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Abstract

Every year the International Olympiad in Cryptography Non-Stop University CRYPTO (NSU-
CRYPTO) offers mathematical problems for university and school students and, moreover, for pro-
fessionals in the area of cryptography and computer science. The mail goal of NSUCRYPTO is to
draw attention of students and young researchers to modern cryptography and raise awareness about
open problems in the field. We present problems of NSUCRYPTO’22 and their solutions. There are
16 problems on the following topics: ciphers, cryptosystems, protocols, e-money and cryptocurrencies,
hash functions, matrices, quantum computing, S-boxes, etc. They vary from easy mathematical tasks
that could be solved by school students to open problems that deserve separate discussion and study.
So, in this paper, we consider several open problems on three-pass protocols, public and private keys
pairs, modifications of discrete logarithm problem, cryptographic permutations and quantum circuits.

Keywords: cryptography, ciphers, protocols, number theory, S-boxes, quantum circuits, matri-
ces, hash functions, interpolation, cryptocurrencies, postquantum cryptosystems, Olympiad, NSU-
CRYPTO.

1. Introduction
Non-Stop University CRYPTO (NSUCRYPTO) is the unique international competition for

professionals, school and university students, providing various problems on theoretical and practical
aspects of modern cryptography, see [16]. The main goal of the olympiad is to draw attention of young
researchers not only to competetive fascinating tasks, but also to sophisticated and tough scientific
problems at the intersection of mathematics and cryptography. That is why each year there are several
open problems in the list of tasks that require rigorous studying and deserve a separate publication in
case of being solved. Since NSUCRYPTO holds via the Internet, everybody can easily take part in it.
Rules of the Olympiad, the archive of problems, solutions and many more can be found at the official
website [17].

The first Olympiad was held in 2014, since then more than 3000 students and specialists from almost
70 countries took part in it. The Program committee now is including 22 members from cryptographic
groups all over the world. Main organizers and partners are Cryptographic Center (Novosibirsk),
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Mathematical Center in Akademgorodok, Novosibirsk State University, KU Leuven, Tomsk State
University, Belarusian State University, Kovalevskaya North-West Center of Mathematical Research
and Kryptonite.

This year 37 participants in the first round and 27 teams in the second round from 14 countries
became the winners (see the list [18]). This year we proposed 16 problems to participants and 5 of
them were entirely open or included some open questions. Totally, there were 623 particpants from 36
countries.

Following the results of each Olympiad we also publish scientific articles with detailed solutions
and some analysis of the solutions proposed by the participants, including advances on unsolved ones,
see [1, 2, 7–11,14].

2. An overview of open problems
One of the main characteristic of the Olympiad is that unsolved scientific problems are proposed

to the participants in addition to problems with known solutions. All 31 open problems that were
offered since the first NSUCRYPTO can be found here [19]. Some of these problems are of great
interest to cryptographers and mathematicians for many years. These are such problems as “APN
permutation” (2014), “Big Fermat numbers” (2016), “Boolean hidden shift and quantum computings”
(2017), “Disjunct Matrices” (2018), and others.

Despite that it is marked that the problem is open and therefore it requires a lot of hard work to
advance, some of the problems we suggested are solved or partially solved by our participants during
the Olympiad. For example, problems “Algebraic immunity” (2015), “Sylvester matrices” (2018),
“Miller — Rabin revisited” (2020) were solved completely. Also, partial solutions were suggested for
problems “Curl27” (2019), “Bases” (2020), “Quantum error correction” (2021) and “s-Boolean sharing”
(2021).

Moreover, some researchers continue to work on solutions even after the Olympiad was over. For
example, authors of [13] proposed a complete solution for problem “Orthogonal arrays” (2018). Partial
solutions for another open problem, “A secret sharing”, (2014) were presented in [5], [6], and a recursive
algorithm for finding the solution was proposed in [4].

This year, two open problems ware solved during the Olympiad. These are problems “Public keys
for e-coins” (see Problem 4.10) and “Quantum entanglement” (see Problem 4.16).

3. Problem structure of the Olympiad
There were 16 problems stated during the Olympiad, some of them were included in both rounds

(Tables 1, 2). Section A of the first round consisted of six problems, while Section B of the first round
consisted of eight problems. The second round was composed of eleven problems; five of them included
unsolved questions (awarded special prizes).

N Problem title Max score
1 Numbers and points 4
2 Wallets 4
3 A long-awaited event 4
4 Hidden primes 4
5 Face-to-face 4
6 Crypto locks 4 + open problem

N Problem title Max score
1 Numbers and points 4
2 Hidden primes 4
3 Face-to-face 4
4 Matrix and reduction 4
5 Reversing a gate 6
6 Bob’s symbol 8
7 Crypto locks 4 + open problem
8 Public keys for e-coins open problem

Section A Section B

Table 1. Problems of the first round
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N Problem title Max score
1 CP problem open problem
2 Interpolation with errors 8
3 HAS01 8
4 Weaknesses of the PHIGFS 8
5 Super dependent S-box 6 + open problem
6 Quantum entanglement 6 + open problem
7 Numbers and points 4
8 Bob’s symbol 8
9 Crypto locks 4 + open problem
10 Public keys for e-coins open problem
11 A long-awaited event 4

Table 2. Problems of the second round

4. Problems and their solutions
In this section, we formulate all the problems of 2022 year Olympiad and present their detailed

solutions, in some particular cases we also pay attention to solutions proposed by the participants.

4.1. Problem “Numbers and points”
4.1.1. Formulation

Decrypt the message in Fig. 1.

Fig. 1. The illustration for the problem “Numbers and points”

4.1.2. Solution

There is a board made up of numbers and dots on the right half of Fig. 1. One cell is highlighted in
red. The path along which the sensible plaintext is encrypted begins with it (Fig. 2). The ciphertext
has a «number – number – dot» pattern. The ciphertext is the following:

21 . 42 . 24 . 15 . 33 . 14 .

The table in the left half of Fig. 1 refers to the Polybius square. Each letter is represented by
its coordinates in the grid. Comparing the numbers from the ciphertext with the coordinates of the
letters in the Polybius square, we get:

F . R. (I/J) . E . N . D .

Picking I from (I/J), we get the sensible plaintext FRIEND.

The problem looked simple but there was only one complete solution proposed by the team of
Robin Jadoul (Belgium), Esrever Yu (Taiwan) and Jack Pope (United Kingdom).
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Fig. 2. The path along which the sensible plaintext is encrypted

4.2. Problem “Wallets”
4.2.1. Formulation

Bob has a wallet with 2022 NSUcoins. He decided to open a lot of new wallets and spread his
NSUcoins among them. The platform that operates his wallets can distribute content of any wallet
between 2 newly generated ones, charging 1 NSUcoin commission and removing the initial wallet.

He created a lot of new wallets, but suddenly noticed that all of his wallets contain exactly 8
NSUcoins each. Bob called the platform and told that there might be a mistake. How did he notice
that?

4.2.2. Solution

Suppose that there were n such operations, so we had n + 1 wallets. Since 1 NSUcoin is charged
for each operation, the total comission is equal to n. Therefore, we have 2022 − n = 8(n + 1) and
2014 = 9n, but that is impossible since n is a natural number. The most accurate and detailed solution
was sent by Egor Desyatkov (Russia).

4.3. Problem “A long-awaited event”
4.3.1. Formulation

Bob received from Alice the secret message

L78V8LC7GBEYEE

informing him about some important event.
It is known that Alice used an alphabet with 37 characters from A to Z, from 0 to 9 and a space.

Each of the letters is encoded as follows:

A B C D E F G H I J K L M N O P Q R S
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T U V W X Y Z 0 1 2 3 4 5 6 7 8 9 SPACE
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

For the encryption, Alice used a function f such that f(x) = ax2 + bx + c (mod 37) for some
integers a, b, c and f satisfies the property

f(x− y)− 2f(x)f(y) + f(1 + xy) = 1 (mod 37) for any integers x, y.

Decrypt the message that Bob has received.

4.3.2. Solution

Let y = 0:
f(x)− 2f(x)f(0) + f(1) = 1 (mod 37),

f(x)(1− 2f(0)) = 1− f(1) (mod 37).

Since f is not a constant function, we have that both sides of the equation above are zeros, so f(0) = 19
(mod 37) and f(1) = 1 (mod 37). From this we obtain that c = 19. Let y = −1:

f(1 + x) + f(1− x) = 1 + 2f(x)f(−1) (mod 37).
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By replacing x 7→ (−x) we get

f(1− x) + f(1 + x) = 1 + 2f(−x)f(−1) (mod 37).

Left sides of the last two expressions are equal, therefore f(x) = f(−x) (mod 37) that is f is even
function, provided f(−1) ̸= 0 (mod 37). We can check the last condition buy putting x = 0, y = 1 to
the initial relation on f , that yields f(−1) = 1 ̸= 0 (mod 37). Therefore, f(x) = f(−x) (mod 37) for
any integer x, hence b = 0.

From f(1) = 1 (mod 37) we reveal the value of the coeffecient a that is equal to 19. Thus, we
have f(x) = 19

(
x2 + 1

)
(mod 37), then for recovering of the plaintext we use the inverse expression

x = ±
√

2f(x) + 36 (mod 37) and for every symbol of the ciphertext we choose the appropriate variant
of the corresponding symbol of the plaintext:

L78V8LC7GBEYEE ↪→ NSUCRYPTO 2022.

The only correct solution was sent by William Zhang (United Kingdom).

4.4. Problem “Hidden primes”
4.4.1. Formulation

The Olympiad team rented an office at the Business Center, 1-342 room, on 1691th street for
NSUCRYPTO-2022 competition for 0 nsucoins (good deal!). Mary from the team wanted to create a
task for the competition and she needed to pick up three numbers for this task. She used to find an
inspiration in numbers around her and various equations with them. After some procedure she found
three prime numbers! It is interesting that when Mary added the smallest number to the largest one
and divided the sum by the third number, the result was also the prime number.

Could you guess these numbers she found?

Fig. 3. The illustration for the problem “Hidden primes”

4.4.2. Solution

We may assume from the problem statement that Mary used some numbers around her and some
equations with them in order to find these three numbers. We may also get from the description that
she used only one procedure to find these hidden numbers.

5



So, all three numbers are connected by some procedure and the numbers around Mary are used,
from phrase “various equations” we can assume that there exists some equation with these numbers as
coefficients. There were 5 numbers around Mary: 1, -342, 1691, -2022 and 0.

In addition, analyzing the picture (see Fig. 3), you can see the curve, cubes with 4 letters: a, b, c,
d and the cube with 0. The curve resembles a graph of a cubic function and the letters on the cubes
look like coefficients of a cubic function. The cube with 0 gives a hint for the use of a cubic equation.

Let us substitute the numbers from the problem statement into the cubic equation. Solving the
equation x3 − 342x2 + 1691x− 2022 = 0 we find the roots 2, 3, 337. All three numbers are prime and
satisfy the condition from the statement: (2 + 337)/3 = 113, where 113 is also a prime number.

Best solutions were proposed independently by Konstantin Romanov (Russia), Vasiliy Kadykov
(Russia) and Sergey Zabolotskiy (Russia).

4.5. Problem “Face-to-face”
4.5.1. Formulation

Alice picked a new pin code (4 pairwise distinct digits from {1, 2, . . . , 9}) for her credit card such
that all digits have the same parity and are arranged in increasing order. Bob and Charlie wanted to
guess her pin code. Alice said that she can give each of them a hint but face-to-face only.

Bob alone came to Alice and she told him that the sum of her pin code digits is equal to the number
of light bulbs in the living room chandelier. Bob answered that there is still no enough information
for him to guess the code, and left. After that, Charlie alone came to Alice and she told him that if
we find the product of all pin code digits and then sum up digits of those product, this result number
would be equal to the amount of books on the shelf. Charlie also answered that there is still no enough
information for him to guess the code, and left.

Unfortunately, Eve was eavesdropping in the next apartment and, after Charlie had left, she
immediately found out Alice pin code despite that she had never seen those chandelier and bookshelf.
Could you find the pin code too?

4.5.2. Solution

Let P be the pin code. Since all the digits of P have the same parity and are arranged in increasing
order, we have only six options:

Pin code P The sum of digits The product of digits The sum of product digits
1357 16 105 6
1359 18 135 9
1379 20 189 18
1579 22 315 9
2468 20 384 15
3579 24 945 18

Since Bob could not guess the code, the sum of digits must allow at least two options for the code,
so, we have that P ∈ {1379, 2468}. Since Charlie could not guess the code either, we have the same
problem for the sum of product digits and it follows that P ∈ {1359, 1579, 1379, 3579}. Therefore, the
pin code is equal to 1379.

Best solutions of this problem were sent by Henning Seidler (Germany), Himanshu Sheoran (India)
and Phuong Hoa Nguyen (France).

4.6. Problem “Crypto locks”
4.6.1. Formulation

Alice and Bob are wondering about the creation of a new version for the Shamir three-pass protocol.
They have several ideas about it.

The Shamir three-pass protocol was developed more than 40 years ago. Recall it. Let p be a big
prime number. Let Alice take two secret numbers cA and dA such that cAdA = 1 mod (p− 1). Bob

6



takes numbers cB and dB with the same property. If Alice wants to send a secret message m to Bob,
where m is an integer number 1 < m < p−1, then she calculates x1 = mcA mod p and sends it to Bob.
Then Bob computes x2 = xcB1 mod p and forwards it back to Alice. On the third step, Alice founds
x3 = xdA2 mod p and sends it to Bob. Finally, Bob recovers m as xdB3 mod p according to Fermat’s
Little theorem.

It is possible to think about action of cA and dA over the message as about locking and unlocking,
see Fig. 4.

Fig. 4. The illustration for the problem “Crypto locks”

Alice and Bob decided to change the scheme by using symmetric encryption and decryption pro-
cedures instead of locking and unlocking with cA, cB, dA and dB.

Q1 Propose some simple symmetric ciphers that would be possible to use in such scheme. What
properties for them are required? Should Alice and Bob use the same cipher (with different own
keys) or not?

Q2 Problem for a special prize! Could you find such symmetric ciphers that make the modified
scheme to be secure as before? Please, give your reasons and proofs.

4.6.2. Solution

Q1. Assume that Alice and Bob use functions EncA, DecA and EncB, DecB for encryption and
decryption, respectively. Suppose that Alice wants to send the message m, then the three-pass protocol
will look as follows:
• Alice calculates EncA(m, kA), where kA is her secret key, and sends it to Bob;
• Bob computes EncB(EncA(m, kA), kB), where kB is his secret key, and forwards it to Alice;
• Finally, Alice computes DecA(EncB(EncA(m, kA), kB), kA) and sends it to Bob;
In order for Bob to recover m the following property must hold

DecB(DecA(EncB(EncA(m, kA), kB), kA), kB) = m.

The most common approach was to use encryption functions that commute with each other. In
that case, if Alice wants to send a secret message m to Bob, then she calculates x = m ◦ kA and sends
it to Bob. Then Bob computes x2 = x ◦ kB and forwards it back to Alice. On the third step, Alice
finds x3 = x2 ◦ k−1

A and sends it to Bob. Finally, the commutative property of operation ◦ allows Bob
to recover m as x3 ◦ k−1

B .
Remark 1 Note that if Eve can intercept all three messages, then she can obtain m if she could
compute x−1

2 , since x ◦ x3 ◦ x−1
2 = m. As a result, all schemes that use ciphers with only XOR

operation (the most common suggestion by the participants) have this weakness.
Regarding Q2, one interesting idea found by a few participants is to use product of matrices

for encryption and decryption, with the additional condition that the matrix M associated with the
message m is singular. That additional condition appears as a countermeasure against the attack
described in Remark 1. However, such schemes require additional security analysis.

Another interesting idea suggested by the team of Himanshu Sheoran, Gyumin Roh and Yo Iida
(India, South Korea, Japan) was to base the scheme on permutations that commute with each other.
Note that a three-pass cryptographic protocol with a similar idea was presented in [3].
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4.7. Problem “Matrix and reduction”
4.7.1. Formulation

Alice used an alphabet with 30 characters from A to Z and 0, 1, «,», «!». Each of the letters is
encoded as follows:

A B C D E F G H I J K L M N O
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

P Q R S T U V W X Y Z 0 1 , !
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Encryption. The plaintext is divided into consequent subwords of length 4 that are encrypted
independently via the same encryption (2× 2)-matrix F with elements from Z30. For example, let the
j-th subword be WORD and the encryption matrix F be equal to

F =

(
11 9
11 10

)
.

The matrix that corresponds to WORD is denoted by Pj and the matrix that corresponds to the result
of the encryption of WORD is Cj and calculated as follows:

Cj = F · Pj =

(
11 9
11 10

)
·
(
22 17
14 3

)
=

(
8 4
22 7

)
(mod 30),

that is the j-th subword of the ciphertext is IWEH.

Eve has intercepted a ciphertext that was transmitted from Alice to Bob:

CYPHXWQE!WNKHZ0Z

Also, she knows that the third subword of the plaintext is FORW. Will Eve be able to restore the original
message?

4.7.2. Solution

The third word of the plaintext is FORW:

P = FORW =

(
5 17
14 22

)
(mod 30).

The ciphertext corresponding to it:

C = !WNK =

(
29 13
22 10

)
(mod 30).

Since C3 = F · P3, where F is the encryption matrix, the matrix for the decryption could have the
following form:

D = P3 · C−1
3 .

But det
(
C3

)
= 4 (mod 30) and gcd(4, 30) ̸= 1, that is such matrix does not exist modulo 30.

So, we will consider following calculations by reduction modulo 15. Let P3 = P3 (mod 15), C3 = C
(mod 15) and F = F (mod 15). We have

F
−1

= P3 ·
(
C3

)−1
=

(
9 2
4 9

)
(mod 15),

consequently,

D =

(
9 2
4 9

)
+ 15F0 (mod 30),

where F0 is 2× 2 binary matrix.
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We have D · C3 = P3 or

F
−1 ·

(
29 13
22 10

)
+ 15 · F0 ·

(
29 13
22 10

)
=

(
5 17
14 22

)
(mod 30).

Finally, we obtain (
5 17
14 22

)
= F0 ·

(
15 15
0 0

)
=

(
5 17
14 22

)
(mod 30).

If we set F0 =

(
a b
c d

)
then it is clear that only the values a = c = 0 and only the values b = 1, d = 0

give us the answer GOODLUCKFORWIN!!.
Best solutions for this problem were sent by Pieter Senden (Belgium), and by Sergey Zabolotskiy

(Russia).

4.8. Problem “Reversing a gate”
4.8.1. Formulation

Daniel continues to study quantum circuits. A controlled NOT (CNOT) gate is the most complex
quantum gate from the universal set of gates required for quantum computation. This gate acts on
two qubits and makes the following transformation:

|00⟩ → |00⟩ , |01⟩ → |01⟩ , |10⟩ → |11⟩ , |11⟩ → |10⟩ .

This gate is clearly asymmetric. The first qubit is considered as control one, and the second is as a
target one. CNOT is described by the following quantum circuit (x, y ∈ F2):

|x⟩ |x⟩

|y⟩ |y ⊕ x⟩

The problem. Help Daniel to design a circuit in a special way that reverses CNOT gate:

|x⟩ |x⊕ y⟩

|y⟩ |y⟩

It makes the following procedure: |00⟩ → |00⟩ , |01⟩ → |11⟩ , |10⟩ → |10⟩ , |11⟩ → |01⟩. To do this you
should modify the original CNOT gate without re-ordering the qubits but via adding some single-qubit
gates instead from the following ones:

Pauli-X gate |x⟩ X |x⊕ 1⟩ acts on a single qubit in the state
|x⟩, x ∈ {0, 1}

Pauli-Z gate |x⟩ Z (−1)x |x⟩ acts on a single qubit in the state
|x⟩, x ∈ {0, 1}

Hadamard gate |x⟩ H
|0⟩+(−1)x|1⟩√

2
acts on a single qubit in the state
|x⟩, x ∈ {0, 1}

Remark. Let us briefly formulate the key points of quantum circuits. A qubit is a two-level quantum
mechanical system whose state |ψ⟩ is the superposition of basis quantum states |0⟩ and |1⟩. The super-
position is written as |ψ⟩ = α0 |0⟩+ α1 |1⟩, where α0 and α1 are complex numbers, called amplitudes,
that possess |α0|2 + |α1|2 = 1. The amplitudes α0 and α1 have the following physical meaning: after
the measurement of a qubit which has the state |ψ⟩, it will be observed in the state |0⟩ with probability
|α0|2 and in the state |1⟩ with probability |α1|2. In order to operate with multi-qubit systems, we
consider the bilinear operation ⊗ : |x⟩ , |y⟩ → |x⟩⊗|y⟩ on x, y ∈ {0, 1} which is defined on pairs |x⟩ , |y⟩,
and by bilinearity is expanded on the space of all linear combinations of |0⟩ and |1⟩. When we have
two qubits in states |ψ⟩ and |φ⟩ correspondingly, the state of the whole system of these two qubits is
|ψ⟩⊗|φ⟩ . In general, for two qubits we have |ψ⟩ = α00|0⟩ ⊗ |0⟩+α01 |0⟩⊗|1⟩+α10 |1⟩⊗|0⟩+α11 |1⟩⊗|1⟩ .
The physical meaning of complex numbers αij is the same as for one qubit, so we have the essential
restriction |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. We use more brief notation |a⟩ ⊗ |b⟩ ≡ |ab⟩. In order
to verify your circuits, you can use different quantum circuit simulators, for example, see [15].
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4.8.2. Solution

The desired circuit has the following form for any x, y ∈ F2:

|x⟩ H H |x⊕ y⟩

|y⟩ H H |y⟩

|ψ1⟩ |ψ2⟩ |ψ3⟩

Indeed, with initial state |x⟩ |y⟩ we have

|ψ1⟩ =
(
|0⟩+ (−1)x |1⟩√

2

)(
|0⟩+ (−1)y |1⟩√

2

)
=
|00⟩+ (−1)y |01⟩+ (−1)x |10⟩+ (−1)x⊕y |11⟩

2
,

|ψ2⟩ =
|00⟩+ (−1)y |01⟩+ (−1)x |11⟩+ (−1)x⊕y |10⟩

2

=

(
|0⟩+ (−1)x⊕y |1⟩√

2

)(
|0⟩+ (−1)y |1⟩√

2

)
,

|ψ3⟩ = |x⊕ y⟩ |y⟩ .

Best solutions were sent by Daniel Popescu (Romania), by Yo Iida (Japan) and by David Marton
(Hungary).

4.9. Problem “Bob’s symbol”
4.9.1. Formulation

Bob learned the Goldwasser–Micali cryptosystem at university. Now, he is thinking about functions
over finite fields that are similar to Jacobi symbol.

He chose a function Bn : F2n → F2 (Bob’s symbol) defined as follows for any a ∈ F2n :

Bn(a) =

{
1, if a = x2 + x for some x ∈ F2n ,

0, otherwise.

Bob knows that finite fields may have some subfields. Indeed, it is well known that F2k is a subfield
of F2n if and only if k | n. Bob wants to exclude the elements of subfields. In other words, he considers
the restriction of Bn to the set

F̂2n = F2n \
⋃

k|n, k ̸=n

F2k .

Here, by F2n \ F2k we mean the removal from F2n the elements forming the field of order 2k.
Finally, Bob is interested in the sets

B0
n = {y ∈ F̂2n : Bn(y) = 0} and B1

n = {y ∈ F̂2n : Bn(y) = 1}.

Q1 Help Bob to find |B0
n|/|B1

n| if n is odd.

Q2 Help Bob to find |B0
n| and |B1

n| for an arbitrary n.

4.9.2. Solution

Let us define

B(F2n) = {x ∈ F2n : Bn(x) = 0}, i.e. B0
n = F̂2n ∩B(F2n).

First we prove the following lemma.
Lemma 1 Let k | n. Then

|F2k ∩B(F2n)| =

{
1
2 |F2k |, if n/k is odd,
0, otherwise.
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Proof. Let us consider the function G(x) = x2+x = x(x+1), where x ∈ F2k . First, G(x) = G(x+1).
Secondly, x2+x+a, a ∈ F2k , has at most 2 roots. It means that G is a two-to-one function. Therefore,
there are exactly 2k−1 distinct a such that x2 + x ̸= a for any x ∈ F2k .

Next, for any such a the polynomial x2 + x+ a is irreducible over F2k . It means that it has a root
q in the quadratic extension F22k of F2k , i.e. a = q2 + q. If n/k is even, F22k is a subfield of F2n ,
i.e. q ∈ F2n . Thus, |F2k ∩ B(F2n)| = 0. If n/k is odd, then F22k is not a subfield of F2n . Moreover,
F22k ∩ F2n = F2k . It means that any root q does not belong to F2n , i.e. |F2k ∩B(F2n)| = 2k−1.

Now we are ready to answer the questions. Let n = m2t, where m is odd. We define

ft(d) = |F̂2d2t ∩B(F2n)| and gt(d) =
1

2
2d2

t
,

where d | m. This means that |B0
n| = |B0

m2t | = ft(m). At the same time, the definition of F̂2n gives
us that ∑

d|n

|F̂2d ∩B(F2n)| = |F2n ∩B(F2n)|.

According to Lemma 1 and the denotations above,∑
d|n

|F̂2d ∩B(F2n)| =
∑
d|m

|F̂2d2t ∩B(F2n)| =
∑
d|m

ft(d) and

|F2n ∩B(F2n)| = |F2m2t ∩B(F2n)| =
1

2
|F2m2t | = gt(m).

Hence,
gt(m) =

∑
d|m

ft(d) holds for any integers m ⩾ 1 and t ⩾ 0.

According to the Möbius inversion formula,

ft(m) =
∑
d|m

µ(d)gt(m/d) =
1

2

∑
d|m

µ(d)2(m/d)2t .

Recall that µ(d) = 0 if d is not square-free (there is an integer u ⩾ 2 such that u2 | d); otherwise, it is
equal to 1 (−1 resp.) if d has an even (odd resp.) number of prime factors. As a result,

|B0
n| =

1

2

∑
d|m

µ(d)2n/d.

Also, |B1
n| = |F̂2n | − |B0

n|. We need only to note that

|F̂2n | =
∑
d|n

µ(d)2n/d.

This can be easily proven just using

2n = |F2n | =
∑
d|n

|F̂2d |

together with the Möbius inversion formula. Finally, we can see that |B0
n| = |B1

n| = 1
2 |F̂2n | for odd n,

which means that the answer for Q1 is 1. In fact, it directly follows from Lemma 1 and the definition
of F̂2n .

Many teams provided the correct answers in the second round using similar ideas: Himanshu
Sheoran, Gyumin Roh, Yo Iida (India), Mikhail Kudinov, Denis Nabokov, Alexey Zelenetskiy (Rus-
sia), Stepan Davydov, Anastasiia Chichaeva, Kirill Tsaregorodtsev (Russia), Mikhail Borodin, Vitaly
Kiryukhin, Andrey Rybkin (Russia), Kristina Geut, Sergey Titov, Dmitry Ananichev (Russia), Pham
Minh, Dung Truong Viet (Vietnam) and Alexander Belov (Russia).
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4.10. Problem “Public keys for e-coins”
4.10.1. Formulation

Alice has n electronic coins that she would like to spend via some public service S (bank). The ser-
vice applies some asymmetric algorithm of encryption E(, ) and decryption D(, ) in its work. Namely,
for the pair of public and private keys (PK,SK) and for any message m it holds: if c = E(m,PK),
then m = D(c, SK) and visa versa: if c′ = E(m,SK), then m = D(c′, PK).

To spend her money, Alice generates a sequence of public and private key pairs (PK1, SK1), . . . ,
(PKn, SKn) and sends the sequence of public keys PK1, . . . , PKn to the service S. By this she
authorizes the service S to control her n coins.

If Alice would like to spend a coin with number i in the shop of Bob, she just gives the secret
key SKi to Bob and informs him about the number i. To get the coin with number i, Bob sends to
the service S three parameters: number i, some non secret message m, and its electronic signature
c′ = E(m,SKi). The service S checks whether the signature c′ corresponds to the message m, i.e.
does it hold the equality m = D(c′, PKi). If it is so, the service accepts the signature, gives the coin
number i to Bob and marks it as «spent».

Problem for a special prize! Propose a modification of this scheme related to generation of
public and private key pairs. Namely, is it possible for Alice not to send the sequence of public
keys PK1, . . . PKn to the service S, but send only some initial information enough for generating all
necessary public keys on the service’s side? Suppose that Alice sends to the service S only some initial
key PK (denote it also as PK0), some function f and a set of parameters T such that PKi+1 =
f(PKi, T ) for all i ⩾ 0. Propose your variant of this function f and the set T . Think also what
asymmetric cryptosystem it is possible to use in such scheme.

Requirements to the solution. Knowing PK, f and T , it is impossible to find any private key SKi,
where i = 1, . . . , n. It should be impossible to recover SKi even if the secret keys SK1, . . . , SKi−1 are
also known, or even if all other secret keys are known (more strong condition).

4.10.2. Solution

The problem was solved by two teams and partially solved by three teams.
One of the best partial solutions was proposed by the team of Viet-Sang Nguyen, Nhat Linh Le

Tan and Phuong Hoa Nguyen from France. It is based on principles of Elliptic-curves-cryptography
and hash functions. The main idea is to consider SKi as the sequence of numbers related to each
other with the help of HMAC-SHA256. Public keys can be easily generated by the server S. The
main disadvantage of the scheme is described by the authors: server S should keep the point PK0 in
secret, as well as Bob should do with SKi. The problem is that if there is some data leakage, then all
coins of Alice will be lost. So, the potential complicity of the server and Bob forms a crucial danger
for Alice.

An interesting idea was proposed by Himanshu Sheoran (India) Gyumin Roh (South Korea) and
Yo Iida (Japan). It is based on the combination of two pairs of RSA keys. With one pair it is proposed
to sign messages from Bob to the server, with another one Alice generates her private keys to give
them to Bob. Solution was accepred as partial since the security of this scheme should be considered
in more details.

A very nice partial solution was proposed by Robin Jadoul (Belgium), Esrever Yu (Taiwan), Jack
Pope (United Kingdom). The authors describe an identity-based signature scheme with message
recovery based on the RSA hardness assumption. The main idea is to generate public and private keys
from the corresponding master keys by application of cryptographic hash functions (four functions are
used).

An original attempt to solve the problem was proposed by Alexander Bakharev, Rinchin Zapanov
and Denis Bykov (Russia). They applied RSA-like technique and considered private keys as SKi =
PK−1

i mod ϕ(n), where n = pq and prime numbers p, q are known to Alice only, as well as ϕ(n).
Public keys are formed as the consecutive prime numbers: PKi+1 is the next prime number after PKi.
But the security of this scheme is still under the question since public keys are too connected; it should
be analyzed.

We have accepted two complete solutions.
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One of them was proposed by the team of G.Teseleanu, P.Cotan, L.Constantin-Sebastian from
the Institute of Mathematics of the Romanian Academy. On the first round the partial solution was
proposed by G.Teseleanu. RSA-like technique is applied in the solution. Private and public keys are
connected as (SKi)

2 = PKi mod N , while public keys are generated via some PRNG from the fixed
master key K and number i. Only Alice can produce private keys since she knows prime factors p and
q, where N = pq.

Another accepted solution was proposed by Ivan Ioganson, Zhan-Mishel Dakuo and Andrei Golo-
vanov from Saint Petersburg ITMO University (Russia). Ideas of ID-based signature scheme are used
in it. Public and private keys are generated from the corresponding master keys PK0 and SK0. The
principles of Diffie-Hellman protocol on finite groups are applied. Namely, private keys are generated
as SKi = SK0 ∗H(i), whereas public keys used by the server are combinations of PK0 = SK0 ∗P and
numbers i, where P is a generator element of the group. It is hard to recover SKi by information on
the server and from SK1, . . . , SKi−1, SKi+1, . . . , SKn if the hash function h is of a good cryptographic
quality.

4.11. Problem “CP Problem”
4.11.1. Formulation

Let G = ⟨g⟩ be a group of prime order q, κ is the bit length of q. Let us consider two known mod-
ifications of the discrete logarithm problem over G, namely, s-DLOG problem and ℓ-OMDL problem.
Both of them are believed to be difficult.

s-DLOG problem (with parameter s ∈ N)
Unknown values: x is chosen uniformly at random from Z∗

q .
Known values: gx, gx

2
, . . . , gx

s .
Access to oracles: no.
The task: to find x.

ℓ-OMDL (One-More Discrete Log) problem (with parameter ℓ ∈ N)
Unknown values: x1, x2, . . . , xℓ+1 are chosen uniformly at random from Z∗

q .
Known values: gx1 , gx2 , . . . , gxℓ+1 .
Access to oracles: at most ℓ queries to O1 that on input y ∈ G returns x

such that gx = y.
The task: to find x1, x2, . . . , xℓ+1.

Consider another one problem that is close to the s-DLOG and ℓ-OMDL problems:

(k, t)-CP (Chaum—Pedersen) problem (with parameters k, t ∈ N)
Unknown values: x1, x2, . . . , xt+1 are chosen uniformly at random from Z∗

q .
Known values: gx1 , gx2 , . . . , gxt+1 .
Access to oracles: at most k queries to O1 that on input (i, z) ∈ {1, . . . , t+ 1} ×G

returns zxi , and at most t queries to O2 that on input
(α1, . . . , αt+1) ∈ Zt+1

q returns α1x1 + . . .+ αt+1xt+1.
The task: to find x1, x2, . . . , xt+1.

It is easy to see that if there exists a polynomial (by κ) algorithm that solves the s-DLOG problem,
then there exists a polynomial algorithm that solves the (s− 1, t)-CP problem for any t ∈ N.

Problem for a special prize! Prove or disprove the following conjecture: if there exists a poly-
nomial algorithm that solves (k, t)-CP problem, then there exists a polynomial algorithm that solves
at least one of the s-DLOG and ℓ-OMDL problems, where k, t, s, ℓ are upper bounded by polynomial
of κ.

4.11.2. Solution

Unfortunately, there were no any advances on solving this problem among participants, so, this
conjecture is still open.
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4.12. Problem “Interpolation with Errors”
4.12.1. Formulation

Let n = 2022 and let Zn be the ring of integers modulo n. Given xi, yi ∈ Zn for i ∈ {1, . . . , 324},
find monic polynomials

f(x) = x16 + α15x
15 + . . .+ α1x+ α0,

g(x) = x16 + β15x
15 + . . .+ β1x+ β0

of degree d = 16 and coefficients from Zn such that the relation

yi =
f(xi)

g(xi)
=
x16i + α15x

15
i + . . .+ α1xi + α0

x16i + β15x15i + . . .+ β1xi + β0

holds for at least 90 of the indices i ∈ {1, . . . , 324}.

Note. The coefficients β0, . . . , β15 are such that the denominator of the above fraction is invertible
for all possible values of xi ∈ Zn. It can be assumed that they are sampled uniformly at random from
all such sets of values. Furthermore, the positions and error values can be also assumed to be sampled
uniformly at random.

The attachment (see [20]) contains a CSV file with 324 triplets (i, xi, yi).

4.12.2. Solution

First, note that n = 2022 = 2 · 3 · 337. Therefore, the problem can be solved for moduli 2, 3, 337
independently, and then recovered using the Chinese Remainder Theorem (CRT). Furthermore, for
moduli 2 and 3, there are only a few possible polynomials (modulo the relations x2 = x modulo 2
and x3 = x modulo 3). The best candidate polynomial modulo 6 (ignoring equivalent forms) satisfies
125 / 324 values xi, yi, while the next best one does only 109 / 324. Note that the expected value
is 90 + (324 − 90)/6 = 129 (90 correct ones and 1/6 wrong pairs satisfying the relation modulo 6 by
chance), so that it is safe to assume that the best one is correct. We can now consider the problem
modulo 337, where we know that the 90 correct pairs must be among those 125 correct pairs observed
modulo 6. Denote the set of those 125 remaining indices by I.

Note that the relation can be rewritten as

yi · g(xi)− f(xi) = 0,

or, more explicitly,

(
yi ·

15∑
j=0

βix
j
i

)
−

( 15∑
j=0

αix
j
i

)
+
(
yix

d
i − xdi

)
= 0. (1)

The target problem can now be formulated as the problem of decoding a linear code over the finite
field GF (337). Indeed, let the generator matrix G be given by columns

(−1,−xi,−x2i , . . . ,−x15i , yi, yi · xi, yi · x2i , . . . , yi · x15i )

for all chosen indexes i ∈ I, let the target vector v be given by

v = (yix
d
i − xdi )i∈I ,

and consider the “solution” vector

s = (α0, . . . , α15, β0, . . . , β15).

It easy easy to verify that the codeword s × G differs from −v in at most 125 − 90 places, i.e., has
at most 35 errors. Indeed, the vector s × G compute the contribution of the first two clauses of
Equation (1), whereas v defines the third clause, and the three clauses sum to zero on correct data
pairs. Note that G defines a [125, 32] code, i.e., a 32-dimensional code of length 125. A random such
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code has expected minimum distance about 82 (given by the Gilbert-Varshamov bound), so that the
solution (with the error 35 less than half of the distance) should likely be unique (modulo 337).

A very basic yet efficient method for linear code decoding is the so-called “pooled Gauss” method:
choosing k = 32 random coordinates of the code and assuming that they are error-free, allowing to
recover full codeword by solving a linear system. Alternatively, SageMath includes an implementation
of the Lee-Brickell method, which is slightly faster. The decoding should take less than 30 minutes
using the basic method.

Remark: due to equivalent polynomial fractions modulo 2 and modulo 3, the overall solution is
not unique (but there are only a few candidates).

4.13. Problem “HAS01”
4.13.1. Formulation

Bob is a beginner cryptographer. He read an article about the new hash function HAS01 (see a
description in [12]). Bob decided to implement the HAS01 function in order to use it for checking
the integrity of messages being forwarded. However, he was inattentive and made a mistake during
the implementation. In the function f1, he did not notice the sign «’» in the variable a and used the
following set of formulas:

for i = 0 to 7 do
for j = 0 to 6 do
a(i+1) mod 8,j ← SBox(((ai,j ⊕ a(i+1) mod 8,j)≪ 3)⊕ ((ai,j+1 ⊕ a(i+1) mod 8,j+1)≫ 5))

a(i+1) mod 8,7 ← SBox(((ai,7 ⊕ a(i+1) mod 8,7)≪ 3)⊕ ((ai,0 ⊕ a(i+1) mod 8,0)≫ 5)⊕ 7)

Q1 Prove that Bob’s version of the hash function is cryptographically weak.

Q2 Find a collision to the following message (given in hexadecimal format):
316520393820336220323620343720316320373820386520.

The test set value for the original HAS01 hash function is given in [21].
The test set value for Bob’s implementation is given in [22].

4.13.2. Solution

Q1 In the case where Bob makes a mistake and uses formulas with recursion, it turns out that for
each first byte of the string (a00, a10, a20, a30, a40, a50, a60, a70), the most significant three bits do
not affect the formation of the digest. Therefore, the function is not collision resistant, making it easy
to pick up a number of different values that produce the same hash value.

Q2 According to the formulas, the most significant three bits for the first byte of each string do not
affect the formation of the hash value. However, the original message fills only the first three rows of the
original matrix. Therefore, changing the upper three bits in bytes a00, a10, a20 will allow you to get the
same hash values. Hence, for a given value 316520393820336220323620343720316320373820386520,
you can get 29 − 1 = 511 collisions.

For example:
316520393820336220323620343720316320373820386520;
F16520393820336220323620343720316320373820386520;
F165203938203362E0323620343720316320373820386520;
31652039382033622032362034372031E320373820386520;
and so on.
It should be noted, that most of those participants who tried to solve this problem were able to get

the correct answer and determine the collision. Separately, it is worth noting that the team of Mikhail
Borodin, Vitaly Kiryukhin and Andrey Rybkin (Russia) not only answered the questions of the task
correctly, but also considered the issues of a possible vulnerability for the HAS01-512 algorithm.
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4.14. Problem “Weaknesses of the PHIGFS”
4.14.1. Formulation

A young cryptographer Philip designs a family of lightweight block ciphers based on a 4-line type-2
Generalized Feistel scheme (GFS) with better diffusion effect.

Its block is divided into four m-bit subblocks, m ⩾ 1. For better diffusion effect, Philip decides
to use a (4× 4)-matrix A over F2m instead of a standard subblocks shift register in each round. The
family PHIGFSℓ(A, b) is parameterized by a non-linear permutation b : F2m → F2m , the matrix A and
the number of rounds ℓ ⩾ 1. The one-round keyed transformation of PHIGFSℓ(A, b) is a permutation
gk on F4

2m defined as:

gk(x3, x2, x1, x0) = A · (x3, x2 ⊕ b(x3 ⊕ k1), x1, x0 ⊕ b(x1 ⊕ k0))T ,

where x0, x1, x2, x3 ∈ F2m , k = (k1, k0) is a 2m-bit round key, k0, k1 ∈ F2m .
The ℓ-round encryption function fk(1),...,k(ℓ) : F4

2m → F4
2m under a key (k(1), . . . , k(ℓ)) ∈ Fℓ

2m is given
by

fk(1),...,k(ℓ)(x) = gk(ℓ) . . . gk(1)(x) for all x ∈ F4
2m .

For effective implementation and security, Philip chooses two binary matrices A′, A′′ with the
maximum branch number among all binary matrices of size 4, where

A′ =


1 1 0 1
1 0 1 1
0 1 1 1
1 1 1 0

 , A′′ =


0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1

 .

For approval, he shows the cipher to his friend Antony who claims that A′, A′′ are bad choices
because ciphers PHIGFSℓ(A

′, b), PHIGFSℓ(A
′′, b) are insecure against distinguisher attacks for all

b : F2m → F2m , ℓ ⩾ 1.

Help Philip to analyze the cipher PHIGFSℓ(A, b). Namely, for any b : F2m → F2m and any ℓ ⩾ 1,
show that PHIGFSℓ(A, b) has

(a) ℓ-round differential sets with probability 1;
(b) ℓ-round impossible differential sets;

for the following cases: Q1 A = A′; and Q2 A = A′′. In each case, construct these nontrivial
differential sets and prove the corresponding property.
Remark. Let us recall the following definitions.

• Let δ, ε ∈ F2n be fixed nonzero input and output differences. The differential probability of
s : F2n → F2n is defined as

pδ,ε(s) = 2−n · |{α ∈ F2n |s(α⊕ δ)⊕ s(α) = ε}| .

• If s : F2n ×K → F2n depends on a key space K, then the differential probability of s is defined as

pδ,ε(s) = |K|−1
∑
k∈K

pδ,ε(sk),

where s(x, k) = sk(x), x ∈ F2n , k ∈ K.

• Let Ω,∆ ⊆ F2n\{0} and Ω,∆ are nonempty. If pδ,ε(s) = 0 for any δ ∈ Ω, ε ∈ ∆, then (Ω,∆)
are impossible differential sets. But if ∑

δ∈Ω,ε∈∆
pδ,ε(s) = 1,

then (Ω,∆) are differential sets with probability 1. We call (Ω,∆) trivial (impossible) differential
sets if Ω ∈ {∅,F2n\{0}} or ∆ ∈ {∅,F2n\{0}}.
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4.14.2. Solution

Let δ, ε ∈ F2n be fixed nonzero input and output differences. The differential probability of
s : F2n → F2n is defined as

pδ,ε(s) = 2−n · |{α ∈ F2n |s(α⊕ δ)⊕ s(α) = ε}| .

If s : F2n ×K → F2n depends on a key space K then the differential probability of s is defined as

pδ,ε(s) = |K|−1
∑
k∈K

pδ,ε(sk),

where s(x, k) = sk(x), x ∈ F2n , k ∈ K. In that case the pair (δ, ε) represents a differential denoted by
δ−→sε.

For the l-round encryption function f , we will sometimes write δ−→lε to emphasize the number
of rounds l instead of δ−→fε.

For δ ∈ F2m , b : F2m → F2m , we denote

∆δ(b) = {b(α⊕ δ)⊕ b(α)|α ∈ F2m} .

Note that gk consists of a transformation vk : F4
2m → F4

2m and the matrix a over F2m , where

vk(x3, x2, x1, x0) = (x3, x2 ⊕ b(x3 ⊕ k1), x1, x0 ⊕ b(x1 ⊕ k0)) ,

gk(x) = a(vk(x))
T ,x ∈ F4

2m .

Case I. a = a1.
Let ε ∈ F2m ,

W (ε) =
{
(α3, α2, α1, α0) ∈ F4

2m |α3 ⊕ α1 = ε
}
\ {(0, 0, 0, 0)} .

Theorem 1. Let l be any positive integer, ε ∈ F2m . Then l-round differential sets W (ε)−→lW (ε)
of the PHIGFSl(a1, b) hold with probability 1.

Proof.
Note that for any (x3, x2, x1, x0) ∈ F4

2m we have the following equality

a1(x3, x2, x1, x0)
T = (x3 ⊕ x2 ⊕ x0, x3 ⊕ x1 ⊕ x0, x2 ⊕ x1 ⊕ x0, x3 ⊕ x2 ⊕ x1)T .

Let us consider any nonzero (δ, λ, ω) ∈ F3
2m and any round key k ∈ F2

2m .
Note that vk maps a difference

(δ, λ, δ ⊕ ε, ω) ∈W (ε) to a difference
(
δ, λ(1), δ ⊕ ε, ω(1)

)
∈W (ε)

for any
λ(1) ∈ ∆δ(b)⊕ λ, ω(1) ∈ ∆δ⊕ε(b)⊕ ω.

Then
a1

(
δ, λ(1), δ ⊕ ε, ω(1)

)
=

(
ω(1) ⊕ δ ⊕ λ(1), ω(1) ⊕ ε, ω(1) ⊕ δ ⊕ λ(1) ⊕ ε, λ(1) ⊕ ε

)
.

Thus, gk encrypts the difference

(δ, λ, δ ⊕ ε, ω) ∈W (ε) to the difference
(
δ(1), λ(2), δ(1) ⊕ ε, ω(2)

)
∈W (ε),

where
δ(1) = λ(1) ⊕ δ ⊕ ω(1), λ(2) = ω(1) ⊕ ε, ω(2) = λ(1) ⊕ ε.

Therefore,
P {W (ε)−→gW (ε)} = 1.

By induction on the number of rounds l, we can straightforwardly get

P {W (ε)−→lW (ε)} = 1.

□
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Corollary 1. For any number of rounds l ⩾ 1, (W (ε),W (δ)) are a pair of impossible l-round
differential sets for any different ε, δ ∈ F2m .

The proof follows from Theorem 1. □
Case II. a = a2.
Let

W =
{
(0, δ, δ, θ)|(δ, θ) ∈ F2

2m\ {(0, 0)}
}
.

Theorem 2. Let l be any positive integer, ε ∈ F2m . Then l-round differential sets W−→lW of the
PHIGFSl(a2, b) holds with probability 1.

Proof. Note that for any (x3, x2, x1, x0) ∈ F4
2m we have

a2(x3, x2, x1, x0)
T = (x3 ⊕ x2 ⊕ x1, x3 ⊕ x2 ⊕ x0, x3 ⊕ x1 ⊕ x0, x2 ⊕ x1 ⊕ x0)T .

Let us consider any nonzero (δ, θ) ∈ F2
2m and any round key k ∈ F2

2m .
Note that vk maps a difference

(0, δ, δ, θ) ∈W to a difference
(
0, δ, δ, θ(1)

)
∈W

for any θ(1) ∈ ∆δ(b)⊕ γ. Then

a2

(
0, δ, δ, θ(1)

)
=

(
0, θ(1) ⊕ δ, θ(1) ⊕ δ, θ(1)

)
.

Thus, gk encrypts the difference

(0, δ, δ, θ) ∈W to the difference
(
0, δ(1), δ(1), θ(1)

)
∈W,

where δ(1) = θ(1) ⊕ δ. Therefore,
P {W−→gW} = 1.

By induction on the number of rounds l, we can straightforwardly get

P {W−→lW} = 1.

□
Corollary. For any the number of rounds l ⩾ 1, (W,W ′) are a pair of impossible l-round differential

sets for any W ′ ⊆ F4
2m\(W ∪ {0}).

The proof follows from Theorem 2. □

We would like to mention the solution of Gabriel Tulba-Lecu, Ioan Dragomir and Mircea-Costin
Preoteasa (Romania).

4.15. Problem “Super dependent S-box”
4.15.1. Formulation

Harry wants to find a super dependent S-box for his new cipher. He decided to use a permuta-
tion that is strictly connected with every of its variables. He tries to estimate the number of such
permutations.

A vectorial Boolean function F (x) = (f1(x), f2(x), . . . , fn(x)), where x ∈ Fn
2 , is a permutation on Fn

2

if it is a one-to-one mapping on the set Fn
2 . Its coordinate function fk(x) (that is a Boolean function

from Fn
2 to F2), essentially depends on the variable xj if there exist values b1, b2, . . . , bj−1, bj+1, . . . , bn ∈

F2 such that

fk (b1, b2, . . . , bj−1, 0, bj+1, . . . , bn) ̸= fk (b1, b2, . . . , bj−1, 1, bj+1, . . . , bn) .

In other words, the essential dependence on the variable xj of a function f means the presence of
xj in the algebraic normal form of f (the unique representation of a function in the basis of binary
operations AND, XOR, and constants 0 and 1).

An example. Let n = 3. Then the Boolean function f(x1, x2, x3) = x1x2⊕x3 essentially depends
on all its variables; but g(x1, x2, x3) = x1x2 ⊕ x2 ⊕ 1 essentially depends only on x1 and x2.

The problem. Find the number of permutations on Fn
2 such that all their coordinate functions

essentially depend on all n variables, namely
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Q1 Solve the problem for n = 2, 3.
Q2 Problem for a special prize! Solve the problem for arbitrary n.

4.15.2. Solution

Let us denote the number of super-dependent S-boxes in n variables by S(n). We can represent
F as F (x) = (f1(x), . . . , fn(x)), where x ∈ Fn

2 and f1, . . . , fn are Boolean functions in n variables (i.e.
functions of the form Fn

2 → F2). Recall that F is a permutation if and only if any its component
function b1f1(x) ⊕ . . . ⊕ bnfn(x), b ∈ Fn

2 \ {0}, is balanced (i.e. it takes zero and one in the same
number of arguments).

The most of solutions provided by the participants contain an answer for Q1. As a rule, an
exhaustive search was used. The correct answer for Q1 is the following: S(2) = 0 and S(3) = 24576.
At the same time, some progress has been made on Q2. A short description of these results is bellow.

The team of Mikhail Kudinov, Denis Nabokov and Alexey Zelenetskiy (Russia) used the inclusion-
exclusion principle and provided lower and upper bounds for S(n). Their ideas were the following.
Let H(k) be the set of functions f : Fk

2 → F2 that essentially depend on all its variables x1, . . . , xk.
Then,

|H(n)| = C2n−1

2n −
n−1∑
k=0

Ck
n|H(k)|,

where Ck
n is a binomial coefficient. Next, let us define for any i ∈ {1, . . . , n} the sets

Ai = {a permutation F (x) = (f1(x), . . . , fn(x)) on Fn
2 : fi /∈ H(n)}.

It means that the number of super-dependent S-boxes is the following:

S(n) = 2n!− |A1 ∪ . . . ∪An|.

It is not difficult to see that |Ai1 ∩ . . . ∩ Aik | = |A1 ∩ . . . ∩ Ak| for any 1 ⩽ k ⩽ n and any k-element
set {i1, . . . , ik} ⊆ {1, . . . , n}. The inclusion-exclusion principle gives us that

S(n) = 2n! +
n∑

k=1

(−1)kCk
n|A1 ∩ . . . ∩Ak|.

The cardinalities of intersections can be calculated in the following way:

|A1 ∩ . . . ∩Ak| = 2n!
d(n, k)∏k−1

i=0 (C
2n−i−1

2n−i )2i
,

where d(n, k) is the number of tuples (f1, . . . , fk) consists of Boolean functions in n variables such that
f1, . . . , fk /∈ H(n) and b1f1 ⊕ . . . ⊕ bkfk is balanced for any b ∈ Fk

2 \ {0}. It is not easy to calculate
d(n, k). However, there is a trivial estimation d(n, k) ⩾ C2n−2

2n−1 . Also,

|A1| = 2n!
C2n−1

2n − |H(n)|
C2n−1

2n
.

This can be used to estimate S(n):

2n!− n|A1| ⩽ S(n) ⩽ 2n!− |A1|.

The team of Stepan Davydov, Anastasiia Chichaeva and Kirill Tsaregorodtsev (Russia) proposed
interesting ideas as well. They noticed that 2n | S(n), implemented Monte-Carlo simulations for
n = 4 and n = 5 and showed that limn→∞

S(n)
2n! = 1. Also, the team pointed out a subclass of super-

dependent S-boxes such that even component functions of its representatives essentially depend on all
its variables.

The team of Mikhail Borodin, Vitaly Kiryukhin and Andrey Rybkin (Russia) calculated that
S(4) = 19344102217728 = 24 · 16 · 50375266192. They used that the addition to a super-dependent
S-box in n variables of any binary vector from Fn

2 and rearranging its output bits provided a super-
dependent S-box as well. In other words, n! · 2n | S(n) holds. Note that some other participants
mentioned such kind of classifications (for instance, in the solution above). However, the team most
successfully exploited this fact.
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4.16. Problem “Quantum entanglement ”
4.16.1. Formulation

The Nobel Prize in Physics in 2022 was awarded to researchers who experimentally investigated
quantum entanglement. One of their studies was devoted to a Greenberger–Horne–Zeilinger state
|GHZ⟩ = 1√

2
(|000⟩ + |111⟩), which is an entangled state of three qubits. This state can be created

using the following quantum circuit:

|0⟩ H

|0⟩

|0⟩

After the measurement, the probability to find the system described by |GHZ⟩ in the state |000⟩
or in the state |111⟩ is equal to 1/2.

When we make measurements in quantum physics, we are able to make post-selection. For example,
if we post-select the events when the first qubit was in state |0⟩, the second and the third qubits will
also be found in the state |0⟩ for sure, this is actually what entanglement means. We also see that the
post-selection destroys entanglement of two remaining qubits.

Q1 But what will happen, if we post-select the events when the 1st qubit is in the Hadamard
state |+⟩ = 1√

2
(|0⟩ + |1⟩)? How can we perform this kind of post-selection if the result of each

measurement of a qubit state can be only 0 or 1 and we can only post-select these events? Will
the two remaining qubits be entangled after post-selection? Design the circuit which will provide
an answer.

Q2 Problem for a special prize! There are two different classes of three-qubit entanglement. One
of them is

|GHZ⟩ = 1√
2
(|000⟩+ |111⟩),

and the other is
|W ⟩ = 1√

3
(|001⟩+ |010⟩+ |100⟩).

Discuss the possible ideas how the difference between these states can be found with the usage
of post-selection and measurement. Don’t forget that you need to verify entanglement for both
types of states!

Remark. Let us briefly formulate the key points of quantum circuits. A qubit is a two-level quantum
mechanical system whose state |ψ⟩ is the superposition of basis quantum states |0⟩ and |1⟩. The
superposition is written as |ψ⟩ = α0 |0⟩+ α1 |1⟩, where α0 and α1 are complex numbers, called ampli-
tudes, that possess |α0|2 + |α1|2 = 1. The amplitudes α0 and α1 have the following physical meaning:
after the measurement of a qubit which has the state |ψ⟩, it will be observed in the state |0⟩ with
probability |α0|2 and in the state |1⟩ with probability |α1|2. Note that we can measure qubit, initially
given in the state |ψ⟩ = α0 |0⟩+α1 |1⟩, in other basis, for example Hadamard basis |+⟩ = 1√

2
(|0⟩+ |1⟩)

and |−⟩ = 1√
2
(|0⟩+ |1⟩). In order to do this, we consider the state in the form |ψ⟩ = α′

0 |+⟩+ α′
1 |−⟩,

where complex amplitudes α′
0, α

′
1 have the same physical meaning as α0 and α1. Then we can calculate

the probability that the qubit will be in the state |+⟩ or |−⟩ after the measurement and consider the
process of post-selection in this case. In order to operate with multi-qubit systems, we consider the
bilinear operation ⊗ : |x⟩ , |y⟩ → |x⟩ ⊗ |y⟩ on x, y ∈ {0, 1} which is defined on pairs |x⟩ , |y⟩, and by
bilinearity is expanded on the space of all linear combinations of |0⟩ and |1⟩. When we have two qubits
in states |ψ⟩ and |φ⟩ correspondingly, the state of the whole system of these two qubits is |ψ⟩ ⊗ |φ⟩ .
In general, for two qubits we have |ψ⟩ = α00|0⟩ ⊗ |0⟩+α01 |0⟩ ⊗ |1⟩+α10 |1⟩ ⊗ |0⟩+α11 |1⟩ ⊗ |1⟩ . The
physical meaning of complex numbers αij is the same as for one qubit, so we have the essential restric-
tion |α00|2 + |α01|2 + |α10|2 + |α11|2 = 1. We use more brief notation |a⟩ ⊗ |b⟩ ≡ |ab⟩. By induction,
this process is expanded on the case of three qubits and more. Mathematically, the entanglement of
n-qubits state means that we can not consider this state in the form |ψ⟩ = |φ1⟩⊗ |φ2⟩, where |φ1⟩ and
|φ2⟩ are some states of m and n−m qubits, correspondingly. In order to verify your circuits, you can
use different quantum circuit simulators, for example, see [15].
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4.16.2. Solution

The first question.
The circuit for creation of the Greenberger–Horne–Zeilinger state |GHZ⟩ is the following:

|0⟩ H

|000⟩+|111⟩√
2|0⟩

|0⟩

First, we need to post-select events when the first qubit is in the Hadamard state |+⟩ = 1√
2
(|0⟩+ |1⟩).

For this purpose, we make an Hadamard gate prior to the measurement of the first qubit. After this
we perform a post-selection.

The state |GHZ⟩ can be written as

|GHZ⟩ = |000⟩+ |111⟩√
2

= |+⟩ (|00⟩+ |11⟩)
2
√
2

+ |−⟩ (|00⟩ − |11⟩)
2
√
2

,

where |±⟩ = (|0⟩± |1⟩)/
√
2. It means that if we select the first qubit in the state |+⟩, the other qubits

will be in the entangled Bell state |Φ+⟩ = 1√
2
(|00⟩+ |11⟩). This state can be detected using a CNOT

gate followed by the Hadamard gate. The whole circuit is

|0⟩ ⟨0||0⟩ H H

|0⟩ H

|0⟩

The second question that supposed to be the open problem was solved during the Olympiad by the
team of Viet-Sang Nguyen, Nhat Linh LE Tan and Phuong Hoa Nguyen (France). Here we provide
the solution.

If we measure any qubit of the state |GHZ⟩ and known the result of the measurement, the state
of two rest qubits immediately become known to us. Thus, the state of the whole system of 3 qubits
is an entangled one. But the state of two rest qubits after the measurement of any qubit is separable.

When we measure the first qubit of the state |W ⟩, the result is 0 with probability 2/3, and 1/3
for the result 1. When the state of the first qubit is measured 1, the system collapses to a separable
state |00⟩ hence it is not entangled anymore. However, when the state of the first qubit is measured 0,
the remaining two qubits become the maximally entangled state of two qubits. Given the measurement
of one qubit as |1⟩, we can deduce the information of the other two because there is correlation in the
information between qubits. Thus, |W ⟩ is an entangled quantum state of three qubits.

Different from |GHZ⟩, measuring one qubit in |W ⟩ creates an entangle state of two remaining
qubit with probability 2/3. While being in |GHZ⟩, the system collapses to a separable state after
measurement of any qubit.

The post-selection procedure for the state |GHZ⟩ was discussed in the first question, so the same
technique can be applied for the state |W ⟩. This state contains residual entanglement after measure-
ment of a qubit, we can post-selection the third qubit in the state |0⟩ to attain the Bell state of the
remaining qubits.

|0⟩ ⟨0||0⟩ Ry(θ)

|0⟩ H

|0⟩

Here Ry(θ) gate is a single-qubit rotation through angle θ = 2arccos(1/
√
3) (radians) around the

y-axis.
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The state |W ⟩ has the following representation

|W ⟩ = 1√
3

(
|001⟩+ |010⟩+ |100⟩

)
=

1√
6

(
|00+⟩+ |01+⟩+ |10+⟩ − |00−⟩+ |01−⟩+ |10−⟩

)
If we can post-select the state |+⟩ for the third qubit, we have:

1√
3

(
|00+⟩+ |01+⟩+ |10+⟩

)
=

1√
3

(
|00⟩+ |01⟩+ |10⟩

)
⊗ |+⟩ ,

which is equivalent to a circuit with two entangled qubits similar to |W ⟩ and a independent qubit in
the state |+⟩. There is a correlation between 2 rest qubits in this system: if we measure 1 in one qubit,
the other must be 0. Hence, we have an entanglement between 2 qubits.

|0⟩ ⟨0||0⟩ Ry(θ)

|0⟩ H

|0⟩

The circuit for the system with third qubit in the state |+⟩ and 2 entangled qubits

|0⟩ H

|0⟩ Ry(θ)

|0⟩ H

In conclusion, when measuring one qubit of the state |W ⟩, the state of the other two qubits are
still entangled. But after the measurement of any qubit of the state |GHZ⟩, the states of the rest
qubits become known. When post measuring Hadamard |+⟩ state, both |W ⟩ and |GHZ⟩ states return
outcome equivalent to a separate qubit in the state |+⟩ and a entangled state of two qubits.

We also would like to mention participants who made a progress in solution, that is the team
of Gabriel Tulba-Lecu, Mircea-Costin Preoteasa and Ioan Dragomir (Romania), the team of Mikhail
Kudinov, Denis Nabokov and Alexey Zelenetskiy (Russia), the team of Himanshu Sheoran, Gyumin
Roh and Yo Iida (India, South Korea, Japan) and the team of Donat Akos Koller, Csaba Kiss and
Marton Marits (Hungary).
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