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RANDOM EVOLUTION EQUATIONS:

WELL-POSEDNESS, ASYMPTOTICS, AND APPLICATIONS TO GRAPHS

STEFANO BONACCORSI, FRANCESCA COTTINI, AND DELIO MUGNOLO

Abstract. We study diffusion-type equations supported on structures that are randomly varying in time.
After settling the issue of well-posedness, we focus on the asymptotic behavior of solutions: our main
result gives sufficient conditions for pathwise convergence in norm of the (random) propagator towards a
(deterministic) steady state. We apply our findings in two environments with randomly evolving features:
ensembles of difference operators on combinatorial graphs, or else of differential operators on metric graphs.

1. Introduction

Randomly switching dynamical systems stand in between deterministic evolution equations (where the
dynamics of the system is prescribed and completely known a priori) and stochastic differential equations,
where the dynamics is perturbed by the introduction of noise.

Such systems are described by a continuous component, which follows a (deterministic) evolution driven
by an operator Aj which is selected among a class of operators C = {A1, . . . , An} by a discrete jump
process.

These problems are related to a large – but somehow disjoint – literature, which treats piecewise deter-
ministic Markov processes [4, 11, 26], switched dynamical systems [5], products of random matrices [20],
random walk in random environment [36, 37] with applications in biology [8], physics [9] or finance [35],
for instance.

In the present paper, we study the asymptotic behavior of a class of random evolution problems that
may be relevant in some applications. Our main result (Theorem 2.11 below) states that the system
consisting of a random switching between parabolic evolution equations driven by contractive, self-adjoint,
immediately compact semigroups converges towards an orthogonal projector provided the process spends
enough time at each state: we refer to Section 2 for the theorem’s formulation and Section 3 for its proof.
As a motivation to our study, we provide in this section an example concerning the dynamics of the discrete
heat equation on a system of random varying graphs. This example will be further analyzed in Section
4, which is devoted to the study of combinatorial graphs: there we discuss some further examples which
relate our results to the existing literature. Finally, Section 5 is devoted to an application of Theorem 2.11
to a randomly switching evolution system on metric graphs. This section takes advantage of a novel formal
definition of metric graphs ([27]) which can be exploited to verify the assumptions of our construction.

A motivating example. Let G1, . . . ,GN be a family of simple (i.e., with no loops or multiple edges) but
not necessarily connected graphs on a fixed set of vertices V with cardinality |V|. We consider the function
space defined as the complex, finite-dimensional Hilbert space CV ≡ {u : V → C}.
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On every graph Gk we introduce the graph Laplacian Lk (for a formal definition, see Section 4), which
(under our convention on the sign) is negative semi-definite and whose eigenvalue λ1 = 0 has multiplicity
equal to the number of connected components in Gk. The corresponding eigenspace is spanned by the
collection of indicator functions on each connected component. In particular, if Gk is connected, then
kerLk = 〈1〉 is the space of constant functions on the vertices.

It is known that the solution of the Cauchy problem
{

d
dt
u(t, v) = Lku(t, v), v ∈ V, t ≥ 0,

u(0, v) = f(v), v ∈ V,

can be expressed in the form

u(t, x) = etLkf(x)

and in the limit for t → ∞, it converges to the projector Pkf onto the null space kerLk, where the
projection equals the average of f on each connected component of Gk.

Let us introduce a (random) mechanism of switching the graphs over time. In other words, fixed a
probability space (Ω,F,P), we assume that the evolution is lead by an operator LXk

(randomly selected
from the set {L1, . . . ,LN} according to some Markov chain {Xk, k ≥ 0}) during the (random) time interval
[Tk, Tk+1)

(1.1)

{

du
dt
(t, v) = LXk

u(t, v), v ∈ V, t ∈ [Tk, Tk+1), k ∈ N,

u(0, v) = f(v), v ∈ V.

We can associate with (1.1) the random propagator

(1.2) S(t) = e(t−Tn)LXn

n−1
∏

k=0

e(Tk+1−Tk)LXk , t ∈ [Tn, Tn+1), n ∈ N,

which maps each initial data f ∈ CV into the solution u(t) of (1.1) at time t. This settles the issue of
well-posedness of (1.1). The main question we are going to address in this paper is however the following:

(P) Does the random propagator (S(t))t≥0 converge? towards which limit?

The asymptotic behavior of a random propagator (S(t))t≥0 associated with problem (1.1) has not been
studied in a general setting. Some results are known for finite-dimensional time-discrete dynamical systems,
where the random propagator (S(Tn))n∈N defined likewise is a product of random matrices (PRM for short):
this theory dates back to the 1960s, see e.g. Furstenberg [19].

Our main result Theorem 2.11 requires an analysis of the null spaces of the operators Lk, k = 1, . . . , N .

Notice that even when dimkerLk is constant for all k, there is no reason why K =
⋂N

j=1 kerLj should
have the same dimension; describing the orthogonal projector onto K is therefore, in general, no easy
task. Coming back to our motivating example of graphs, we observe in Section 4 that K can be explicitly
described in terms of the null space of a new operator A that is related to the Laplacians on the graphs
G1, . . . ,Gn but acts on a different class of functions. The key point here is that in doing so we can relate the
long time behaviors of a Cauchy problem with random coefficients with that of an associated (deterministic)
Cauchy problem supported on a different “union” structure – a classical construction in graph theory,
which we here naturally extend to weighted graphs. We are not going to elaborate on this functorial
viewpoint, but content ourselves with discussing in Section 5 a different, more sophisticated setting where
the same principle can be seen in action.

The case of combinatorial graphs is tightly related to the topic of random walk in random environments,
see e.g. the classical surveys by Zeitouni [36, 37], which roughly speaking describe the behavior of a random
walker who at each step finds herself moving in a new realization of a d-dimensional bond-percolation graph.

At the same time, if the evolution of L(t) is, in fact, deterministic, then (1.1) is essentially a non-
autonomous evolution equation; well-posedness theory of such problems is a classical topic of operator
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theory, while some criteria for exponential stability have been recently obtained in [3] in the context of
diffusion on metric graphs: in comparison with ours, the conditions therein are much more restrictive in
that each realization of the considered graph is assumed to be connected.

The convergence of piecewise deterministic Markov processes (or random switching system) is discussed,
in particular concerning the ergodicity of the Markov process [4, 11]. The results in [6] are concerned with
the non-ergodicity of a switching system in the fast jump rate regime and open the path to similar results
in [24].

Acknowledgment. The authors would like to thank Jochen Glück (Passau) and Marvin Plümer
(Hagen) for their help in the proof of Lemma 3.2 and Walter Moretti (Trento) for several useful discussions
concerning Lemma 3.3.

2. Setting of the problem and main results

In this section we introduce a general setting for abstract random evolution problems: we will successively
show that our motivating problem (P) is but one special instance of a system that can be described in this
way.

To begin with, we construct the random mechanism of switching by means of a semi-Markov process.
These processes have been introduced by Levy [25] and Smith [33] in order to overcome the limitation
induced by the exponential distribution of the jump-time intervals and developed by Pyke [30, 31]. These
models are widely used in the literature to model random evolution problems and, more generally, evolution
in random media, see e.g. Korolyuk [22].

Let (Z(t), t ≥ 0) be a semi-Markov process taking values in a set E, which denotes a given set of
indices, defined on a suitable probability space (Ω,F,P). By definition, this means that there exists a
Markov renewal process {(Xn, τn) : n ∈ N}, where {Xn} is a jump Markov process with values in E and
{τn} are time intervals between jumps and, if we introduce the counting process N(t) := max{n : Tn ≤ t},
then Z(t) = XN(t). The joint distribution is given by the transition probability function q(x, y, t)

q(x, y, t) = P(Xn+1 = y, τn+1 < t | Xn = x).

By definition, for fixed t, (x, y) 7→ q(x, y, t) is a sub-Markovian transition function, i.e.,

q(x, y, t) ≥ 0 and
∑

z∈E

q(x, z, t) ≤ 1 for all x, y ∈ E and all t ≥ 0.

The non-negative random variables τn define the time intervals between jumps, while the Markov renewal
times {Tn, n ∈ N} defined by

T0 = 0, Tn =

n
∑

k=1

τk, n ∈ N

are the regeneration times.
For simplicity, in the sequel we assume that the components Xn and τn are conditionally independent;

therefore, the transition probability function can be represented in the form

q(x, y, t) = π(x, y)Gx(t),

where
(

π(x, y)
)

is a Markov transition matrix.
Clearly, Markov chains and Markov processes with discrete state space are examples of semi-Markov

processes (the first is associated with τn ≡ 1, the second with independent, exponentially distributed τn).
Our standing probabilistic assumptions are summarized in the following.

Assumption 2.1. Z = (Z(t))t≥0 is a semi-Markov process based on a Markov renewal process {(Xn, τn) :
n ∈ N} over the state space E × [0,∞) such that



4 STEFANO BONACCORSI, FRANCESCA COTTINI, AND DELIO MUGNOLO

(1) the Markov transition matrix
(

π(x, y)
)

defines an irreducible Markov chain with finite state space
E = {1, . . . , N};

(2) the inter-arrival times τn are either constant, or the distribution functions (Gx(t), t ≥ 0), for every
x ∈ E, has a finite continuous density function gx(t) > 0 for a.e. t > 0; and

(3) the inter-arrival times τn have finite expected value Ex[τn] = µx > 0.

Remark 2.2. Since the embedded Markov process X is irreducible, there exists a unique invariant distri-
bution ρ = (ρ1, . . . , ρN ) for it.
Moreover, this implies that the total time spent in any state by the semi-Markov process Z is infinite almost
surely, and the fraction of time spent in x ∈ E = {1, . . . , N} satisfies

Θx := lim
t→∞

1

t

∫ t

0

1{Z(s)=x} ds =
ρxµx

∑

j∈E ρjµj

.(2.1)

Once our random environment has been described, we can introduce the evolution problem.
We consider an ensemble K = {A1, . . . , AN} of linear operators on a normed space H ; clearly, the cardi-
nality of K is the same as that of the state space E of the Markov chain.
We can now introduce the abstract random Cauchy problem

(2.2)

{

d
dt
u(t) = A(Z(t))u(t),

u(0) = f,

where A(Z(t)) = AXn
for t ∈ [Tn, Tn+1). The solution of (2.2) is a random process, where the stochasticity

enters the picture through the semi-Markov process (Z(t))t≥0. Notice that (1.1) is a special case of (2.2)
on the finite-dimensional space H = Cd.

In the literature, (deterministic) non-autonomous Cauchy problems of the form (2.2) are are a classical
topic with a well-developed theory, see e.g. [34, 2, 14]. In this paper, we shall use the following natural
modification of the notion of solution.

Definition 2.3. Assume that there exists a finite partition 0 = T0 < T1 < . . . < TN =: T of [0, T ] such
that A(Z(t)) = AXn

for all t ∈ [Tn−1, Tn), n = 1, . . . , N . We say that a càglàd function u : [0, T ] → H is
a solution of (2.2) on [0, T ] if

(1) u ∈ C1((Tn−1, Tn);H) for all n = 1, . . . , N ;
(2) u(t) ∈ D(AXn

) for all t ∈ (Tn−1, Tn) and n = 1, . . . , N ;
(3) u′(t) = AXn

u(t) for all t ∈ (Tn−1, Tn) and n = 1, . . . , N .

Sufficient conditions for well-posedness of (2.2) are given by the following.

Assumption 2.4. H is a separable, complex Hilbert space and for every j ∈ {1, . . . , N} the closed, densely
defined operator Aj : D(Aj) ⊂ H → H generates a strongly-continuous, analytic semigroup of contractions
and it has no spectral values on iR, with the possible exception of 0.

Definition 2.5. A solution u for (2.2) is a stochastic process {u(t), t ≥ 0}
Ft := σ{{τn ≤ t} ∩ {(x0, . . . , xn) ∈ B}, n ∈ N, B ∈ En+1}.

and whose trajectories solve the identity u′(t) = A(Z(t))u(t) almost surely in the sense of Definition 2.3.

Existence and uniqueness of the solution in the sense of previous definition is a consequence of the
well-posedness of the Cauchy problem driven by the operator AXn

on the time interval (Tn−1, Tn).

Theorem 2.6. Under the Assumptions 2.1 and 2.4, given f ∈ H, (2.2) has a unique solution u, which
can be expressed as u(t) = S(t)f in terms of the random propagator (S(t))t≥0 ⊂ L(H) defined by

(2.3) S(t) := e(t−Tn)AXn

n−1
∏

k=0

e(Tk+1−Tk)AXk , t ∈ [Tn, Tn+1), n ∈ N.
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In particular, u has continuous sample paths.

After establishing well-posedness of our abstract random Cauchy problem, we are interested in studying
the long-time behavior of its solutions. To this purpose, we are going to impose the following.

Assumption 2.7. Aj has compact resolvent for every j ∈ {1, . . . , N}.

It follows from the Assumptions 2.4 and 2.7 that each Aj has finite-dimensional null space, hence a
fortiori

K :=
N
⋂

j=1

kerAj

is finite-dimensional, too. If k := dimK > 0, then we denote by {e1, . . . , ek} an orthonormal basis of K.
We shall throughout denote by PK the orthogonal projector onto K and Pj the projector onto kerAj . In

general, for a projector P , its orthogonal operator is P⊥ := I −P . For the sake of consistency of notation,
we use the same notation also in the case K = {0}.

Remark 2.8. In particular, it holds that Ajei = 0, for all j = 1, . . . , N and all i = 1, . . . , k. Since the
range of PK is spanned by null vectors of Aj for each j = 1, . . . , N , PK commutes with each Aj, each
semigroup operator etAj , and each spectral projector Pj onto kerAj, j = 1, . . . , N , t ≥ 0.

Remark 2.9. Let A be an operator which satisfies our Assumptions 2.4 and 2.7. Notice that they require
A to be dissipative and, thanks to Assumption 2.7, the spectrum of A is discrete. By [16, Cor. IV.3.12 and
Cor. V.2.15] there exists a spectral decomposition H = H0 ⊕ Hd where H0 = ker(A) and Hd = H⊥

0 and
the restriction of A to Hd generates an analytic contraction semigroup with strictly negative growth bound
sd(A) = sup{ℜ(λ) : λ ∈ σ(A) \ 0} < 0.

In order to examine the long time behavior of the solution, we introduce a notion of convergence in the
almost sure sense.

Definition 2.10. We say that a random propagator (S(t))t≥0 ⊂ L(H) converges in norm P-almost surely
towards a deterministic operator M ∈ L(H) if

P
(

‖ · ‖ − lim
t→∞

S(t) = M
)

= 1.

Our main result can be expressed as follows.

Theorem 2.11. Under the Assumptions 2.1 , 2.4, and 2.7 the random propagator (S(t))t≥0 for the
Cauchy problem (2.2) converges in norm P-almost surely towards the orthogonal projector PK onto K :=
⋂N

j=1 kerAj.

Let us finally discuss the asymptotic behavior of the random evolution problem (2.2) under an additional
assumption that was inspired by a result from [3], where non-autonomous diffusion equations on a fixed
network are studied. Our aim is to study when the solution converges exponentially, for all initial data
f , towards the orthogonal projector of f onto the eigenspace with respect to the simple eigenvalue 0.
Adapting the ideas of [3] to our general setting, we shall impose the following.

Assumption 2.12. The null space of at least one operator in the ensemble K, say A1, agrees with K =
⋂N

j=1 kerAj.

It turns out that under this additional assumption (S(t))t≥0 converges in norm exponentially fast towards
the orthogonal projector PK . We stress that this is a deterministic assertion, unlike that of Theorem 2.11.
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Theorem 2.13. Under the Assumptions 2.1, 2.4, 2.7, and 2.12 the random propagator (S(t))t≥0 for
the Cauchy problem (2.2) converges in norm P-almost surely towards the orthogonal projector PK . The
convergence is exponential with rate α, where

α ≥ lim
t→+∞

1

t

∫ t

0

(

− sd(A1)
)

1(Z(s)=A1) ds =
(

− sd(A1)
)

Θ1 > 0,

where sd(A1), introduced in Remark 2.9, is strictly negative thanks to the Assumption 2.12 and Θ1 where
introduced in (2.1).

We postpone the proofs of our main results to Section 3.

Remark 2.14. 1) The Assumption 2.4 is especially satisfied if each Aj is self-adjoint and negative semi-
definite. In this case, moreover, sd(Aj) = λkj+1(Aj) the largest non-zero eigenvalue (kj being the dimension
of ker(Aj)).

There are, however, further classes of operators satisfying it. If the semigroup generated by Aj is positive
and irreducible, for example, it follows from the Krĕın–Rutman Theorem that the generator’s spectral bound
is a simple, isolated eigenvalue.

2) We remark that the Assumption 2.12 is not always satisfied: for instance, if all the null spaces kerAj

are one-dimensional but the intersection space K is trivial. On the other hand, it is satisfied for all K that
contain at least one operator A1 with trivial null space.

2.1. Randomly switching heat equations. The scope of our result is not restricted to graphs and
networks. To illustrate this, we consider a toy model – a heat equation with initial data f ∈ L2(0, 1),
under different boundary conditions – where the switching takes place at the level of operators, rather
than underlying structures. Here we show that convergence to the projector onto the intersection of
the null spaces holds. A more complex example, where the thermostat model with switching in the
boundary conditions, is given in [24]: in that case, non-ergodicity is possible under certain conditions on
the parameters.

(1) We first consider two different realizations A1, A2 of the Laplacian acting on L2(0, 1): with Neu-
mann and with Krein–von Neumann boundary conditions, which lead to the domains

D(A1) := {u ∈ H2(0, 1) : u′(0) = u′(1) = 0}(2.4)

and

D(A2) :=
{

u ∈ H2(0, 1) : u′(0) = u′(1) = u(1)− u(0)
}

(2.5)

respectively, [32, Exa. 14.14]. Both operators satisfy the Assumption 2.4. Furthermore, the null
space of the former realization is one-dimensional, as it consists of the constant functions; whereas
a direct computation shows that null space of the latter realization is 2-dimensional, as it consists
of all affine functions on [0, 1]; hence the intersection K of both null spaces is spanned by the
constant function 1 on (0, 1). Both associated heat equations are well-posed, yet the latter is
somewhat exotic in that the governing semigroup is not sub-markovian. We are interested in the
long-time behavior of this mixed system (2.2), with A(Z(t)) ∈ {A1, A2}: if the switching obeys the
rule in the Assumption 2.1, the random propagator (S(t))t≥0 converges in norm P-almost surely
towards the orthogonal projector onto the intersection of both null spaces, i.e., onto the space
of constant functions on [0, 1]; hence the solution of the abstract random Cauchy problem (2.2)
converges P-almost surely towards the mean value of the initial data f ∈ L2(0, 1).

(2) On the other hand, if we aim at studying the switching between Dirichlet and Neumann boundary
conditions, and thus introduce the realization A3 with domain

D(A3) := {u ∈ H2(0, 1) : u(0) = u(1) = 0},(2.6)
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then one sees the intersection space K is trivial, as kerA3 = {0}, hence the random propagator
converges in norm P-almost surely to 0 if the Assumption 2.1 is satisfied.

(3) Also observe that upon perturbing A3 we find the new operator

Ã3u := A3u+ π2u

D(Ã3) := D(A3),

whose null space is now one-dimensional, as it is spanned by sin(π·). Nevertheless, kerA1∩ker Ã3 =

{0}, hence again under the Assumption 2.1 the system switching between A1, Ã3 converges towards
0.

(4) Finally, let us consider a switching between A1 and A4 defined as

A4u :=
d

dx

(

p
du

dx

)

D(A4) := D(A1),

where p ∈ W 1,∞(0, 1), p(x) > 0 for all x ∈ [0, 1]. Because kerA1 and kerA4 both agree with the
space of constant functions, under the Assumption 2.1 the random propagator converges in norm
P-almost surely towards the orthogonal projector onto the space of the constant functions.

Moreover, as a consequence of Theorem 2.13 we can observe the exponential convergence of the random
propagator for some (but not all) of these toy models. In particular, this holds whenever we take A3 in the
ensemble K: indeed, we have K = {0} and then the Assumption 2.12 is satisfied, since the first eigenvalue

λ
(3)
1 of A3 is strictly negative. The exponential convergence of (S(t))t≥0 can be shown also for randomly

switching systems where K ⊂ {A1, A2, A4}. In all of these cases K agrees with the space of constant
functions on (0, 1), hence it is one-dimensional and the Assumption 2.12 is still fulfilled, since the second

eigenvalue λ
(j)
2 < 0, for j = 1, 4. On the other hand, we cannot apply Theorem 2.13 and then prove the

exponential convergence of the random propagator for all those models which switch Ã3 with A1 or/and
A2 or/and A4. In fact, this implies that the intersection space K is trivial again, but no one operator has
strictly negative first eigenvalue.

3. Technical lemmas and proofs

3.1. A monotonicity lemma. The following lemma 3.4 provides the crucial tool to prove the assertion
of Theorem 2.11. It shows how we can bound the norm of the random product of matrices which generates
the random propagator (S(t))t≥0 with respect to the stopping times.

Let L ≥ N and (k1, . . . , kL) be a sequence of indices that covers the whole E = {1, . . . , N}. Given an
ensemble K of operators satisfying the Assumption 2.4, let us consider the associated sequence of operators
(Ak1 , . . . , AkL

) taken from K. We shall denote Pj the projection on the kernel kerAj and PK the projection
on K = ∩L

j=1 kerAkj
= ∩N

i=1 kerAi.

Remark 3.1. In the proof we will need some known results in functional analysis: if T is a compact
operator on a reflexive Banach space X, then there exists x belonging to the unit sphere of X such that
‖T ‖ = ‖Tx‖, i.e., the norm of T is attained: see e.g. [1, Corollary 1]. This is in particular true if T = T (t)
for some t > 0, provided the semigroup generated by A is analytic (or even merely norm continuous) and
A has compact resolvent, see [16, Thm. II.4.29]. Moreover, the compact operators form a two-side ideal in
L(H).

The following results are necessary steps in order to prove the main result of this section.

Lemma 3.2. Let (T (t))t≥0 be a contractive, analytic strongly continuous semigroup on a Hilbert space
H whose generator A has compact resolvent and no eigenvalue on the imaginary axis, with the possible
exception of 0; let us denote by P the orthogonal projector onto kerA.
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Then the following assertions hold:

(1) ‖T (t′)x‖ < ‖T (t)x‖ for all x 6∈ kerA and all t′ > t ≥ 0;
(2) kerA = {x ∈ H : ‖T (t0)x‖ = ‖x‖} for some t0 > 0.

Proof. (1) Fix x 6∈ kerA and let 0 ≤ t < t′.
Let us first consider the case of injective A, so that P = 0. Then x 6= 0, and T (t)x → 0 as t → ∞

by the Jacobs–deLeeuw–Glicksberg theory, see [16, Thm. V.2.14 and Cor. V.2.15]. Due to analyticity of
the semigroup, the mapping ϕ : (0,∞) ∋ t 7→ ‖T (t)x‖2 ∈ R is real analytic: indeed, for each x ∈ H the
mapping (0,∞) ∋ t 7→ T (t)x ∈ H is real analytic, hence it can be represented by an absolutely converging
power series, say T (t)x =

∑∞
k=0 t

kfk; but then, the Cauchy product of
∑∞

k=0 t
kfk with itself, given by

∑∞
m=0 t

m
∑m

l=0(fl, fm−l), is absolutely converging towards ‖T (t)x‖2 = (T (t)x, T (t)x).
If ‖T (t)x‖ = ‖T (t′)x‖, then ϕ is constant on the interval [t, t′]: indeed, by contractivity of the semigroup

‖T (s)x‖ ≤ ‖T (t)x‖ = ‖T (t′)x‖ ≤ ‖T (s)x‖ for all s ∈ [t, t′].

Due to the identity theorem for real analytic functions, ϕ is now constant on (0,∞) – a contradiction, since
ϕ(t) → ‖x‖2 6= 0 as t ց 0, but ϕ(t) → 0 as t → ∞. This proves the theorem in case that P = 0.

Let us now consider the case of general P : observe that Px 6= x, since x 6∈ kerA. Applying the first
step of the proof to the restriction of (T (t))t≥0 to the H ⊖ kerA, we see that

‖T (t)(I − P )x‖2 > ‖T (t′)(I − P )x‖2,

hence by Pythagoras’ theorem

‖T (t)x‖2 = ‖T (t)Px‖2 + ‖T (t)(I − P )x‖2

> ‖T (t)Px‖2 + ‖T (t′)(I − P )x‖2

= ‖T (t′)Px‖2 + ‖T (t′)(I − P )x‖2 = ‖T (t′)x‖2.
(3.1)

where the second to last identity holds because the fixed space of (T (t))t≥0

fix(T (t))t≥0 := {x ∈ H : T (t)x = x for all t ≥ 0}

agrees with the null space of its generator A by [16, Cor. IV.3.8], hence T (t)y = y for all y ∈ kerA and all
t ≥ 0.

(2) We see that

fix(T (t))t≥0 ⊂ {x ∈ H : ‖T (t)x‖ = ‖x‖ for all t ≥ 0}
⊂ {x ∈ H : ‖T (t0)x‖ = ‖x‖ for some t0 ≥ 0}
(1)
⊂ kerA.

This concludes the proof, since as recalled before kerA = fix(T (t))t≥0. �

The following is probably linear algebraic folklore, but we choose to give a proof since could not find an
appropriate reference.

Lemma 3.3. Let H be an Hilbert space and P1, . . . , Pm be finitely many orthogonal projectors on H; let

PK the orthogonal projector onto K :=

m
⋂

i=1

rgPi. If Pi is compact for at least one i = 1, . . . , L, then the

operator PkL
. . . Pk1P

⊥
K has norm strictly less than 1:

‖PkL
. . . Pk1P

⊥
K‖ = 1− ε < 1.
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Proof. It is obvious that ‖Pm . . . P1P
⊥
K‖ ≤ 1. We proceed by contradiction and assume that

(3.2) ‖Pm . . . P1P
⊥
K‖ = 1.

Since at least one Pi is compact, so is the whole product, hence it is norm-attainable: there exists x ∈ H
with ‖x‖ = 1 such that ‖Pm . . . P1P

⊥
Kx‖ = ‖x‖ = 1.

Notice that

1 = ‖Pm . . . P1P
⊥
Kx‖ ≤ ‖Pm . . . P1‖‖P⊥

Kx‖

hence ‖P⊥
Kx‖ = 1 = ‖x‖ and it follows that x = P⊥

Kx. We then substitute in previous equality and get

1 = ‖Pm . . . P1P
⊥
Kx‖ = ‖Pm . . . P1x‖

and the same reasoning implies ‖P1x‖ = 1, and x = P1x. Reiterating the same argument we obtain
x = Pjx for any j = 1, . . . ,m, therefore x ∈ K; but we have x = P⊥

Kx, which implies x = 0, a contradiction
to ‖x‖ = 1. Therefore, (3.2) is false and the thesis follows. �

We now proceed to prove the main result of this section. Recall that the operators Aj are negative
(non-positive) defined and Pj is the projection on kerAj .

Lemma 3.4. In previous assumptions, for η > 0 small enough there exists δ > 0 such that, for ti ≥ δ > 0,
i = 1, . . . , L we have

(3.3) ||P⊥
K etLAkL · · · et1Ak1 || ≤ 1− η < 1.

Proof. Recall that Pi is the orthogonal projection on kerAi, K = ∩N
i=1 ker(Ai), and the projection on K

satisfies PKPi = PK = PiPK , P⊥
KP⊥

i = P⊥
i = P⊥

i P⊥
K . We have

‖etLAL . . . et2A2et1A1P⊥
Kx‖2 = ‖etLAL . . . et2A2et1A1(P1 + P⊥

1 )P⊥
Kx‖2

≤ (1 + α)‖etLAL . . . et2A2et1A1P1P
⊥
Kx‖2

+ (1 + α−1)‖etLAL . . . et2A2et1A1P⊥
1 P⊥

Kx‖2

≤ (1 + α)‖etLAL . . . et2A2P1P
⊥
Kx‖2 + (1 + α−1)‖etLAL . . . et2A2‖2‖et1A1P⊥

1 x‖2

where we use the fact that et1A1P1x = P1x for any x ∈ H , t1 ≥ 0, and that kerA1 ⊃ K, so (kerA1)
⊥ ⊂

K⊥; the first estimate follows from Young’s inequality. Notice further that all semigroups involved are
contraction operators, hence ‖etLAL . . . et2A2‖2 ≤ 1; finally, we have ‖et1A1P⊥

1 x‖ ≤ e−t1λb(A1)‖P⊥
1 x‖ ≤

e−t1λb(A1)‖x‖. Hence

‖etLAL . . . et2A2et1A1P⊥
Kx‖2 ≤ (1 + α)‖etLAL . . . et2A2P⊥

KP1x‖2 + (1 + α−1)e−2t1λb(A1)‖x‖2.
We continue by splitting the first term in the right hand side

‖etLAL . . . et2A2et1A1P⊥
Kx‖2

≤ (1 + α)‖etLAL . . . et2A2(P2 + P⊥
2 )P⊥

KP1x‖2 + (1 + α−1)e−2t1λb(A1)‖x‖2

≤ (1 + α)2‖etLAL . . . et2A2P2P
⊥
KP1x‖2 + (1 + α−1)‖etLAL . . . et2A2P⊥

2 P⊥
KP1x‖2

+ (1 + α−1)e−2t1λb(A1)‖x‖2

≤ (1 + α)2‖etLAL . . . et3A3P2P
⊥
KP1x‖2 + (1 + α−1)‖etLAL . . . et3A3‖2e−2t2λb(A2)‖P⊥

2 P⊥
KP1x‖2

+ (1 + α−1)e−2t1λb(A1)‖x‖2

≤ (1 + α)2‖etLAL . . . et3A3P⊥
KP2P1x‖2 + (1 + α−1)

(

e−2t2λb(A2) + e−2t1λb(A1)
)

‖x‖2
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and by recursion, we finally obtain

‖etLAL . . . et2A2et1A1P⊥
Kx‖2 ≤ (1 + α)L‖PL . . . P3P2P1P

⊥
Kx‖2 + (1 + α−1)

L
∑

i=1

e−2tiλb(Ai)‖x‖2(3.4)

The operator in the first term is bounded in norm by 1− ε, thanks to Lemma 3.3; therefore, we obtain the
estimate

‖etLAL . . . et2A2et1A1P⊥
Kx‖2 ≤

(

(1 + α)L(1 − ε)2 + (1 + α−1)

L
∑

i=1

e−2tiλb(Ai)

)

‖x‖2

The thesis follows by first taking α small enough such that the first addendum is bounded by 1− 2η, then
taking δ large enough such that the second addendum is bounded by η. 1

�

Finally, we prove below that in case of a fixed, deterministic clock, the same result follows for arbitrary
δ > 0.

Lemma 3.5. Given an ensemble K = {A1, . . . , AN} of closed, densely defined, dissipative operators with
compact resolvent that generate analytic strongly continuous semigroups on a Hilbert space H, let us con-
sider the associated sequence of operators (Ak1 , . . . , AkL

) taken from K. If L ≥ N and (k1, . . . , kL) is a
sequence of indices that covers the whole E = {1, . . . , N}, then for all δ > 0

‖P⊥
KeδAkL · · · eδAk1 ‖ < 1.

Proof. Let us now prove the inequality by contradiction: because all semigroups as well as the projector
P⊥
K are contractive and hence certainly ‖P⊥

KeδAkL · · · eδAk1 ‖ ≤ 1, it suffices to assume that

‖P⊥
KeδAkL · · · eδAk1 ‖ = 1;

since the product operator is a compact operator, as stated before, there would then exist some x ∈ H ,
x 6= 0, with ‖P⊥

K eδAkL · · · eδAk1x‖ = ‖x‖. Because

‖P⊥
K eδAkL · · · eδAk1x‖ ≤ ‖P⊥

K eδAkL · · · eδAk2 ‖‖eδAk1x‖ ≤ ‖eδAk1x‖,

it follows that ‖eδAk1x‖ = ‖x‖ and hence, by Lemma 3.2.(2), x ∈ kerAk1 , i.e., e
δAk1x = x. Proceeding

recursively we see that x ∈ ⋂L
i=1 kerAki

⊂ K, whence eδAkix = x for all i and hence

‖x‖ = ‖P⊥
KeδAkL · · · eδAk1x‖ = ‖P⊥

Kx‖ = 0,

a contradiction. �

1Let us notice that in formula (3.4), the only fixed term is ε from Lemma 3.3. Thus, let us fix η such that

η <
1− (1− ε)2

2
=

ε(2− ε)

2

Then, we choose α such that

(1 + α)L(1− ε)2 = (1− 2η)

and, setting λ+ = max{λ
(i)
+ , : i = 1, . . . , L} < 0, we may choose

δ >
1

|λ+|
log

(

η−1L(1 + α−1)
)

.
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3.2. Proof of Theorem 2.11. We need two ingredients in this proof. First, since the Markov chain {Xn}
is irreducible, there exists a cycle ξ = (ξ0, ξ1, . . . , ξL = ξ0) such that

- the reached states cover the full set of indexes:

{ξ0, . . . , ξL−1} = {1, . . . , N};
- the Markov chain follows this path with a strictly positive probability:

pξ0,ξ1 · · · pξL−1,ξL > 0;

- by a suitable rotation of the indexes, it is always possible to let ξ0 = X0.

As the second main ingredient, we construct a new stochastic process {X ′
m} by considering the sequence

{Xn} divided in blocks of length L

X ′
m :=

(

XmL, . . . , X(m+1)L−1

)

, m ≥ 0.

By a standard argument, {X ′
m} is an irreducible Markov chain on the state space E′ = {1, . . . , N}L.

Therefore, the state ξ is recurrent and there exists an infinite subsequence {mj} of indices such that
X ′

mj
= ξ.

Finally, we take a further subsequence mjl such that all the waiting times {τmjl
L, . . . , τmjl

(L+1)−1} are
larger than the constant δ in Lemma 3.4. Thanks to Assumption 2.1, also this subsequence diverges to
infinity.
Let ñ(t) = max{l ≥ 0 : Tmjl

(L+1) ≤ t} be the number of times the sequence {X ′
n} passes from the state

ξ with all the waiting times larger than δ up to time t. By the above reasoning, ñ(t) → ∞ as t → ∞
(although this sequence may diverge very slowly).

Clearly, the number of times the chain {Xk} follows the cycle ξ is greater than (or equal to) the number
of times {X ′

k} visits the state ξ and, moreover, the waiting times are larger than δ (as described above).
Thus,

‖P⊥
KS(t)‖ = ‖P⊥

K

N(t)
∏

k=0

eτk+1AXk ‖ ≤
n(t)
∏

m=0

‖P⊥
Ke

τ(m+1)LAX(m+1)L−1 . . . eτmL+1AXmL ‖

where n(t) = ⌊N(t)/L⌋ is the number of transitions of the Markov chain {X ′
m} that are completed up to

time t; since all the operators on the right hand side have norm bounded by 1, we can further estimate

‖P⊥
KS(t)‖ ≤

ñ(t)
∏

m=0

‖P⊥
K e

τ(m+1)LAX(m+1)L−1 . . . eτmL+1AXmL‖

From Lemma 3.4 we are able to estimate

‖P⊥
Ke

τ(m+1)LAX(m+1)L−1 . . . eτmL+1AXmL‖ ≤ 1− η < 1

hence

‖P⊥
KS(t)‖ ≤ (1− η)ñ(t)

t→+∞−−−−→ 0.(3.5)

By Remark 2.8 we can write the random propagator as

S(t) = PK S(t) + P⊥
K S(t) = PK + P⊥

K S(t)

and the thesis

lim
t→+∞

‖S(t)− PK‖ = 0 P− a.s.

follows by (3.5). �
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3.3. Proof of Theorem 2.13. As done in the proof of Theorem 2.11, we can write the random propagator
as

S(t) = PKS(t) + P⊥
KS(t)

and show that ‖P⊥
KS(t)‖ → 0 as t → +∞ in order to obtain the thesis.

Denote u(t) := S(t)f for all initial data f ; we can estimate the norm of the vector P⊥
Ku(t) ∈ H by

(3.6) ||P⊥
Ku(t)||2 − ||P⊥

K f ||2 =

∫ t

0

d

ds
||P⊥

Ku(s)||2 ds

= 2ℜ
(
∫ t

0

(
d

ds
P⊥
Ku(s), P⊥

Ku(s)) ds

)

= 2

∫ t

0

ℜ(A(Z(s))P⊥
Ku(s), P⊥

Ku(s)) ds,

where the last equality holds due to Remark 2.8 and because d
ds

and P⊥
K commute. We split the above

integral with respect to the various states of Z(t):

||P⊥
Ku(t)||2 − ||P⊥

K f ||2 =
N
∑

j=1

2

∫ t

0

1(Z(s)=j) ℜ(AXj
P⊥
Ku(s), P⊥

Ku(s)) ds,

and since all the Ak’s are dissipative, we have the trivial estimate

||P⊥
Ku(t)||2 − ||P⊥

K f ||2 ≤ 2

∫ t

0

1(Z(s)=1) ℜ(AXj
P⊥
Ku(s), P⊥

Ku(s)) ds.

Now, by Remark 2.9, the above becomes

||P⊥
Ku(t)||2 − ||P⊥

K f ||2 ≤ −2sd(A1)

∫ t

0

1(Z(s)=1) (P
⊥
Ku(s), P⊥

Ku(s)) ds

= −2sd(A1)

∫ t

0

1(Z(s)=1) ||P⊥
Ku(s)||2 ds.

By Gronwall’s Lemma we deduce that

‖P⊥
Ku(t)‖2 = ‖P⊥

k S(t)f‖2 ≤ ‖P⊥
K f‖2 e−2sd(A1)

∫
t

0
1(Z(s)=1) ds.

The thesis now follows from Remark 2.2: indeed, the integral diverges to +∞ P-almost surely, hence
||P⊥

KS(t)|| → 0. �

4. Combinatorial graphs

A simple (finite, undirected) combinatorial graph G = (V,E) is a couple defined by a finite set V of
vertices v and a subset E ⊂ V(2) of unordered pairs e := {v,w} of elements of V; such a pair e is interpreted
as the edge connecting the vertices v,w.

Given a simple graph G = (V,E), let us introduce a positive weight function on the set of vertices V

m : V → (0,+∞)

which induces the scalar product

(f, g)m :=
∑

v∈V

m(v)f(v)g(v), f, g ∈ CV

on the space CV of complex valued functions f : V → C: we denote by ℓ2m(V) the Hilbert space CV with
respect to (·, ·)m. In addition, let

µ : E → (0,+∞)

be a positive weight function on the set of edges E. We call the 4-tuple (V,E,m, µ) a weighted combinatorial
graph.
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Remark 4.1. We stress that each weighted graph is a metric space with respect to the shortest path metric;
while the topology does depend on the weights, any two weights define equivalent topologies, and in particular
it does not depend on m,µ whether G is connected or not.

Let us recall the notion of discrete Laplacian (or Laplace–Beltrami matrix ) Lm,µ on a weighted graph
G = (V,E,m, µ), cf. [28, § 2.1.4] – or shortly: weighted Laplacian. For any vertex v ∈ V, let Ev denote the
set of all edges having v as an endpoint. Then Lm,µ : ℓ

2
m(V) → ℓ2m(V) is defined by

Lm,µf(v) :=
1

m(v)

∑

e={v,w}∈Ev

µ(e) (f(w)− f(v)) , ∀ v ∈ V;

Lm,µ reduces to the discrete, negative semi-definite Laplacian if µ ≡ 1 and m ≡ 1; i.e., L1,1 is minus the
Laplacian matrix that is common in the literature [28, § 2.1.4]. Indeed, we stress that we have not adopted
the usual sign convention of algebraic graph theory, as any such Lm,µ is self-adjoint and negative semi-
definite. More generally, Lm,µ satisfies the Assumptions 2.4 and 2.7 and it can be shown that Lm,µ (and
not −Lm,µ) generates a Markovian semigroup. The associated sesquilinear form q : ℓ2m(V)× ℓ2m(V) → C

q(f, g) =
∑

e={v,w}∈E

µ(e) (f(v)− f(w)) (g(v)− g(w)), f, g ∈ ℓ2m(V),

such that
q(f, g) = (Lm,µf, g)m = (f,Lm,µg)m, f, g ∈ ℓ2m(V);

accordingly, its Rayleigh quotient is

(4.1)
(f,Lm,µf)m

(f, f)m
=

q(f, f)

‖f‖2m
=

∑

e={v,w}∈E µ(e)|f(v)− f(w)|2
‖f‖2m

, f 6= 0.

It follows from (4.1) that λ = 0 is an eigenvalue of each weighted Laplacian Lm,µ: the associated eigen-
functions are constant on each connected component of G = (V,E,m, µ). Therefore, it turns out that the
null space of Lm,µ agrees with the null space of the unweighted Laplacian (on (V,E)) associated with G.

4.1. The general model. Throughout this section we consider a finite collection C of graphs.

Assumption 4.2. C = {G1, ...,GN}, where G1 = (V,E1,m1, µ1), ...,GN = (V,EN ,mN , µN) are simple
graphs with same vertex set V but possibly different edge sets Ei, vertex weights µi, and edge weights µi,
i = 1, . . . , N .

The following seems to be natural but not quite standard: we prefer to note it explicitly.

Definition 4.3 (Union and intersection of weighted graphs). The union of Gi = (V,Ei,mi, µi), i =

1, . . . , N , is the weighted graph G∪ = (V,E,m, µ) with set of vertices V, set of edges E :=
⋃N

i=1 Ei, vertex
weights

m(v) := min
i=1,...,N

mi(v), v ∈ V,

and edge weights

µ(e) := max
i=1,...,N

µi(e), e ∈ E.

Likewise, the intersection of Gi = (V,Ei,mi, µi), i = 1, . . . , N , is the weighted graph G∩ = (V,E,m, µ) with

set of vertices V, set of edges E :=
⋂N

i=1 Ei, vertex weights

m(v) := max
i=1,...,N

mi(v), v ∈ V,

and edge weights

µ(e) := min
i=1,...,N

µi(e), e ∈ E;
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here we set µi(e) := 0 if e 6∈ Ei.

In this way, it is possible to study the behavior of the intersection of the null spaces of the Laplacian
operators Lmk,µk

(Gk) associated with the graphs in C. This result seems interesting on its own, since it
explicitly connects the geometry of the graph with the algebraic property of the Laplacian operator.

Lemma 4.4. Given G1, . . . ,GN combinatorial graphs satisfying the Assumption 4.2, let G be their weighted
union graph (see Definition 4.3) and let Lm,µ(G) be the discrete Laplacian on G. Then

kerL(G) =

N
⋂

i=1

kerLmi,µi
(Gi).

Proof. It suffices to work with unweighted graphs; for simplicity, moreover, we only prove the case N = 2.
In general, suppose that G, G1 and G2 are written as disjoint unions of connected components:

G =

l
⊔

h=1

G(h), G1 =

m
⊔

j=1

G
(j)
1 , G2 =

n
⊔

k=1

G
(k)
2 .

Each connected component of the union G can be expressed as

G(h) =
⊔

j∈C
(h)
1

G
(j)
1 or G(h) =

⊔

k∈C
(h)
2

G
(k)
2 , h = 1, . . . , l,

where

C
(h)
1 :=

{

j ∈ {1, . . . ,m} : G
(j)
1 ⊆ G(h)

}

,

C
(h)
2 :=

{

k ∈ {1, . . . , n} : G
(k)
2 ⊆ G(h)

}

.

Any eigenfunction associated with the null eigenvalue of L shall be constant on any connected component
of G, hence BG = {1h, h = 1, . . . , l}, where

∀ v ∈ V : 1h(v) :=

{

1 if v ∈ G(h),

0 otherwise,

is a basis for kerL(G). Similarly, B1 = {11,j, j = 1, . . . ,m} and B2 = {12,k, k = 1, . . . , n} are a basis of
kerL(G1) and kerL(G2), respectively. Hence, we only need to prove that for all h = 1, . . . , l, 1h is in the
intersection of the null spaces in C and then extend the result to kerL(G) by linearity. In particular, by
construction the function 1h will be

∀ v ∈ V : 1h(v) :=

{

1 if v ∈ G
(j)
1 , j ∈ C

(h)
1 ,

0 otherwise,

and

∀ v ∈ V : 1h(v) :=

{

1 if v ∈ G
(k)
2 , k ∈ C

(h)
2 ,

0 otherwise,

thus 1h ∈ kerL(G1)∩kerL(G2), in fact it can be written as linear combination of both basis B1 and B2 as

1h =
∑

j∈C
(h)
1

11,j or 1h =
∑

k∈C
(h)
2

12,k.

On the other hand, given f ∈ kerL(G1) ∩ kerL(G2), we have

(4.2) f = α111,1 + · · ·+ αm11,m
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and

(4.3) f = β112,1 + · · ·+ βn12,n,

where B1 and B2 as above. Then, comparing the expressions (4.2) and (4.3), we get that

αj = βk = c1, ∀j ∈ C
(1)
1 , ∀k ∈ C

(1)
2 ,

...

αj = βk = cl, ∀j ∈ C
(l)
1 , ∀k ∈ C

(l)
2

and f can also be expressed in terms of BG as

f =

l
∑

h=1

ch1h,

thus f ∈ kerL(G). �

As a corollary, we notice the following result, concerning the relation between the connectedness of the
union graph G (see Remark 4.1) and the dimension of the kernel of the (weighted or unweighted) Laplacian
operator.

Corollary 4.5. Given G1, . . . ,GN combinatorial graphs satisfying the Assumption 4.2, let G be their
weighted union graph. Then

(4.4) G is connected ⇐⇒
N
⋂

i=1

kerLmi,µi
(Gi) = 〈1〉.

Partially motivated by Corollary 4.5, with a slight abuse of notation we adopt in the following the
notation Li := Lmi,µi

(Gi), i = 1, . . . , N . Fixed a probability space (Ω,F,P), let (Z(t))t≥0 be a semi-
Markov process on the state space E = {1, . . . , N} which satisfies Assumption 2.1. In this section, we shall
consider the random Cauchy problem

(4.5)

{

du
dt
(t, v) = LXk

u(t, v), v ∈ V, t ∈ [Tk, Tk+1), k ∈ N,

u(0, x) = f(v), v ∈ V,

where LXk
is the discrete Laplace operator associated with the currently selected graph GXk

. The above
equation is also known in the literature as the (random) discrete heat equation. Here and in the sequel,
we neglect the dependence on ω to simplify the notation.

We can now state our main result in this section.

Theorem 4.6. Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs that satisfy the As-
sumptions 2.1 and 4.2, respectively. Then the random propagator (S(t))t≥0 for the Cauchy problem (4.5)

converges in norm P-almost surely towards the orthogonal projector PK onto the space K =

N
⋂

i=1

kerLi.

We can now see that the connectedness of the union graph is a necessary and sufficient condition for
the convergence of the random propagator (S(t))t≥0 towards the orthogonal projector P0 onto the space
of constant functions on V, i.e., the eigenspace 〈1〉 spanned by 1. Notice that since 1 is an eigenvector for
each Lk, P0 commutes with each Lk and each etLk , k = 1, . . . , N , t ≥ 0.

Corollary 4.7. Under the assumptions of Theorem 4.6, (S(t))t≥0 converges in norm P-almost surely to
P0 if and only if the union graph G is connected.

Proof. Corollary 4.5 implies that P0 = PK if and only if the union graph G is connected, while Theorem
4.6 implies the convergence of S(t) towards PK , hence the sufficiency and necessity of the condition. �



16 STEFANO BONACCORSI, FRANCESCA COTTINI, AND DELIO MUGNOLO

In the last part of this section we present two special cases of evolution on combinatorial graphs where
we discuss the relation between our result and the existing literature.

4.2. Connected graphs. In this section we assume that all the graphs in C are connected. As we have
already seen, this assumption is unnecessarily strong if we aim at solving (P).
However, we are going to show an interesting link between our problem and the analysis of LCP-sets. For
simplicity, in this section we assume that τn = 1 for every n, hence Tn = n and Z(t) = Z(⌊t⌋) = X⌊t⌋.

A set K of matrices is said to have the left-convergent product property, or simply to be an LCP set, if

for every sequence j = (jn)n∈N the infinite left-product Mj :=
∞
∏

k=0

Mjk converges. It is known [15] that K

is an LCP set if K is paracontracting, meaning that for some matrix norm

Mx 6= x ⇒ ‖Mx‖ < ‖x‖ for all M ∈ K and x ∈ Rd.

The issue of convergence of infinite products of matrices has been finally settled in a fundamental paper
by Daubechies and Lagarias: in particular, see [12, Thm. 4.1 and Thm. 4.2] and also the erratum in [13].

Proposition 4.8. [12, Thm. 4.2] Let K be a finite set of d×d matrices. Then the following are equivalent.

(a) K is an LCP set whose limit function j 7→ Mj is continuous with respect to the sequence topology
on S = {j = (jn)n∈N}.

(b) All matrices Mi in K have the same eigenspace E1 with respect to the eigenvalue 1, this eigenspace
is simple for all Mi, and there exists a vector space V such that Cd = E1 ⊕ V and such that if PV

is the oblique projector onto V away from e1, then PV KPV is an LCP set whose limit function is
identically 0.

In particular, if E1 is a 1-dimensional subspace, then the limit function M is the projector onto this
space.

Now we can state this result in the setting of combinatorial graphs. Under the assumption of connect-
edness of all graphs, Theorem 2.11 states that S(t) will converge to P0 (the projector on the subspace 〈1〉
of constant functions) no matter which sequence of graphs we follow in (4.5), thus it provides the same
result as in the deterministic case treated in Proposition 4.8. We shall give in Lemma 4.9 an alternative
proof to this result, which specializes to the notation of graph theory.

Lemma 4.9. Let C = {G1, . . . ,GN} be a finite family of connected graphs and Z = (Xn, τn = 1) be an
irreducible Markov chain. Then

(4.6) lim
t→+∞

‖S(t)− P0‖ = 0 along any trajectory ω ∈ Ω

holds for the random evolution problem (4.5).

Proof. In our assumptions, 0 is a simple eigenvalue of each Laplacian matrix Lk := L(Gk) with associated
eigenvector 1. The orthogonal operator P⊥

0 is again an orthogonal projector operator with range 〈1〉⊥.
Notice that P0S(t) = P0 because rgP0 = 〈1〉 is contained in

fix (etLk)t≥0 := {x : V → C : etLkx = x for all t ≥ 0}
for every 1 ≤ k ≤ N . Therefore,

(4.7) S(t) = P0S(t) + (I − P0)S(t) = P0 + P⊥
0 S(t) for all t ≥ 0,

and we can prove the assertion by showing that

lim
t→+∞

‖P⊥
0 S(t)‖ = 0.
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First of all, by definition P⊥
0 is idempotent and commutes with the exponential matrix of every Laplace

operator. Hence

P⊥
0 S(t) = P⊥

0 e(t−k)LXk eLXk−1 · · · eLX0 = P⊥
0 e(t−k)LXkP⊥

0 eLXk−1 · · ·P⊥
0 eLX0 .

We claim that

(4.8) each matrix P⊥
0 eLi, i = 1, . . . , N has norm strictly less than 1.

By the finiteness of E, we denote by

δ := max
{

||P⊥
0 eLi|| : i = 1, . . . , N

}

< 1.

For all t > 0, let k ∈ N be such that k ≤ t < k + 1. By sub-multiplicativity of the matrix norm we have

||P⊥
0 S(t)|| = ||P⊥

0 e(t−k)LXkP⊥
0 eLXk−1 · · ·P⊥

0 eLX0 ||
≤ ||P⊥

0 e(t−k)LXk || ||P⊥
0 eLXk−1 || · · · ||P⊥

0 eLX0 ||
≤ ||P⊥

0 eLXk−1 || · · · ||P⊥
0 eLX0 || ≤ δk−1.

If t → +∞, then k → +∞ and we finally get

lim
t→+∞

‖P⊥
0 S(t)‖ = 0

which implies the thesis.
In order to complete the proof it remains to show that claim (4.8) holds. We have proved a more refined

version of this claim in Lemma 3.4; however, in the current setting, the proof is straightforward. Let L

denote the Laplacian operator for a connected graph G. By a direct computation we have for all t > 0

‖(I − P0)e
tLf‖2 =

d
∑

k=2

e2tλk(f, ek)
2
ℓ2 ≤ e2tλ2

d
∑

k=2

(f, ek)
2
ℓ2 = e2tλ2‖(I − P0)f‖2 ≤ e2tλ2‖f‖2,

whence ‖(I − P0)e
δL‖2 < e2δλ2 < 1 since λ2 < 0. �

4.3. Randomly switching combinatorial graphs with non-zero second eigenvalue. The goal here
is to apply our exponential convergence criteria to combinatorial graphs. Consider the random evolution
problem (4.5); we are going to show the exponential convergence of the random propagator (S(t))t≥0

provided that the following assumption holds:

Assumption 4.10. At least one of the graphs in C, say G1, is a connected graph.

It follows that the union graph G is connected, too, hence the intersection space K is one-dimensional
and PK = P0 is the projection onto the space of constant functions on V. Moreover, this means that
λ2(L1) < 0. Therefore, the Assumption 2.12 is satisfied and we can directly apply Theorem 2.13.

Corollary 4.11. Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs that satisfy the
Assumptions 2.1 and 4.2, respectively. Let additionally the Assumption 4.10 hold.

Then the random propagator (S(t))t≥0 converges in norm P-almost surely exponentially fast towards the
orthogonal projector P0 with an exponential rate no lower than

α = −
N
∑

j=1

λ2(Lj)Θj
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that is the average of the eigenvalues λ2(Lj) with respect to the fraction of time Θj spent by the process
Z(t) in the various states. 2

Proof. The assertion follows from Theorem 2.13. Notice that the exponential rate can be computed by

−1

t

∫ t

0

λ2(LZ(s)) ds = −
N
∑

j=1

1

t

∫ t

0

1(Z(s)=Gj) ds λ2(Lj)

which converges, as t → ∞, to (compare Remark 2.2)

α = −
N
∑

j=1

Θjλ2(Lj) = −
N
∑

j=1

λ2(Lj)
ρjµj

∑N
l=1 ρlµl

.

This concludes the proof. �

Remark 4.12. Adapting the proof of [17, Cor. 3.2] (where the convention is adopted that L is positive semi-
definite) we see that each of the discrete Laplacians Lk on the weighted combinatorial graph Gk has second
largest eigenvalue λ2(Lk) := λ2(Gk) ∈ [λ2(G∪), λ2(G∩)], where G∪,G∩ are the union and intersection graph
introduced in Lemma 4.4, respectively: therefore we conclude that the convergence to equilibrium for the
randomly switching problem is not faster (resp., not slower) than in the case of the heat equation on G∪

(resp., on G∩; observe that G∩ may however be disconnected, and hence λ2(G∩) may vanish, even if all Gk

are connected).
Estimates on the rate of convergence to equilibrium of the random propagator are readily available: it

is well-known that, for a generic unweighted connected graph G, −|V| ≤ λ2(G) ≤ −2(1 − cos π
|V|), where

the second inequality is an equality if and only if G is a path graph, see [17, 3.10 and 4.3]. It follows that
λ2(Lk) ∈ [−|V|,−2(1− cos π

|V| )] if in particular G∩ is connected; this gives an estimate on the convergence

rate in Corollary 4.11.

5. Metric graphs

In this section we discuss the application of Theorem 2.11 to finite metric graphs. Roughly speaking,
metric graphs are usual graphs (as known from discrete mathematics) whose edges are identified with real
intervals – in this case, finitely many interval of finite length; loops and multiple edges between vertices
are allowed. While this casual explanation is usually sufficient [7, 28], for our purposes we will need a more
formal definition. We are going to follow the approach and formalism in [27].

Let E be a finite set. Given some (ℓe)e∈E ⊂ (0,∞), we consider the disjoint union

E :=
⊔

e∈E

[0, ℓe] :

we adopt the usual notation (x, e) for the element of E with x ∈ [0, ℓe] and e ∈ E.
Consider the set

V :=
⊔

e∈E

{0, ℓe}

of endpoints of E. Given any equivalence relation ≡ on V, we extend it to an equivalence relation on E as
follows: two elements (x1, e1), (x2, e2) ∈ E belong to the same equivalence class if and only if (x1, e1) =
(x2, e2) or else (x1, e1), (x2, e2) ∈ V and (x1, e1) ≡ (x2, e2); we denote this equivalence relation on E again

2it is possible to explicitly compute Θ1 in terms of the invariant distribution ρ = (ρ1, . . . , ρN ) associated to the embedded
Markov chain X and the expected values of the jump times for the different states µj = Ej [τ1] by the formula

Θj =
ρjµj

∑N
l=1 ρlµl

.



RANDOM EVOLUTION EQUATIONS 19

by ≡ and we call G := E�≡ a metric graph and E, V := V�≡ its set of edges and of vertices, respectively.
So, a vertex v ∈ V is by definition an equivalence class consisting of boundary elements from E, like (0, e)
or (ℓf , f).

Two edges e, f ∈ E are said to be adjacent if one endpoint of e and one endpoint of f lie in the same
equivalence class v ∈ V (i.e., if e, f share an endpoint, up to identification by ≡); in this case we write e ∼ f.
Also, two vertices v,w ∈ V are said to be adjacent if there exists some (not necessarily unique) e ∈ E such
that {x, y} = {0, ℓe} for representatives x of v and y of w (i.e., if there is an edge whose endpoints are v,w,
up to identification by ≡); in this case we write v ∼ w. In either case, with an abuse of notation we also
write v ∼ e.

Let us stress that by definition a metric graph is uniquely determined by a family (ℓe)e∈E and an
equivalence relation on V; however, its metric structure is independent on the orientation of the edges!

As a quotient of metric spaces, any metric graph is a metric space in its own right with respect to the
canonical quotient metric defined by

dG(ξ, θ) := inf
k
∑

i=1

dE(ξi, θi), ξ, θ ∈ G,

where the infimum is taken over all k ∈ N and all pairs of k-tuples (ξ1, . . . , ξk) and (θ1, . . . , θk) with ξ = ξ1,
θ = θk, and θi ∼ ξi+1 for all i = 1, . . . , k − 1, [10, Def. 3.1.12], where ∼ denotes the adjacency relation
already introduced in Section 4. We call dG the path metric of G. A metric graph is said to be connected
if the path metric doesn’t attain the value ∞; in other words, if any two points of G can be linked by a
path. Along with this metric structure there is a natural measure induced by the Lebesgue measure on
each interval; accordingly, we can introduce the spaces

C(G) and L2(G)

as well as

H1(G) := {f ∈ L2(G) ∩ C(G) : f ′ ∈ L2(G)}.

Again, these definitions do not depend on the orientation of the metric graph; but the notation

f(ξ) := fe(x) := f
(

(x, e)
)

, ξ := (x, e),

does.
On the graph G we aim to introduce a differential operator acting as the second derivative on the

functions fj(x) on every edge ej ; and possibly more general operators of the form

Amax := f 7→ d

dx

(

p
df

dx

)

for some elliptic coefficient p ≥ p0 > 0 of class W 1,∞, p0 ∈ R. While it is natural to require that
fe ∈ H2(0, ℓe) for every edge e, taking

⊕

e∈E H
2(0, ℓe) as domain only defines an operator acting on

functions on L2(E): this is not sufficient in order to define a self-adjoint operator and suitable boundary
conditions shall thus be imposed in order for Amax to satisfy the Assumption 2.4.

Each realization of the elliptic operator A we are interested in is equipped with natural vertex conditions :
for each element u in its domain

• u ∈ C(G), and in particular

(Cc) ∀ v ∈ V : ue(v) = uf(v), whenever v ∈ e ∩ f;

i.e., u is continuous across vertices;
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• u satisfies the Kirchhoff condition at each vertex, namely

(Kc) ∀ v ∈ V :
∑

e∈E
(0,e)∈v

pe(v)u
′
e(v) =

∑

f∈E
(ℓf ,f)∈v

pf(v)u
′
f(v),

i.e., the weighted sum of the inflows equals the weighted sum of the outflows.

(Observe that in any vertex with degree 1 the latter becomes a Neumann boundary condition; and that
the case p ≡ 1 defines the usual Laplacian ∆ with natural vertex conditions on the metric graph G.)

We can now define the operator A with natural vertex conditions on G, i.e.

(Au)e(x) := (pe(x)u
′
e(x))

′,

D(A) :=

{

u ∈ C(G) ∩
⊕

e∈E

H2(0, ℓe) : u satisfies (Kc)

}

.
(5.1)

Let us summarize the main results we need in our construction for the operator A with natural vertex
conditions. They are part of a general, well-established theory, see e.g. [28].

Proposition 5.1. The operator A with natural vertex conditions on H = L2(G) is densely defined, closed,
self-adjoint, and negative semi-definite; it has compact resolvent.

Thus, A generates a contractive strongly continuous semigroup, denoted by (etA)t≥0. Hence the abstract
Cauchy problem

(5.2)

{

d
dt
u(t) = Au(t), t > 0,

u(0) = f,

is well-posed: for every f ∈ L2(G) there exists a unique mild solution given by

u(t) := etAf, ∀t ≥ 0.

Moreover, continuous dependence on the initial data holds. Because A is self-adjoint and hence the semi-
group is analytic, the solution u is for all f ∈ L2(G) of class C1((0,∞);L2(G)) ∩ C((0,∞);D(A)).

By Proposition 5.1, the spectrum of A consists of negative eigenvalues of finite multiplicity and the
spectral radius satisfies s(A) = 0 ∈ σ(A). The study of the complete spectrum is still an open problem:
actually, only in few cases it is fully determined and in general just some upper and lower bounds on the
eigenvalues are known. In this work, we are going to emphasize the following property of σ(A), see [23,
Theorem 4.3].

Proposition 5.2. Let G be a finite metric graph and denote by G(1), . . . ,G(l) its connected components.
Then, the multiplicity of 0 as eigenvalue of the operator A with natural vertex conditions is l. In particular,

the piecewise constant functions {1h}lh=1, where

(5.3) 1h(x) =

{

1 if x ∈ G(h),

0 otherwise,

for all h = 1, . . . , l, form a basis of kerA.

5.1. A motivating example. Let us study on the interval [0, 2] the heat equation
{

∂u
∂t
(t, x) = ∂2u

∂x2 u(t, x), t ≥ 0, x ∈ [0, 2],

u(0, x) = u0(x), x ∈ [0, 2],

where u0 ∈ L2(0, 2). In particular, we are going to analyze two different and well-known boundary value
problems: in one case, we impose two Neumann conditions at x = 0 and x = 2, whereas the second setting
keeps the same constraints at the boundaries, plus one additional Neumann condition at the middle point
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x = 1.

e1 e2
G1

Figure 1. Model A

Model A describes the evolution of the heat equation on [0, 2] with Neumann boundary conditions in 0
and 2. Formally, however, we consider [0, 2] as the graph G1 with V = {0, 1, 2} and edges e1 = [0, 1] and
e2 = [1, 2].

The evolution is thus described by the Laplace operator ∆1 given by

D(∆1) = {u = (u1, u2) : ui ∈ H2(0, 1), i = 1, 2,

u′
1(0) = u′

2(2) = 0, u1(1) = u2(1), u′
1(1)− u′

2(1) = 0},

∆1u =
d2u

dx2
.

The spectrum of ∆1 clearly agrees with that of the Laplacian with Neumann conditions on [0, 2], i.e.,

σ(∆1) =

{

λk = −k2π2

4
, k = 0, 1, 2, . . .

}

,

with associated eigenfunctions

e0(x) =
1√
2
, x ∈ [0, 2],

ek(x) = cos

(

kπ

2
x

)

, x ∈ [0, 2], k ≥ 1.

In this way, for every initial condition u0 ∈ L2(0, 2), we can explicitly write the solution in terms of the
spectral representation

u(t) = et∆1u0 =

+∞
∑

k=0

etλk(u0, ek)L2(0,2) ek

and, as expected, the limit distribution for long times agrees with the average of u0 computed on the
interval [0, 2]

lim
t−→+∞

u(t) = (u0, e0)e0 = P0u0 =
1

2

∫ 2

0

u0(x) dx = −
∫

[0,2]

u0(x) dx.

N N N

0 21

e1 e2
0 1 21′

G2

Figure 2. Model B: on the right, the correct interpretation as a network equation with
a disconnected graph

Model B describes the evolution of the heat equation on [0, 2] with Neumann boundary conditions in 0,
in 2, as well as in 1. Formally, we consider [0, 2] as the graph G2 with V = {0, 1, 1′, 2} and edges e1 = [0, 1]
and e2 = [1′, 2].
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The Laplace operator associated with G2 is ∆2 with domain

D(∆2) = {u = (u1, u2) : ui ∈ H2(0, 1), i = 1, 2, u′
1(0) = u′

1(1) = 0, u′
2(0) = u′

2(1) = 0},

∆2u =
d2u

dx2
.

Here the dynamics is somehow different from the previous one: in fact, the Neumann condition placed
in x = 1 acts like an insulating “wall” through which heat exchanges are not allowed. The spectrum in
this case is

σ(∆2) =
{

µk = −k2π2, k = 0, 1, 2, . . .
}

,

where every eigenvalue has now multiplicity two.

For every initial condition g = (g1, g2) ∈ L2(G) the solution u(t) converges, as t → ∞, to (−
∫

g1,−
∫

g2).

Starting from these two models, we now introduce the following scenario: imagine that we are going
to study the heat diffusion along the interval [0, 2] with Neumann boundary conditions. However, at each
renewal time Tn we can decide to add or remove one third Neumann condition at x = 1. In particular,
the choice of considering three or two constraints is determined by a suitable random process. This means
that the system switches between Model A and Model B and the stochastic evolution problem is of the
form (2.2).

We shall see that the asymptotic behavior of our systems is given by the uniform P-almost sure conver-
gence towards the orthogonal projector P0 to the constant functions.

5.2. The general model. Like in Section 4, we are going to introduce ensembles of metric graphs.

Assumption 5.3. C = {G1, ...,GN}, where G1, ...,GN are metric graphs with the same edge set E (i.e.,
defined upon the same finite set E and the same vector (ℓe)e∈E) but possibly different sets of vertices
V1 := V(G1), ...,VN := V(GN ) (i.e., the equivalence relations ≡1, . . . ,≡N may be different).

Once again, we introduce a probability space (Ω,F,P) and a semi-Markov process (Z(t))t≥0 satisfying
Assumption 2.1.

At this point, we can associate with each graph Gi in C an operator Ai with natural vertex conditions
and elliptic coefficient pi ∈ W 1,∞ as in (5.1), which we denote by

(Ai, D(Ai)), i = 1, . . . , N :

we emphasize that the different vertex sets induce different operator domains, even though all operators
satisfy the same class of vertex conditions: for example, “cutting through a vertex”, hence producing two
vertices of lower degree out of a vertex of larger degree, induces a new operator with relaxed continuity
conditions (and two new Kirchhoff conditions).

By Proposition 5.1, all these operators satisfy the Assumptions 2.4 and 2.7. We can state our main
problem, i.e., the continuous random evolution on metric graphs

(5.4)

{

d
dt
u(t) = AXk

u(t), t ∈ [Tk, Tk+1),

u(0) = f ∈ L2(G).

We recall that S(t) is the random propagator associated with problem (5.4) such that u(t) = S(t)f . Our
interest is again to prove a link between the convergence of S(t) towards the orthogonal projector P0 with
the connectedness of the union of the graphs in C. However, the key point here is to give a definition of the
concept of union graph in the metric setting: this follows immediately from the above formalism, see [27].

Definition 5.4 (Union and intersection of metric graphs). Let G1, . . . ,GN be metric graphs defined on the

same E, i.e., Gi =
E�≡i

, i = 1, . . . , N . Denote by ≡∪ and by ≡∩ the equivalence relations obtained by taking
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the reflexive, symmetric, and transitive closure of
⋃N

i=1 ≡i ⊂ V × V and
⋂N

i=1 ≡i ⊂ V × V, respectively.
Then, we call union and intersection metric graph the metric graphs

G∪ := E�≡∪
and G∩ := E�≡∩

,

respectively.

In Fig. 3 we can consider some examples of union graphs.

G1 G2 G1 ∪ G2

e1
e1 e1

e2
e2 e2

e3

e3 e3

G1 G2 G1 ∪ G2

e1 e1 e1e2 e2 e2

G1

e1 e2

e3

G2

e1 e2

e3

e1

e3

e2

G1 ∪ G2

Figure 3. Some examples of union graph.
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Remark 5.5. We observe that for fixed ≡1,≡2, the union metric graph G1 ∪ G2 does depend on the
orientations of the edges in E (as so do G1,G2, too); this is in sharp contrast to the case of combinatorial
graphs.

For instance, we can take the same graphs G1 and G2 in the third example in Fig. 3 and just reverse the
orientation of one edge as shown in Fig. 4.

G1

e1 e2

e3

G2

e1 e2

e3

G1 ∪ G2

e1 e2

e3

Figure 4. If we reverse the orientation of just one edge, the resulting union is different.

Our main result in this section is the following lemma, which characterizes the null space of elliptic
operators with natural vertex conditions associated with the union graph with its connectedness.

Lemma 5.6. Given G1, . . . ,GN metric graphs satisfying the Assumption 5.3, let G be their union graph (see
Definition 5.4). Let Ai be the elliptic operators associated with Gi with natural vertex conditions operators
and coefficients pi ∈ W 1,∞(Gi). Then

(5.5) G is connected ⇐⇒
N
⋂

i=1

kerAi = 〈1〉.

Notice that this lemma is remarkably similar to Lemma 4.5 (which was concerned with combinatorial
graphs) and also their proofs will be similar.

Proof. We show the proof for N = 2, then one can easily extend the result for an arbitrary N by induction.
In general, both G1 and G2 have a certain number of disjoint connected components:

G
(1)
1 , . . . ,G

(m)
1 s.t. G1 =

m
⊔

j=1

G
(j)
1 , for some m ∈ N

and

G
(1)
2 , . . . ,G

(n)
2 s.t. G2 =

n
⊔

k=1

G
(k)
1 , for some n ∈ N.

Since the connectedness is just a topological property, notice that the connected components remain the
same for every choice of orientation.

Now assume that G is connected: we need to show that kerA1 ∩ kerA2 ⊆ 〈1〉. Thus, we take f ∈
kerA1 ∩ kerA2, in particular from the results in Proposition 5.2 it is well-known that f is constant on
each connected component of both G1 and G2. Take ξ = (x, eh) and θ = (y, el) in G and without loss of
generality we can assume that h 6= l. Hence, by connectedness of G, there exists a chain of adjacent edges
Γxy = {eh, ei1 , . . . , eiM , el} linking ξ and θ:

x ∈ eh ∼ ei1 ∼ · · · ∼ eiM ∼ el ∋ y.

In particular, edges in Γxy can be incident in G1 and/or in G2. Thus, taking into account that f is constant
on the connected components of both graphs, we deduce that f is constant along Γxy and in particular

f(ξ) = f(θ).
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Because ξ, θ are arbitrary, we conclude that f is constant.
In order to prove the opposite implication, we are going to show that if G is disconnected, then we can

find a non constant function such that f ∈ kerA1 ∩ kerA2. For simplicity, assume that G has only two
connected components: G(A) and G(B). Then, both contain a certain number of connected components of
G1 and G2. In particular, we set

JA =
{

j ∈ {1, . . . ,m} : G
(j)
1 ⊆ G(A)

}

, JB =
{

j ∈ {1, . . . ,m} : G
(j)
1 ⊆ G(B)

}

and

KA =
{

k ∈ {1, . . . , n} : G
(k)
2 ⊆ G(A)

}

, KB =
{

k ∈ {1, . . . , n} : G
(k)
2 ⊆ G(B)

}

.

Due to the fact that G is disconnected, it follows that

JA ∩ JB = ∅, KA ∩KB = ∅,
in fact there cannot exist some connected components of G1 or G2 shared by G(A) and G(B). This is always
true, even if, roughly speaking, we reverse the endpoints of some edge in one of the initial graphs. Since
the connected components of G1 and G2 are invariant under orientation, we will never find an orientation
for which some index j is in JA ∩ JB or some k is in KA ∩KB. Hence, taking the characteristic functions
on each connected component such that

kerA1 = 〈{11,j}mj=1〉 and kerA2 = 〈{12,k}nk=1〉,
it is always true that

(5.6)
∑

j∈JA

11,j = 1A =
∑

k∈KA

12,k

and

(5.7)
∑

j∈JB

11,j = 1B =
∑

k∈KB

12,k.

At this point, we only need to take some function of the form

f = α1A + β1B , α, β ∈ C

and from (5.6) and (5.7) one gets that f can be written as a linear combination of both bases of kerAi,
i = 1, 2:

f = α
∑

j∈JA

11,j + β
∑

j∈JB

11,j =⇒ f ∈ kerA1

and

f = α
∑

k∈KA

12,k + β
∑

k∈KB

12,k =⇒ f ∈ kerA2.

Thus, the proof is complete. �

In the end, we can finally state the following characterization of the asymptotic behavior of the solutions
to (5.4) in terms of the connectedness of the union graph. The proof is, at this point, a direct consequence
of Theorem 2.11 and Lemma 5.6.

Theorem 5.7. Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs that satisfy the As-
sumptions 2.1 and 5.3, respectively. Then the random propagator (S(t))t≥0 for the Cauchy problem (5.4)
converges in norm P-almost surely towards the orthogonal projector P0 onto the constants if and only if
the union graph G is connected.
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5.3. Randomly switching metric graphs with non-zero second eigenvalue. As we have previously
seen in the combinatorial setting, we are going to apply exponential convergence results in the framework
of metric graphs in case one (every) graph in C is connected. This follows from an application of Theorem
2.13 since connectedness of a graph is equivalent to the second eigenvalue being non-zero.

Assumption 5.8. G1 is a connected graph.

This immediately implies that the union graph G is connected, too, and PK = P0 is the projector onto
the constant functions on E. Then, Assumption 2.12 is verified since λ2(A1) < 0, owing to connectedness
of G1. The setting described here is somehow comparable to the diffusion equation presented in [3], in the
case when their semilinear term is set equal to zero. The dependence on time of that model is different
from the non-autonomous random evolution problem (5.4): while diffusion and conductivity coefficients
are in [3] allowed to vary over time (in a measurable fashion), yielding an operator family (A(t))t≥0, the
evolution is studied on one fixed graph. However – much like in our setting – the crucial point in [3] is
that the time average of the spectral gap of (A(t))t≥0 is bounded above away from zero. In their case,
this is enforced by assuming that the graph is connected and allows the authors of [3] to prove exponential
convergence to equilibrium. In our setting, the counterpart of [3, Thm. 5.4] reads as follows.

Corollary 5.9. Let (Z(t))t≥0 be a semi-Markov process and C be a family of graphs that satisfy the
Assumptions 2.1 and 4.2, respectively. Let additionally the Assumption 5.8 hold.

Then the random propagator (S(t))t≥0 for the Cauchy problem (5.4) converges in norm P-almost surely
exponentially fast towards the orthogonal projector P0 with an exponential rate no lower than

α = −
N
∑

j=1

λ2(Aj)Θj

that is the average of the eigenvalues λ2(Aj) with respect to the fraction of time Θj spent by the process
Z(t) in the various states.

Remark 5.10. As in the case of combinatorial graphs discussed in Remark 4.12, we can find in the
literature some estimate on the best possible value of the parameter α. In this case, we refer e.g. to the
estimates in [29, Théo. 3.1], [18, Thm. 1], and [21, Thm. 4.2]: for a generic connected metric graph G

−π2|E|2
L2

≤ λ2 ≤ −π2

L2
,

where the second inequality is an equality if and only if G consists of an interval; here |E| is the number of
edges and L is the total length of the graph (the sum of the lengths of the edges). Therefore, the parameter

α, that is the weighted average of −λ2(Ai) as Gi varies in C, is no lower than
π2

L2
(as long as the intersection

graph G∩ of all graphs in C is connected) and no higher than
π2|E|2
L2

.
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