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ABSTRACT

To enable the exponential expansion of Internet of Things
(IoT) applications, IoT devices must gather and transmit
massive amounts of data to the server for further processing.
By employing the same signals for both radar sensing and
data transmission, the integrated sensing and communication
(ISAC) approach provides simultaneous data gathering and
delivery in the physical layer. Over-the-air computation (Air-
Comp), which leverages the analog-wave addition property
in multi-access channels, is a communication method that
also supports function computation. In order to leverage the
individual benefits of ISAC and AirComp, this work focuses
on Integrated Sensing Communication and Computation (IS-
CCO) framework for the IoT network. Since the IoT sensors
are small size low cost devices and each is equipped with
single antenna, and hence to make the processing of received
echo simple this work assume that the waveform transmitted
by each sensor is orthogonal to each other. Furthermore, joint
optimal power allocation for each sensor in the IoT network
and the combining vector at the EC is designed such that the
signal-to-noise (SNR) ratio at the EC is maximized. How-
ever, the design challenge lies in the non-convex joint optimal
power allocation for each IoT device and the combining vec-
tor at the server. To address this, an iterative algorithm is
proposed which provides closed-form solution for each quan-
tity in each iteration. Results show that the proposed optimal
power allocation and orthogonal waveform design scheme
outperforms the equal power allocation-based design.

Index Terms— Internet of Things (IoT), Integrated Sens-
ing and Communication (ISAC), Over-the-air computation.

1. INTRODUCTION

The emerging Internet of Things (IoT) services such as smart
cities, digital twins, and autonomous vehicles are expected
to be enabled by the next-generation wireless networks (6G
and beyond) [1]. To support the data collection required for
these applications, IoT devices must gather significant data
from the environment and send it to the server for process-
ing [2]. In conventional data processing pipelines, these oper-
ations are typically carried out individually with limited mu-
tual assistance and integration [3]. However, the integrated

sensing and communication (ISAC) technique uses the same
spectrum and signals for both radar sensing and data commu-
nication, enabling simultaneous data collection and delivery
in the physical layer [4], and hence it has become a widely
used technology. It has been applied to a range of systems
such as RIS systems, vehicular networks, smart homes, edge
learning systems, millimeter-wave radar, and communication
networks. Despite this, the operation of computation remains
isolated as it mostly occurs in the upper layers.

To increase efficiency and decrease overhead, integrating
sensing, communication, and computation is a natural step.
The over-the-air computation (AirComp) technique achieves
function computing through simultaneous signal transmission
in the physical layer using the analog-wave addition property
in a multi-access channel [5, 6]. AirComp has prompted the
unification of these three operations into a single signal trans-
mission. This has led to the development of a new framework
known as integrated sensing, communication, and computa-
tion over-the-air (ISCCO) [7]. A brief study of the existing
works is presented next.

1.1. Existing works

There has been research focused on co-existence as well as
improving radar sensing and communication performance
using convex optimization techniques. Li and Petropulu [8]
proposed a joint radar beamformer and communication co-
variance matrix design with an objective to maximize the
radar sensing signal to interference plus noise ratio (SINR),
while taking specific power and capacity constraints into
account. To address radar interference, a communication
receiver was designed in [9] to demodulate communication
data while iteratively removing radar interference using a
successive interference cancellation (SIC) algorithm. But
these designs require information about CSI, radar probing
waveforms, and communication modulation formats to be
frequently exchanged between radar and communication de-
vices for coexistence. While a control center connecting both
systems via a wireless link or backhaul channel may facilitate
cooperation, implementation challenges remain. In [10], an
advanced co-existence scheme was proposed to reduce the
overheads of exchanging side-information. A dual-functional
system was designed to support both radar and communica-



tion, and the performance of both functionalities was unified
based on the rate distortion theory [11].

Though the ISAC is a well-studied technology that com-
bines sensing and communication functions, but the compu-
tation aspect is often overlooked since it falls under the upper
layers. Fortunately, AirComp allows for fast function compu-
tation through physical layer transmissions. As a result, inte-
grating the operations of sensing, communication, and com-
putation is a natural step that can be achieved through the
combination of ISAC and AirComp. Hence, in this work, we
have considered an IoT network in which the sensors trans-
mit orthogonal waveform to sense the parameter/quantity of
interest and sends the communication symbol over the wire-
less channel to the central edge center (EC) for the receive
processing. The signal transmitted by each sensor reaches
as a sum at the EC over a multiple access channel. Hence,
the objective is to develop an optimal transmit power allo-
cation scheme and the received beamforming vector at the
EC jointly. The joint non-convex SNR maximization problem
is then solved using an iterative scheme which gives closed-
form solution for the optimal power allocation and receive
beamformer vectors in each iteration. The orthogonal wave-
form transmission from each sensor makes the sensing echo
processing simpler for low cost single antenna sensor-based
IoT system. Next, we dicuss the system model and problem
formulation in detail.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

We consider an IoT system which is designed to support si-
multaneous sensing, communication, and computation. The
M IoT sensors are assumed to be low-cost and thus single-
antenna equipped. These sensors collaboratively transmit
modulated signals to detect a target while passing data to a
multi-antenna central edge center (EC) for data fusion in the
manner of AirComp.

Let xm (t) denotes the transmit signal to be designed by
the m-th sensor, and cm represents the communication sym-
bol to be transmitted to the EC by the m-th sensor. The trans-
mit waveform for the mth sensor is x̃m (t) = cmxm (t). Fur-
thermore, defining gim be the target-related reflectivity coef-
ficient from the m-th sensor to the i-th sensor, the receiving
echo at each sensor can be modelled as

rm (t) = gmmx̃m (t) +
∑
i̸=m

gmix̃i (t) + nm
r (t) . (1)

The sampled version of which is given by

rm = gmmcmxm +
∑
i ̸=m

gmicixi + nm
r ,

where xm = [xm (1) , . . . , xm (T )]
T ∈ CT×1, rm =

[rm (1) , . . . , rm (T )]
T ∈ CT×1 and nm

r = [nm
r (1) , . . . , nm

r (T )]
T ∈

CT×1.

By using the matched filter at the mth sensor, one obtains

ym = xH
mrm = gmmcmxH

mxm+
∑
i ̸=m

gmicix
H
mxi+xH

mnm
r .

Considering the each sensor is light-weight, and only sim-
ple computation is supported. Therefore, the orthogonality is
treated as a compulsory constraint as{

xH
mxi = 0 ∀i ̸= m

xH
mxm = pm,

where pm is the transmitted power of the mth sensor.
For the over-the-air computation, by the receiving com-

biner, the EC aims to obtain
∑M

m=1 cm. This may correspond
to scenario where the objective is to an average of all the
transmit information from each sensor m in the IoT. There-
fore, the communication model is

yc (t) = aH
M∑

m=1

hmcmxm (t) + aHnc(t), (2)

where hm ∈ CNc×1 is the Rayleigh flat fading channel vector
from the m-th sensor to the EC which is constant over the T
observation interval, a ∈ CNc×1 is the combiner at the EC,
and nc(t) ∼ CN (0, σ2

nI) ∈ CNc×1 is the noise vector at the
EC. Moreover, the quantities Nc represents the number of the
receiving antennas of the EC. By collecting all received signal
together (i.e. yc = [yc (1) , . . . , yc (T )] ∈ C1×T , we have

yc = aHHCX + aHN c, (3)

where N c = [nc (1) , . . . ,nc (T )] ∈ CNc×T , C = Diag ({cm}) ∈
CM×M , H = [h1, . . . ,hM ] ∈ CNc×M and X = [x(1), . . . ,x(T )] ∈
CM×T . The expression for the signal-to-noise (SNR) at EC
can be evaluated as

SNR =

∥∥aHHCX
∥∥2
2

E
[
∥aHN c∥22

] =
aHHCXXHCHHHa

E [aHN cNH
c a]

=
aHP (X,p)a

σ2
na

Ha
. (4)

We aim to maximize the SNR at the EC for the symbol es-
timation from communication point of view. Recall that the
required orthogonality, we have

XXH = Diag (p) ,

where p = [p1, p2, . . . , pM ]T ∈ RM×1. Therefore, the prob-
lem is formulated as

maximize
a,X,p

aHP (X,p)a

aHa

subject to XXH = Diag (p)

1Tp ≤ Ptotal

p ≥ Pmin1, (5)



where P (X,p) = HCXXHCHHH and 1 is a vector of
all ones of appropriate dimension. Next, in order to solve the
above optimization we propose an iterative algorithm which
is described next in detail.

3. PROPOSED ALGORITHM

In order to solve the optimization problem in (4), we use the
alternating method. Initially, we assume that X and p are
known, the sub-problem to find optimal a can be formulated
as

maximize
a

aHP (X,p)a

aHa
(6)

which is in the form of well known Rayleigh quotient and
the closed-form solution of a is the scaled eigenvector corre-
sponding to the maximum eigenvalue of the matrix P (X,p).

Next, the sub-problem to find the optimal X and p for a
given a is

maximize
X,p

Tr
(
XXHQ

)
XXH = Diag (p)

1Tp ≤ Ptotal

p ≥ Pmin1,

(7)

where Q = CHHHaaHHC ∈ Cm×m. This problem can
be recast into the one w.r.t. p given by

maximize
p

Tr (Diag (p)Q)

1Tp ≤ Ptotal

p ≥ Pmin1.

(8)

Without loss of generality, assume that the index of the largest
diagonal value of Q is i, then the optimal solution is given by

p⋆ =

Pmin, . . . , Pmin︸ ︷︷ ︸
i−1

, Ptotal − (M − 1)Pmin, Pmin, . . . , Pmin︸ ︷︷ ︸
M−i


T

.

(9)
If largest diagonal value appears more than once in the di-
agonal elements i.e. M̃ , then the optimal solution is the one
where the sum to these indices of the largest values is equal to
Ptotal −

(
M − M̃

)
Pmin with the remaining elements being

Pmin. Given the optimal power allocation p⋆, the remain-
ing task is to construct an orthogonal matrix X such that
XXH = Diag (p⋆). Recall that X = [x1, . . . ,xM ]

T ∈
CM×T . For the guarantee of perfect orthogonality, it implies
that the requirement T ≥ M should be satisfied. Therefore,
assume that the orthogonal matrix S ∈ CM×T is used with
SSH = IM , then the optimal X is X⋆ = Diag (

√
p⋆)S,

where the matrix Diag (
√
p⋆) ∈ Cm×m represents a diagonal

matrix with the square root of each of the elements of the op-
timal power allocation vector p⋆. This procedure is repeated
until either the convergence is achieved or the maximum num-
ber of iterations have achieved in the system.
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Fig. 1. SNR versus the total transmit power budget of the
network.
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Fig. 2. SNR versus the total number of sensors in the network.

4. SIMULATION RESULTS

Unless otherwise specified, the simulation parameters are set
as follows: M = 8 single antenna sensors, and EC with
N = 15 antennas. All channels are assumed to be inde-
pendent Rayleigh fading, modeled as independent complex
Gaussian random variables with zero mean and non-identical
variance. Additionally, the maximum total transmit power
budget of the IoT network is set as PT = 10 mW. The figures
are generated by averaging over 1000 simulation realizations,
each with independent channels.

Fig. 1 plots the SNR as a function of total transmit power
budget of the network. As the transmit power budget in-
creases the SNR performance increases linearly. From the
performance comparison point of view we have also plotted
the performance corresponding to the equal power allocation,
and it can be readily deduced from the figure that our pro-
posed optimal power allocation scheme outperforms the equal
power allocation based scheme.
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Fig. 3. Bar plot depicting the power distribution according to
the channel power of each sensor.

Fig. 2 depicts the SNR performance of the proposed
scheme as a function of number of sensors in the network. As
expected as the number of sensors increases in the system, EC
will have more and more observations available and which
leads to an enhancement in the SNR. Once again, the pro-
posed design outperforms the equal power allocation-based
design.

In Fig. 3 we have plotted a bar diagram depicting the
gain aHhm for each sensor m along with the power allocated
to that particular mth sensor which is denoted by pm. As
can be readily seen in the figure that the maximum power has
been allotted to sensor corresponding to the maximum gain
while the other sensors in the system have been allocated the
minimum power denoted by pmin.

5. CONCLUSION

In this paper, we developed a joint ISAC and Over-the-Air
framework for the improved SNR performance in a next gen-
eration IoT system by enabling simultaneous sensing and
computation via Aircomp. A non-convex problem of jointly
optimizing the transmit power allocation for each IoT device,
together with the data aggregation beamformer at the EC has
been solved using an iterative framework. The orthogonal
transmit waveform by each sensor makes the proposed de-
sign simpler for an IoT network which generally consists of a
low cost single antenna sensor nodes. This work contributes
to the emerging research area of ISCCO and opens up sev-
eral avenues for further research, such as sensor scheduling,
vehicular tracking, and target surface estimation.
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