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ABSTRACT
Machine learning tasks entail the use of complex computa-
tional pipelines to reach quantitative and qualitative con-
clusions. If some of the activities in a pipeline produce er-
roneous or uninformative outputs, the pipeline may fail or
produce incorrect results. Inferring the root cause of failures
and unexpected behavior is challenging, usually requiring
much human thought, and is both time consuming and error
prone. We propose a new approach that makes use of itera-
tion and provenance to automatically infer the root causes
and derive succinct explanations of failures. Through a de-
tailed experimental evaluation, we assess the cost, precision,
and recall of our approach compared to the state of the art.
Our source code and experimental data will be available for
reproducibility and enhancement.
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1 INTRODUCTION
Machine learning pipelines, like many computational pro-
cesses, are characterized by interdependent modules, associ-
ated parameters, data inputs, and outputs from which con-
clusions are derived. If one or more modules in a pipeline
produce erroneous outputs, the conclusions may be incor-
rect.

Discovering the root cause of failures in a pipeline is chal-
lenging because problems can come from many different
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ScoreData Score

Instance Data Estimator Score Evaluation
CP1 Iris Logistic regression 0.9 Success
CP2 Digits Decision tree 0.8 Success

CP3 Iris Gradient boosting 0.2 Failure

CP4 Digits Gradient boosting 0.3 Failure

CP5 Iris Decision tree 0.7 Success

CP5 Images Gradient boosting 0.9 Success

P = {Data,Estimator}
Udata = {Iris, Digits, Images}
Uestimator = {Logistic regression, 

Decision tree, 
Gradient boosting}

E = score > 0.6

Figure 1: Machine learning pipeline and its prove-
nance. Users can select different input datasets and
classifier estimators to solve a classification problem.

sources, including bugs in the code, input data, and improper
parameter settings. This problem is compounded when mul-
tiple pipelines are composed. For example, when a machine
learning pipeline feeds predictions to a second analytics
pipeline, errors in the machine learning model can lead to er-
roneous actions taken based on the analytics results. Similar
challenges arise in pipeline design, when developers need
to understand trade-offs and test the effectiveness of their
design decisions, such as the choice of a particular learn-
ing method or the selection of a training data set. To debug
pipelines, users currently expend considerable effort reason-
ing about possibly incorrect or sub-optimal settings and then
executing new pipeline instances to test hypotheses. This is
tedious, time-consuming, and error-prone.
MLDebugger.We propose MLDebugger , a method that au-
tomatically identifies one or more minimal causes of failures
or unsatisfactory performance in machine learning pipelines.
It does so (i) by using the provenance of previous runs of a
pipeline (i.e., information about the runs and their results),
and (ii) by proposing and running carefully selected config-
urations consisting of so far untested new combinations of
parameter values.

To see why we need to test new configurations, consider
a setting in which several analytical algorithms can be used
each with a set of hyperparameters. The results of using
some hyperparameter settings can lead to useless outputs
(e.g., low quality predictions) or even a crash. Sometimes, it is
unclear which single hyperparameter-value setting or which
combinations cause such results. Figure 1 shows a concrete
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example: a generic template for a machine learning pipeline
and a log of different instances of the pipeline that were run
with their associated results. The pipeline reads a data set,
splits it into training and test subsets, creates and executes an
estimator, and computes the F-measure score using 10-fold
cross-validation. A data scientist uses this template to under-
stand how different estimators perform for different types
of input data, and ultimately, to derive a pipeline instance
that leads to high scores. This entails exploring different
parameter-values, training data sets, and learning classifiers.

Analyzing the provenance of the runs, we can see that gra-
dient boosting leads to much lower scores than other methods
for two of the data sets (i.e., Iris and Digits), but it has a high
score for the Images data. This is counter-intuitive and may
suggest that there is a problem with gradient boosting for
some parameters. Because each of these runs used differ-
ent parameters for each method depending on the data set,
a definitive conclusion has to await a more systematic ex-
ploration through additional experiments with different pa-
rameter settings. Furthermore, since many parameter-value
combinations can contribute to a poor outcome (or bug), it
is also important to derive concise, ideally minimal explana-
tions for the behavior.

Understanding why the values are lower can help identify
bugs. In this case, as we discuss in Section 3, MLDebugger
discovers that the low scores for Gradient Boosting happen
only when a specific version the machine learning library
containing the estimators is used, suggesting that a bug may
have been introduced in this version.
We note that, in the above example, the problem was

traced back to a library upgrade. Sometimes, however, the
problem can be related to values assigned to variables in
specific functions or the data set itself. For example, an in-
dustrial colleague cited an example in which an input to an
analysis pipeline changed its resolution from monthly to
weekly, causing the analysis to produce erroneous results.
Our approach would identify that change in the data to be
the root cause of the error. In fact, as Section 2 shows, our
approach captures the most relevant aspects of a pipeline, in-
cluding data, data type, library versions, and values assigned
to input parameters.
Contributions. We present a bug-finding and explanation
method that makes two novel contributions:

(1) Our algorithm (i) takes a given set of pipeline instances
some of which give erroneous results, forms a hypoth-
esis about possible root causes, then (ii) carefully se-
lects new pipeline instances to test so-far untested
properties-value combinations. It then iterates on (i)
and (ii) until some time budget is exhausted or until it
finds a definitive root cause.

(2) From a set of definitive root causes, our method finds
and reports a minimal root cause, represented as a
Boolean formula containing a minimal set of property-
comparator-values that would cause the bug.

Because relying solely on stored provenance can lead to
incomplete (or incorrect) explanations, Contribution 1 en-
sures fewer false positives compared to the state of the art.
Contribution 2 helps with the precision of the diagnosis,
which is necessary for the swift resolution of the bug.

We also carry out a detailed experimental evaluationwhich
shows that our approach attains higher precision and recall
compared with the state of the art, and that it also derives
more concise explanations. The experimental data and source
code for our system will be made available as open source
for reproducibility and enhancement. We note that the al-
gorithms of MLDebugger are general and can be applied to
computational pipelines other than machine learning. Such
applications are, however, out of the scope of this paper.
Outline. The remainder of this paper is organized as follows.
Section 2 introduces the model we use for machine learning
pipelines and formally defines the problem we address. In
Section 3, we present algorithms to search for simple and
complex causes of failures. We compare our approach with
the state of the art in Section 4. We review related work
in Section 5, and conclude in Section 6, where we outline
directions for future work.

2 DEFINITIONS AND PROBLEM
STATEMENT

Intuitively, given a set of pipeline instances, some of which
have led to bad or questionable results, our goal is to find
the root causes of these results possibly by creating and
executing new pipeline instances.

Definition 1 (Pipeline, pipeline instance, property-value
pairs, value universe, results). Amachine learning pipeline
MP is associated with a set of properties P (i.e., including
hyperparameters, input data, versions of programs, compu-
tational modules) each of which can take on various values.
A pipeline instance, denoted as MPi , of MP defines val-
ues for the properties. Thus, an instanceMPi is associated
with a list of property-value pairs Pvi containing some
assignment (p,v) for all p ∈ P . For each property p ∈ P ,
the property-value universeUp is the set of all values that
have been assigned to p by any pipeline instance so far, i.e.,
Up = {v |∃i(p,v) ∈ Pi }.

Note that in a normal use case, our goal is to find the
root causes for problematic instances, not to do software
verification. Therefore our universe of property values for
each property p is Up , the set already seen. That is, we seek
to understand a root cause from among the existing values.
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An application-dependent evaluation procedure can be
defined to decide whether the pipeline results are acceptable
or not, and flag instances that should be investigated. In a
machine learning context, an evaluation procedure may be to
test whether the cross-validation accuracy is above a certain
threshold.

Definition 2 (Evaluation). Let E be a procedure that evalu-
ates the results of an instance such that E(MPi ) = succeed
if the results are acceptable, and E(MPi ) = fail otherwise.

Definition 3 (Hypothetical root cause of failure). Given
a set of instances G = MP1, ...,MPk and associated eval-
uations E(MP1), ....,E(MPk ), a hypothetical root cause of
failure is a set Cf consisting of a Boolean conjunction of
property-comparator-value triples which obey the following
properties among the instances G: (i) there is at least one
MPi such that Pvi satisfies Cf and E(MPi ) = fail; and (ii)
if E(MPi ) = succeed, then the property-values pairs Pvi of
MPi do not satisfy the conjunction Cf .

To illustrate the converse of point (ii), if Cf = A > 5 and
B = 7, and MPi has the property values A = 15 and B =
7 and succeeds, then Cf is unacceptable as a hypothetical
root cause of failure. Given a hypothetical root cause D, our
framework derives new pipeline instances using different
combinations of property values to confirm whether D is a
definitive root cause.

Definition 4 (Definitive root cause of failure). A hypotheti-
cal root cause of failure D is a definitive root cause of failure
if there is no instanceMPq from the universe of Up for each
property p such that E(CPq) = succeed and Pvq satisfies D.
That is, D does not lead to false positives.

Definition 5 (Minimal Definitive Root Cause of Failure). A
definitive root cause D is minimal if no proper subset of D is
a definitive root cause.

The example in Figure 1 illustrates these concepts using
the simple machine learning pipeline. A possible evaluation
procedure would test whether the resulting score is greater
than 0.6. In this case, Data being different from Images and
Estimator equal to gradient boosting is a hypothetical root
cause of failure. Section 3 presents algorithms that determine
if this root cause is definitive and minimal.
Problem Definition. Given a machine learning pipeline
MP and a set of property-value pairs associated with pre-
viously run instances of MP , our goal is to derive minimal
definitive root causes.

3 DEBUGGING STRATEGY OVERVIEW
Given a set of pipeline instances, MLDebugger derives mini-
mal root causes of the problematic instances. Since trying ev-
ery possible property-value pair combination of the property-
value universe (an approach that is exponential in the num-
ber of properties) is not feasible in practice, MLDebugger
uses heuristics that are effective at finding promising con-
figurations. In addition, several causes may contribute to a
problem, thus the derived explanations must be concise so
that users can understand and act on them.

MLDebugger uses an iterative debugging algorithm called
Debugging Decision Tree, presented in Section 3.1. It discovers
simple and complex root causes that can involve a single or
multiple properties and possibly inequalities. Because the
results of the Debugging Decision Tree algorithm consist of
disjunctions of conjunctions, they may contain redundancies
whichwe simplify using a heuristic approximating the Quine-
McCluskey algorithm described in Section 3.2.

Intuitively, our method works as follows. Given an initial
set of instances, some of which lead to bad outcomes, the al-
gorithms generate new property-value configurations (from
the same universe) for the suspect instances and combine
them first with property-values that led to good outcomes.
That approach has the benefit of swiftly eliminating hypo-
thetical minimal root causes that are not confirmed by the
newly generated instances. While instances can be manually
derived by users running instances of the workflow, an initial
set of experiments can also be generated by random combi-
nations of property values, or combinatorial design [11].

3.1 Debugging Decision Trees
An instance consists of a conjunction of property-values
and an evaluation (success or failure). A Debugging Decision
Tree is derived by applying a standard decision tree learning
algorithm to all such instances. Leaves of the decision tree
are either (i) purely true, if all pipeline instances leading to
a leaf evaluate to succeed, (ii) purely false, if all pipeline
instances leading to a leaf evaluate to fail, or (iii) mixed.

The Debugging Decision Tree algorithm works as follows:

(1) Given an initial set of instances MPI , construct a de-
cision tree based on the evaluation results for those
instances (succeed or fail). An inner node of the deci-
sion tree is a triple (Property,Comparator,Value), where
the Comparator indicates whether a given Property has
a value equal to, greater than (or equal to), less than
(or equal to), or unequal to Value.

(2) If a conjunction (a path in the tree) involving a set of
properties, say, P1 P2, and P3 leads to a consistently
failing execution (a pure leaf in decision tree terms),
then that combination becomes a “suspect”.
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Table 1: Initial set of classification pipelines instances

Dataset Estimator Library
Version

Score Evaluation
(score ≥ 0.6)

Iris Logistic Re-
gression

1.0 0.9 succeed

Digits Decision
Tree

1.0 0.8 succeed

Iris Gradient
Boosting

2.0 0.2 fail

(3) Each suspect combination is used as a filter in a Carte-
sian product of the property values fromwhich new in-
stances will be sampled. For example, suppose P1 = v1,
P2 = v2, and P3 = v3 is a suspect. To test this suspect,
all other properties will be varied. If every instance
having the property-values P1 = v1, P2 = v2, and
P3 = v3 leads to failure, then that conjunction consti-
tutes a definitive root cause of failure. If the suspect
conjunction includes non-equality comparators (e.g.,
P1 = v1, P2 = v2, and P3 > 6), then we can choose
any value for properties that satisfy the inequalities
as an example, (e.g., P3 = 7 or P3 = 8) and choose
pipeline instances having those values. Conversely, if
any of the newly-generated instances presents a good
(succeed) pipeline instance, the decision tree is rebuilt
taking into account the whole set of executed pipeline
instancesMPI and a new suspect path (one leading to
a pure fail outcome) is tried.

Note that if the values associated with a property are con-
tinuous, MLDebugger starts by choosing the values already
attempted. Further analysis can sample other values to un-
cover additional bugs, but, as mentioned above, our purpose
here is to understand the problems already uncovered rather
than to verify the software which is of course undecidable
in general [4].
Below we present a simple example that illustrates how

the Debugging Decision Tree algorithm works.

Example 3.1. Consider again themachine learning pipeline
in Figure 1. Here, the user is interested in investigating
pipelines that lead to low F-measure scores and defines an
evaluation function that returns succeed if score ≥ 0.6.
For this pipeline, the user is interested in investigating

three properties: Dataset, the input data to be classified;
Estimator, the classification algorithm to be executed; and
Library Version, property that indicates the version of the
machine learning library used. Table 1 shows examples of
three executions of the pipeline.

A decision tree is created from the instances shown in Ta-
ble 1 that contains a single node: (Estimator,Equals to,Gradient

Table 2: Set of classification pipelines instances in-
cluding the new instances created by Debugging Deci-
sion Tree based on triple (Estimator,Equals to,Gradient
Boosting)

Dataset Estimator Library
Version

Score Evaluation
(score ≥ 0.6)

Iris Logistic Re-
gression

1.0 0.9 succeed

Digits Decision
Tree

1.0 0.8 succeed

Iris Gradient
Boosting

2.0 0.2 fail

Digits Gradient
Boosting

2.0 0.2 fail

Digits Gradient
Boosting

1.0 0.7 succeed

Table 3: Set of classification pipelines instances includ-
ing the new instances created by Debugging Decision
Tree based on triple (Library Version,Equals to,2.0)

Dataset Estimator Library
Version

Score Evaluation
(score ≥ 0.6)

Iris Logistic Re-
gression

1.0 0.9 succeed

Digits Decision
Tree

1.0 0.8 succeed

Iris Gradient
Boosting

2.0 0.2 fail

Digits Gradient
Boosting

2.0 0.2 fail

Digits Gradient
Boosting

1.0 0.7 succeed

Digits Logistic Re-
gression

2.0 0.3 fail

Iris Decision
Tree

2.0 0.1 fail

Boosting). After assembling new configurations where this
triple is true (Table 2), the Debugging Decision Tree algorithm
observes that new instances present mixed results. Hence,
we eliminate the hypothetical cause for Estimator with
value “Gradient Boosting” and the decision tree is rebuilt.
After rebuilding, the algorithm finds a new single node tree
with the triple (Library Version, Equals to,2.0), indicating
a potential problem in that version of the library. Additional
instances are then created to inspect the new root cause can-
didate, they all fail as can be seen in Table 3, confirming
the hypothesis, which is output as a definitive root cause.
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Figure 2: Decision tree fitted over instances. Right
branches correspond to equality. Left branches to in-
equality. Evaluations to fail occur if (P1 = V 1, P4 , V 4,
P2 = V 2, and P3 = V 3) or (P1 = V1, P4 = V 4, and P5 = V 5)
or (P1 = V 1, P4 = V 4, P5 , V 5, P2 = V 2, and P3 = V 3).

3.2 Simplifying Explanations
Decision trees are easy to read, but they do not always pro-
vide minimal explanations. For example, we may have two
paths leading to pure false leaves that differ only in the val-
ues of the first property which takes just two values. Such
paths can be reduced to a single conjunction consisting of the
property-values they share. To generate concise explanations
from the decision tree, we apply the Quine-McCluskey algo-
rithm [19], which provides a method to minimize Boolean
functions. Because the algorithm is exponential and encodes
the Set Cover problem which is NP-complete, we use heuris-
tics that do not achieve complete minimality but still reduce
the size of the explanation. We illustrate this process below
in Example 3.2 and evaluate the effectiveness of the simplifi-
cation in Section 4. Because the use of Quine-McCluskey is
not our research contribution, our explanation is brief.

Example 3.2. Consider an experiment whose instances
lead to the decision tree shown in Figure 2. There are three
paths through the tree that evaluate to pure fail outcomes.
The Quine-McCluskey algorithm attempts to shorten these
paths to a simpler expression or expressions. The output of
the algorithm contains the following disjunction of conjunc-
tions (either one of them will constitute a minimal definitive
root cause, but both of which should receive debugging at-
tention):

((P1,V 1)∧(P2,V 2)∧(P3,V 3))∨((P1,V 1)∧(P4,V 4)∧(P5,V 5))

4 EXPERIMENTAL EVALUATION
To evaluate the effectiveness of MLDebugger , we compare it
against state-of-the-art methods for deriving explanations
using a benchmark of machine learning pipeline templates
for different tasks. We examine different scenarios, including
when a single minimal definitive root cause is sought (which
may be one of several) and when a budget for the number of
instances that can be run is set.

4.1 Experimental Setup
Baseline Methods. We use two methods for deriving ex-
planations as baselines: Data X-Ray [24] and Explanation
Tables [13]. Both analyze the provenance of the pipelines,
i.e., the instances previously run and their results, but do
not suggest new ones. For that reason, to generate pipeline
instances for explanation methods, we gave to each expla-
nation method the instances generated by MLDebugger and
by the Sequential Model-Based Algorithm Configuration
(SMAC) [20]. SMAC is an iterative method for hyperparam-
eter optimization that has been shown to be effective com-
pared to previous methods [6]. Normally, SMAC looks for
good instances, but for debugging purposes, we change its
goal to look for bad pipeline instances. Note that SMAC
proposes new pipeline instances in an iterative fashion, but
it always outputs a complete pipeline instance (containing
value assignments for all properties): the best it can find
given a budget of instances to run and a criterion. This makes
sense for SMAC’s primary use case, which is to find a set
of parameters that performs well, but it is less helpful for
debugging, because a complete pipeline instance is rarely a
minimal root cause. In summary, we combine the explana-
tions with the generative methods: applying Data X-Ray and
Explanation Tables to suggest root causes for the pipeline
instances generated by SMAC and MLDebugger .
We also ran experiments using random search as an al-

ternative, i.e., randomly generating instances and then ana-
lyzing them. However, the results were always worse than
those obtained using SMAC or MLDebugger . Therefore, for
simplicity of presentation and to avoid cluttering the plots,
we omit these results.
Machine Learning Pipeline Benchmark. We generated
a benchmark using the pipeline in Figure 3, whose struc-
ture is similar to that of Example 3.1. It solves the tasks of
classification and regression, and it can be used as a tem-
plate for Kaggle competitions [17]. As we describe below, we
experimented with three different Kaggle competitions.

We define a threshold for acceptable performance. A pipeline
instance that achieves or exceeds that threshold is good.
Those that do not are considered to be bad. A Kaggle con-
testant may use these results to avoid bad parameter values,
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Figure 3: Pipeline template for classification and re-
gression tasks

thus reducing the search space to explore. For instance, con-
sider the dataset for a Kaggle competition regarding life
insurance assessment[14], and an accuracy threshold of 0.4.
MLDebugger identifies two root causes for bad instances (i.e.,
instances yielding a threshold less than 0.4):
I.1 Estimator = Gaussian NB
I.2 Estimator = K-Neighbors Classifier

If we increase the value of the accuracy threshold, then
MLDebugger finds the following root cause:
II.1 Estimator , Random Forest
In addition to the life insurance dataset, we selected: a

Kaggle classification competition [16] whose goal it is to
diagnose breast cancer based on a dataset from the University
of Wisconsin, and a regression competition [15] whose goal
is to predict annual sales revenue of restaurants.
For each competition, we applied the machine learning

pipeline template of Figure 3, varying the range of acceptable
accuracy score, for classification tasks, and of acceptable R-
squared score, for the regression task.
We performed an exhaustive parameter exploration and

manually investigated the root causes for failures to create
a ground truth for our experiments, so that quality metrics
can be computed.
Evaluation Criteria. We considered two goals: (i) FindOne
find at least one minimal root cause; (ii) FindAll find all
minimal root causes. The use case for (i) is a debugging
setting where it might be useful to work on one bug at a
time in the hopes that resolving one may resolve others. The
use case for (ii) is when a team of debuggers can work on
many bugs in parallel. FindAll may also be useful to provide
an overview of the set of issues encountered.

We used the following criteria to measure quality: preci-
sion, which measures the fraction of causes identified by any
given method that are in fact minimal definitive root causes;
and recall, which measures (i) in the FindOne case, the frac-
tion of pipelines for which at least one minimal definitive
root cause is found and (ii) in the FindAll case, the fraction
of all minimal root causes that are found. We also report the
F-measure, i.e., the harmonic mean of precision and recall:

Formally, letUMP be a set of machine learning pipelines,
where each pipelineMP ∈ UMP (for example the pipeline of
Figure 3) is associated with a set of minimal definitive root
causes R(MP). Given a set of minimal root causes asserted
by an algorithm A, precision is the number of minimal root
causes predicted by A that are truly minimal definitive root
causes (true positives) divided by the size of the set of all
root causes asserted by A over allMP in UMP . Precision is
thus defined as:

Precision =
∑

MP ∈UMP |A(MP) ∩ R(MP)|∑
MP ∈UMP |A(MP)|

where A(MP) ∩ R(MP) , ∅ evaluates to 1 if A(MP) corre-
sponds to at least one of the conjuncts in R(MP).
For the FindOne scenario, recall is the fraction of the

|UMP | pipelines when a true minimal definitive root cause
is found by A:

Recall for FindOne =
∑

MP ∈UMP A(MP) ∩ R(MP) , ∅

|UMP |

where A(MP) ∩ R(MP) , ∅ evaluates to 1 if A(MP) corre-
sponds to at least one of the conjuncts in R(MP).
In the FindAll scenario, recall is the fraction of all the

R(MP) minimal root causes, for all MP ∈ UMP , that are
found by the algorithms:

Recall for FindAll =
∑

MP ∈UMP |A(MP) ∩ R(MP)|∑
MP ∈UMP |R(MP)|

F-measure = 2 ×
Precision × Recall
Precision + Recall

Our first set of tests allowMLDebugger to find at least one
minimal definitive root cause and then uses the same num-
ber of instances for the Data X-Ray and Explanation Tables.
Thus, it gives the same budget to each algorithm and checks
its precision and recall for the FindOne case. A second set of
tests tries different budgets of pipeline instances and eval-
uates how each algorithm performs in terms of these same
quality metrics. In these tests, Data X-Ray and Explanation
Tables are given (i) the instances generated by MLDebugger
and, in a separate test, (ii) the instances generated by SMAC.
A similar pair of tests is performed for the FindAll case.
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Implementation The current prototype of MLDebugger is
implemented in Python 2.7. It contains a dispatching com-
ponent which runs in a single thread and spawns multiple
pipeline instances in parallel. In our experiments, we used
five execution engine workers to execute the pipeline in-
stances.
We used the SMAC version for Python 3.6. We also used

the code, implemented by the respective authors, for both
the Data X-Ray algorithm (implemented in Java 7) [24] and
Explanation Tables [13] (written in python 2.7). As described
above, we used the pipeline instances generated by both
MLDebugger and SMAC as inputs to Data X-Ray and Expla-
nation Tables.
The machine learning pipelines were constructed as Vis-

Trails workflows1, which allow us to capture the execution
provenance of all instances.
All experiments were run on a Linux Desktop (Ubuntu

14.04, 32GB RAM, 3.5GHz × 8 processor). For purposes of
reproducibility and community use, we will make our code
and experiments available.2

4.2 Results
For our first set of experiments for FindOne, we set MLDe-
bugger to stop iterating as soon as it found one minimal
definitive root cause for failure. Figure 4 shows that MLDe-
bugger and Explanation Tables both achieve perfect precision
for the FindOne problem using the instances generated by
MLDebugger when that is allowed run until it finds at least
one minimal definitive root cause. Data X-Ray finds not only
definitive root causes, but also configurations that do not
always yield bad instances, resulting in its lower precision.
MLDebugger enjoys higher recall, due to its ability to cap-
ture also root causes whose comparators are negations or
inequalities.
Running pipelines can be expensive, so executing a very

large number of instances to find a definitive root cause may
not be feasible in practice. Hence, we also evaluated the effec-
tiveness of the different methods when a budget is defined
for the maximum number of instances to be executed for the
FindOne problem. Figure 5 shows the results for different
budgets for FindOne. Not surprisingly, MLDebugger makes
mistakes when there is insufficient data to characterize the
minimal definitive root causes, being as precise as Expla-
nation Tables on high budget and attaining higher recall
throughout.
Similar results hold for the FindAll case as shown in Fig-

ure 6 and Figure 7.
Discussion. Sometimes, whenData X-Ray uses the instances
generated by MLDebugger , it does better, at least in recall.

1www.vistrails.org
2https://github.com/raonilourenco/MLDebugger

Figure 4: Machine Learning Pipeline Template case
study for FindOne. MLDebugger and Explanation Ta-
bles have perfect precision, while Data X-Ray returns
some false positives. MLDebugger and Data X-ray us-
ing the instances generated by MLDebugger achieve
perfect recall, which means that they always find at
least one minimal root cause.

This is expected for the case where the root causes are con-
junctions of property-comparator-value triples since Data
X-Ray was designed to find relevant conjunctions. That is,
Data X-Ray produces a conjunction of property-value combi-
nations that lead to bad scenarios. By contrast, MLDebugger
finds minimal decision trees for the data seen so far, pri-
oritizing disjunction. When there is little data, jumping to
generalizations can be a bad strategy (a lesson we have all
learned from real life). This underscores the importance of
doing a systematic and iterative search to obtain more data.
The answers provided by Explanation Tables represent

a prediction of the pipeline instance evaluation result ex-
pressed as a real number. Here, we consider explanations
whose prediction is 1.0, which means a certain, bad result.
Therefore, the precision of Explanation Tables is always high,
but the recall is usually low.

MLDebugger dominates the other methods and the perfor-
mance difference increases as the budget grows. This can be
explained by the fact that Data X-Ray provides explanations
that are not minimal definitive root causes and Explanation
Tables do not handle negations and inequalities.

5 RELATEDWORK
Recently, the problem of explaining query results and inter-
esting features in data has received substantial attention in
the literature [2, 10, 13, 21, 24]. Some works have focused on
explaining where and how errors occur in the data gener-
ation process [24] and which data items are more likely to
be causes of relational query outputs [21, 25]. Others have
attempted to use data to explain salient features in data (e.g.,
outliers) by discovering relationships between attribute val-
ues [2, 10, 13]. These approaches have either focused on

www.vistrails.org
https://github.com/raonilourenco/MLDebugger
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(a) Precision (b) Recall (c) F-measure

Figure 5: FindOne problem. Machine Learning Pipeline Template case study on a budget. When we debug the Ma-
chine Learning Pipeline on a budget,MLDebugger provides answers with perfect precision, which is also achieved
by Explanation Tables with more instances. MLDebugger shows perfect recall, hence f-measure as well, except
when running on a very low budget

Figure 6: Machine Learning Pipeline Template case
study for FindAll. As in the FindOne problem MLDe-
bugger and Explanation Tables have perfect precision,
while Data X-Ray returns some false positives. MLDe-
bugger attains higher recall due to its ability to handle
inequalities and negations.

using data, including provenance, to explain data or consid-
ered pipelines consisting of relational algebra operations. In
contrast to the goals of these approaches, MLDebugger aims
to diagnose abnormal behavior in machine learning pipelines
that may result from any source of error: data, programs, or
sequencing of operations.
Our work is related algorithmically to approaches from

hyper-parameter tuning, workflow debugging, and denial
constraint identification. Hyper-parameter tuning methods
explore the parameter space of pipelines to optimize their out-
come – they automatically derive instances with improved
performance. While their goal is to find good combinations
for parameter values, they do not provide any insights into
which combinations are most responsible for that perfor-
mance, which would be analogous to what a high precision
debugger finds.
Prior work on workflow debugging aims to identify and

explain problems based on existing provenance, but they do

not iteratively derive and test newworkflow instances. As we
demonstrated in Section 4, MLDebugger derives good expla-
nations starting the debugging process from scratch and gen-
erating fewer pipeline instances than hyper-parameter opti-
mization frameworks. Overall,MLDebugger also gives better
recall and precision than non-iterative workflow-debugging
tools.
Our approach is also related to the discovery of denial

constraints in relational tables (denial constraints are gener-
alizations of common constraints like functional dependen-
cies) [8]. The main similarity is that both Denial constraints
and the diagnoses of MLDebugger identify conjunctions of
parameter-value inequalities. The Hydra algorithm in par-
ticular performs what it calls "focussed sampling" to find
tuples that satisfy a predicate. MLDebugger does something
similar in spirit when looking for pipeline instances that may
disprove a hypothesis.
HyperparameterOptimization.Methods based on Bayesian
optimization are considered the state of the art for the hy-
perparameter optimization problem [5, 7, 12, 22, 23]. They
can outperform manual setting of parameters, grid search
or random search [6]. These methods approximate a proba-
bility model of the performance outcome given a parameter
configuration that is updated from a history of executions.
Gaussian Processes and Tree-structured Parzen Estimator
are examples of probability models [5] used to optimize an
unknown loss function using the ’expected improvement’
criterion as acquisition function. To do this, they assume the
search space is smooth and differentiable. This assumption,
however, does not hold in general for arbitrary pipelines.
Moreover, we are not interested in identifying a bad configu-
rations (we have those to begin with if there have been some
bugs already), but in finding minimal root causes.
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(a) Precision (b) Recall (c) F-measure

Figure 7: FindAll problem. Machine Learning Pipeline Template case study on a budget. When we debug the Ma-
chine Learning Pipeline on a budget,MLDebugger provides answers with perfect precision, which is also achieved
by Explanation Tables with more instances. MLDebugger continues to show higher recall, which increases as the
budget increases, and f-measure than Data X-Ray and Explanation Tables.

Debugging and Predicting Pipelines. Previous work on
pipeline debugging (not limited to machine learning) has fo-
cused on analyzing execution history with the goal of identi-
fying problematic parameter settings or inputs. Because they
do not use an iterative approach to derive new instances (and
associated provenance), they can miss important explana-
tions and also derive incorrect one. That said, the analytical
portion of MLDebugger uses many similar ideas to pipeline
debugging.

Bala and Chana [3] applied several machine learning algo-
rithms (Naïve Bayes, Logistic Regression, Artificial Neural
Networks and Random Forests) to predict whether a particu-
lar computational pipeline instance will fail to execute in a
cloud environment. The goal is to reduce the consumption
of expensive resources by recommending against executing
the instance if it has a high probability of failure. The system
does not try to find the root causes of failure.
The system developed by Chen et al. [9] identifies prob-

lems by differentiating between provenance (encoded as
trees) of good runs and bad ones. They then find differences
in the trees that may be the reason for the problems. How-
ever, the trees do not necessarily provide a succinct expla-
nation for the problems, and there is no assurance that the
differences found correspond to root causes.
Viska [18] allows users to define a causal relationship

between workflow performance and system properties or
software versions. It provides big data analytics and data
visualization tools to help users to explore their assumptions.
Each causality relation defines a treatment (causal variable)
and an outcome (performance measurement), the approach
is limited to analyze one binary treatment at a time with user
in the loop.
The Molly system [1] combines the analysis of lineage

with SAT solvers to find bugs in fault tolerance protocols for

distributed systems. Molly simulates failures, such as per-
manent crash failures, message loss and temporary network
partitions, specifically to test fault tolerance protocols over
a certain period of (logical clock) time. The process consid-
ers all possible combinations of admissible failures up to a
user-specified level (e.g., no more than two crash failures
and no more message losses after five minutes). While the
goal of that system is very specific to fault tolerance pro-
tocols, its attempt to provide completeness has influenced
our work. In the spirit of Molly, MLDebugger tries to find
minimal definitive root causes.
Explaining Pipeline Results. Although not designed for
pipelines, Data X-Ray [24] provides a mechanism for explain-
ing systematic causes of errors in the data generation process.
The system finds common features among corrupt data ele-
ments and produce a diagnosis of the problems. If we have
provenance of the pipeline instances together with error an-
notations, Data X-Ray’s diagnosis would derive explanations
consisting of features that describe the parameter-value pairs
responsible for the errors.

Explanation Tables [13] is another data summary that pro-
vides explanations for binary outcomes. Like Data X-Ray, it
forms its hypotheses based on given executions, but does
not propose new ones. Based on a table with some categori-
cal columns (attributes) and one binary column (outcome),
the algorithm produces interpretable explanations of the
causes of the outcome in terms of the attribute-value pairs
combinations. Explanation Tables express their answers as a
disjunction of patterns and each pattern is a conjunction of
attribute-equality-value pairs.

As discussed in Section 4, MLDebugger produces explana-
tions that are similar to those of Data X-Ray and Explanation
Tables, but they are also minimal and are able to handle in-
equalities and negations. As mentioned above, MLDebugger
employs a systematic method to automatically generate new
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instances that enable it to derive concise explanations that
are root causes for a problem.

6 CONCLUSION
MLDebugger uses techniques from explanation systems and
hyperparameter optimization approaches to address one of
the most cumbersome tasks for data scientists and engineers:
debugging machine learning pipelines. As far as we know,
MLDebugger is the first method that iteratively finds minimal
definitive root causes.
Compared to the state of the art, MLDebugger makes

no statistical assumptions (as do Bayesian optimization ap-
proaches), but nevertheless achieves higher precision and
recall given the same number of pipeline instances.
There are two main avenues we plan to pursue in future

work. First, we would like to makeMLDebugger available on
a wide variety of systems that support pipeline execution to
broaden its applicability. Second, we will use group testing
to identify problematic subsets of datasets when a dataset
has been identified as a root cause.
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