( L7)\75) N)5/2 19?\[ \/m

(lo
where we applied (5.12]), (514) and 05 RL O(log ). Then, by (£23) and (G.II),

I O% bulk 1
— = < —= < )
N4 others( ) M others (2) M \/lmg—N Neoo 0

which shows that the contribution of E,,(2) to (B4 is negligible.
It only remains to focus on = ,;,4(2): since E[&é] = J?g when [ is a pair, we can write

— AL I AL _lgl.I,
:‘pairs(2) = Z < i |U|L1,)\7 1 ’ |U|L}\75 7 >

I #L,H{1,...,h}
pairs with full support

. . . . AL o
Besides inserting LW, as above, we also insert V2 L_ on the left of Q;"'2 and |U[;*
& w, "™t g s b L LB

s

%1 VI on the right of QQ’IQ and |0|£27>\7B (recall ([Z42])): we thus obtain

S

while we insert

= A fI,1y V %
Hpairs(Q) < Z Hq ‘ L)\ﬁ Wt ng.
I #I,-{1,...,h}
pairs with full support (516)
A1z 1 Iy 12 1 I —|9|
Q I\ a0 Wi Vs ‘U‘L%ﬂ Iy pa_, pa Wi Vs q”
Wi Vs 167 -2 Wy Vst 167 =L )4

It remains to estimate these norms. Let us recall that h = 4, p = ¢ =2 and t = ﬁ,

s = %, where L = % We start with the boundary terms:
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e applying the estimate ([@LZ3]), in view of (.7)-(58]), we improve the estimate (£.9)
2 2 5
N J L 2
T A DT T A R 2 P (5.17)
,J pairs S ||w o |lw
e e Ll wE
e applying the estimate ([@50), since g = 1, we improve the estimate (|5:|III)
max | W,V Vg JH < (12‘5) ||g||g (5.18)
1,J pairs s L e st
I#J

Overall, the product of the two boundary terms is <

ek which improves on the previous
estimates by an essential factor ﬁ, thanks to the use of the restricted weight V
We next estimate the bulk terms:

e applying (53] with p = ¢ = 2 and h = 4, we obtain an analogue of (512))

W Qhy 1 <A< 1

1] pais H QL w, V! e <4€T451; (5.19)
1#J
e applying ([L50) for both a = +1 and a = —1, we obtain an analogue of (5.14])
- 2
Jvayn 1011 1 =4 0y Br log N

u — <1+4+% < . 5.20

e N Welllkos ooz e < 1+€7— NN 20

Plugging the previous estimates into (5.I6), since 05 RL = O(ﬁ), we finally obtain
1 NP (logN\>NZ  N*
- 0og
‘:‘pairs(2) g 3 ( )
2

(log N)* M VM M
which completes the proof of (54), hence of Proposition

Appendix A. Some technical proofs

We give the proof of Theorem We recall that the averaged partition function
Z7 5(f,g) is defined in (@I)-E2). In analogy with (34) and [B6), by @I)-@2) we can
write

27 5(f,9) —E[Z2] 5(f, 9)] Z Z

k=1 0<nqi<..<np<L

(L{l (951)55(”17901)X

2
Ty,..,LLEL

(A.1)
{an -n; 1’ —.%' )SB( E j)}QL nk(xk)
where we recall the random walk kernels (B3] and ([B3]). Recalling ([£3]), we obtain
0
MG 5(f,9) = EK > Moo @ (@) €png,3y)
k=1 0<ny<...<ni<L
xl,...,mkEZQ (A2)

{an-—n (2 —2j1) Ep(n j’xj)}Q%—nk(xk)jL]-
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When we expand the h-th power, we obtain a sum over h families of space-time points
A; = {(nh,h),. (nk ;o)) for i = 1,..., h. These points must match at least in pairs,
i.e. any point ('I’Lg, :Ug) in any family A; must coincide with at least another point (n; ,:Ufn)
in a different family A; for j # i, othervvlse the expectation vanishes (since {g(n,z) are
independent and centered). In order to handle this constraint, following [CSZ23| Theorem
6.1], we rewrite (A.2)) by first summing over the set of all space-time points

e Y-

and then specifying which families each point (n,z) € A belongs to.

Let us fix the time coordinates nqy < ... < n, of the points in A. For each such time
n € {ny,...,n,}, we have (n,z) € A for one or more z € 72 (there are at most h/2 such z,
by the matching constraint described above). We then make the following observations:

o o )
nl,xll),...,(nfgi,xfgi)} cNxZ

\|C;~

o if (n,z) = (n} n;, J) belongs to the family A;, then we have in (A.2]) the product of a
random walk kernel “entering” (n,z) and another one “exiting” (n, z):

i (w—aiq)-qi _ (xjq —x);

77/—77/]',1 nj+1—n

q

e if (n,z) does not belong to the family A;, then we have in (IHI) a random walk
kernel “jumping over time n”, say q i i (z; —x;_1) with n] 1 <n< n © we can
n;—m;_q

split this kernel at time n by Chapman-Kolmogorov, writing

qnéinéil(x - 3: Z i, (z—xj_1) - qnzin(az; —2). (A.3)

27>
Then, to each time n € {n,... } we can associate a vector y = (v, ..,y ) e (2%)"
with h space coordinates, Where y' = x if the family A" contains (n,x) and y' = z from

(A.3) otherwise. The constraint that a point (n,z) € A belongs to two families A' and A”

means that the corresponding coordinates of the vector y must coincide: y' =vy'. In order
to specify which families A" share the same points, we assign a partition I + {1,...,h} to
each time n € {nq,...,n,} and we require that y ~ I, see ({3]).

We are now ready to provide a convenient rewriting of (A.2)) by first summing over the
number r > 1 and the time coordinates n; < ... < n,, then on the corresponding space
coordinates yi,...,y, and partitions Iy,...,I. - {1,...,h} with y; ~ I;. Recalling the

definitions of Q% and q/ from [@7), we can rewrite (A2) as follows:

0
I
MG s(f9) = )] > > anl (y1) E[€4] x
r=1 0<ny<--<n,.<L I;,..I.}{1,..,h}

2\h wi
V1Y €(Z ith full support
1Y €(27) and I;#% Vi (A.4)

IS

Ii11; I; Iy

A LTl iy BIE T a3,
=2

Finally, formula (I2) follows from (A.4]) grouping together stretches of consecutive
repeated partitions, i.e. when I, = J for consecutive indexes 7. The kernel U;{I_nﬁ(z,x)

from (A8) does exactly this job, which leads to ([EI2]). O
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Remark A.1. Formula ([AI2) still contains the product of E[fél] because these factors
from (A4 are only partially absorbed in U,{T_nﬁ(z,x): indeed, in ([@J) we have k + 1
points ng < ny < ... <ny, but the factor E[g‘é] therein is only raised to the power k.

Appendix B. Random walk bounds
In this section we prove the random walk bounds from Lemmas [T6] .17 and EI8 We

also prove a heat kernel bound, see Lemma [B.I] below.

B.1. Proof of Lemma [4.16l We prove each of the four bounds in (£32)-{33) for a
different constant c (it then suffices to take the maximal value).

The first bound in ([£32]) with ¢ = ¢ follows by ([@31]), thanks to the independence of the
increments of the random walk. This directly implies the first bound in ([@33)): it suffices to

. 2t|z" 1 2
estimate 3, _, el g () < 3 s © Ul g () (by |z| < |2t + |= |2, Cauchy-Scwharz and
symmetry) and then el < e® +e7%, hence Dires? et gn(z) <267

To get the second bound in (IIBZ;]) we fix £ < n and write ¢,,(z) = ZyeZQ Q@(Y) G_o(z—1y)
by Chapman-Kolmogorov. We next decompose the sum in the two parts (y,z) > %|x\2 and

{y,x) < %|x\2: renaming y as « — y in the second part, we obtain

Gn() < Yo AW duelw —y) + guo(y) ez — )} (B.1)
yer’: (y,ay> L)
We can bound g (z —y) < sup__,2 gi(2) < § by the local limit theorem (any random walk

satysfying Assumption @14l is in L* with zero mean). We next observe that (y,z) > %|az|2
implies |z| < 2|y| by Cauchy-Schwarz, therefore the first bound in (£33)) yields

Vo e ZQ . t\x\ < c Z 2t|y| ané(y) < 2c eSCt2n
* ' ¢ 1 ~ min{n — 4,0}

yEZ
If we choose £ = [5], we obtain the second bound in (£33) renaming c.
It remains to prove the second bound in @3Z). We first note that g, (z)? /g, (0) < c g, (z)

for some ¢ € [1,0), because g, (z)* < |@nll~ @n(x) and [|g,[ ,~ < cga,(0) by the local limit
theorem. Since ¢, (x) = ¢,(—x), we get

2 a _2? 2 =4 —tz?
Z et:v Qn(x) 1= Z (et +2€ T 1) qn(x) <cC Z (J++t - 1) Qn(x)
N o QQn(O)

q2n (0
z€Z n( ) z€Z zeZ?
.2 o 0 02 2,2
<c(e 2" - Zki Z%(c En)" =e 2" -1,
k=1 k=1
2
which proves the second bound in (£32)) if we rename c” as c. O

B.2. Proof of Lemma EI7 For any y € Z* and p € [1, 0] we can write, recalling (33,

f
Qn(y) _ qﬁ(y) et\yl < Z et|z| 1£(2)| {et\y—z\ qn(y — Z)} < Hwi
2e7?

wy(y)

where ¢ € [1, 0] is such that % + % = 1. Since |20 < 2[5 b dn [, it suffices to apply
the bounds in (£33]) to obtain the second bound in (IZBZI)
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We next prove the first bound in [A34]), assuming p € [1,0): we have, by Jensen,

fp P P
q _
1;” = 2 Y F@ =2 < Y| Y ) e g @ - 2)
tile m€Z2 z€Z2 :BEZ2 z€Z2
p—1
<)) (Z el (2| et qn(w—2)>{ > el qn(w—z)} ,
2 2 2
z€Z z€7Z z€L

2
and the sum in the last brackets is at most c e’ " by the first bound in ([#33)). Bringing
the sum over z inside the parenthesis and applying again (£33]), the proof is completed. [

B.3. Proof of Lemma[4.18. We state two key bounds, from which our goal (£386]) follows.
Let B(xz,r) := {y € R*: |y—x| < r} denote the Euclidean ball and let B(z,r) := B(x,r)nZ*
be its restriction to Z>. For g: Y/ R, define the maximal function MY : 7* - [0, 0] by

& )= Ssu ;
M (z) : o<r£oo{|3(m,r)|y€[§:’r) \g(y)l}. (B.2)

Setting {M? >t} = {y € YA M (y) > t} for short, we are going to prove the following
discrete version of Hardy-Littlewood mazximal inequality:

YAS>0:  [{MI> 2} <25%. (B.3)
We are also going to prove the following upper bound on a{, defined in (£38):
2
VLeN, Vze Z*: |§£(m) wy(z)| < C |Mfwt (z)] with C:=200rc?e*" X, (B.A4)

Since [M?|| o < | g/, this implies Hq{ wy| o < C| fwyl~, which is our goal ([36]) for
p = . Also note that combining (B.3]) and (B.4) we obtain

YA>0: ]{q{wt>)\}\<25CM,

hence our goal ([L30]) for p € (1,00) follows by Marcinkiewicz’s Interpolation Theorem, see
e.g. [Graldl Theorem 1.3.2 and Exercise 1.3.3(a)]. It remains to prove (B.3]) and (B.4]).

Proof of (B.3). We follow closely the classical proof of the Hardy-Littlewood maximal

inequality, see [Gral4l Theorem 2.1.6], which is stated on R? instead of Z%. By definition
of MY, see (B2), for every point x € {MY > A} there is r, > 0 such that

>, gl > AB(z,r,)]. (B.5)
yeB(z,r,,)

It suffices to fix any finite set K < {MY > A} and prove that (B:3) holds with the LHS
replaced by |K|. From the family of balls F := {B(x,r,) : = € K} we extract a disjoint
sub-family F := {B(z,r,) : z € K'} with K’ € K by the greedy algorithm, see [Gral4)
Lemma 2.1.5]: we first pick the ball of largest radius, then we select the ball of largest radius
among the remaining ones which do not intersect the balls that have already been picked,
and so on. By construction, if a ball B(z,r,) is not included in F', then it must overlap
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with some ball B(z,r,) of larger radius r, > r,, which implies that B(z,r,) € B(z,3r,). In
other terms, tripling the radii of the balls in F' we cover all the balls in F, hence

Kl< Y Besr)l<e Y Ber)l<s Y Y lowl< Sl

zeK' zeK’ zEK yeB(z,r )

where we estimated |B(z,3r)| < ¢|B(z,7)| (see below), we applied (BE) and we bounded
2ieek’ 2yeB(r) 19W)| < [g],1, because the balls B(z,r.) for 2 € K' are disjoint. To com-
plete the proof of (B3], we claim that we can take ¢ = 25, i.e. |B(z,3r)| < 25|B(z,7)|.
Note that for 0 < r < 1 the Euclidean ball B(z,r) contains just the point z, while
B(x,3r) contains at most 25 integer points, i.e. x + (a,b) with —2 < a,b < 42 (all these
points are inside B(z,3r) when r is close to 1). Next we note that each integer point
Yy = (yl,y2) € B(x,r) is the center of a square with vertices 3" + %: the union of these

squares covers the Euclidean ball B(x,r — @) and is included in B(x,r + @) Denoting
by m(-) the Euclidean area (i.e. the 2-dimensional Lebesgue measure), we obtain

2 2
\B(z,3r)| < m(B(z,3r + 4)) =3+ @) m(B(z,r — ?)) <3+ @) |B(z,7)],
hence also for r > 1 we have (3 + #)2 < (3+4/2)? < 25 as claimed.
Proof of (BA). We claim that for all 1 <n < L and z € Z°

C W’ 2
g, (x) e < g, (z) = et where €' := 6ce’t L (B.6)
o2

Indeed, we prove in Lemma [BI] below that ¢, (z) < % e 57, see (B), therefore

t|z| bc t|a:| ol 6c _ Izl ty— & bc =/ 4ct’n
qn( ) < — - < Ee 16cn . Slil(:))e 16cn | = ze 16cn @
Y=

)

which shows that (B.6) holds for n < L.
Let us now deduce (B4) from (B.G]). Since wt(i) < e by BF) we can estimate

|4l () w, Z £ (2) wy(2)] gz — 2) 77 < Z £ (2) w,(2)| G (2 — 2),

zeZ zeZ

hence, writing g, (y) = SSO L(s<g, ()} ds, we obtain

o0
d@u@| <] & ¥ fEwe)
0 2 .
2€L°: G, (x—2)=s
Since z > g, (z) is radially decreasing, the set {G,(-) = s} = {z € 77 Gz —2) = s}isa
ball B(x,r) of suitable radius r = r(n, s). Recalling (B.3]), we then obtain

o0
f < fw, . () > _ fw, .
o af(@)w ()] < M) - ma | dsl{a,0) 2 5l = MO @) -,

1<n

where the equality holds because {” ds |{g,(-) = s}| = ZyeZQ §o dsLiseq () = ZyeZQ an(y).

It remains to evaluate ||, ,1: by monotonicity we can bound

I

2
Yo m<1+fe e dp = 14 v16rcn,
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hence writing = = (a, b), so that |z|*> = a + b, we obtain

c _ a2 \? 2(1 + 16
lgul = D) Gul) = g(Ze ) <C,(+Tmn) < (2+32m)cC <C,
zeZ? ac’Z

where the two last inequalities hod since n > 1 and ¢ > 1, hence 1+ 16w cn < (1 + 167)cn,
and 2 + 327 < 337 < 27, recalling the definition (B4) of C. The proof is completed. [

Lemma B.1 (Heat kernel bound). Let Assumption[{.1])] hold and let c be the constant
from Lemma[f-10. Then for every n € N and x € Z* we have

6c _ L=
i) < Ee . (B.7)

Proof. We assume that n > 2, since the case n = 1 is easier. Let us apply the formula
(B.I) with ¢ = |§], so that % <€< Z: by @33) (with t = 0) we have g(z —y) < £ < &
for both k =/ and k =n — E therefore for any o > 0

(@) < Zell S 29I ) + ()] (B.3)

n 2 1 2
YeL™: (y,x)=5 |z

where we bounded 1 < e~ ¢ ¥ T’ hecause {y,x) = %|x|2 (with ﬁ :=0 for x = 0). For
1

any w = (w',w?) € R?, by [@32) and Cauchy-Schwarz we can bound

1 1 2 2 2
S e gy < | Y quly) - D e quly) < e

y622 yeZ2 yeZ2

and similarly for g,,_,(-), therefore for max{¢,n — ¢} < %§ we obtain by (B.g)

@ efg\:v\+2c 92 n

qn(7) < -

Optimising over o leads us to choose g = %, which yields (B.). O

Appendix C. Estimates on boundary and bulk terms

In this section we prove the estimates on the boundary terms (Propositions 419 and [£20]
for the left boundary, Proposition 21] for the right boundary) and on the bulk terms
(Proposition 23] and Proposition [Z.24]).

C.1. Proof of Propositions [4.19l By the triangle inequality we can bound

AlfILT L Ng
q‘LfI qw C1
Wt ( ° )

Writing I = {I',..., I} we can write
[f1.1 P QM (xp  m : : m ] el
4n _ \fl pIIJI pt| [yl | _ an C.2
o ZQh E{Zq ’ H wy || ©2
x€(Z7) J= j=1
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Since | - |§;]jk <|- ||p (+=1) |- |7, from pIV 1’| = h we get (raising to 1/p)

o
I h— h—1
a" ’quI m'ﬁm ’% % (C.3)
/P wt ZOO wt /P wt ZOO ’U)t /P ’
where the last inequality holds since m < h — 1 for I # =. By ([@34), for any r € [1, 0],
|f1 2ct’n £ 2
‘qL <Ce : i , ‘qL <C62Ct" i , (C4)
Wy zOO 'I’L; Wy Vi Wy Vi Wy /P
hence we obtain for n < L, recalling the definition of ¢ in (Z.41),
N h h—1
‘ kel I T P (C.5)
W ~ l .
t ZP nr wt ZT wt ZP
170,
Plugging this into (C.1J), since Zn 1y 1< SO —wdr = L we obtain
Alf‘vl h—1
max qL— rogh iy S]L , (C.6)
I+ Wt r—1 Wy o Wy Vi

which proves ([£A4I)) for r > p (so that min{ 1, 25} = ;£7). More generally, if r > 1?;]),
then =7 < 355 hence (C.G) still proves ([EAI).

It remains to prove @A) for r € [1, 22-] < [1,p). Let us obtain an estimate alternative

' 142p
to (CH). Since |- |7 <[ [%" |- [ for 7 < p, by [@34) we obtain
g R coZtn |
L L e
z* nrp I Weller

which we can use to estimate one factor of |4 ol ~ > appearing in (C3) (recall that h > 2):
applying again the first bound in (KEI) for n < < I we obtain from c3)

g Cgh f h—2
- with :=2—l=l+i. C.8
Wy | || wy || p v rop r pr ( )
The RHS of m is smaller than the RHS of (CH) if and only if
L1\
A p—r
- J4
—H T EA — n>n::<f£ > . (C.9)
nr Wy P Hwt ”Kp
Note that for r € [1, Tgp] we have v > 1, indeed v — 1 > 2(1%])27’) - % = p3—;1. Then
. n% <{” g%” dz = % Al < % 727, hence by ([C8) we can bound
,I 2 h—2 r(p—1) h— r(p—1)
okl I I L e e Pl
pil Wt g"‘ wt KP pil wt g"‘ Wt KP ’

where the equality follows by the definitions of 72 in (C.9) and v in (C.§). For the contribu-
tion of n < 7, the previous bound (CH) with r = p yields, as in (C.6),

i f

h r(p—1) hir(Pfl)
) P IE il
Pl Wy wy

If\f

1
S| <Rt Al

Wy

Vit 0 Vit
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having used the definition of 7 in ([C9). Overall, see (C1)), for € [1, 22-] we have

7 142p
~fIT L h—1
qL 4p h f « f . . p—r
max < £ -— — with a = e (0,1]. C.10
T Wt ”» p—1 wy || | wy | r(p—1) ( ] ( )
A

At the same time, we can apply again the previous bound (C.6) with r = p to estimate

a/ ot | ]
max | L& <EE'L | — (C.11)
I#x% Wt Vi Wy || pP
B
Combining these bounds we get max;_, H TiA ||€ < A°B'™* hence
) A -
Vre[l, 5] : ¢ L
rel ’1+2p] Hax W, 2” ‘ )
which coincides with our goal @A), since min{;*, 25} = ;25 for r <p. O

C.2. Proof of Proposition [4.20. We follow the proof of Proposition {19l By the trian-
gle inequality, as in (CJ]), it is enough to show that

f

Wy

1
» S

v/ (C.12)

Wy

e* &
We assume for ease of notation that J = {{1,2},{3},...,{h}}. Let us fix a partition
I={I",...,I™) such that I D J, say 1 € I" and 2 € I*. In analogy with ([(2), we have

L L, ﬁ 1 PP
—V SIS —_ . (C.13)
e " sl we i)
where
a(1,2 1y iy el 2y tly?[\ Pl Ty
21(1, ). Z (q‘nfl(y )et\y I)P (q‘nfl(y )et\y I)P o Psly =yl (C.14)
1 2 2
Yy €L
By a uniform bound, we can estimate
I 2 I
iga) < ‘Lﬂ i Z (qnf|(y2))p le—ps\yl—yQ\
W [l S y2ez? wt(y )
(C.15)

- [T 1T

1|
( psyl) )
2

Since 2|z| > |2'| +[2%] for z = (¢',2°) € Z® and 1 —e " > 22 for 0 < 2 < 3, we can bound

2 2
_ _ _glzl 2 36
E epsz<§:esz<<§ esg> <<1_7_%> <. (C.16)

272 272 rel
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Plugging these estimates into (CI3) and bounding |- ||Zpk <| Hp(k Y |77, since PV || =
h and m < h — 1, we obtain (raising to 1/p)

Qi o360 @ | gt sen g gy
’ s7P || wy | Wy ||gr s L wy g | wy
Applying the estimates in (C4]), we obtain (CI2). O

C.3. Proof of Proposition 4.2l The second line of (£46]) follows by the first line
because | |24 < ||+ |- 2. Let us prove the first line of @AT). Writing J = {J',...,J™}
and arguing as in (C2), we can write

LASVIVENDY a'f”<x>qwt<x>q<ﬂ{Z(a'f'm q"”} HH )

XE(ZQ)h j=1 y622

where q‘g‘( ) = maxj<,<y, qll ‘( ), see (L30]). Since J # %, we have |Jj| > 2 for at least one

j, say for j = 1, hence for k = \J | we bound H ’qu H Hg(k 2) H

k = |J?] = 1 we simply bound |- !qu <|- ”2 (n | - [a- Since pIVa 77| = h, we obtain

H 205 while for all other

m— _ (h—m— _ h—
P Yl < 2 a2 < g w2

because m < h — 1 for J # *. In order to obtam the first line of (Iml) it suffices to apply
the estimate (A30]), where we can bound 574 q 725 % C< q—l 251 C < < qu 25C = E?.
We next prove ([@47). We may assume that I ={{1,2},{3},...,{h}}. Let us fix a parti-

tion J = {J',...,J™} with J D I, say 1 € J" and 2 € J. In analogy with (CI3), we can

write

max Hq'gUWtV H (1 2) H“ l9] thIW :
JpI

where, as in (C.14)-(C.13]), we have
=(1,2 _ I J?
507 = Y @) )™ @A) wy®) " w - )

yl,y2622
R A T
Bounding |79/, H{'jjj < 78 w1971 |8y % for j > 2, we then obtain
maxe [af Wil < w7 g w5 o
JpI
< |af w7 [ w5 s

because ;7" |J7| = hand m < h—1for J # * We conclude applying (Z30) and (@4R). O
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C.4. Proof of Proposition [4.23l Let us set for short p := 13 (so that 1—1) + % =1). We

are going to use a key functional inequality from [CSZ23, Lemma 6.8], in the improved
version from [LZ21+] eq. (3.21) in the proof of Proposition 3.3]:

Z f(z)g(x)

ey (U Pe=l)

(The value of C| is extracted from [LZ21+] proof of Proposition 3.3] where C; < 93+l (%)h_lpq
with ¢ < 14 7 from [LZ214] proof of Lemma A.1], hence C’l < 222 (1+ 7T)h L)
We show below the following bound on QL (z,x) = Zn 1 Hz Lqn(xt = 2"):

— <O pq|flplgle  where Oy :=2*"(1+m)". (C.17)
ze(Z*)}, x

x|

Cye T6cL

S -
Recalling (28], since Q1 (z,x) = QF*(z,x) Tgyerx~sy, see [ET)-EIF), we obtain

where  Cj := h!(200c%)" . (C.18)

2
CQ eScht L

]l{zwf,wa}
(1+[x—z)"t

A Co Ly, XNJ} tei | ==
W QLJL 7,%) < \z m|
O e I

because max,cp{ta — %} — 8ct*L. Applying (CI7), get 5D since 800(1 + 7) < 4000.
We next prove ([LE53). Let I,J be pairs, say I = {{a,b},{c}: ¢ # a,c # b} and J =
{{a,b},{c}: ¢ # a,c # b}. For z ~ I and x ~ J we have z* = 2’ hence

1 < es\xa—xb| < es{\xa—za\+|za—zb|+\zb—xb|} _ es\xa—za| es|zb—m

V!(x) ’

b

and similarly ) < es|m =l S|Z | . Arguing as above, we obtain ([&53)):

s (Z

i i Q2
AL

h ,
(25 Q17 1) g) < C2 Ll szt
Wi Vs (1+x— Z|2)h_1 i=1
8ch(t+2s)°L
C2e chit+2s) ]1{z~l,x~J}
|2)h71

1+ |x—z

_lef?
Let us prove (CI8). By the bound ¢, (z) < % e¢™ 57 proved in Lemma [B.1] we obtain

n

h h 2

. . 6 _Ix—2z]

%) = [ Lanle' — =) < OL o5
i=1

n
hence for x = z we get QL ,X) = Zn L Q7 (z,x) < (6¢)" > |2 = (6c)" %2 < 2(6¢)"
[x—a’

which is compatible with ([CI8]). We next assume that x # z: note that for A= 5Z- >0

L _A —4a 00 _1

e n e 2L n } e 2t

& where p(t) := .

IS S (3 0=

Since ¢(-) is unimodal, we can bound & > | o(%) < {7 ¢(t)dt + %[¢[. and note that

() = 2" s e ds = 2" (h — 2)! while |¢],, = (2h)h < o hV2rh <
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f%th!, therefore for A > 1 we get % > ap(%) < 2"nl. Overall, recalling ([@I3]), we have
or X # Z

2
[x—z|

2

L op o lx=zlt ovp o lx—zlt

A~ (48c™)" e” Mo h!(200c™)" e ot
Q¥ (z,x) < Qr*(z,x) < 2" h! < ,

o) Z B ] (1+[x—2)""

where we last bounded |x — z|* = 3(1 + |x — z[°) for x # z. We have proved (CI8). O

C.5. Proof of Proposition [4.24l Let us define p := q_il so that % + % = 1. Since

[Allgo g := sup f(z) Az, x) g(x),

f.g: |f],»p<1, <1
g [fl <L lela<t | oo

we can bound Y, f(2) [0]' (z.%) g(x) < (2, f(2)" 10/ (2,%)) "7 (2, 10/ (2, %) g(x)?)
by Cauchy-Schwarz, hence we obtain

[Allp2_,p0 < max{ sup Z A(z,x), sup Z A(z,x)}. (C.19)
ZE(Z2)? xE(ZQ)’IL XE(Z2),} ZE(Z2),}

We will prove [@55]) and ([@56]) exploiting this bound.
We recall that U, () is defined in (EIT)) and we define

0 k
Un,ﬁ = Z Un,ﬁ(x) = Z (Ug)k Z HQQ(”i*"Fﬂ(O)' (C.QO)

ze7? k=1 0=:mg<n;<---<ng:=n i=1

When we sum U, 5 for n = 1,..., L, if we enlarge the sum range in (C.20)) by letting each

increment m; := n; —n,;_; vary freely in {1,..., M}, recalling (£54]) we obtain
L R 0 - L N k 0 AN 0_% R(LA)
—An —A\m
Z e "U, 5 < 2(05) ( Z e qu(O)) — 2(05 Ry = T (C.21)
n=1 k=1 m=1 k=1 Op vy,

We next estimate the exponential spatial moments of U,, 5(z). Pluggin the second bound

from ([@3J) into @II), writing z = (z',2?) and 2 = Zle(xf — zi_1), we obtain

a 2
Va=1,2: Z S U, p(r) < T Unp-
ze7?
From this, by |z| < |z'| + |#?|, Cauchy-Schwarz and 7l < e 167" we deduce that
Z t|z| 2ct’n
e U, p(x) < 2e Unp- (C.22)

2
z€Z

We now fix a partition I = {I*,...,I"™} # = and a pair J = {{a,b},{c} : ¢ # a,b}. Our

goal is to prove ([@E6]), which also yields (£55]) for s = 0. By ([£28]) and (£43]) we have the
following rough bound, for any a € {—1,+1}:

J a
w < RER" | T e+l =21 (C.23)
Wt (X) VS (X)a c#a,b
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We may order II' = |I?] = ... = |I"™|, so that |I'| > 2. Given z,x € (Z*)?, denoting by

IJ 1 .
z' the common value of 2 for a € I, by (7)) we can write

I = r eyl It e ™ r r
-z ) HQn(x -z ) < Qn(x -z ) HQn(x -z )a
j=2 j=2

1,1 It
Qn (ZaX) = Qn(x

because ¢,(-) < 1. Since \E[gé“ < a?; by assumption, from (L8] we can bound
I T r_r
|U‘n,B(Z7X) <(jrl,ﬁ('%' -z ) HQn(x -z )7
j=2

therefore by (C22), (C.23) and the first bound in ([@33]) we obtain

I Wy (Z) Vs (Z)a h _4hc (t+s)2n
= (10t 35557 ) <2 T (C21)
XeE I

which yields, recalling ([@I3]),
N a 5 L

sup ) IUIiVMB(z,X)%%?KEl—EXEZ— <14 2tethe LN g (C.25)
2€(Z°)] xe(z?)" t n=1

and the same holds exchanging x and z by symmetry (note that the bound (C23]) is

symmetric in x < z). Recalling (CI9) and (C2I]), we obtain (£56) (hence (A5H)). O
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