
Computer Communications 213 (2024) 372–381

A
0

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Leveraging the edge and cloud for V2X-based real-time object detection in
autonomous driving
Faisal Hawlader ∗, François Robinet, Raphaël Frank
Interdisciplinary Centre for Security, Reliability, and Trust (SnT), University of Luxembourg, L-1855, Luxembourg

A R T I C L E I N F O

Keywords:
V2X
Object detection
Latency optimization
Edge computing
Cloud computing

A B S T R A C T

Environmental perception is a key element of autonomous driving because the information received from
the perception module influences core driving decisions. An outstanding challenge in real-time perception for
autonomous driving lies in finding the best trade-off between detection quality and latency. Major constraints
on both computation and power must be taken into account for real-time perception in autonomous vehicles.
Larger detection models tend to produce the best results but are also slower at runtime. Since the most accurate
detectors may not run in real-time locally, we investigate the possibility of offloading computation to edge and
cloud platforms, which are less resource-constrained. We create a synthetic dataset to train object detection
models and evaluate different offloading strategies. We measure inference and processing times for object
detection on real hardware, and we rely on a network simulation framework to estimate data transmission
latency. Our study compares different trade-offs between prediction quality and end-to-end delay. Following
the existing literature, we aim to perform object detection at a rate of 20Hz. Since sending raw frames over
the network implies additional transmission delays, we also explore the use of JPEG and H.265 compression
at varying qualities and measure their impact on prediction. We show that models with adequate compression
can be run in real-time on the edge/cloud while outperforming local detection performance.
1. Introduction

One of the core challenges in autonomous driving is to reliably and
accurately perceive the environment around the vehicle. Perception is
crucial to ensure safe driving because the information received from
this task influences the core driving decision which determines how the
vehicle should plan its path. However, perception requires processing
a large amount of sensor data (e.g. camera, LiDAR, radar) in real-time.
At the same time, the hardware embedded in vehicles is constrained by
both cost and power consumption. Running all detection tasks locally
can therefore require sacrifices on perception quality, in favor of real-
time operation. One alternative is to offload some computations where
resources are available. Compute capabilities are less limited on Multi-
access Edge Computing (MEC) platforms [1], and the best hardware is
available in the cloud. Offloading some computation to the cloud can be
appropriated in some situations [2]. However, data offloading to MEC
or cloud adds some additional transmission latency, which might not be
acceptable for time-sensitive applications. The integration of C-V2X [3],
supported by the latest 5G [4], presents an intriguing opportunity for
data offloading option to improve perception in autonomous driving.

The idea behind data offloading is to keep a computationally inten-
sive task in the MEC or cloud and perform lighter computations on the

∗ Corresponding author.
E-mail address: faisal.hawlader@uni.lu (F. Hawlader).

vehicle while maintaining high detection accuracy and respecting the
latency requirements. However, data offloading can result in increased
latency due to the time required to stream raw data between the vehicle
and the MEC or cloud [5]. To address this potential increase in latency,
we explore the use of H.265 [6], a video compression standard that
exploits the temporal relationships between frames [7], and JPEG, a
widely used method for image compression [8]. We evaluate these
compression techniques at varying qualities, and we measure their
impact on detection accuracy and end-to-end latency. Our investigation
focuses on the integration of H.265 and JPEG streaming with edge and
cloud platforms. By leveraging the computational capabilities of these
platforms, we demonstrate how the proposed streaming solutions can
be seamlessly integrated into the object detection pipeline, maximizing
detection quality while minimizing latency. We follow the existing
literature and aim to perform object detection at a rate of 20 Hz [9].
We investigate different variants of the YOLOv5 detection model [10],
which offer different trade-offs between detection quality and inference
time. As could be expected, Table 1 illustrates that larger models
generally perform better. However, higher performance comes at the
cost of increased computational requirements, hence adding additional
vailable online 23 November 2023
140-3664/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2023.11.025
Received 14 June 2023; Received in revised form 30 October 2023; Accepted 21 N
ovember 2023

https://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
mailto:faisal.hawlader@uni.lu
https://doi.org/10.1016/j.comcom.2023.11.025
https://doi.org/10.1016/j.comcom.2023.11.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2023.11.025&domain=pdf


Computer Communications 213 (2024) 372–381F. Hawlader et al.

T
t
o
o
d
c
o

2

2

a
l
d
M
c
T
p
c
s
t
t
r

h
u
i
o
e
t
i
r
t
c
S
p
a
c
t
c
o

m
J
t
t
I
l
e
s
p
s
h
t
o
o
b
t

2

a
c
a
l
c
a
p
a

inference latency. Given the limitations of computing resources avail-
able in a vehicle, using larger models could result in latencies that
exceed our 50 ms (20 Hz) requirements.

To evaluate the data offloading strategies proposed in this work, we
employ a combination of real hardware and simulation techniques to
comprehensively address the challenges in real-time object detection
for autonomous driving. Specifically, we leverage the CARLA [11]
simulator for environment rendering, camera sensor data generation,
and real computing devices for object detection inference and pro-
cessing time measurements. This approach allowed us to bridge the
gap between simulation and real-world conditions, ensuring the practi-
cal relevance of our findings. Moreover, we have leveraged the OM-
NeT++ [12], network simulation framework to accurately estimate
network latency. This integrated approach, which combines simulation
and real hardware, enhances the robustness of our research and the
applicability of our findings to real-world scenarios. In this study, we
are making the following contributions to the use of edge and cloud
technology for real-time perception in autonomous vehicles:

• We collect a synthetic dataset to train and validate object de-
tection models, utilizing the CARLA simulator [11]. This dataset
serves as a valuable resource for our evaluation of the proposed
offloading solutions. Furthermore, we contribute this synthetic
dataset as an open-source asset to ensure reproducibility, fa-
cilitate ongoing research, and foster collaboration within the
research community.1

• We investigate the transfer and processing of camera frames
on edge and cloud platforms. Using real hardware setups, we
measure processing latency, while data transmission latency is
assessed through a network simulation framework. Subsequently,
we analyze various trade-offs between prediction quality and
end-to-end latency.

• To optimize transmission latency, we demonstrate a comprehen-
sive framework that integrates H.265 and JPEG streaming using
edge and cloud platforms for C-V2X based real-time object detec-
tion in autonomous driving. This solution addresses the challenge
of transmitting camera sensor data with minimal latency while
maintaining high-quality object detection.

he rest of the paper is organized as follows. In Section 2, we review
he related literature. In Section 3, we describe the hardware used,
ur network simulation settings, and the training and evaluation of
ur object detectors. Section 4 presents the experimental results and
iscusses the different offloading trade-offs. Finally, in Section 5 we
onclude this work with an outline of our contributions and a discussion
f future work directions.

. Related work

.1. V2I communication

According to studies [13,14], autonomous vehicles typically lever-
ge vehicle-to-infrastructure (V2I) communication technology that al-
ows the vehicles to offload the task of sensor data processing to a
edicated server. The server could be placed on the edge using the 5G
EC [15] or in a cloud with higher computational resources [16]. V2I

ommunications are carried out using the upload/download path [3].
he autonomous car offloads the task to an edge or cloud server that
erforms computations and sends the results back to the car. In this use
ase, the local device performs only mandatory pre-processing tasks,
uch as compression/encoding [17]. Offloading sensor data to the cloud
hrough V2I introduces additional transmission latency [18]. According
o [3], this communication latency can be reduced using MEC, which
equires a lower transmission delay compared to the cloud. However,

1 Dataset available at: https://github.com/FaisalHawlader/V2X-Dataset.
373
Table 1
Average precision results for different model variants (AP@50). Model variants are
detailed in Section 3.1.

Model size

Small Large Large (high-res)

All (mAP) 0.64 0.66 0.85
Pedestrian 0.30 0.36 0.81
Traffic light 0.80 0.82 0.86
Vehicle 0.79 0.81 0.89

edge devices are also subject to limited resources that could limit
application needs. These limitations may potentially restrict application
requirements and, consequently, require further investigation to ensure
compliance with latency constraints.

2.2. Object detection and impact of compression

Object detection: Pioneering work in object detection has used
and-crafted procedures to extract features from raw images, before
sing them as inputs to one or more object detectors. Popular examples
nclude the Viola–Jones face detector based on Haar-like features [19],
r the Histogram-of-Gradient detector [20]. Recent years have seen the
mergence of two families of detectors based on deep neural networks:
wo-stage and single-stage models. Two-stage detectors first roughly
dentify regions that are likely to contain an object, before filtering and
efining these object proposals with a trained model [21–23]. Although
wo-stage models achieve impressive accuracy, their computational
omplexity makes real-time operation a challenge. To remedy this, the
SD [24] and YOLO [25] family of models propose combining region
roposal and refinement into a single operation. In YOLO, input frames
re divided into cells and a set of bounding boxes are predicted for each
ell. The YOLO detector can be trained end-to-end using a loss function
hat accounts for bounding box accuracy, objectness probabilities, and
lass assignments. Our work leverages YOLOv5 [10], a refined variant
f the original YOLO method.
Impact of compression on detection: To enable faster data trans-

ission for cloud inference, we study the impact of H.265 (video) and
PEG (image) compression on detection performance, for varying quali-
ies. Existing work has shown that JPEG compression negatively affects
he performance of models trained on uncompressed frames [26,27].
n the case of object detection, this effect is particularly noticeable at
ower compression qualities. Performances deteriorate rapidly for mod-
rate to heavy compression [26]. However, H.265 has recently gained
ignificant attention because it offers superior video compression com-
ared to its predecessor, making it an attractive choice for sensor data
treaming. Although H.265 offers improved compression efficiency,
igh-quality video streams may still require significant bandwidth for
ransmission. Bandwidth limitations in edge-to-cloud communication
r V2X networks may impact real-time streaming performance and
bject detection quality. Minimizing latency while maintaining the
enefits of H.265 or JPEG compression poses a challenge that needs
o be addressed.

.3. Perception using C-V2X communication

Leveraging the advancements of 5G technologies, particularly edge
nd cloud computing, there is potential for C-V2X technology to be in-
reasingly adopted and experimented [9,15,17]. However, widespread
pplication of C-V2X remained mostly in the experimental phase, with
arger-scale deployments expected to follow as the 5G infrastructure
ontinues to evolve and mature. C-V2X qualifies to support advanced
pplications [28,29], such as collective perception [30]. Processing of
erception sensor data using the onboard vehicle computer might not
lways be an option due to the limited computational power [16].

https://github.com/FaisalHawlader/V2X-Dataset


Computer Communications 213 (2024) 372–381F. Hawlader et al.
Table 2
Based on inference time 50 ms constraints, we selected distinct platforms to run three
models of different sizes. Fig. 1 compares inference times for different models and
platforms.

Platform Scenario/Model Hardware configuration

Local YOLOv5 small NVIDIA Jetson Xavier NX SoC
(≈20 W) 157 layers, 7M params Volta GPU, 384 CUDA cores

640 × 640 Resolution Carmel ARMv8.2 CPU@1.9 GHz

Edge YOLOv5 large Laptop with GeForce GTX 1650
(≈100 W) 267 layers, 46M params Turing GPU, 896 CUDA cores

640 × 640 Resolution Intel i9-9980HK @2.4 GHz

Cloud YOLOv5 large high-res HPC node with Tesla V100
(≈450 W) 346 layers, 76M params Volta GPU, 5120 CUDA cores

1280 × 1280 Resolution Intel Xeon G6132 @2.6 GHz

However, collective perception using the V2X service allows cars to po-
tentially offload sensory data to edge and cloud for resource-intensive
computations [14,31]. Perception data processing in MEC or the cloud
appears to be a viable option for autonomous driving, which has been
the subject of many studies [3,14,16,17]. However, the perception of
surrounding objects requires real-time detection, which demands rapid
processing and low latency. This cannot be arbitrarily achieved, as it is
heavily dependent on where the data is processed. In [30,32,33], differ-
ent sensor data offloading strategies have been presented, ranging from
raw data offloading to partially or completely processed data offloading
to save network resources. However, their approach emphasizes data
communication to reduce transmission overhead without evaluating
the impact on perception quality. In principle, offloading raw sensor
data is excellent for perception accuracy [34], but could increase
transmission costs [35]. However, offloading compressed data can save
network resources, but it might degrade detection quality [36]. To the
best of our knowledge, the literature does not yet provide a study of
the trade-off between detection quality and end-to-end processing.

3. Methodology

This section describes our initial efforts toward estimating the end-
to-end delay of real-time object detection. Following existing work, our
objective is to perform object detection at a rate of 20 Hz without
degrading the detection quality [9]. In this context, the end-to-end
delay heavily depends on where we perform the computation. If the
car chooses to offload the data to the edge/cloud, it must exchange the
raw data, which V2X technologies may not support due to bandwidth
constraints [35].

3.1. Motivation & hardware

The limited computing resources and energy consumption make it
difficult to detect objects in the car. Therefore, the computations are
offloaded where the resources are available. However, reaching high
detection quality and decreasing the inference delay remain challeng-
ing [37]. To better understand the problem and solve it, we performed a
series of experiments on actual hardware setups. The hardware configu-
rations are shown in Table 2, where local represents the onboard device
of an autonomous car that has limited processing power. However, the
compute capabilities are less constrained on edge platforms, and hard-
ware only available in the cloud. This choice is made based on existing
research [17,38]. To perform object detection, we use YOLOv5 [10],
as it has been demonstrated to have superior performance in terms of
accuracy and latency on state-of-the-art benchmark [39,40]. YOLOv5
offers various model sizes ranging from small to large. We observe that
larger models are beneficial for detection quality (see Table 1), but
there are inference timing constraints that must be taken into account.
In this context, we aim to identify the best model for each platform
that satisfies the time constraint. We use Fig. 1 to determine which
374

model we can run on each platform. The inference time in Fig. 1 shows
Fig. 1. Model inference time comparison between different model sizes on different
platforms. We use half-precision floating-point computation at inference time in order
to speed up computation. The dashed line depicts the target 20 Hz latency for real-time
object detection in autonomous driving scenarios.

that the larger model has an inference time of more than 50 ms and as
such is not suitable to run on the local platform. In view of the 20 Hz
detection rate constraint, we decided to investigate the use of the small
model on the local hardware, the large on the edge, and the large high-
res one on the cloud. The exact YOLOv5 versions and the corresponding
input resolutions are summarized in Table 2.

3.2. Networking aspects

In this section, we describe the main elements of the 5G Radio
Access Network (RAN) and show how to use the network simulation
framework to measure end-to-end network delays for a real-time object
detection model supported by cloud infrastructure. To simulate the 5G
data plane, we used Simu5G [3] which is a OMNeT++ based discrete
event network simulation library [41]. It is worth noting that we
specifically used release 16 of the standard. We focus on two scenarios,
namely, perception data offloading with MEC and perception data
offloading with cloud, leveraging the capabilities of C-V2X communi-
cation. The network environment we consider consists of a RAN and
a 5G Core Network (CN). The RAN has a single 5G base station (BS),
and one user equipment (UE) is attached to the BS, which is a vehicle
in this use case [42]. Furthermore, we placed a MEC host at a distance
of 500 m to the BS, establishing a wired network connection between
them. This strategic placement ensures that the MEC system can closely
interact with the BS, enabling rapid information exchange. The gNB is
then connected to a cloud server via CN. The different components of
the framework are shown in Fig. 2. We used a static setup in which the
vehicle remained stationary throughout the experiments. We acknowl-
edge, static setup is a limitation of our study, as it does not accurately
reflect real-world scenarios where mobility is common. However, we
believe that it does not significantly undermine the validity of our
findings, particularly in relation to network latency, which is relatively
small.

5G Core Network (CN): we consider a standalone version of the
5G core network [43], which meets our requirements and is also
available for simulation. A Point-to-Point (PPP) network interface is
used to connect gNB to the cloud through a wired connection [12].
The GPRS [18] tunneling protocol (GTP) is used to route IP datagrams
(UDP) and establish a communication between gNB and the cloud.

Multi-access Edge Computing (MEC): The applications of MEC are
growing and several standardization initiatives are being carried out
to provide a successful integration of MEC into the 5G network [44].
This work considers a simplified MEC host-level architecture in ac-
cordance with the European Telecommunications Standards Institute



Computer Communications 213 (2024) 372–381F. Hawlader et al.
Fig. 2. Architecture of the end-to-end network simulation, showing the main elements of the 5G radio access network (RAN), including the multi-access edge computing (MEC)
host-level components with a User Equipment (UE).
(ETSI) Ref. [15]. In our case, an MEC host is co-located with gNB
as shown in Fig. 2. The MEC host provides various modules that
allow MEC applications to operate efficiently and seamlessly. The MEC
applications run in a virtual environment and the resource manager
orchestrates the life cycle of those applications. The Virtualisation
Manager allocates, manages, and releases virtualised aids such as com-
puting, storage, and networking resources. The MEC host also includes
a GTP protocol, which means that it can be located anywhere on the
network. Following existing work, we placed the MEC 500 m away from
the gNB [3]. A PPP wired connection with 100G data rate is used to
connect the MEC to gNB [45].

5G base station (gNB): In the case of the scenario considered, gNB
is configured with protocol up to Layer 3 and supports two network
interface cards. One for PPP wired connectivity to connect the core net-
work and the other for the radio access network. The internal structure
of the two network cards is shown in Fig. 2. The PPP connection uses
the GTP protocol, which has the same architecture as CN. On the other
hand, the radio access network card has four modules. The topmost
is the packet data convergence protocol (PDCP), which receives IP
datagrams, performs ciphering, and sends them to the radio link control
layer (RLC). RLC service data units are stored in the RLC buffer and
retrieved by the underlying Media Access Control layer (MAC) when
a transmission is required. The MAC layer aggregates the data into
transport blocks, adds an MAC header, and sends everything through
the physical layer (PHY) for transmission; for more details, we refer the
reader to the Simu5G documentation [3].

User equipment (UE): As defined in the ETSI [15] and 3GPP
specifications [46], user equipment is any device used by the end
user. In our case, the user equipment refers to a car that is connected
to the gNB, and equipped with C-V2X protocol stacks. We choose C-
V2X because it is a 3GPP defined standard for connected mobility
applications and works with 5G NR technology that is also available
for simulation. It is important to mention that we used C-V2X only
for bidirectional Vehicle-to-Infrastructure communications following
the application needs. And the application we are focusing on is the
offloading of perception data to the edge and cloud for real-time object
detection. As part of the development policies and the implementation
of Simu5G the UE has dual NIC to allow dual connectivity for both
LTE [16] and 5G NR [29], as shown in Fig. 2.

3.3. Perception aspects

Dataset generation: In order to train the YOLOv5 models described
in Table 2, we built a synthetic dataset using the CARLA simula-
tor [11]. CARLA allows us to simulate a camera-equipped car driving
375
Table 3
Important network parameters with throughput and packet loss ratio for a stationary
test. The averages are computed over 200 repetitions.

Parameter name Value

Carrier frequency 3.6 GHz [47]
gNB Tx power 46 dBm
Path loss model [3], Urban Macro (UMa)
Fading + Shadowing model Enable, Long-normal distribution
Number of repetitions 200
Path loss model 3GPP-TR 36.873 [48]
UDP packet size 4096 B [49]
Throughput 113.94 Mbit/s (Avg.)
Numerology (𝜇) 3
Latency (Vehicle-to-Edge) 0.43 ms (Avg.)
Latency (Vehicle-to-Cloud) 0.45 ms (Avg.)
Packet loss ratio 0.0001

in a rendered town environment, specifically under different weather
conditions. However, in this study, we only considered clear daylight
weather conditions. Additionally, it provides access to ground truth
bounding boxes for three classes of interest: vehicles, pedestrians, and
traffic lights.

We run the simulation to collect ten thousand camera frames, taken
at 1 Hz from the front of the ego-vehicle. We also collect ground truth
3D bounding boxes, which we project into camera frame coordinates to
obtain 2D bounding boxes usable for training and evaluating YOLOv5.
The dataset is split into three subsets: 6000 frames are used for training,
2000 for validation, and the remaining 2000 frames for testing. Table 4
presents the distribution of instances in different classes and provides
essential information on the composition of the data set, where the first
column denotes partitioning for different purposes. A notable aspect
of this distribution is the considerably lower number of pedestrian
instances compared to traffic lights and vehicles across all subsets. This
imbalance may influence the performance of models trained on the
dataset, potentially making them less proficient in detecting pedestri-
ans compared to traffic lights and vehicles. Further analysis or data
collection may be necessary to ensure representative and balanced data
across all classes for more reliable results.

3.4. Exploring compression settings

We explore the influence of varying compression qualities on the
volume of data to be transmitted to the edge or cloud. Our in depth
analysis of various compression levels aims to identify the most



Computer Communications 213 (2024) 372–381F. Hawlader et al.

q
q
6

r
s
d

f
r
c
i

s
c
i
T
s
v
d
o

Table 4
Dataset composition and instance counts per class.

Class

Pedestrians Traffic lights Vehicles

Train 12 916 43 418 33 351
Validation 2164 8272 11 295
Test 1756 11 115 7897

Total 16 836 62 805 52 576

Fig. 3. The figure illustrates the mean data sizes for various JPEG compression
ualities, namely JPEG-H (high quality), JPEG-M (medium quality), JPEG-L (low
uality), and JPEG-VL (very low quality). We considered two distinct image dimensions:
40 × 640 for the edge and 1280 × 1280 for the cloud.

esource-efficient settings that can potentially optimize network re-
ources and reduce the transmission latency, while preserving superior
etection quality.
JPEG compression is a widely used compression algorithm known

or its ability to strike a balance between image quality and file size
eduction. It uses a lossy compression algorithm that selectively dis-
ards visual information to decrease file size. The compression level
s largely controlled by a quality parameter, the Q-value, which ranges

from 0 to 100. Higher Q-values preserve more details but result in larger
sizes. In this study, we evaluated JPEG compression across a spectrum
of quality levels from high quality (JPEG-H) to very low quality (JPEG-
VL), while maintaining the default values for other parameters. The
results, displayed in Fig. 3, demonstrate the mean data sizes associated
with various JPEG qualities. For further investigation, we defined
four distinct scenarios: JPEG-H (high quality) at Q-value 100, JPEG-M
(medium quality) at 80, JPEG-L (low quality) at 30, and JPEG-VL (very
low quality) at 10.

H.265 compression when using H.265 compression for camera
ensor data streaming, several configuration and parameter settings
an be adjusted. The selection of these parameters plays a pivotal role
n navigating the balance between compression quality and latency.
hese settings include, but are not limited to, parameters such as Con-
tant Rate Factor (CRF), presets, and lookahead settings, each offering
arious degrees of control over the encoding trade-off. The following
iscussion will elaborate on these parameters and their impact on the
verall outcome.

• H.265 Frames: The fundamental computation of H.265 encod-
ing starts with the estimation of three different frame types:
I-frames (intra-coded frames), P-frames (predictive frames), and
B-frames (bidirectional predictive frames). Each of these uniquely
contributes to overall efficiency. The I-frame (known as the key
frame) serves as the foundation, with all subsequent P-frame and
B-frame relying on it. The principle of I-frames is based on the
376

fact that neighboring pixels within an image often exhibit high
similarity. Minor differences between these adjacent pixels can
be encoded using fewer bits, reducing the overall size.
The P-frames differ from the I-frames in that they are not self-
contained. Instead, the P-frames contain only the changes in the
stream from the previous frame. More specifically, a P-frame uses
the prior I-frame or P-frame to encode the current frame, and
hence making them predictive. They look at what has changed
(such as the movement of objects) since the previous frame. If
nothing has changed, no data need to be streamed, which is where
much of the compression is achieved. If parts of the frame have
changed, only the changes need to be encoded and streamed over
the network.
However, B-frames refer to both the previous and future frames to
achieve higher compression efficiency. They increase the encod-
ing complexity and introduce some latency, but result in smaller
file sizes and better quality. When H.265 is configured without B-
frames, only I-frames and P-frames are used, reducing complexity
and latency.

• Lookahead allows the encoder to examine future frames before
encoding the current frame. This can increase compression effi-
ciency and stream data quality, but can also introduce latency. If
no lookahead is applied, this means that the encoder is not ex-
amining future frames before encoding the current frame. For the
use case presented here, B-frames cannot be created since waiting
for future information to encode the current frame implies an
unacceptable increase of latency. Instead, stream compression
may only rely on I-frames and P-frames. This setup is less efficient
in terms of data compression compared to when B-frames are
used, but it reduces latency and is suitable for real-time object
detection in autonomous driving.

• Constant Rate Factor (CRF): strives to maintain a steady visual
quality taking into account the complexity and motion within
each frame. The H.265 compression assigns CRF values ranging
from 0 to 51, which serve as quality-controlled variables affecting
the bitrate. For instance, the CRF value can be adjusted to control
the trade-off between quality and data size that needs to be
transmitted to the edge/cloud. A lower CRF value gives higher
quality but a larger data stream size. Conversely, a higher CRF
value provides a smaller frame size but lower quality.

Using all possible CRF values, we performed a trade-off analysis to
identify the optimal CRF for our real-time object detection use case.
The lookahead functionality remained deactivated, and B-frames were
excluded, while the rest of the parameters were set to their default
values using FFmpeg [50]. In the absence of B-frames and lookahead
in the encoding setup, a notable reduction in both computational
complexity and latency was observed. These findings are particularly
beneficial for applications that require real-time stream data transmis-
sion, where lower latency is a critical requirement. The results of these
experiments, depicted in Fig. 4, illustrate the relationship between the
CRF values and the resulting data size. Lower CRF values, which are
indicative of higher quality, are correlated with larger data sizes. In
contrast, increasing the CRF value leads to a reduction in the size of
the data. This clearly demonstrates the trade-off between data size
and the range of quality levels from high quality (H.265-H) to very
low quality (H.265-VL). These observations will inform our decision-
making on the quality levels that will be investigated further. For
further investigation, we defined four distinct scenarios: H.265-H (high
quality) at CRF 0, H.265-M (medium quality) at 24, H.265-L (low
quality) at 30, and H.265-VL (very low quality) at 51. We considered
two distinct image dimensions: 640 × 640 for the edge scenario and
1280 × 1280 for the cloud scenario. To facilitate a comprehensive
evaluation, we categorized our analysis into four specific scenarios,
each representing a different quality level in H.265 compression. We
assigned CRF 0 to H.265-H for high quality, CRF 24 to H.265-M for
medium, CRF 30 to H.265-L for low, and finally, CRF 51 to H.265-VL

for very low quality, as demonstrated in Fig. 4.



Computer Communications 213 (2024) 372–381F. Hawlader et al.
Fig. 4. Mean data sizes for various H.265 compression factor, namely H.265-H (high
quality), H.265-M (medium quality), H.265-L (low quality), and H.265-VL (very low
quality). We considered two distinct image dimensions: 640 × 640 for the edge scenario
and 1280 × 1280 for the cloud scenario.

Training Protocol: All models are trained for 100 epochs on a
single NVIDIA Tesla V100. We use the Adam optimizer with an initial
learning rate of 0.001. In order to speed up training, we set the batch
size to the maximal value that fits in GPU memory for each experiment.

4. Results

This section describes the experiments carried out to evaluate our
proposed data offloading strategies. Experiments are performed utiliz-
ing the framework setup described in Table 2. Our analysis focuses on
two critical key performance indicators, which are end-to-end delay
and quality of detection. The close monitoring of these metrics enables
the identification of potential bottlenecks or inefficiencies in real-time
object detection for autonomous driving, ensuring that the vehicle
responds accurately and in a timely manner to its surroundings.

4.1. End-to-end delay evaluation

To be able to compare the performance/latency trade-off of the
three scenarios described in Section 3.1 and Table 2, we first measure
their end-to-end delays.

In the case of the local platform, the delay depends only on the
inference time on the onboard hardware. Note that non-maximum
suppression (NMS) & input preprocessing are included in our inference
time measurements, in addition to the forward pass of the model. By
considering these integral components, we obtain a local end-to-end
delay of 19.5 ms. This latency forms a critical part of our performance
analysis, reflecting the efficiency of processing data locally without
using any offloading strategies.

For the second and third scenarios, we evaluate the data offloading
strategy between the car and edge or cloud platforms. Network latency
is measured using the end-to-end simulation framework presented in
Fig. 2. The important network simulation parameters with throughput
and packet loss ratio are summarized in Table 3. In these situations, the
end-to-end delay includes compression, transmission, decompression
and inference. Although the time required to send the results back is
not directly indicated, we assume an additional latency of 0.43 ms for
the transmission delay, predicated on the notion that the raw detection
results can be accommodated within a single packet. This assertion is
supported by the data from Table 3, which shows that a single packet
of size 4096 B takes approximately 0.43 ms (Avg.) to travel from the
edge/cloud to the vehicle.

Sending raw uncompressed frames to remote platforms results in
large transmission delays because of the size of the data. We measured
an average end-to-end latency of 123.2 ms in the vehicle-to-edge sce-
nario. This delay rises to 521.7 ms in the vehicle-to-cloud scenario due
377

to the higher quality frame being processed by the cloud model. Since
these delays are not acceptable in most practical perception scenarios,
we investigated the use of various compression strategies specified in
Section 3.4 to reduce the volume of camera sensor data that needs to
be transmitted to the edge or cloud over the network. Compression
always occurs on the local device, and decompression happens either
on the edge or cloud device, depending on the scenario. As illustrated
in Table 5, compression can drastically reduce the size of the frame to
be transmitted, allowing real-time remote object detection when C-V2X
is available.

Table 5 illustrates a comprehensive analysis of the data size and
end-to-end delay for edge and cloud scenarios under varying JPEG
and H.265 compression qualities. When examining the edge scenario,
the data size without compression is 1.23 MB, causing an end-to-end
delay of 123.20 ms. The introduction of high quality JPEG compression
significantly reduces the data size to 174.12 kB (i.e. 13.82% of the
original), and the end-to-end delay accordingly decreases to 59.48 ms.
As the quality of JPEG compression is further reduced, we see a
concomitant decrease in both data size and end-to-end delay, reaching
as low as 9.48 kB (or 0.75% of the original size) and a 37.27 ms
delay with JPEG very Low compression. We also observed significant
improvements with H.265 compression. By exploiting the temporal
relationships between frames, H.265 is able to minimize the data size
to 0.26 kB (or 0.01% of the original size), thus achieving a delay of
37.47 ms in a very low setting.

In the cloud scenario with no compression, the data size is consider-
ably larger, starting at 4.92 MB with an end-to-end delay of 521.7 ms.
However, similar to the edge scenario, the implementation of JPEG
compression and H.265 compression shows a reduction in both the size
of the data and the delay. With very low JPEG compression, the data
size is reduced to 28.60 kB (or 0.6% of the original size) and results in
a delay of 29.42 ms. With H.265 compression at a very low setting, the
data size decreases to 0.69 kB (or 0.01% of the original) and the delay
reduces to 27.78 ms. Table 5 conclusively demonstrates that the use of
compression techniques can significantly reduce data size and latency
in both vehicle-to-edge and vehicle-to-cloud scenarios. A breakdown
and further details of these end-to-end delays are provided in Fig. 5.
In all cases, compression and decompression have a negligible impact
on the overall delay. As expected, network transmission increases with
the amount of data to be transmitted. Inference latency are constant
for a given platform, as the same model and input resolution are
considered. In terms of end-to-end delay, all compression qualities are
viable for real-time operation at 20 Hz on both platforms, except JPEG-
H. The next section will investigate how compression impacts detection
quality.

4.2. Analyzing detection quality

In order to obtain a complete picture of detection quality, measuring
only Precision and Recall is insufficient. We follow the object detection
literature and compute the Average Precision (AP), which is the area
below the Precision-Recall curve. A detection is considered a true pos-
itive if its Intersection-over-Union (IoU) with a ground truth bounding
box exceeds 50%. In order to derive a single metric for all classes,
the per-class APs are averaged to obtain the Mean Average Precision
(mAP).

As already discussed, the end-to-end delay can be significantly
reduced using various compression techniques. However, excessive
compression affects the detection quality, degrading the mAP. This
section aims to determine the best trade-offs between detection qual-
ity and end-to-end latency. These trade-offs are illustrated in Fig. 6.
As expected, the local operation is the fastest in terms of latency
(19.5 ms) and obtains 64% mAP. As demonstrated in Fig. 6, the
cloud platform consistently outperformed the edge platform in terms
of mAP and end-to-end latency trade-off in all comparable compression
techniques. For example, on the cloud platform, when using H.265-

H compression, the mAP reaches 82%, but the end-to-end delay is



Computer Communications 213 (2024) 372–381F. Hawlader et al.
Table 5
Data size and end-to-end delay for both edge and cloud scenarios under different
JPEG and H.265 compression qualities. The final column refers to the end-to-end delay
in a vehicle-to-edge/cloud scenario. Fig. 5, illustrates a detailed breakdown of these
delays.

Platform JPEG quality Avg. data size (% of
original)

End-to-end
delay (ms)

No compression 1.23 MB (100%) 123.20

JPEG-H 174.12 kB (13.82%) 59.48
JPEG-M 40.78 kB (3.24%) 43.59
JPEG-L 17.86 kB (1.42%) 39.62

Edge
640 × 640

JPEG-VL 9.48 kB (0.75%) 37.27

H.265-H 100 kB (2.00%) 48.65
H.265-M 4.20 kB (0.09%) 41.61
H.265-L 1.80 kB (0.04%) 38.51
H.265-VL 0.26 kB (0.01%) 37.47

No compression 4.92 MB (100%) 521.7

JPEG-H 604.38 kB (12.00%) 74.50
JPEG-M 125.51 kB (2.50%) 40.71
JPEG-L 53.78 kB (1.13%) 32.93

Cloud
1280 × 1280

JPEG-VL 28.60 kB (0.6%) 29.42

H.265-H 220 kB (4.37%) 46.93
H.265-M 11.20 kB (0.22%) 30.21
H.265-L 4.69 kB (0.09%) 28.72
H.265-VL 0.69 kB (0.01%) 27.78

Fig. 5. Breakdown of average end-to-end delay (ms) into compression overhead,
network transfer and inference times. The dashed line represents the 20 Hz latency
constraint for real-time object detection.

46.93 ms. Interestingly, when using the H.265-M compression scenario,
the mAP remains the same, but the delay is significantly reduced to
29.21 ms. Despite adjusting the CRF to 24 in H.265-M for enhanced
compression, the mAP remained consistent at 82%, demonstrating that
object detection performance was not compromised. The key revelation
here is the substantial reduction in end-to-end delay, which plummeted
to 29.21 ms. This can be attributed to the underlying principles of
the CRF in the H.265 codec, which adeptly optimizes the trade-off
between video quality and file size. Even with higher compression, es-
sential object detection features and details are preserved. The observed
reduction in file size led to improved data transmission efficiency,
resulting in a remarkable decrease in end-to-end delay. In essence, the
H.265-M compression scenario proves to be an attractive solution for
real-time object detection on cloud platforms, where it maintained con-
sistent detection accuracy while significantly improving responsiveness
by reducing delay. Furthermore, lowering the compression quality to
H.265-L slightly decreases the mAP to 72% and reduces the delay to
378
Fig. 6. Trade-off between mean average precision (mAP) and end-to-end delay for
different platforms and compression qualities. The end-to-end delay corresponds to the
total of compression, network, decompression, and object detection inference delays.
Very-low quality settings for both H.265-VL and JPEG-VL are not included, since
their mAP fell below 10%, an unacceptable detection rate regardless of the reduced
end-to-end delays.

28.72 ms. Fig. 6 also shows an increase in mAP from 58% (JPEG-
L) to 81% (JPEG-M), reaching 85% (JPEG-H) when considering JPEG
compression techniques in the cloud. At the same time, the delay
increases from 32.93 ms (JPEG-L) to 40.71 ms (JPEG-M) and peaks
at 74.50 ms (JPEG-H). Although the highest detection quality (85%
mAP) is achieved with JPEG-H compression, this comes at the cost of
an increased end-to-end latency of 74.5 ms, which is not suitable for
real-time object detection at 20 Hz. Nevertheless, it can still be used
for applications where 10 Hz is an acceptable latency. For instance,
in tasks that require long-range planning and decision-making, such
as route planning and trajectory optimization, the slightly increased
latency may not significantly impact overall system performance. These
applications can still benefit from our analysis by strategically balanc-
ing detection quality and latency while utilizing Edge/Cloud, making
it a suitable solution for real-world applications.

In the edge scenario, considering the H.265-High compression set-
ting results in a mAP of 67%, accompanied by an end-to-end delay
of 48.65 ms. For H.265-M and H.265-L, the mAP gradually decreases
to 57% and 45%, with corresponding delay reductions of 41.61 and
38.51 ms. This trend is interesting, particularly in comparison to the
cloud scenario. However, it aligns with previous investigations [51–
53], which indicated that H.265 tends to perform better with high-
resolution input images. In the JPEG case, the mAP increases from
51% (JPEG-L) to 66% (JPEG-M) and then to 67% (JPEG-H), while
the delay increases from 39.62 ms (JPEG-L) to 43.59 ms (JPEG-M),
reaching 59.48 ms (JPEG-H). Therefore, the edge scenario examined
here is not advantageous over offloading to the cloud device. The use
of better edge hardware specifically designed for mid-power inference
rather than a traditional consumer GPU could most likely result in
more competitive performance from the edge platform. On the other
hand, the cloud platform is interesting, as it offers better performance
with both JPEG and H.265, with 81% (JPEG-M) and 82% (H.265-H)
mAP, respectively. Meanwhile, end-to-end delays are kept under 50 ms,
respecting the 20 Hz constraint. Although compression is necessary
for real-time operation on edge and cloud platforms, we observe its
negative impact on detection quality. At extreme compression levels,
remote detection mAP can drop below local performance while tak-
ing longer, rendering offloading harmful. For example, when using
very low-quality settings for both H.265-VL and JPEG-VL in cloud
or edge scenarios, the mAP dropped below 10%. This is considered
unacceptable, regardless of the reduced end-to-end latency. We also



Computer Communications 213 (2024) 372–381F. Hawlader et al.
Fig. 7. Visualization of the number of detected pedestrians, vehicles and traffic light in the cloud platform on different H.265 compression settings. A detection is considered only
if its IoU with a ground truth bounding box exceeds 50%. Ground truth: 8 traffic lights, 8 vehicles and 2 pedestrians.
evaluate the detection quality separately for the three classes of inter-
est: pedestrians, vehicles, and traffic lights. A visual representation is
shown in Fig. 7. The purpose of this evaluation is to understand the
impact of compression on different classes. The results are shown in
Table 6. We observe that compression has a disproportionate impact
on Average Precision (AP) for classes that are typically smaller in scale.
We benchmark the performance of various compression settings with
the corresponding platforms against the baseline scenario, i.e. the local
platform operating without any compression. The local platform perfor-
mance shows an AP of 30% for pedestrian detection and achieves an AP
of 79% and 80% for vehicle and traffic light detection, respectively. The
Table 6 demonstrate that the use of a cloud platform, compared to local
and edge platforms, led to significant performance improvements for
pedestrian detection, particularly with medium compression settings
for both JPEG-M (+116%) and H.265-M (+130%). In particular, high-
quality compression (JPEG-H and H.265-H) enables both edge and
cloud platforms to outperform the local scenario, with a cloud platform
improving pedestrian detection by 166% (JPEG-H) and 126% (H.265-
H) and an edge platform achieving a 20% increase in AP in both cases.
Although all platforms perform similarly for vehicle and traffic light
detection with high and medium compression settings, the performance
decreases noticeably at lower compression settings. Under very low
quality compression (JPEG-VL and H.265-VL), the AP for all three
classes drops on both platforms, underlining the limitations of excessive
compression. These findings underline the potential of edge and cloud
platforms, paired with appropriate compression settings, to improve
object detection performance relative to a local platform, especially
for pedestrian detection. However, the benefits diminish with lower
compression quality, emphasizing the need to strike the right balance
between compression level and detection performance for real-time
object detection in autonomous driving.

5. Conclusion and future work

In this work, we have explored the possibility of real-time remote
object detection. Although larger models perform better, they also
require higher computational power. Considering cost and power con-
straints in autonomous vehicles, the very best models cannot run locally
in real-time. To solve this problem, we have proposed different strate-
gies to offload object detection to edge or cloud devices using C-V2X.
We have compared these strategies in terms of their detection quality
379
Table 6
Per-class AP for different compression qualities and platforms. The input qualities are
640 × 640 for the local and edge platforms, and 1280 × 1280 for the cloud model.
The baseline local model is highlighted in gray color, while all the models that are
competitive, meeting both the mAP and latency constraint, are bolded.

Compression Platform Pedestrian
(+% of local)

Vehicle
(+% of local)

Traffic light
(+% of local)

No compression
Local 0.30 (0%) 0.79 (0%) 0.80 (0%)
Edge 0.36 (+20%) 0.81 (+2%) 0.82 (+2%)
Cloud 0.81 (+170%) 0.89 (+12%) 0.86 (+7%)

JPEG-H Edge 0.36 (+20%) 0.80 (+1%) 0.82 (+2%)
Cloud 0.80 (+166%) 0.89 (+12%) 0.86 (+7%)

JPEG-M Edge 0.41 (+36%) 0.83 (+5%) 0.78 (−2%)
Cloud 0.65 (+116%) 0.88 (+11%) 0.85 (+6%)

JPEG-L Edge 0.35 (+16%) 0.77 (−2%) 0.74 (−7%)
Cloud 0.43 (+43%) 0.84 (+6%) 0.81 (+1%)

JPEG-VL Edge 0.23 (−23%) 0.73 (−7%) 0.55 (−31%)
Cloud 0.24 (−20.00%) 0.78 (−1%) 0.62 (−22%)

H.265-H Edge 0.36 (+20%) 0.80 (+1%) 0.83 (+3%)
Cloud 0.68 (+126%) 0.83 (+5%) 0.83 (+3%)

H.265-M Edge 0.25 (−16%) 0.78 (−1%) 0.82 (+2%)
Cloud 0.69 (+130%) 0.84 (+6%) 0.82 (+2%)

H.265-L Edge 0.04 (−86%) 0.59 (−25%) 0.72 (−10%)
Cloud 0.51 (+70%) 0.82 (+3%) 0.82 (+2%)

H.265-VL Edge 0.01 (−96%) 0.02 (−97%) 0.03 (−96%)
Cloud 0.03 (−90%) 0.23 (−70%) 0.04 (−95%)

and compliance with end-to-end latency requirements. To evaluate the
proposed strategies, we have generated a synthetic dataset and have
trained different variants of the YOLOv5 architecture. Using an end-to-
end 5G network simulation framework, we have measured the network
latency incurred when transferring camera frames for processing on
the edge and cloud. We have also analyzed how the use of heavy
compression can reduce the frame size by up to 98% when using JPEG
and H.265 to enable real-time remote processing.

We showed that models with adequate compression can be run
in real-time on the edge/cloud while outperforming local detection
performance. The experimental results demonstrated that the H.265
(video) compression technique generally offers better performance in
terms of detection quality and end-to-end latency trade-off compared
to JPEG (image), particularly in the cloud scenario. However, there are



Computer Communications 213 (2024) 372–381F. Hawlader et al.
scenarios where JPEG compression is still sufficient and can be used,
such as where 10 Hz is an acceptable latency. Our experimental results
show that excessive compression affects the detection quality compared
to raw frames, particularly for the pedestrian class.

Future work will focus on testing the offloading strategies in dif-
ferent driving environments. Since local perception is still needed as
a fallback to cope with bad connectivity, we plan on investigating
the impact of mode switching between local and remote processing
on detection quality and latency. Additionally, we will examine the
influence of mobility on network latency, considering factors such
as signal strength, handovers, obstacles, interference, and network
congestion. Furthermore, we aim to evaluate the scalability of our
system beyond a single base station and UE. This future work will
encompass scenarios involving multiple base stations and UEs, with a
specific focus on cooperative perception solutions. We intend to explore
a range of configurations to provide a comprehensive understanding of
how our system behaves under different loads and network conditions
as it scales. We believe that such an analysis will provide valuable
insights into the broader applicability and performance validity of our
approach.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Faisal HAWLADER reports financial support was provided by National
Research Fund Luxembourg (FNR). If there are other authors, they
declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work
reported in this paper.

Data availability

Data will be made available on request.

Acknowledgments

This research was funded in whole, or in part, by the Luxembourg
National Research Fund (FNR), grant reference 17020780. For the
purpose of open access, and in fulfilment of the obligations arising from
the grant agreement, the author has applied a Creative Commons At-
tribution 4.0 International (CC BY 4.0) license to any Author Accepted
Manuscript version arising from this submission.

References

[1] F. Hawlader, F. Robinet, R. Frank, Vehicle-to-infrastructure communication for
real-time object detection in autonomous driving, in: 2023 18th Wireless on-
Demand Network Systems and Services Conference (WONS), IEEE, 2023, pp.
40–46.

[2] A.B. De Souza, P.A. Rego, T. Carneiro, J.D.C. Rodrigues, P.P. Reboucas Filho,
J.N. De Souza, V. Chamola, V.H.C. De Albuquerque, B. Sikdar, Computa-
tion offloading for vehicular environments: A survey, IEEE Access 8 (2020)
198214–198243.

[3] G. Nardini, G. Stea, A. Virdis, D. Sabella, Simu5G: a system-level simulator for
5G networks, in: SIMULTECH 2020, INSTICC, 2020, p. 23.

[4] M.H.C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T.
Şahin, A. Kousaridas, A tutorial on 5G NR V2X communications, IEEE Commun.
Surv. Tutor. 23 (3) (2021) 1972–2026, http://dx.doi.org/10.1109/COMST.2021.
3057017.

[5] F. Hawlader, F. Robinet, R. Frank, Poster: Lightweight features sharing for real-
time object detection in cooperative driving, in: 2023 IEEE Vehicular Networking
Conference (VNC), 2023, pp. 159–160, http://dx.doi.org/10.1109/VNC57357.
2023.10136339.

[6] Z. Pan, J. Lei, Y. Zhang, X. Sun, S. Kwong, Fast motion estimation based
on content property for low-complexity h. 265/HEVC encoder, IEEE Trans.
Broadcast. 62 (3) (2016) 675–684.

[7] Y. Matsubara, M. Levorato, Neural compression and filtering for edge-assisted
real-time object detection in challenged networks, in: 2020 25th International
Conference on Pattern Recognition (ICPR), IEEE, 2021.
380
[8] B. Deguerre, C. Chatelain, G. Gasso, Fast object detection in compressed jpeg
images, in: 2019 IEEE Intelligent Transportation Systems Conference (ITSC),
IEEE, 2019, pp. 333–338.

[9] S.A. Abdel Hakeem, A.A. Hady, H. Kim, 5G-V2X: Standardization, architecture,
use cases, network-slicing, and edge-computing, Wirel. Netw. 26 (8) (2020)
6015–6041.

[10] J.B. Jocher Glenn, Ayush Chaurasia, A. Stoken, YOLOv5 (2020), 2022, https:
//github.com/ultralytics/yolov5 (Accessed 10 July 2022).

[11] A. Dosovitskiy, G. Ros, V. Koltun, CARLA: An open urban driving simulator, in:
Conference on Robot Learning, PMLR, 2017.

[12] H. Xu, S. Liu, G. Wang, G. Liu, B. Zeng, Omnet: Learning overlapping mask
for partial-to-partial point cloud registration, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021.

[13] C.-M. Huang, C.-F. Lai, The mobile edge computing (MEC)-based vehicle to
infrastructure (V2I) data offloading from cellular network to VANET using
the delay-constrained computing scheme, in: 2020 International Computer
Symposium (ICS), IEEE, 2020.

[14] A. Islam, A. Debnath, M. Ghose, S. Chakraborty, A survey on task offloading in
multi-access edge computing, J. Syst. Archit. 118 (2021).

[15] M.-a.E. Computing, Framework and reference architecture, ETSI GS MEC 003,
rev. 2.2. 1, dec. 2020, 2020.

[16] M.A. Khan, E. Baccour, Z. Chkirbene, A. Erbad, R. Hamila, M. Hamdi, M.
Gabbouj, A survey on mobile edge computing for video streaming: Opportunities
and challenges, IEEE Access (2022).

[17] Y. Siriwardhana, P. Porambage, M. Liyanage, M. Ylianttila, A survey on mobile
augmented reality with 5G mobile edge computing: architectures, applications,
and technical aspects, IEEE Commun. Surv. Tutor. 23 (2) (2021) 1160–1192.

[18] S.-L.C. Tsao, Enhanced GTP: an efficient packet tunneling protocol for general
packet radio service, in: ICC 2001. IEEE International Conference on Commu-
nications. Conference Record (Cat. No. 01CH37240), Vol. 9, IEEE, 2001, pp.
2819–2823.

[19] P. Viola, M. Jones, Rapid object detection using a boosted cascade of simple
features, in: Proceedings of the 2001 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition. CVPR 2001, 2001, http://dx.doi.org/
10.1109/CVPR.2001.990517.

[20] N. Dalal, B. Triggs, Histograms of oriented gradients for human detection,
in: 2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), Vol. 1, 2005, pp. 886–893, http://dx.doi.org/10.1109/
CVPR.2005.177.

[21] R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for
accurate object detection and semantic segmentation, in: 2014 IEEE Conference
on Computer Vision and Pattern Recognition, 2014, http://dx.doi.org/10.1109/
CVPR.2014.81.

[22] R. Girshick, Fast R-CNN, in: 2015 IEEE International Conference on Computer
Vision (ICCV), 2015, http://dx.doi.org/10.1109/ICCV.2015.169.

[23] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object
detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell.
(2017) http://dx.doi.org/10.1109/TPAMI.2016.2577031.

[24] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, A.C. Berg, SSD:
Single shot MultiBox detector, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.),
Computer Vision – ECCV 2016, Springer International Publishing, Cham, 2016,
pp. 21–37.

[25] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified,
real-time object detection, in: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

[26] M. Ehrlich, L. Davis, S.-N. Lim, A. Shrivastava, Analyzing and mitigating
JPEG compression defects in deep learning, in: 2021 IEEE/CVF International
Conference on Computer Vision Workshops (ICCVW), 2021.

[27] S. Dodge, L. Karam, Understanding how image quality affects deep neural
networks, in: 2016 Eighth International Conference on Quality of Multimedia
Experience (QoMEX), 2016, http://dx.doi.org/10.1109/QoMEX.2016.7498955.

[28] R. Yu, D. Yang, H. Zhang, Edge-assisted collaborative perception in autonomous
driving: A reflection on communication design, in: 2021 IEEE/ACM Symposium
on Edge Computing (SEC), IEEE, 2021.

[29] H. Vanholder, Efficient inference with tensorrt, in: GPU Technology Conference,
Vol. 1, 2016, p. 2.

[30] G.A. Kovács, L. Bokor, Integrating artery and Simu5G: A mobile edge computing
use case for collective perception-based V2X safety applications, in: 2022 45th
International Conference on Telecommunications and Signal Processing (TSP),
IEEE, 2022, pp. 360–366.

[31] J. Li, H. Gao, T. Lv, Y. Lu, Deep reinforcement learning based compu-
tation offloading and resource allocation for MEC, in: 2018 IEEE Wireless
Communications and Networking Conference (WCNC), IEEE, 2018.

[32] A. Belogaev, A. Elokhin, A. Krasilov, E. Khorov, I.F. Akyildiz, Cost-effective V2X
task offloading in MEC-assisted intelligent transportation systems, IEEE Access 8
(2020).

[33] E.E. Marvasti, A. Raftari, A.E. Marvasti, Y.P. Fallah, R. Guo, H. Lu, Feature
sharing and integration for cooperative cognition and perception with volumetric
sensors, 2020, Preprint arXiv:2011.08317.

http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb1
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb2
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb3
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb3
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb3
http://dx.doi.org/10.1109/COMST.2021.3057017
http://dx.doi.org/10.1109/COMST.2021.3057017
http://dx.doi.org/10.1109/COMST.2021.3057017
http://dx.doi.org/10.1109/VNC57357.2023.10136339
http://dx.doi.org/10.1109/VNC57357.2023.10136339
http://dx.doi.org/10.1109/VNC57357.2023.10136339
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb6
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb6
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb6
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb6
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb6
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb7
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb7
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb7
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb7
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb7
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb8
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb8
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb8
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb8
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb8
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb9
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb9
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb9
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb9
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb9
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb11
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb11
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb11
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb12
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb12
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb12
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb12
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb12
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb13
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb14
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb14
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb14
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb15
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb15
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb15
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb16
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb16
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb16
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb16
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb16
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb17
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb17
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb17
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb17
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb17
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb18
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2001.990517
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2005.177
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/CVPR.2014.81
http://dx.doi.org/10.1109/ICCV.2015.169
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb24
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb25
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb25
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb25
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb25
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb25
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb26
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb26
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb26
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb26
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb26
http://dx.doi.org/10.1109/QoMEX.2016.7498955
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb28
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb28
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb28
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb28
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb28
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb29
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb29
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb29
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb30
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb31
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb31
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb31
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb31
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb31
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb32
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb32
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb32
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb32
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb32
http://arxiv.org/abs/2011.08317


Computer Communications 213 (2024) 372–381F. Hawlader et al.
[34] E. Ye, P. Spiegel, M. Althoff, Cooperative raw sensor data fusion for ground
truth generation in autonomous driving, in: IEEE 23rd International Conference
on Intelligent Transportation Systems (ITSC), IEEE.

[35] F. Hawlader, R. Frank, Towards a framework to evaluate cooperative perception
for connected vehicles, in: 2021 IEEE Vehicular Networking Conference (VNC),
2021, pp. 36–39, http://dx.doi.org/10.1109/VNC52810.2021.9644667.

[36] J. Ren, Y. Guo, D. Zhang, Q. Liu, Y. Zhang, Distributed and efficient object
detection in edge computing: Challenges and solutions, IEEE Netw. 32 (6) (2018).

[37] M. Ahmed, S. Raza, M.A. Mirza, A. Aziz, M.A. Khan, W.U. Khan, J. Li, Z. Han,
A survey on vehicular task offloading: Classification, issues, and challenges, J.
King Saud Univ.-Comput. Inf. Sci. (2022).

[38] A. Ndikumana, K.K. Nguyen, M. Cheriet, Age of processing-based data offloading
for autonomous vehicles in MultiRATs open RAN, IEEE Trans. Intell. Transp. Syst.
(2022).

[39] G. Jocher, A. Chaurasia, A. Stoken, J. Borovec, Y. Kwon, J. Fang, K. Michael, D.
Montes, J. Nadar, P. Skalski, et al., Ultralytics/yolov5: v6. 1-tensorrt, tensorflow
edge tpu and openvino export and inference, Zenodo (2022).

[40] W. Zhao, S. Liu, X. Li, X. Han, H. Yang, Fast and accurate wheat grain quality
detection based on improved YOLOv5, Comput. Electron. Agric. 202 (2022)
107426.

[41] A. Varga, R. Hornig, An overview of the OMNeT++ simulation environment,
in: 1st International ICST Conference on Simulation Tools and Techniques for
Communications, Networks and Systems, 2010.

[42] M. Farasat, D.N. Thalakotuna, Z. Hu, Y. Yang, A review on 5G sub-6 GHz base
station antenna design challenges, Electronics (2021).

[43] G. Nardini, D. Sabella, G. Stea, P. Thakkar, A. Virdis, Simu5G–An OMNeT++
library for end-to-end performance evaluation of 5G networks, IEEE Access
(2020) http://dx.doi.org/10.1109/ACCESS.2020.3028550.
381
[44] A. Filali, A. Abouaomar, S. Cherkaoui, A. Kobbane, M. Guizani, Multi-access edge
computing: A survey, IEEE Access 8 (2020).

[45] J. Winick, S. Jamin, Inet-3.0: Internet topology generator, Tech. rep., Technical
Report CSE-TR-456-02, University of Michigan, 2002.

[46] Z. Ali, S. Lagén, L. Giupponi, R. Rouil, 3GPP NR V2X mode 2: overview, models
and system-level evaluation, IEEE Access (2021).

[47] R. Frank, F. Hawlader, Poster: Commercial 5G performance: A V2X experiment,
in: 2021 IEEE Vehicular Networking Conference (VNC), IEEE, 2021, pp. 129–130.

[48] T.S. Rappaport, Y. Xing, G.R. MacCartney, A.F. Molisch, E. Mellios, J. Zhang,
Overview of millimeter wave communications for fifth-generation (5G) wireless
networks—With a focus on propagation models, IEEE Trans. Antennas Propag.
65 (12) (2017).

[49] J. Liu, Q. Zhang, To improve service reliability for AI-powered time-critical
services using imperfect transmission in MEC: An experimental study, IEEE
Internet Things J. 7 (10) (2020) 9357–9371.

[50] FFmpeg, 2023 Available:, https://github.com/FFmpeg/FFmpeg.
[51] M. Uhrina, J. Bienik, M. Vaculik, Coding efficiency of hevc/h. 265 and vp9 com-

pression standards for high resolutions, in: 2016 26th International Conference
Radioelektronika (RADIOELEKTRONIKA), IEEE, 2016, pp. 419–423.

[52] X. Ma, High-resolution image compression algorithms in remote sensing imaging,
Displays (2023) 102462.

[53] J. Gutierrez-Aguado, R. Peña-Ortiz, M. García-Pineda, J.M. Claver, Cloud-based
elastic architecture for distributed video encoding: Evaluating H. 265, VP9, and
AV1, J. Netw. Comput. Appl. 171 (2020) 102782.

http://dx.doi.org/10.1109/VNC52810.2021.9644667
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb36
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb36
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb36
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb37
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb37
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb37
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb37
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb37
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb38
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb38
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb38
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb38
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb38
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb39
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb39
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb39
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb39
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb39
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb40
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb40
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb40
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb40
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb40
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb41
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb41
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb41
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb41
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb41
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb42
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb42
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb42
http://dx.doi.org/10.1109/ACCESS.2020.3028550
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb44
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb44
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb44
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb45
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb45
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb45
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb46
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb46
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb46
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb47
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb47
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb47
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb48
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb49
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb49
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb49
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb49
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb49
https://github.com/FFmpeg/FFmpeg
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb51
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb51
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb51
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb51
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb51
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb52
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb52
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb52
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb53
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb53
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb53
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb53
http://refhub.elsevier.com/S0140-3664(23)00423-1/sb53

	Leveraging the edge and cloud for V2X-based real-time object detection in autonomous driving
	Introduction
	Related work
	V2I communication
	Object detection and impact of compression
	Perception using C-V2X communication

	Methodology
	Motivation & Hardware
	Networking Aspects 
	Perception Aspects
	Exploring Compression Settings

	Results
	End-to-end delay evaluation
	Analyzing detection quality

	Conclusion and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


