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Abstract
The European Union plans to double the freight rail traffic by 2050 both to cut pollution
emissions and to mitigate congestion by shifting traffic from road to rail networks. One
of the challenges is to minimize emissions and high costs associated with shunting yard
operations while maintaining an acceptable service level. In this context, we propose an
Event-Based Simulation Framework for wagon Shunt-in and Shunt-out operations. The
Event-Based Simulation Framework exploits programming tools and a MILP model to min-
imize the number of Shunt-in and Shunt-out operations performed and, consequently, both
strategic and tactical objectives such as the clustering rate, the wagon fleet size, departure
delays and emissions of shunting locomotives. Several versions of the MILP model are de-
scribed based on the Shunt-in policy applied. Each Shunt-in policy has different criteria for
wagon’s choice and has shown a strong goal orientation. To test the MILP model’s effec-
tiveness, we have considered short and long-term real train timetables for freight trains in
the Bettemburg Eurohub Sud Terminal (Luxembourg) and we have assessed different KPIs
linked to tactical and strategic objectives. Computational results show that the criteria for
choosing which wagons should be taken-out from the inbound train and should be inserted
into the outbound train might significantly impact multiple rail system KPIs analyzed. The
Event-Based Simulation Framework is part of the ANTOINE national project financed by
CFL (Chemins de fer luxembourgeois) and is considered an add-on tool to Shunty, an in-
dustrial software project for rail decision-makers.
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1 Introduction

Global trends in transport development show an ecological priority combined with en-
ergy efficiency. The data from the European Environment Agency (EEA) (Agency (2021))
proves how transport produces the largest of Europe’s greenhouse gas emissions and is,
therefore, the main cause of air pollution in cities. Transportation today represents 27% of
the EU’s total emissions, where 95% of them come from cars, vans, trucks, and buses (i.e.
road transport). In the context of green transition, freight rail transportation will play a key
role. The promotion of freight rail transportation to relieve congested roads is, indeed, one
of the current priorities in transport policy, as almost 78% of goods are transported on tires.
Therefore, the freight train traffic is expected to double in the next 30 years in order to help
reach the carbon neutrality goal (Pagand et al. (2020)). Nevertheless, freight transportation
has costs that are unique to the mode, as well as logistic complexities that do not exist for
road transport. Some of these costs are related to operations performed inside shunting
yards, namely, shunting operations.

1.1 SISO Operations and Impacts

The shunting operation plays a crucial role in daily railway operations and requires careful
management of resources. The Shunt-In Shunt-Out Problem (SISO) involves assign-
ing wagons from a heterogeneous fleet to timetabled services in order to meet the wagon
demand, considering factors such as the composition and final destination of each departing
train. Additionally, the SISO operations can take into account the condition-based main-
tenance requirements specified by the leasing contracts for each individual wagon. This
upstream problem of the shunting yard Classification Problem consists both of defining the
selection criteria we take out wagons from the inbound train due to condition-based main-
tenance and demand-matching constraints (Shunt-Out, SO), and of replacing them with
shunting yard’s wagons in order to make up the outbound train (Shunt-In, SI) while tak-
ing into account parameters such as the total number of SISO operations performed and
the resulting overall operational costs, the time to shunt, and the shunting yard’s supplies
availability (Figure 1). The SISO optimization streamlines the shunting and maintenance
activities by improving the clustering rate. This leads to more efficient cost management as
it allows for adjacent wagons shunted out to be treated as a single entity, resulting in a sin-
gle cost for the entire group. These operations must balance a range of strategic and tactical
objectives, such as reducing the operational costs of shunting while adhering to mainte-
nance constraints outlined in leasing contracts and wagon demand, minimizing departure
delays to maintain acceptable service levels, avoiding cancellations due to missed deadlines
or insufficient wagons, optimizing the size of the wagon fleet to reduce overhead costs, and
reducing emissions from shunting locomotives powered by diesel engines. Our research
proposes an Event-Based Simulation Framework (EBSF) dealing with the SISO problem as
currently this, and other shunting yard issues, are solved based on practitioners’ experience.
The EBSF is an add-on tool for Shunty, an industrial software of the ANTOINE project,
financed by the Chemins de Fer Luxembourgeois (CFL).



Figure 1: SISO problem representation. For the Shunt-Out problem, the blue circles are
the possible clusters of shunts and the decision falls on activating optional shunts or not.
In this case, the Shunt-In possible assignments have been considered for the second cluster
and the green wagons closer to the train.

1.2 The Event-Based Simulation Framework

The proposed EBSF has been developed to incorporate Operations Research (OR) and pro-
gramming tools, and process the timetable by simulating terminal operations and the pas-
sage of time. The built-in MILP model considers rolling stock maintenance and timetable
constraints as well as a multi-component objective function aiming for the minimization of
the number of shunts performed. The objective function further considers: weighted delay
terms of outbound trains; the SI policy applied; weighted terms associated with shunting
binary variables used to avoid a quick shortage of wagons in the shunting yard. For the SI
problem, different policies are described, each of which is characterised by specific wagon
assignment criteria. Due to their different assignment criteria, each SI policy has pros and
cons, therefore, they should be used considering the goal that practitioners want to achieve.
Several simulations are carried out to validate the policies’ usefulness, exploiting a real
schedule from 2021 up to 2050 used by the Luxembourg National Railway Company with
a particular focus on the Bettembourg Eurohub Sud Terminal which connects various EU
countries. Luxembourg and its freight forwarding operator CFL play, indeed, a central role
in Europe due to the location of its intermodal terminal. The general idea is to provide a
framework that can be easily implemented at zero cost and with multiple and new SI crite-
ria, without prior knowledge of the shunting yard configuration, wagon fleet and so forth.
The rest of this paper is structured as follows: Section 2 reviews the relevant literature on
shunting yard issues and maintenance operations; Section 3 provides a formal description
of the SISO Problem and states our assumptions; Section 4 describes the MILP model for
the SISO problem; Section 5 shows the performance of each SI policy taking into account
multiple KPIs; Section 6 summarizes the conclusions and suggests where to focus future
research.



2 Literature Review

This section presents the relevant literature related to the SISO problem, focusing on: how
shunting operations are performed in the freight rail industry; where wagon maintenance
impacts and how it is generally performed; the research gap we address with our research.

2.1 Shunting Operations

The shunting operation is defined as the movement of one or multiple wagons within the
shunting yard. These manoeuvres can be done for multiple reasons and are modelled in the
literature through the Rolling Stock Problem (RSP) and the Train Unit Shunting Problem
(TUSP). The RSP consists of planning a service time for each rolling stock and can be seen
as the management of wagon and/or train units in order to reduce the cost to supply the
services or fulfil the demand. Instead, the process of parking unused rolling stock units and
the related manoeuvres within a shunting yard is called shunting, with the corresponding
planning problem defined as the TUSP (Freling et al. (2005)). For Giacco et al. (2014), the
management of rolling stock is the major cost factor for each railway company, and hence
the greatest competitive advantage, since the quality of the service depends on it. Giacco
et al. solved the RSP with a two-step approach that combines scheduling tasks related to
train services, short-term maintenance operations, and empty runs. Usually, for shunting
operations on both passenger and freight trains, the RSP is solved first, followed by the
TUSP. Given the clear connection between these two problems, an integrated approach,
the Integrated Rolling Stock and Unit Shunting Problem (IRSUSP), has been proposed by
Haahr and Lusby (2017). Similarly, Li et al. (2020) implemented a simulation approach
through multiple shunting policies aiming to reduce operating costs for the entry and exit
system of wagons.

2.2 Wagon Maintenance

The cost of wagon maintenance is a significant factor in the rail freight system (Jaehn et al.
(2015)). Wagons spend a significant amount of downtime undergoing maintenance and
repairs, leading to overhead costs such as the need for a larger pool of wagons and variable
costs such as storage fees. Maintenance can be triggered by mileage, time, or condition
monitoring (Lin and Lin (2017)). Condition- or mileage-based maintenance is now more
common due to the fact that rolling stock spends 70% of its time unused in the shunting
yard, leading to additional, inefficient maintenance operations. To minimize costs, Budai
et al. (2006) proposes a solution for the Preventive Maintenance Scheduling Problem using
a modified scheduling problem and a greedy heuristic. Herr et al. (2017) solves both the
Rolling Stock Problem and maintenance scheduling for passenger trains by considering both
preventive maintenance scheduling and degradation based on the distance traveled, with the
aim of maximizing each train’s useful life. When organizing maintenance, practitioners
must take into account both the inbound train wagons that require shunting and replacement,
as well as ensuring traffic safety. Our study focuses on the first decision problem, as the
number and type of wagons to be replaced is usually assumed in most literature (Chuijiang
(2021)).



2.3 Open Issues and Contributions

This paper addresses three major open issues, listed here below:

• State-of-the-art (e.g. Chuijiang (2021)) assumes to know which wagons must be re-
moved from the inbound train and added to the outbound train. Usually, practitioners
take this choice based on a single parameter, namely, the time to shunt required.
A more realistic approach should take into account multiple indicators such as the
mileage performed by each wagon (strictly related to leasing contracts and financial
penalties);

• Most of the early studies, aim to minimize the operational time and/or cost resulting
from shunting in the short term (daily). The shunting operation was never seen as
a single entity itself which is why it is often neglected the long-term impacts. This
research performs long-term analysis such as the wagon fleet estimation or the level
monitoring of the shunting yard capacity for an n-years scenario;

• As far as we know, no paper takes into account maintenance constraints for shunt-
ing operation optimization. Indeed, the maintenance scheduling problem is usually
treated as a separate tactical problem. This could lead to sub-optimal solutions that
disregard KPIs such as the wagon fleet size.

Our contributions to the state-of-the-art are as follows:

• We introduce a new shunting yard issue by highlighting its practical impact on several
KPIs;

• We propose an Event-Based Simulation Framework to process real timetables by sim-
ulating terminal operations and the passage of time. The EBSF exploits a MILP
model, populated by maintenance rules and demand-matching constraints as well as
a multi-component objective function. The model minimizes the number of clus-
ters of shunts activated and the possible departure delay caused by the time to shunt.
Moreover, it considers terms concerning the SI policy applied and the shunting con-
venience cost, in order to avoid an infeasible state of the shunting yard capacity;

• We describe three SI policies implemented as add-on terms of the MILP objective
function. Each SI policy exploits a wagon selection criteria and has proven to have a
strong goal orientation.

3 Problem Description

The SO problem can be influenced by various constraints such as maintenance rules, opera-
tional costs, seasonal wagon demand, etc. The cost of the make-ready stage of the shunting
locomotive is the biggest part of the SO operation’s cost, so creating clusters of shunts
by triggering optional shunts that aren’t caused by maintenance or demand constraints can
bring cost benefits. However, the time to shunt a cluster is equal to the number of wagons
in the cluster multiplied by the unit time cost of 15 minutes. Overly large clusters created
by too many optional shunts can lead to delays or cancellations. A mathematical model
can help practitioners determine when to cluster. The outbound train’s composition must
be fulfilled and wagons must not be moved for maintenance unless their mileage is within



the lease range, taking into account the resource level of the shunting yard and workshop
to prevent a shortage of wagons. The SI problem is complementary to the SO problem,
aiming to minimize time and economic costs by replacing each shunted-out wagon with a
suitable wagon from the shunting yard. A suitable wagon must have enough mileage for
the next trip and be of the correct type. The basic problem is replacing a shunted wagon
with one that takes less time to shunt in the shunting yard. However, considering just one
parameter is short-sighted. For example, the shunted-in wagons might already be close to
the mileage limit, which will lead to another SO operation when the train returns. A multi-
component objective function that focuses on economic costs can avoid this additional cost.
The SISO problem’s event flowchart is described in Figure 2. The inbound train is moved
to the Arrival/Departure yard queue, where inspections take about 35 minutes. If shunting
operations are needed, it is moved to the shunting queue and each SO operation takes 15
minutes. Each shunt costs e 350 and can only be performed if the shunting yard is not busy.
The maintenance for one wagon costse 10500 and the range is from 150,000 km to 172,500
km. Wagons shunted for demand matching are sent to the shunting yard, while those for
maintenance go to the workshop for 3 days. Shunted-out wagons are then replaced through
SI operations. After all SISO operations, the train is moved to the TLA queue for loading
and then to the ADY for departure (unless cancelled).

Figure 2: The flowchart outlining the event sequence for the SISO Problem, with TLA
denoting the Train Unloading/Loading Area and SY referring to the Shunting Yard.

3.1 Assumptions

Several assumptions are considered according to practice:

• There are two types of wagon, Simple and Double, with different physical and con-
tractual characteristics such as the length, capacity, good type restrictions and so on;

• The operational time to shunt out a wagon is on average 15 minutes, while the one to
shunt in a wagon stored in the shunting yard changes from wagon to wagon;



• While a cluster of shunts (namely, two or more adjacent wagons requiring SO op-
erations) is associated with a single economic cost, its temporal cost is equal to the
unitary time to shunt out multiplied by the number of wagons inside the cluster;

• There are mainly two types of SO operations, the mandatory and the optional ones.
The first type is performed due to maintenance rules or demand matching constraints.
The second type is performed between successive mandatory shunts to create clusters
and reduce shunting costs;

• The maintenance and optional shunt can be performed only when the wagon’s
virtual mileage ranges between the minimum and maximum mileage or exceed
the maximum mileage defined by the corresponding leasing contract. The virtual
mileage is equal to the kilometres covered by the wagon i-th once it has performed
the outbound train’s next trip;

• If the operational shunting time exceeds the planned departure time of the outbound
train, a penalty due to the lowering of the service level is considered. This penalty is
given by the departure delay function in the objective function of the MILP;

• The SI operational time associated with each shunting yard’s wagon is a stochastic
value comprehending all the shunting operations times to pull out the wagon from
the shunting yard. The relative gaussian distribution has been developed through data
history provided by CFL practitioners;

• The demand matching does not consider a specific sequence of wagon types on the
outbound train. Therefore, the only constraint concerns the mandatory number of
each wagon type stated by the timetable.

4 Methodology

This section concerns the methodology and is structured as follows: Subsection 4.1 lists the
nomenclature used to model the SISO problem; Subsection 4.2 explains in-depth a basic
version of the MILP model, with its constraints and objective function, where it is applied a
first example of SI policy, named MIN; Subsection 4.3 presents several SI policies translat-
able as different versions of the MILP objective function.

4.1 Nomenclature

Sets
Name Description
T set of inbound train’s wagons
S set of shunting yard’s wagons
K set of wagon types

Parameters
Name Description
aT integer value expressing the inbound train’s arrival time



Parameters
Name Description
dT integer value expressing the outbound train’s planned departure time
ddT integer value expressing the outbound train deadline before its cancellation
ts integer value expressing the time required by a shunting locomotive to per-

form a single SO operation
rT integer value expressing the kilometres the outbound train will perform dur-

ing the next trip
mi integer value expressing the current mileage of the wagon i-th on the inbound

train T
msj integer value expressing the current mileage of the wagon j-th inside the

shunting yard S
mmaxi integer value expressing the maximum mileage before the maintenance of

the wagon i-th on the inbound train T based on the leasing contract
msmaxj

integer value expressing the maximum mileage before the maintenance of
the wagon j-th inside the shunting yard S based on the leasing contract

mmini
integer value expressing the minimum mileage to shunt the wagon i-th on the
inbound train T

typeini integer value equal to 1 or 2 expressing the type of the wagon i-th on the
inbound train T

typeSj
integer value equal to 1 or 2 expressing the type of the wagon j-th in the
shunting yard S

codeini
integer value expressing the unique code associated with the wagon i-th on
the inbound train T

codeSj integer value expressing the unique code associated with the wagon j-th in-
side the shunting yard S

typer integer value equal to 1 or 2 expressing the wagon type on the outbound train
that must rise due to the demand, compared to the inbound train T

rise integer value expressing the surplus of wagons of the type typer in the out-
bound train new composition, compared to the inbound train T

nmsj float value expressing the virtual rate of the wagon j-th inside the shunt-
ing yard S, namely, the ratio between the kilometres covered once the out-
bound train’s next trip has been performed (virtual mileage) and the maxi-
mum mileage msmaxj

cui
float value expressing the shunting convenience cost used as a preemptive
tool to avoid infeasibility of the shunting yard S

csi,j float value expressing the temporal cost to replace the wagon i-th on the
inbound train T with the wagon j-th inside the shunting yard S, normalized
through the Min-Max normalization

M a Big-M coefficient
Decision Variables

Name Description
adT integer value expressing the actual departure time of the outbound train once

all the shunting operations are performed
codeouti integer value expressing the unique code associated with the wagon i-th on

the outbound train
β float value between 0 and 1 expressing the percentage of operational time left

before the outbound train’s deadline once all the SO operations are performed
α float value equal to 1 - β
yi binary variable equals to 1 if on the wagon i-th on the inbound train T a

maintenance or optional shunt is performed
xi,k binary variable equals to 1 if on the wagon i-th on the inbound train T a

demand shunt is performed and it is replaced by a shunting yard’s wagon of
type k



Decision Variables
Name Description
zi,j binary variable equal to 1 if the wagon i-th on the inbound train T is replaced

by the wagon j-th inside the shunting yard S
γi binary variable equals to 1 if the wagon i-th on the inbound train T is shunted

out, regardless of the shunt type
σ1 binary variable equals to 1 if ddT ≥ adT > dT , and to 0 if dT ≥ adT
σ2 binary variable equals to 1 if adT > ddT , and to 0 if adT ≤ ddT .
σ3 real variable equals to adT−dT

ddT−dT
if σ1 = 1, and to 0 if σ1 = 0

adji,i+1 binary variable equals to 1 if both the wagon i-th and its adjacent wagon i+1-
th on the inbound train T are shunted out

4.2 Mathematical Model

Objective Function
The MILP model for the SISO problem aims to minimize an objective function made up of
three main terms. These three terms orient the model to: minimize the number of clusters
created and, consequently, the emissions and operational costs; look at the delay produced
by the SISO operations; consider both the SI policy applied, and its decision criteria, and
the shunting yard state in terms of available wagons. The last two terms are associated with
different weights based on the practice priority.

∑
i∈T

γi −
|T |−1∑
i=1

adji,i+1 (1)

The first term (1) represents the actual number of shunts performed considering the as-
sumption on clustering (Subsection 3.1). It is the overall number of wagons shunted out,
regardless if due to maintenance, optional or demand shunt, minus the adjacencies acti-
vated. That way, we count the number of clusters of shunts activated rather than single
wagons shunted out, taking into account the assumption that states that two or more adja-
cent wagons shunted out are considered as a single economic cost. SO operations are not
multiplied by a weight, since we have set the other objective function terms so that they are
all comparable in number of wagons.

|T |
2

µ(adT )︷ ︸︸ ︷
(σ2 + σ3) (2)

On the other hand, the second term (2) expresses the penalty related to the lowering of
service level due to the possible departure delay µ(adT ) of the outbound train. Due to
its non-linear behaviour, µ(adT ) has been handled by introducing three different binary
variables σ used for the constraints (4)-(13). If adT is smaller than dT , σ2 and σ3 will be
both equal to zero, and µ(adT ) will be equal to zero as well; if adT ranges between the
outbound train’s planned departure time dT and deadline ddT , σ2 will be equal to zero,
while σ3 will be equal to adT−dT

ddT−dT
, as well as µ(adT ). µ(adT ) is then multiplied by a

weight proportional to the number of wagons on the inbound train. The weight can not be
proportional to the number of wagons shunted out, because it would both produce a non-
linear term and enter into contradiction with the clustering assumption. Indeed, that way



the solver would aim to always cluster, because the clustering advantage and the time to
shunt would go hand in hand. With the penalty, the solver is forced to choose to activate the
optional shunts only if the corresponding cluster does not produce an excessive departure
delay.

|T |
4

(
∑
i∈T

∑
j∈S

(csi,jα+ nmsjβ)zi,j +
∑
i∈T

yicui) (3)

According to practice priority, the last term (3) is weighted with a halved value compared
to the second term. This term considers two aspects: the SI policy applied, in this case, the
MIN policy, and the shunting convenience costs cui

. The MIN policy aims to both minimize
the temporal costs to shunt in wagons stored inside the shunting yard and replace shunted out
wagons with the ones with the minimum virtual rate. The temporal costs and the minimum
virtual rate are then multiplied, respectively, by the percentage of time to shunt out required
and of time to shunt in left before the outbound train’s deadline. That way, if the time
left after the SO operations is too short (α higher than β), the model will choose wagons
inside the shunting yard with lower temporal costs rather than the ones with lower virtual
rates. Otherwise, β will be higher than α, thus the model will shunt in wagons with lower
virtual rates. The second aspect is basically a preemptive tool to avoid too many optional
shunts and, therefore, an unfeasible state of the shunting yard capacity. The value cui

forces
the model to weigh carefully optional shunts to avoid the possibility that the shunting yard
will quickly run out of wagons. Therefore, if the current mileage of the wagon i-th in the
outbound train is low and the number of wagons in the shunting yard is below a certain
threshold, the cost cui

is computed so that will be high, and the model will opt not to shunt
out the wagon.

Time Constraints
These constraints represent the ones related to the delay µ(adT ) function. Based on adT ,
they state if the outbound train is on time, late or if it will be cancelled due to the exceeding
of the planned deadline. This is done by using three temporal variables σ, as described in
the nomenclature, in order to add a delay penalty in the objective function.

adT ≤ dT + σ1M + σ2M (4)
ddT + (1 − σ1)M ≥ adT (5)
adT > dT − (1− σ1)M (6)
adT ≤ ddT + σ2M (7)
adT > ddT − (1− σ2)M (8)
σ1 + σ2 ≤ 1 (9)
σ3 ≤ σ1M (10)

σ3 ≥ aT − dT
ddT − dT

σ1 (11)

σ3 ≤ adT − dT
ddT − dT

+ (1− σ1)M (12)

σ3 ≥ adT − dT
ddT − dT

− (1− σ1)M (13)

Constraints (4)-(6) assure that the conditions of σ1 are satisfied, namely: if both σ1 and σ2

are equal to 0 then the outbound train must be on time; if σ1 is equal to 1 then adT must



range between dT (not included) and ddT . Instead, constraints (7) and (8) express σ2’s
conditions, saying that if σ2 is equal to 0 then adT has not already reached the outbound
train’s deadline, otherwise, the outbound train will be cancelled. While constraint (9) links
σ1 to σ2 by forcing them not to be simultaneously active, constraints (10)-(13) link σ1 and
σ3 and represent σ3’s conditions. The latter states that if σ1 is equal to 0 then σ3 will be
equal to 0 as well, while if σ1 is equal to 1 then adT ranges between dT and ddT , and σ3

will be equal to adT−dT

ddT−dT
.

aT +
∑
i∈T

γits +
∑
i∈T

∑
j∈S

csi,jzi,j = adT (14)

Constraint (14) sets the adT equal to the inbound train arrival time plus the time required to
perform both the SO and SI operations.

(aT +
∑
i∈T

γits)

ddT
= α (15)

1− α = β (16)

Constraints (15) and (16) set α and β as described in the nomenclature. The value of α
ranges between 0 and 1, and is set as the arrival time plus the time to shunt out, divided by
the outbound train’s deadline.

SO Constraints
The following constraints assure that Shunt-out operations are performed properly, namely,
based on the assumptions.

yi ≥
mi + rT
mmaxi

− 1− (
∑
k∈K

xi,k)M ∀i ∈ T (17)

yi ≤ (1−
∑
k∈K

xi,k)
mi + rT
mmini

∀i ∈ T (18)

The above constraints (17) and (18) represent three conditions: (i) if mmaxi
is exceeded

by performing the next trip, then the wagon i-th must be shunted out, thus yi is equal to 1;
(ii) the wagon i-th must be shunted out only if exceeds mmaxi

required, otherwise, yi is
equal to 0; (iii) if a demand shunt is already activated for the wagon i-th, it is not possible
to perform a maintenance or an optional shunt.

yi ≤
mi + rT
mmaxi

∀i ∈ T (19)

Instead, constraint (19) should be considered if we want to force the model to activate only
mandatory shunts once mmaxi

is exceeded (CFL approach).∑
i∈T :typeini

̸=typer

xi,typer = rise (20)

∑
k∈K

xi,k = 0 ∀i ∈ T : typeini
= typer (21)∑

i∈T
xi,k = 0 ∀k ∈ K : k ̸= typer (22)



Constraints (20)-(22) assure that the new composition on the outbound train will be sat-
isfied. Therefore, the sum of xi,k with a k different from the typer (the wagon type that
must increase on the outbound train) must be equal to rise, the additional wagons of typer
required by the new composition. Moreover, the sum of xi,k of typer type must be equal to
0, because in this way the other part of the composition will not be altered.

|typeouti − typeini
| = pi ∀i ∈ T (23)

In certain circumstances, the practice might require an orderly composition of the depar-
ture train, namely, for each wagon position a specific type is mandatory, as indicated by the
timetable. To express this necessity, constraints (20)-(22) must be replaced by constraint
(23), where typeouti represents the type of wagon i required on the outbound train and the
binary variable pi is equal to 1 when the inbound train wagon i is shunted out due to demand
matching. However, constraint (23) is only valid when there are exactly two wagon types.

SI Constraints
Constraints (24)-(27) allow the model to perform the Shunt-in operations.∑
j∈S:typeSj

=typeini

zi,j = yi ∀i ∈ T (24)

∑
j∈S:typeSj

̸=typeini

zi,j = xi,typer ∀i ∈ T (25)

zi,j ≤ 2− msj + rT
msmaxj

∀i ∈ T ,∀j ∈ S (26)∑
i∈T

zi,j ≤ 1 ∀j ∈ S (27)

Constraints (24) and (25) force the model to activate zij with the proper type j, such that
while the wagons shunted out with maintenance or optional shunt will be replaced by shunt-
ing yard’s wagons of the same type, the ones shunted-out with demand shunt will be re-
placed by wagons of the opposite type. Instead, constraints (26) and (27) assure both that
no wagon with insufficient residual mileage to perform the next trip rT will replace the
inbound train wagons, and that the same shunting yard wagon will not replace more than
one inbound train wagon. These constraints define the feasible region where the SI policy
applied will select shunting yard wagons.

Adjacency Constraints
The following constraints allow the model to comply with the clustering assumption.∑
k∈K

xi,k + yi = γi ∀i ∈ T (28)

2adji,i+1 ≤ γi + γi+1 ∀i = 1, ..., |T | − 1 (29)

Constraints (28) and (29) assure that if two or more wagons on the inbound train will be
shunted-out, then the respective adjacency variables will be activated and counted in the
objective function. This is done by summarizing in a single variable γi both the demand,



the optional and the maintenance shunts performed, and by forcing the activation of adji,i+1

only if both γi and γi+1 are equal to 1.∑
j∈S

zi,jcodeSj + (1− γi)codeini = codeouti ∀i ∈ T (30)

To conclude, constraint (30) is an optional one, not strictly necessary to optimize the prob-
lem, but quite useful to keep track of wagons’ codes that will be on the outbound train once
all the SO and SI operations are performed. If the wagon i-th has been replaced by activat-
ing zij , this constraint associates the wagon j-th’s code to the position i-th, alternatively,
the wagon i-th’s code remains unchanged.

4.3 Shunt-In Policies

In this section, we propose different SI policies, namely, add-ons to the multi-component
objective function (1)-(3).

Policy Modelling
The basic version of the SI model takes into account only the time cost required to move
a wagon i-th into the position j-th. This could be a limiting approach in a strategic vision,
as it just looks at the short-term decisions, while avoiding any predictive approach to future
shunting. SI policies allow the model to exploit different features impacting the number of
future shunting operations. These features are directly linked to assumptions (Subsection
3.1), such as those on clustering, and have proved to be impactful also on the wagon fleet
size, departure delays, and average mileage performed by each wagon. The general structure
of an SI policy is the following (31). Based on the policy criteria, weights W1 and W2 can
assume different meanings, in order to head the objective function towards specific tactical
and strategic goals.

min
∑
i∈A

∑
j∈R

(αW1 + βW2)zi,j (31)

For our case study, we will refer to W1 as the cost cSi,j
, while W2 will change depend-

ing on the policy applied. α and β are complementary parameters describing the temporal
state of the system. They are given in real-time by MILP constraints. Specifically, β rep-
resents the remaining percentage of the operational time once all the SO operations have
been performed (the latter is expressed by α). Depending on the value assumed by α and,
consequently, by β, the solver will decide whether to weigh more the cost cSi,j

or the policy
criteria W2. Given that we are talking about two different measurement units, it is neces-
sary to normalize both W1 and W2 (we used a Min-Max Normalization, Patro and Sahu
(2015)).

MIN Policy
This policy aims to shunt in the shunting yard’s wagon with the minimum virtual rate vSi

.
Therefore, the objective function is the following:

min
∑
i∈A

∑
j∈R

(αcSi,j
+ βvSi

)zi,j (32)



Based on (32), if the percentage of operational time required by the SO operations is
predominant, the solver will opt to shunt in wagons with a lower cost cSi,j

. Otherwise, the
solver will be directed toward the policy criteria, by choosing wagons with the lowest vSi .

AVG L-S Policy
This policy aims to make the most of the wagon’s mileage capacity, based on its services as-
signment record. When a wagon i has been assigned with many long-trip services (nlongi ),
it’s reasonable to assign it with short-trip ones (nshorti ), to fully exploit its maximum
mileage msmaxi

. Its assignment record is expressed by the degree of unbalance, as de-
scribed by (33). We want to choose the suitable i-th wagon ∈ S with the maximum degree
of unbalance, defined as:

θi = nlongi − nshorti (33)

The objective function will therefore become:

min
∑
i∈A

∑
j∈R

(αcSi,j − β((−1)longθi))zi,j (34)

Where, by assuming rthreshold as the 25th percentile of the distribution of the trips
considered, the binary data long is equal to 1 if rT for the outbound train is greater than
rthreshold, 0 otherwise. If the next service will perform a long trip, the solver will opt for
wagons that have performed more short trips than long ones, otherwise, wagons with more
long trips than short ones will be chosen.

NCLD Policy
The NCLD policy helps the solver to create clusters as wide as possible. This approach is
strictly related to the clustering assumption and aims to cluster the entire train by activating
a single shunting variable γi. We define the virtual rate, both for the inbound train and
shunting yard wagons, as follows:

vi =
mi + rT
mmaxi

(35)

vSj
=

msj + rT
msmaxj

(36)

If wagons with homogeneous virtual rates are shunted in, then it is likely that, during
the next trips, the inbound train wagons will be shunted out altogether. The add-on in the
multi-component objective function will be:

min
∑
i∈A

∑
j∈R

(αcSi,j
+ β|ASO −ASI |)zi,j (37)

With ASO and ASI equal, respectively, to the average virtual rate on the inbound train once
all the SO operations have been performed and to the average virtual rate of the wagons
shunted in, as expressed by (38) and (39).

ASO =

∑
i∈A

(1− γi)vi∑
i∈A

(1− γi)
(38)



ASI =

∑
i∈A

∑
j∈R

zi,jvSj∑
i∈A

∑
j∈R

zi,j
(39)

That way, if β is higher than α, (37) will minimize the distance between the average virtual
rate of the left wagons on the outbound train and the one of the wagons shunted in.

5 Computational Results

The simulations refer to two different time windows: 2021 and 2022-2050. This is done
according to CFL’s short-term objectives and Europe’s carbon neutrality deadline Birol
(2021). The short-term analysis compares the MILP model performance with real data
on emissions, delays and train cancellations provided by practitioners. The long-term anal-
ysis’s benchmark on the wagon fleet size and emissions produced consists of running the
simulator with the activation of maintenance shunt only when the mmaxi

is exceeded while
choosing randomly suitable shunting yard wagons for the SI operations. Indeed, this is the
approach applied to date by CFL practitioners. At the end of each month, data are collected
for the shunting yard, workshop, shunting operations, average departure delay, and so on.
We focus on three key points, based on the tactical and strategic objectives affected by SISO
operations:

• The wagon fleet size, impacting overhead costs, given that the rolling stock cost is
one of the most competitive factors for a railway company (Giacco et al. (2014));

• Delays and train cancellations, in order to guarantee an acceptable service level;

• Emissions, which minimization is directly related to shunting operations performed
and operational costs.

The integration of the MILP model into the Event-Based Simulation Framework was
achieved using the CPLEX Python API in PyCharm 11.0.15, along with the callable library
cplex release 22.1.0. The computer used for the simulations was equipped with an Intel(R)
Core(TM) i9-10885H, CPU 2.40GHz, and 32 GB of RAM.

5.1 Wagon Fleet

A feasible solution for the SISO problem is the one satisfying maintenance and demand-
matching constraints. Therefore, in the shunting yard, the number of suitable wagons must
be enough both to replace the wagons shunted out due to maintenance and to fulfil the
outbound train planned composition. In the CFL case, the request of wagons by type is
usually unbalanced (18% of supplies for the Simple type and 82% for the Double one), thus,
effective wagons management is required to avoid infeasible solutions. For the simulations,
we have considered a pool of 1100 wagons. If a wagon is used, during the run, for at least
one service, it will be counted as part of the solution. In Table 1 data relative to the fleet used
resulting from the 2022-2050 simulation are gathered. For a most comprehensive analysis,
we have tracked as well the average current mileage of wagons available in the shunting
yard (Figures 3a-3b).

This is a good index of fleet reliability. Indeed, although MIN performs better in the
short term, its short-sighted approach pays in the long term. Especially for the Simple



Table 1: Distribution of mileage 2022-2050

Wagon Usage Distribution (Km) Wagon Fleet Used
STD Median Mean Number of Wagons Cost (e Mln)

Benchmark
SIMPLE 326368 125530 329237 170 28
DOUBLE 402884 301088 437303 755 297

AVG L-S
SIMPLE 218118 152137 267500 209 34
DOUBLE 1094474 1683600 1469344 224 88

MIN
SIMPLE 286682 250105 331470 169 28
DOUBLE 854882 662145 939078 351 138

NCLD
SIMPLE 388391 265365 388710 122 20
DOUBLE 678124 1388309 1082490 313 123

Table 1 Distribution of mileage on rolling stocks and wagon fleet usage for the
2022-2050 simulation.

wagons, MIN tends to use the newest wagons by leaving parked the ones with the highest
mileage. This behaviour could lead to infeasibility, since it may happen that all available
wagons can not perform the outbound train’s next trip. Instead, AVG L-S shows a positive
behaviour by keeping, for the Simple wagons, the average mileage around 70000 kilometres.

(a) (b)

Figure 3: Average mileage for the Simple (a) and Double (b) wagons available in the
shunting yard.

An average mileage curve too low paired with a high standard deviation could be the
product of a significant number of shunts performed. This translates into a fleet that is under-
used and a rapid deterioration of the service, which goes against our objective. NCLD shows
an interesting trend typical of the supply chain/inventory management, called Bullwhip
Effect. This effect can result from the inclination of this policy to send in maintenance
wide clusters of Simple wagons altogether. Once these wagons return from the workshop



with a mileage zeroed, they create the drops depicted in Figure 3a. Data regarding the
wagon fleet used and the relative management costs show how, compared to the benchmark,
AVG L-S uses less than half of the fleet while providing the same reliability in terms of the
wagons available in the shunting yard. Even if the benchmark and MIN manage better the
Simple type, AVG L-S shows a better usage of the fleet overall, with higher median, mean
and standard deviation. This translates into fewer wagons used to the fullest, and savings of
e 203 mln over 30 years.

5.2 Service Level

The punctuality rate is a critical point for freight train operation, since, on average, shunt-
ing operations can affect up to 20% of delays and train cancellations, according to CFL.
The expected increase in railway traffic will force practitioners to reduce the reserved time,
moreover, freight trains could suffer from the additional delay caused by the lower priority
compared to passenger trains. A freight train is considered delayed if it departs between
60 and 180 minutes later than the scheduled departure time. When the train exceeds the
deadline of 180 minutes, it is cancelled except in the case that carries high-value goods. In
our instances, arrival delays may be due to the combination of trips and shunting opera-
tions. To consider trip delays, we have combined the Machine Learning model developed
by Pineda-Jaramillo et al. (2021) into the framework, which computes travel times based
on several wagon attributes (weight, length, volume and so forth). The cyclical delay trend
is strongly related to the demand seasonality, as there are usually periods when the demand
for goods is high, requesting a larger number of demand shunts to be fulfilled. In Table 2
data comparing SISO policies and CFL benchmark delay and train cancellation rates for the
2021 simulation are gathered. Policies provide a significant improvement in the percent-
age of delays and train cancellations, and the Trieste service line is the most representative.
Trieste involves 33% of the services and requires a considerable number of wagons, which
translates into a high number of shunting operations.

Table 2: Delay and train cancellation rates for the 2021 simulation

Delays
Destinations Antwerp Champigneulles Kiel Lyon Trieste
Benchmark 34% 27% 35% 11% 44%
MIN 21% 5% 18% 17% 4%
AVG L-S 22% 6% 22% 17% 4%
NCLD 25% 5% 12% 13% 10%

Cancellations
Benchmark 19% 26% 11% 18% 46%
MIN 19% 4% 15% 16% 4%
AVG L-S 19% 6% 19% 16% 4%
NCLD 23% 3% 3% 18% 6%

The SISO model here proves its strength by reducing the delays and cancellations rate
up to 4% for MIN and AVG L-S compared to the 40% of the benchmark. Results show how
NCLD and MIN keep a steady cumulative delay throughout the simulation while AVG L-S,
once passed a warm-up phase where the shunting activity is heavier due to the setup of the



degree of unbalance, reduces the delays rate over time by increasing the clustering rate.

5.3 Emissions

In this subsection, we gather and analyze data concerning volumes of fuel and emissions
generated by the shunting activity of the simulations. For this purpose, we need to record
each operation carried out by a diesel locomotive in the shunting yard as well as the fuel con-
sumed. Furthermore, the fuel consumption is directly related to Notch positions, which
control locomotive operations from the 8-notches control panel. It was proven that during
these operations notch changes can occur more than 400 times per hour, which is around
20 times the number of notch changes performed when travelling (Rymaniak et al. (2019)).
With respect to the data reported by Agency (2021), the European average fuel consumption
of a diesel shunting locomotive can be derived by using the cumulative hours of shunting
activity per year. Therefore, by defining a standard operational time to shunt given by the
sum of the shunt out and shunt in average times (55 minutes), the cumulative number of
hours of shunting activity per month/year, and the fuel consumed, are computed as follows:

TOTf = (Ns
15

60
)fs (40)

Where: TOTf is the total fuel consumed in kg; Ns is the number of shunts performed;
fs is the kg of fuel consumed per hour. From here, we can gather the volumes of the main
gases produced per kg/tonne of fuel (Rymaniak et al. (2019)). Emission factors have been
derived from data in the Diesel Railway research by UIC (2010). This study provides an
assessment of the diesel locomotive fleet in Europe and average emission factors. By using
fuel data as the primary activity indicator, we can extract the annual volumes produced
for each GHG. As we can see in Figure 4, there are significant effects in terms of fuel

(a) (b)

Figure 4: Average and cumulative kilograms of CO2 produced by the benchmark and
each policy for the 2021 simulation.

consumption and emissions produced both in the short and long term. Considering the best
SI policy, namely MIN, the reduction of monthly and cumulative emissions produced with
respect to the 2021 benchmark of CFL is around 65%. This is translatable as 95 tons of
emissions subtracted from the atmosphere. The results show an initial similar trend for each
policy, with a following growing branch between the benchmark and MIN. For the 2022-
2050 simulation, the total reduction of CO2 produced by applying AVG L-S policy instead
of the basic MILP model is around 8% translatable as 1,52 tons per year.



5.4 Computation Time

While our contribution primarily focuses on a long-term analysis, the computation time to
process a single train may be useful in addressing and integrating the real-time problem with
short-term issues like the Classification or the Train Makeup problems. To address this, we
present the running times of all simulations in Table 3 along with the average computation
time to process a standard-size inbound train.

Benchmark MIN AVG L-S NCLD
Simulation Computation Time
2021 00:10:21,05 00:11:10,32 00:10:48,11 00:11:59,55
2022-2050 05:00:23,12 05:24:03,23 05:13:07,18 05:47:22,11
Single Train 00:00:01,02 00:00:01,30 00:00:01,20 00:00:01,50

Table 3: Computation time for simulations and average processing time for a standard-
size inbound train.

6 Conclusions

We present a Decision Support System (DSS) designed to solve the Shunt-In Shunt-Out
(SISO) problem in shunting yards. Currently, this problem is only tackled based on the
experience of CFL practitioners. Our DSS serves as an auxiliary tool for the industrial soft-
ware Shunty which is part of the ANTOINE national project. The DSS optimizes multiple
strategic and tactical KPIs, such as fleet size, shunting operations, delays, and cancellations.
It employs an Event-Based Simulator Framework (EBSF) that integrates a MILP model
and programming tools, with Python setting up the simulation and the MILP model pro-
cessing inbound trains requiring SISO. The MILP model considers technical feasibility and
demand matching, and proposes various SISO policies, each with its own selection criteria,
resulting in unique behavior and a clear goal orientation. These policies can potentially
be combined for further optimization and improved outcomes. The results from the 2021
simulation show a 65% reduction in fuel consumption and emissions, a e 3.8 mln reduc-
tion in costs, and a 36% reduction in delayed trains. Future work includes optimization for
multi-train SISO, a Column Generation algorithm for a SI heuristic, and the integration of
all ANTOINE sub-problems into Shunty. Shunty provides practitioners with a user-friendly
interface for uploading timetables, applying SISO policies, and analyzing KPIs. Our goal is
to offer practitioners both real-time and long-term decision support.
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