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Abstract We present AlphaD3M, an open-source Python library that supports a wide range of machine

learning tasks over different data types. We discuss the challenges involved in supporting

multiple tasks and howAlphaD3Maddresses them by combining deep reinforcement learning

and meta-learning to construct pipelines over a large collection of primitives effectively.

To better integrate the use of AutoML within the data science lifecycle, we have built

an ecosystem of tools around AlphaD3M that support user-in-the-loop tasks, including

selecting suitable pipelines and developing custom solutions for complex problems. We

present use cases that demonstrate some of these features. We report the results of a

detailed experimental evaluation showing that AlphaD3M is effective and derives high-

quality pipelines for a diverse set of problems with performance comparable or superior to

state-of-the-art AutoML systems.

1 Introduction

Automated Machine Learning (AutoML) has emerged as an alternative to automatically synthesize

machine learning (ML) pipelines, thereby democratizing ML techniques to non-experts as well

as increasing the productivity of data scientists. Different approaches have been proposed for

AutoML systems. Some focus on specific components of an ML pipeline, such as hyperparameter

optimization or model selection, while others, given a dataset and a prediction task, generate

end-to-end pipelines that encompass data pre-processing, feature, and model selection (Hutter

et al., 2019). Most end-to-end systems are designed to work with tabular data and only support

classification and regression problems (Feurer et al., 2015; LeDell and Poirier, 2020; Olson andMoore,

2016; Kotthoff et al., 2017). Cloud AutoML (Google Cloud AutoML, 2020) and AutoGluon (Erickson

et al., 2020) also create pipelines to classify text and images and perform object detection tasks.

However, these systems do not support more complex data types such as graphs, time series, audio,

and video, limiting the types of problems they can address. Table 1 shows the set of task types

supported by different AutoML systems.

In the context of DARPA’s Data-Driven Discovery of Models (D3M) program (Elliott, 2020),

several AutoML systems have been developed to support a wide range of data types and ML

tasks using an extensive set of computational primitives as building blocks – we refer to these

as multi-task AutoML systems (MT-AutoML). MT-AutoML systems face an essential challenge:

effectively searching an ample space of primitives required to synthesize pipelines for a broad

range of tasks and data types. To prune the search space, many D3M MT-AutoML systems use

manually-crafted templates and grammars (D3M, 2022) that prescribe combinations of primitives

that make sense for different problems. This, in turn, leads to other challenges: creating these

templates or grammars is not only time-consuming but failing to include the necessary rules that

cover the relevant primitives (and their combination) for multiple task types can negatively impact

the ability of an MT-AutoML system to derive performant pipelines.
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Table 1: Tasks supported by different AutoML Systems.
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AutoGluon ✓ ✓ ✓ ✓ ✓ ✓
AutoWEKA ✓ ✓
Auto-Sklearn ✓ ✓
Cloud AutoML ✓ ✓ ✓ ✓ ✓ ✓
H2O ✓ ✓ ✓
TPOT ✓ ✓
AlphaD3M ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓

We present AlphaD3M, an open-source AutoML library
1
that supports a wide range of data

and problem types (see Table 1). AlphaD3M introduces new techniques to navigate the large search

spaces MT-AutoML systems must navigate effectively. They include an algorithm that applies

meta-learning to automatically derive task-based context-free grammars (CFGs) which cover a

multitude of problems; and a novel search strategy that, based on previously generated pipelines

and their performance, prioritizes primitives that are correlated with good pipeline performance.

AlphaD3M includes components that aim to support usability and integration with other tasks

in the data science lifecycle, from data exploration and model summarization to model deployment.

It is possible to extend AlphaD3M and combine it with other tools through its flexible API. For

example, its integration with the PipelineProfile (Ono et al., 2021) allows users to explore and

compare the set of derived pipelines visually. Besides describing the API and these components, we

also present case studies demonstrating how users can improve the ML solutions via interaction in

AlphaD3M.

We conducted a detailed experimental evaluation to assess the ability of AlphaD3M to handle

a rich set of tasks and data types as well as to compare its performance against state-of-the-art

AutoML and MT-AutoML systems. We used two benchmarks: (a) a collection of 112 datasets

that covers seventeen different ML tasks, and (b) the OpenML AutoML Benchmark for tabular

classification problems. Our results show that the search strategies used by AlphaD3M are effective:

the system generates pipelines whose performance is superior or on par with those derived by

other systems, including systems that focus on a small set of problems and have to navigate a much

smaller search space.

2 Related Work

Task Coverage. Many AutoML systems have been proposed to work with tabular data, for example:

Auto-sklearn (Feurer et al., 2015), TPOT (Olson and Moore, 2016), and H2O (LeDell and Poirier,

2020). The deep reinforcement learning algorithm proposed by Drori et al. (2019) aimed to support

multiple learning tasks and data types, however, its implementation was limited to classification

and regression tasks over tabular and text data. AutoML systems developed in industry, such as

Cloud AutoML by Google and AutoGluon by Amazon, handle text and image data, but still support

a limited number of learning tasks. In contrast, AlphaD3M supports a wide range of data types

(tabular, text, images, audio, video, and graph) and a rich set of ML tasks as shown in Table 1.

Data and Model Exploration. Interactive data analytics systems such as Visus (Santos et al., 2019),

TwoRavens (Gil et al., 2019), and Snowcat (Cashman et al., 2018) have been developed to guide

users throughout the model-building process, from exploring the input data to comparing the ML

pipelines produced by AutoML systems. They target primarily domain experts who have little or

1https://gitlab.com/ViDA-NYU/d3m/alphad3m
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no expertise in ML and thus lack support for the customization of pipelines for complex problems.

These systems trade off flexibility for ease of use. As such, they are limited to the operations

implemented in their visual interfaces; extensive and time-consuming changes in their workflows

are required to support new data types and tasks (e.g., graph data). Other approaches mimic the

interface of traditional ML libraries, through which developers often build a single solution for a

given task (Grafberger et al., 2021). AlphaD3M allows ML experts to explore the derived pipelines

and customize them through a user-friendly interface within a Jupyter Notebook environment. In

addition, instead of retrieving only the best pipeline, AlphaD3M returns all valid pipelines, ranks,

and presents them to the user for comparison, refinement, and selection.

3 The AlphaD3M Library

Figure 1: Overview of AlphaD3M.

AlphaD3M is a multi-task Au-

toML system. It is imple-

mented in Python and can

be used via pip installation

or Docker. Figure 1 shows

an overview of this library

and its components. To

build ML pipelines, AlphaD3M

uses a rich set of primitives

and a meta-learning database

from the D3M ecosystem D3M

(2022). The pipeline search is conducted by four modules which: (a) automatically construct of

task-specific grammars; (b) prioritize primitives that are more likely to be effective; (c) synthesize

pipelines using Monte Carlo Tree Search and Neural Networks (Drori et al., 2019); and (d) tune

hyperparameters. The library implements a Python API through which users can define the problem

to be solved, explore the input data, obtain model summaries, analyze and compare the produced

pipelines, as well as improve and deploy them.

3.1 The D3M Ecosystem

Primitives. AlphaD3M uses a comprehensive collection of primitives developed by performers

in the D3M program as well as from open-source libraries (e.g., scikit-learn). In total, there are

312 primitives available for different steps in ML pipelines, including data pre-processing, feature

extraction, feature selection, prediction, and clustering (D3M Primitives, 2022), and implement

state-of-the-art methods, such as ResNet50 (He et al., 2016), ARIMA (Wilson, 2016), among others.

The Marvin Meta-Learning Database. Marvin is an open corpus of curated ML pipelines, datasets,

and problems (Marvin, 2020). All pipelines in Marvin share the same set of primitives and are

specified using the D3M format. Marvin stores approximately 2.5 million pipelines executed over

600 datasets. Since data scientists and AutoML systems that use different search strategies have

produced these pipelines, the database covers a wide variety of pipeline patterns. As discussed

below, we leverage the data in Marvin to assist in and improve the AlphaD3M search process. To

the best of our knowledge, ours is the first work that explores this corpus.

3.2 Pipeline Search
The automatic synthesis of pipelines is a combinatorial problem in which we must find the best

combinations of primitives and their hyperparameters. With 312 primitives and over 1,500 hy-

perparameters in the D3M ecosystem, the search space becomes prohibitively large. For instance,

considering just the classification task over tabular data, there are 22 data cleaning, 87 data trans-

formation, and 44 classifier primitives, leading to 84,216 possible pipelines to test. AlphaD3M uses

a multi-pronged approach to manage this search space described below.
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A Pipeline Synthesis Using Monte Carlo Tree Search and Neural Networks. To synthesize the

ML pipelines, AlphaD3M uses the strategy introduced by Drori et al. (2019), which is based on a

single-player game technique inspired by AlphaZero (Silver et al., 2017). It applies model-based

reinforcement learning with a neural network sequence model, and a Monte Carlo Tree Search

(MCTS). The metadata encoding the pipeline, the dataset, and the task are analogous to an entire

game board configuration in AlphaZero. The possible game states consist of all valid pipelines

generated from a set of primitives and modified by actions guided by a manually-designed CFG.

The model outputs a sequence of primitives. Pipelines are constructed by an LSTM. Given a state 𝑠

composed of a vector encoding the whole board configuration (dataset, task, pipeline), the neural

network predicts the probabilities 𝑃 (𝑠, 𝑎) over actions 𝑎 from a state 𝑠 . This process produces a

set of action sequences 𝑆 that describe a pipeline, which in turn solves task 𝑇 on dataset 𝐷 . The

network also outputs an estimate of pipeline performance 𝑣 . The reinforcement learning algorithm

takes the predictions (𝑃 (𝑠, 𝑎), 𝑣 (𝑠)) produced be the neural network and uses them in the MCTS by

running multiple simulations to search for the pipeline sequence 𝑅 with the best evaluation. An

important benefit of this strategy is that it learns to synthesize pipelines.

B Automatic Generation of Task-Based CFG via Meta-Learning. Manually designed CFGs have

many limitations, notably they may not cover all applicable rules and pipeline structures and

consequently prevent the search process from exploring desirable pipelines that do not fit the

grammar. Furthermore, to create the production rules or patterns in the grammar, a user needs

to have knowledge of all the available primitives for a specific task and how they work. For large

primitive collections, this is a difficult task, which is compounded for MT-AutoML systems that

support multiple problem types. Instead of relying on manually created CFGs, we propose a new

strategy that uses meta-learning to derive grammars automatically and on the fly. It does so in two

steps: 1) it selects task-specific pipelines and datasets from a meta-learning database (MLDB), and

2) uses these to derive a portfolio of pipeline patterns.

Selecting Task-Oriented Datasets. Since AlphaD3M supports different tasks, we need to retrieve

from the Marvin MLDB pipelines produced for tasks and datasets similar to the ones we provided as

inputs to the AutoML system. For instance, if we want to solve a clustering problem over a dataset

𝐷 , we retrieve the pipelines used for this problem over datasets similar to 𝐷 . To select relevant

pipelines for a given problem 𝑃 over dataset 𝐷 , we use the “task keywords" tag list provided in the

problem definition as features that describe the task to be solved, and search Marvin for pipelines

that contain a similar set of keywords. The list is encoded as a bag-of-words (BOW). Since the set

is small and most of the tags are non-standard words, e.g., collaborativeFiltering, timeSeries, it is
possible to obtain accurate matches with this simple approach.

Given the set of relevant pipelines 𝑅𝑃 , we select a subset 𝑅𝑃𝐷 containing pipelines that were

applied on datasets similar to 𝐷 . To determine whether two datasets are similar, we use dataset

features including semantic types (e.g., categorical, date-time) and missing values, and encode them

using one-hot encoding. Datasets are compared using cosine similarity.

The current implementation uses 16 unique semantic types detected by the data-

mart_profiler (Datamart Profiler Library, 2021). In contrast to other approaches like TabSim

(Habibi et al., 2020), or StruBERT (Trabelsi et al., 2022), AlphaD3M uses semantic types because, in

the grammar, it defines components to handle the dataset’s features, such as categorical or date-time

encoders, and these components are strongly related to semantic types. Also, these approaches

focus on tabular datasets, AlphaD3M handles other types of datasets, like image and text datasets.

Finally, running these approaches is a very time-consuming task.

Creating a Portfolio of Patterns. After identifying similar datasets, the next step is to select the best

pipelines to create a portfolio of pipeline patterns. To select these AlphaD3M takes into consideration

pipeline performance for different datasets. Some datasets are more challenging than others – the

performance of a pipeline can vary widely for different datasets. To properly compare pipeline
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performance, AlphaD3Muses a strategy based on the average distance tominimum (ADTM) (Wistuba

et al., 2015), which transforms the performance to the distance to the best-observed performance

scaled between 0 and 1. In contrast to ADTM, which uses the misclassification rate, AlphaD3M

uses the actual performance (the score) of the pipelines and thus, it applies the average distance to
maximum instead to select the best pipelines. It then transforms the primitives within the pipelines

to their classes. For instance, the primitive imputer.SKlearn belongs to the class IMPUTATION. If
there is a pipeline with this structure: [imputer.SKlearn svm.SKlearn], it is converted to this pattern:

[IMPUTATION CLASSIFICATION ]. Unlike Feurer et al. (2021), which creates a unique portfolio

of pipelines in an offline phase, AlphaD3M creates the portfolio online, based on the query task

and dataset. Also, the output is a portfolio of patterns, not of static pipelines, which allows more

flexibility to construct pipelines. These patterns are used as production rules of the grammar.

Algorithm 1 in the Appendix describes the process of building the grammar.

C Prioritization of Primitives. When a data scientist builds an ML pipeline, they start this process

using primitives that are known to perform well. For example, XGBoost or Random Forests are

good initial candidates for classification tasks. AlphaD3M follows this intuition to identify good

candidate primitives for a specific task, using the data from Marvin. This prior knowledge about

promising primitives can be helpful to find better pipelines faster.

Similar to Ono et al. (2021), AlphaD3M uses Pearson Correlation (PC) to estimate how much

a primitive contributes to the score of the pipeline. However, instead of using the raw scores, it

uses the ADTMs values because they are scaled across different datasets. AlphaD3M estimates

the primitive importance using PC between the primitive indicator vector 𝑝 (𝑝𝑖 = 1 if pipeline 𝑖

contains the primitive in question and 𝑝𝑖 = 0 otherwise) and the pipeline score vector 𝑠 , where 𝑠𝑖 is

the score for pipeline 𝑖 . Since 𝑝 and 𝑠 are dichotomous and quantitative variables, respectively, the

Point-Biserial Correlation coefficient (PBC) Sheskin (2003) is an appropriate correlation measure – it

is mathematically equivalent to the PC but can be calculated with fewer operations. The correlation

values are normalized between 0 and 1 (using min-max normalization).

AlphaD3M calculates these correlations for the primitives at two levels: (a) global, when it

considers all the pipelines, and (b) local, when it considers only the pipelines for each pattern.

The main goal is to estimate how important a primitive is for all the pipelines and each pattern.

Primitives with higher values of importance should have priority during the search of pipelines.

Algorithm 2 describes the process of calculating the primitive importance values in detail (see the

Appendix). To prioritize the usage of potential primitives in AlphaD3M, it includes these values of

primitive importance in the MCTS formula:

𝑈 (𝑠, 𝑎) = 𝑄 (𝑠, 𝑎) + 𝑐 (𝛼𝑃 (𝑠, 𝑎) + (1 − 𝛼)𝑅(𝑎))
√︁
𝑁 (𝑠)

1 + 𝑁 (𝑠, 𝑎) (1)

where 𝑄 (𝑠, 𝑎) is the expected reward for action 𝑎 (selection of primitive 𝑎) from state 𝑠 , 𝑁 (𝑠, 𝑎) is
the number of times action 𝑎 was taken from state 𝑠 , 𝑁 (𝑠) is the number of times state 𝑠 was visited.

𝑃 (𝑠, 𝑎) are the probabilities predicted by the neural network over actions 𝑎 from a state 𝑠 , 𝑐 is a

constant which determines the amount of exploration, 𝑅(𝑎) = 𝐺 (𝑎) ∗ 𝐿(𝑎), 𝐺 (𝑎) and 𝐿(𝑎) are the
global and local importance of the action 𝑎, and 𝛼 is a coefficient to keep the trade-off between

𝑅(𝑎) and 𝑃 (𝑠, 𝑎).

D Decoupled Hyperparameter Tuning. Hyperparameter tuning is an essential part of fitting machine

learning models (Bergstra et al., 2011; Snoek et al., 2015; Dolatnia et al., 2016). This is also the case

for end-to-end ML pipelines that target different tasks, and all primitives contain hyperparameters,

not just the estimators.

AlphaD3M performs hyperparameter tuning as an independent task, after the pipelines are

constructed. It uses Bayesian optimization, which is the state-of-the-art for hyperparameter tuning
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Figure 2: (a) A code snippet to solve a semi-supervised classification task. (b) AlphaD3M allows users

to inspect the contents of the input dataset, including column statistics and data types. (c)

Analyzing ML pipelines through the integration with PipelineProfiler.

(Bergstra and Bengio, 2012; Snoek et al., 2015; Dolatnia et al., 2016) and was shown to outperform

manual setting of parameters, grid search, and random search (Bergstra and Bengio, 2012; Turner

et al., 2021).

Tuning Top-𝑘 Pipelines. AlphaD3M synthesizes and evaluates the pipelines using primitives with

default values for hyperparameters. The pipelines are then ranked by performance, and the top-k

pipelines are selected for tuning. AlphaD3M uses Sequential Model-Based Algorithm Configuration

(SMAC) (Lindauer et al., 2022), a Python library for Bayesian optimization. It approximates a

probability model of the performance outcome given a parameter configuration that is updated

from a history of executions. AlphaD3M selects the Gaussian Processes models from SMAC to

minimize an arbitrary acquisition function using the Expected Improvement criterion to choose the

parameter values for each iteration until a condition (number of iterations) is met. The acquisition

function is designed to normalize the performance metric used to synthesize the pipelines between

zero and one, as the pipeline execution evaluations increase, the acquisition function gets closer to

zero. SMAC requires a set of unique parameters to assign values during its tuning procedure. Since

AlphaD3M considers multiple primitives with identical names, it constructs an internal hierarchical

nomenclature of parameters and designs their dependencies using ConfigSpace.

3.3 The API

We have developed a Python-based API that supports the process of building and exploration of ML

pipelines within a Jupyter Notebook environment. The API is integrated with the D3M AutoML

systems and supports various dataset formats such as raw CSV, D3M, and OpenML. Model synthesis

can be done with a few lines of code, as shown in Figure 2(a). The API allows users to (a) define a

problem, (b) explore summaries of their input dataset, (c) summarize the produced pipelines and (d)

analyze and compare pipelines with respect to their performance scores and prediction outputs.

We describe the main components of the API below.

Problem Definition. To build a predictive model, AlphaD3M needs a problem specification that

describes a prediction problem, specifically: (a) the training dataset; (b) a target variable, i.e., what

should be predicted by the predictive model; (c) the maximum running time that controls how long

the search can take (to control the use of computational resources); (d) the desired performance

metric; and (e) a list of task keywords that specify the kind of prediction task and, therefore, the

techniques that should be used to solve the prediction problem. Figure 2(a) shows an example of

how to define a problem in AlphaD3M.
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Table 2: Comparison of MT-AutoML systems with respect to the number of supported task types,

winner pipelines, and average rank by each system.

AlphaD3M AutonML Ensemble Aika Distil Autoflow Axolotl Drori et al. (2019)

Unique ML tasks supported 17 16 15 17 15 16 14 2

Winner pipelines 49 39 30 21 20 11 10 7

Average rank 2.85 2.89 2.90 3.99 4.68 5.32 5.73 6.85

Data Exploration. To build good predictive models, it is important to identify data attributes that

lead to accurate predictions. The API provides multiple tools for data exploration. For example, it

shows different visualizations (compact, detail, and column views) that summarize the content of

tabular datasets (see Figure 2 (b)).

Pipeline Summary. After the pipeline search is complete, users can display a leaderboard, train

individual pipelines with the complete data, perform predictions and evaluate them against a

held-out dataset.

Pipeline Exploration. Users can analyze the produced pipelines using the PipelineProfiler Ono

et al. (2021), which is fully integrated into AlphaD3M as shown in Figure 2(c). PipelineProfiler is

a visual analytics tool that enables users to compare and explore the pipelines generated by the

AutoML systems.

Pipeline Refinement and Deployment. AlphaD3M allows users to save and load pipelines, enabling

users to reload them later and perform analyses without having to re-run the AutoML search.

They can load the saved pipelines at any time for training or testing purposes. In addition, users

can export pipelines to Python code. This gives them more control and the ability to modify

(and customize) the automatically generated pipelines (e.g., change hyperparameters, or replace

a classifier primitive). More information about the API can be found on the documentation web

page: https://alphad3m.readthedocs.io/en/latest/api.html.

4 Evaluation

To demonstrate the effectiveness of AlphaD3M and its ability to handle a rich set of ML tasks, we

compared AlphaD3M with state-of-the-art AutoML systems using two dataset collections. We also

present use cases to show how useful, flexible, and easy to use AlphaD3M is.

4.1 Comparing AutoML Systems

D3M Datasets. This collection contains challenging datasets and cover a wide variety of tasks (a

total of 17 task types) and data types (see Table 3). We evaluated all the systems using train and test

splits. In most of the cases, the sizes are 0.8 and 0.2 for the train and test splits, respectively (see the

dataset’s repository
2
for details). For each dataset, we ran the systems over the train split for one

hour, a time-bound used by others works (Erickson et al., 2020; Feurer et al., 2021). After that, we

evaluated the best pipeline produced by each system in the test split. For this experiment, we used

1 GPU (GeForce GTX 1080 Ti), 14 CPU cores (Intel Xeon E5-2695 v4, 2.10 GHz), and 56 GB memory.

Table 2 shows the number of supported task types (ML tasks), winner pipelines (i.e., pipelines

with the best performance for a given dataset), and the average rank by each AutoML system (rank

of each system among the 8 AutoML systems applied to each dataset). If two or more systems

produce pipelines that tie in the best score, all of them are considered winner pipelines. As we can

see, AlphaD3M and Aika were able to solve 17 out of 17 unique tasks, obtaining the best coverage.

We also evaluated the effectiveness of AlphaD3M. It had the best overall performance, producing

the best pipeline for 49 datasets with the best average rank (2.85). Analyzing the support for each

2https://datasets.datadrivendiscovery.org/d3m/datasets
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Table 3: Number of datasets by task type and number of solved datasets by each AutoML system for

all task types covered by the D3M datasets.

ML Task AlphaD3M AutonML Ensemble Aika Distil Autoflow Axolotl Drori et al. (2019)

Tabular Classification (20) 20 19 18 20 18 17 13 20

Tabular Regression (11) 11 11 11 8 9 6 5 9

Image Classification (9) 9 8 9 9 7 7 2 0

Image Regression (1) 1 1 1 1 1 1 1 0

Text Classification (9) 9 9 9 9 8 8 9 0

Audio Classification (2) 2 2 2 2 1 2 2 0

Graph Matching (3) 3 3 3 3 2 2 2 0

Time series Forecasting (13) 13 13 13 13 2 12 10 0

Link Prediction (3) 3 3 3 3 2 2 2 0

Collaborative Filtering (1) 1 0 1 1 0 1 0 0

Time series Classification (19) 19 19 19 17 19 15 19 0

Community Detection (3) 3 3 0 2 2 1 0 0

Video Classification (2) 2 2 2 2 0 2 2 0

Vertex Classification (4) 4 4 4 4 4 4 4 0

Object Detection (2) 2 2 0 1 1 0 0 0

Semisupervised Classification (6) 6 6 6 3 6 4 3 0

LUPI (4) 4 4 4 4 4 4 4 0

task type individually in Table 3, we can see that AlphaD3M was able to produce valid pipelines

for all the datasets and it solved more datasets than the other systems. Even though AlphaD3M is

inspired by Drori et al. (2019), in Table Table 2 and Table 3, we can clearly see the difference between

them, AlphaD3M handles a larger number of tasks and produces many more winned pipelines.

This shows that the different components of AlphaD3M are effective at handling the larger search

spaces required by MT-AutoML systems. The detailed scores obtained by each system in all the

D3M datasets and the average rank by tasks can be found in Table 4 and Table 5 (Appendix).

Additionally, we calculated the number of winner pipelines for the top-3 systems only in the

datasets where all of them produced pipelines. AlphaD3M, Ensemble, and Auto
n
ML systems got 48,

42, and 38, respectively. These results confirm that the superior performance of AlphaD3M is not

solely due to its support for a broader range of ML tasks.

Figure 3: Ablation study for the different components of AlphaD3M.

We performed an ablation

study to analyze the contribu-

tion of each component of Al-

phaD3M on a random sample of

five D3M datasets for classifica-

tion tasks
2
(datasets for which

AlphaD3M obtained the best, av-

erage and worst performances).

Figure 3 shows the best scores

for each dataset reached by the

full AlphaD3M and the versions

with some components removed

(or replaced). As we can see, us-

ing all components leads to the

best results.

To evaluate the importance of the automatic grammar, we replaced it with the manually-

designed grammar used in Drori et al. (2019). For POKER, SPECTRO,WORDS, and SICK datasets,

when the manual grammar was used, AlphaD3M was not able to produce valid pipelines, which

highlights the importance of automatically generating the grammar. These datasets contain multi-

ple types of features like text, DateTime, etc., which were not covered by the manually-constructed

8



Figure 4: Performance of AutoML systems in OpenML Benchmark. X-axis shows the accuracy values

(normalized by the best score), and Y-axis shows the IDs of the OpenML tasks.

grammar. The prioritization of primitives also plays an important role in AlphaD3M. When this

feature was not used, the performance decreased, e.g. in POKER, SPECTRO, and LIBRAS datasets. As
we can see in Figure 3, in most of the datasets, when we removed the hyperparameter tuning com-

ponent, AlphaD3M obtained the same results. This suggests that the heuristic used by AlphaD3M

(tuning only the top-𝑘 pipelines) may miss good pipelines that would attain better performance

after tuning. In future work, we plan to investigate alternative strategies for hyperparameter tuning

that attain a better balance of computational cost and pipeline performance.

OpenML Benchmark. Similar to Erickson et al. (2020), we compared our system with AutoWEKA,

TPOT, H2O, AutoGluon, and Auto-Sklearn 2.0 (hereinafter referred to as Auto-Sklearn) on the 39

OpenML datasets (Gijsbers et al., 2019). This corpus contains a variety of datasets intended to

represent real-world data science problems and covers binary and multiclass classification tasks.

We used AMLB (Gijsbers et al., 2022) to compare the systems, running them locally for one hour

using 1 fold split and accuracy as the optimization metric. For this experiment, we used 4 CPU

cores (Intel Xeon Platinum 8268 Processor, 2.9 GHz) and 32 GB memory.

Figure 4 shows the scores (normalized by the best score) of all the systems (the detailed scores

can be found in Tables 6 and 7 in the Appendix). As we can see, AlphaD3M produced pipelines

whose performance is on par with the other AutoML systems. We also calculated the average

rank for all the systems for the 39 datasets. AlphaD3M got 3.64 of average rank, while Auto-

Sklearn, AutoGluon, H2O, TPOT, and AutoWEKA got 2.08, 2.33, 3.08, 3.72, and 5.10, respectively.

To understand better these numbers, we also estimated the performance gain of the pipelines found

by AlphaD3M against pipelines generated by other systems. The average gain of AlphaD3M for

the OpenML datasets was +0.001, which shows that, in general, AlphaD3M attained good results

for this collection. We analyzed the 3 datasets (task_146195, task_167119 and task_168331) for
which AlphaD3M generated pipelines with performance lower than other systems. This happened

because these datasets are imbalanced with multiple classes. The performance of AlphaD3M for

these could be improved with the inclusion of primitives to handle imbalanced datasets. This

underscores the importance of being able to add primitives to AutoML systems.

Concerning the coverage, it is important to highlight that AlphaD3M succeeded for 38 datasets.

Auto-Sklearn, AutoGluon, H2O, TPOT, and AutoWEKA solved 39, 39, 34, 29, and 28 datasets,

respectively. As pointed out by Gijsbers et al. (2022), the results of Auto-Sklearn on the OpenML

datasets must be considered very carefully, since there could be an overlap between the datasets

used in its meta-learning process and the ones used in the evaluation. It’s important to highlight

that none of the OpenML datasets are included in the version of Marvin that was used by AlphaD3M

in these experiments.
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4.2 Use Cases

Pivoting across ML tasks. Predicting hostile actions against ships and mariners worldwide is

important to prevent piracy and prosecute the aggressors. Consider that an analyst from the U.S.

National Geospatial-Intelligence Agency (NGA) is building a model using the Anti-Shipping Activity

Messages dataset (ASAM, 2021). She wants to identify which records mention guns and which

records do not. This is a non-trivial problem since a variety of terms (e.g., pistol, rifle, etc.) indicate

whether a gun is present. This dataset contains 8,000 documents, of which 1,400 were annotated.

She started by using AlphaD3M to create models using the 1,400 labeled documents setting the

model search to 1 hour. AlphaD3M derived high-quality pipelines – the best pipeline had 0.90 of

F1. However, she wondered whether these pipelines could be further improved, in particular, by

leveraging the 6,600 unlabeled documents through semi-supervised learning. AlphaD3M supports

a wide range of tasks, including semi-supervised learning – users just need to add the keyword

“semiSupervised” as a parameter. The user then ran a new experiment using the 1,400 labeled and

6,000 unlabeled instances as a training dataset. The results improved from 0.90 to 0.95 of F1. These

experiments show that by using AlphaD3M, data scientists can improve the results, pivoting from

one task (classification) to another (semi-supervised classification) very quickly.

Reducing pipeline execution time through models exploration. Using content analysis and

predictive modeling for conflict assessment is a common approach for conflict analysts to guide

policy-making decisions D’Orazio (2020). Consider a conflict analyst trying to categorize explosion

events that involve terrorist activities. She uses the explosion events dataset (Raleigh et al., 2010)

that contains 20,000 articles describing events that involve terrorist activities. An article is relevant

if it describes attacks involving explosions. To create classification models, she ran AlphaD3M for 1

hour. The system synthesized high-quality pipelines, with F1 values around 0.9. To identify the

most suitable pipeline, she used the PipelineProfiler to explore the derived models. She observed

that the top-10 pipelines had similar scores but their execution times were above 800 seconds. To

address this problem, she tried a different strategy: combining progressive sampling and active

learning to reduce the number of training data from 20,000 to 3,200 documents. Then, she re-ran

AlphaD3M using the smaller set as the training dataset, while keeping the rest of the workflow

unchanged. The top F1 score improved from 0.91 to 0.96 and the time from 800 to 125 seconds.

5 Conclusions
We introduced AlphaD3M, an MT-AutoML library that automatically synthesizes end-to-end

pipelines for 17 ML tasks and 6 different data types. AlphaD3M introduces new methods to auto-

matically derive grammars and prioritize primitives, which are essential for effectively managing

the large space MT-AutoML systems must search. In addition, AlphaD3M embraces a user-in-the-

loop approach, through an API that allows the users to explore the input data and the derived ML

pipelines, as well as customized the pipelines. We presented a detailed experimental evaluation

that compares our approach to several state-of-the-art AutoML systems over different problems

and datasets. The results suggest that AlphaD3M is effective: not only does it solve a larger number

of problem types, but it also derives pipelines with performance that is superior or on par with

those derived by other systems.

AlthoughAlphaD3M’s approach is primitive-agnostic, so far, it only relies on the D3M primitives

to build ML pipelines. We plan to extend AlphaD3M by including additional state-of-the-art

and more-recent primitives, e.g., models published in HuggingFace or PyTorch Hub repositories.

Moreover, wewould like to improve the system interoperabilitywith existing open-source primitives

that use standard APIs such as the well-known scikit-learn’s fit-predict API.
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authors and do not necessarily reflect the views of DARPA.
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A Broader Impact Statement

AlphaD3M can potentially strengthen the efforts in democratizing data science by broadening the

application of automated predictive pipelines. Subject experts can create their own pipelines and

explore them in the context of an ethical framework. Its interoperable software infrastructure

enables external auditing and improves the trust and interpretability of synthesized pipelines.

The search space management mechanism also allows efficient resource allocation and helps to

prototype pipelines before performing high energy-consuming model training.

B Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes] See it mainly in Section 3 and 4.

(b) Did you describe the limitations of your work? [Yes] See Section 5. We also discuss the

infeasibility of AutoML system in general, and our efforts to mitigate limitations.

(c) Did you discuss any potential negative societal impacts of your work? [No] However, we

advocate for the necessity of human-in-the-loop to build trust in the generated pipelines.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?

https://automl.cc/ethics-accessibility/ [Yes] Our paper follows these guidelines.

2. If you are including theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]We are not including

theoretical results.

(b) Did you include complete proofs of all theoretical results? [N/A] We are not including

theoretical results.

3. If you ran experiments. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txtwith explicit version), an instruc-
tive README with installation, and execution commands (either in the supplemental material

or as a url)? [Yes] We provide a link to our public GitLab repository and documentation

webpage, where users can find information about the installation and instructions to run

our system. The reported evaluation was conducted by a third (independent) party in a

competition among AutoML systems, so we can not release that code.

(b) Did you include the raw results of running the given instructions on the given code and

data? [Yes] See the scripts/paper_automlconference folder in our repository.

(c) Did you include scripts and commands that can be used to generate the figures and tables

in your paper based on the raw results of the code, data, and instructions given? [Yes] See

the scripts/paper_automlconference folder in our repository.

(d) Did you ensure sufficient code quality such that your code can be safely executed and

the code is properly documented? [Yes] Our code is well documented and follows coding

standards and best practices. We provide different Jupyter notebook examples and an API

to show how to use AlphaD3M.

(e) Did you specify all the training details (e.g., data splits, pre-processing, search spaces, fixed

hyperparameter settings, and how they were chosen)? [No] We do not specify all the details.
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However, some details, like the data split and search spaces are publicly available in the

references.

(f) Did you ensure that you compared different methods (including your own) exactly on

the same benchmarks, including the same datasets, search space, code for training and

hyperparameters for that code? [Yes] See Section 4.1.

(g) Did you run ablation studies to assess the impact of different components of your approach?

[Yes] See Section 4.1.

(h) Did you use the same evaluation protocol for the methods being compared? [Yes] We

presented two comparisons (see Section 4). For the first comparison, we used the same

protocol. For the second one, we used an existing asset and we evaluated our system using

the same time protocol.

(i) Did you compare performance over time? [No] We ran the systems during one hour, a

time-bound used by others works (Erickson et al., 2020; Feurer et al., 2021), and reported

the best score during this time.

(j) Did you perform multiple runs of your experiments and report random seeds? [N/A] We

do not perform multiple runs of our experiments.

(k) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A] We do not report error bars.

(l) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A] We did not

use surrogate benchmarks.

(m) Did you include the total amount of compute and the type of resources used (e.g., type

of gpus, internal cluster, or cloud provider)? [No] Some of the reported evaluations were

conducted by a third party.

(n) Did you report how you tuned hyperparameters, and what time and resources this required

(if they were not automatically tuned by your AutoML method, e.g. in a nas approach; and

also hyperparameters of your ownmethod)? [N/A] The hyperparameters were automatically

tuned by our AutoML engine.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets. . .

(a) If your work uses existing assets, did you cite the creators? [Yes] See Section 4.1.

(b) Did you mention the license of the assets? [No] However, all assets are publicly available

and the licenses can be retrieved from the references.

(c) Did you include any new assets either in the supplemental material or as a url? [Yes] We

included a url to the data used in the experiments.

(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A] The assets used in this paper are publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A] The data used do not contain personally identifiable

information neither offensive content.

5. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A] We did not carry out a user study.
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(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A] We did not carry out a user study.

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A] We did not carry out a user study.

C Additional Details

C.1 Algorithms

Algorithm 1 describes the process of building the grammar. 𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝐾 and 𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑇 repre-

sent the BOW and one-hot encoding functions, respectively. The best values empirically calculated

for the thresholds 𝑡𝑠𝑖𝑚 and 𝑡𝑝𝑒𝑟 𝑓 are 0.8 and 0.5, respectively.

Algorithm 1 Grammar Builder

Input: Marvin datasets 𝐷 , query dataset 𝑞, threshold 𝑡

Initialize 𝑆 = [] // Similar datasets

for 𝑑𝑖 in 𝐷 do
𝑠𝑖𝑚𝑇𝐾 = 𝑐𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝐾 (𝑑𝑖 ), 𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑇𝐾 (𝑞))
if 𝑠𝑖𝑚𝑇𝐾 > 𝑡𝑠𝑖𝑚 then
𝑠𝑖𝑚𝑆𝑇 = 𝑐𝑜𝑠𝑖𝑛𝑒𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑇 (𝑑𝑖 ), 𝑔𝑒𝑡𝑉𝑒𝑐𝑡𝑜𝑟𝑆𝑇 (𝑞))
if 𝑠𝑖𝑚𝑆𝑇 > 𝑡𝑠𝑖𝑚 then

Add 𝑑𝑖 to 𝑆

Initialize 𝑃 = 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝐷𝑇𝑀 (𝑆)
Initialize 𝑅 = [] // Production Rules

for 𝑝𝑖 in 𝑃 do
if 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑝𝑖 ) > 𝑡𝑝𝑒𝑟 𝑓 then
𝑟𝑖 = 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑇𝑜𝑃𝑎𝑡𝑡𝑒𝑟𝑛(𝑝𝑖 ))
Add 𝑟𝑖 to 𝑅

return 𝑅

Algorithm 2 describes the process of calculating the primitive importance values in detail. For

instance, the primitive importance values calculated for XGBoost and Random Forrest are 0.62 and

0.56, whereas for Nearest Centroid and K-Nearest Neighbors the values are 0.46 and 0.44. It shows

that the importance values can be used as an indicator to prioritize the usage of primitives.

Algorithm 2 Primitives Importance

Input: Pipelines 𝑃 , Patterns 𝑇
Initialize 𝑅 = 𝑔𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 (𝑃)
Initialize 𝐺, 𝐿 = [] // Global and Local correlations

for 𝑟𝑖 in 𝑅 do
𝑝𝑐 = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟𝑖 , 𝑃)
𝑛𝑝𝑐 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑝𝑐)
Add 𝑛𝑝𝑐 to 𝐺

for 𝑡𝑖 in 𝑇 do
𝑝𝑖 = 𝑔𝑒𝑡𝑃𝑖𝑝𝑒𝑙𝑖𝑛𝑒𝑠 (𝑡𝑖 , 𝑃)
𝑅 = 𝑔𝑒𝑡𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒𝑠 (𝑡𝑖 , 𝑝𝑖 )
for 𝑟𝑖 in 𝑅 do
𝑝𝑐 = 𝑃𝑒𝑎𝑟𝑠𝑜𝑛𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑟𝑖 , 𝑅)
𝑛𝑝𝑐 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝑝𝑐)
Add 𝑛𝑝𝑐 to 𝐿

return (𝐺, 𝐿)
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C.2 Grammars

Different tasks require different grammars. For instance, the algorithms needed to solve time-

series and semi-supervised classification problems have a different structure and use a different

set of primitives. Consequently, specialized grammars and production rules are needed for each

task. Manually creating these grammars is time-consuming and error-prone, and relying on these

grammars can limit the effectiveness of the AutoML systems with respect to problem coverage and

quality of the derived pipelines.

Figure 5 shows an excerpt of a grammar automatically generated in AlphaD3M to solve classi-

fication problems. The start symbol (𝑆) is the starting point from which all the production rules

can be derived. In the grammar, the terminal ‘primitive’ can be any of the available algorithms in

AlphaD3M, and ‘E’ represents the empty symbol.

S ::= CATEGORICAL_ENCODER TEXT_FEATURIZER DATA_CONVERSION IMPUTATION CLASSIFICATION
S ::= TEXT_FEATURIZER CATEGORICAL_ENCODER FEATURE_SCALING IMPUTATION FEATURE_SELECTION CLASSIFICATION
S ::= IMPUTATION TEXT_FEATURIZER CATEGORICAL_ENCODER FEATURE_SCALING FEATURE_SELECTION CLASSIFICATION
S ::= IMPUTATION TEXT_FEATURIZER CATEGORICAL_ENCODER DIMENSIONALITY_REDUCTION CLASSIFICATION
S ::= DATA_STRUCTURE_ALIGNMENT IMPUTATION CLASSIFICATION
S ::= IMPUTATION FEATURE_SCALING CLASSIFICATION
S ::= IMPUTATION FEATURE_SELECTION CLASSIFICATION
S ::= IMPUTATION DIMENSIONALITY_REDUCTION CLASSIFICATION
IMPUTATION ::= 'primitive' | 'E'
CATEGORICAL_ENCODER ::= 'primitive' | 'E'
FEATURE_SCALING ::= 'primitive' | 'E'
FEATURE_SELECTION ::= 'primitive' | 'E'
DIMENSIONALITY_REDUCTION ::= 'primitive' | 'E'
DATA_CONVERSION ::= 'primitive'
TEXT_FEATURIZER ::= 'primitive'
DATA_STRUCTURE_ALIGNMENT ::= 'primitive'
CLASSIFICATION ::= 'primitive'

Figure 5: Excerpt of a grammar automatically generated by AlphaD3M for classification tasks

In Figure 6, you can see the manual grammar used in the experiments. This grammar was

proposed by Drori et al. (2019). To generate this grammar for classification and regression tabular

tasks, a developer was asked to review manually the primitives to group them into categories. For

instance, the primitives 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛_𝑡𝑟𝑒𝑒.𝑆𝐾𝑙𝑒𝑎𝑟𝑛 and 𝑟𝑎𝑛𝑑𝑜𝑚_𝑓 𝑜𝑟𝑒𝑠𝑡 .𝑆𝐾𝑙𝑒𝑎𝑟𝑛 were grouped into the

category ‘CLASSIFICATION’. Then, using his knowledge in ML, he created the production rules of

the grammar using these categories.

S ::= CLASSIFICATION_TASK | REGRESSION_TASK
CLASSIFICATION_TASK ::= CLASSIFICATION | DATA_CLEANING CLASSIFICATION | DATA_TRANSFORMATION CLASSIFICATION |

DATA_CLEANING DATA_TRANSFORMATION CLASSIFICATION
REGRESSION_TASK ::= REGRESSION | DATA_CLEANING REGRESSION | DATA_TRANSFORMATION REGRESSION |

DATA_CLEANING DATA_TRANSFORMATION REGRESSION
CLASSIFICATION ::= 'primitive'
REGRESSION ::= 'primitive'
DATA_CLEANING ::= 'primitive' DATA_CLEANING | 'E'
DATA_TRANSFORMATION ::= 'primitive' DATA_TRANSFORMATION | 'E'

Figure 6: Manual Grammar

C.3 Experiments

In Table 4, we can see the scores obtained by all AutoML systems developed in the D3M program,

including a majority voting ensemble system, on a collection of 112 datasets
2
. This collection
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contains challenging datasets that go beyond the simple tabular data and cover a wide variety of

tasks and data types.

Table 4: Scores obtained by AlphaD3M and the other AutoML systems developed in the D3M program.

Dataset AlphaD3M AutonML Ensemble Aika Distil Autoflow Axolotl Drori

124_120_mnist_8747 0.98 0.94 0.46 0.18 0.94 0.11 - -

124_138_cifar100_1858 0.67 0.48 0.42 0.12 0.48 0.01 - -

124_16_fashion_mnist 0.90 0.83 0.84 0.12 0.85 0.10 - -

124_174_cifar10_MIN 0.88 0.82 0.84 0.27 0.80 0.10 - -

124_188_usps_MIN 0.96 0.95 0.94 0.26 0.92 0.18 0.11 -

124_214_coil20_MIN 0.99 0.99 0.99 0.85 0.97 - - -

124_95_uc_merced_land_use_MIN 0.90 - 0.72 0.52 - 0.05 0.33 -

1491_one_hundred_plants_margin_MIN 0.80 0.79 0.88 0.92 0.75 0.83 0.81 0.83

1567_poker_hand_MIN 0.90 0.84 0.28 0.48 0.12 0.13 - 0.27

185_baseball_MIN 0.66 0.70 0.65 0.68 0.68 0.67 0.66 0.64

196_autoMpg_MIN 6.57 9.12 5.74 11.95 7.49 6.01 15.36 7.03

22_handgeometry_MIN 0.24 0.23 0.23 0.14 0.80 0.36 0.36 -

26_radon_seed_MIN 0.02 0.02 0.24 0.03 0.02 0.06 1.40 0.02

27_wordLevels_MIN 0.32 0.28 0.28 0.32 0.29 0.27 0.26 0.27

299_libras_move_MIN 0.98 - - 0.48 - - 0.98 0.97

30_personae_MIN 0.62 0.65 0.65 0.62 0.61 0.55 0.61 -

313_spectrometer_MIN 0.43 0.37 0.37 0.30 0.32 0.33 0.23 0.40

31_urbansound_MIN 0.93 0.93 0.91 0.75 0.92 0.77 0.49 -

32_fma_MIN 0.55 0.57 0.34 0.28 - 0.11 0.11 -

32_wikiqa_MIN 0.00 0.02 0.14 0.13 0.50 - 0.13 -

38_sick_MIN 1.00 1.00 - 1.00 - - 0.49 1.00

4550_MiceProtein_MIN 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00

49_facebook_MIN 0.88 0.87 0.87 0.87 0.87 0.88 0.44 -

534_cps_85_wages_MIN 20.11 20.35 22.07 23.15 24.86 21.44 - 20.70

56_sunspots_MIN 34.55 11.82 8.64 8.45 58.30 9.40 90.60 -

56_sunspots_monthly_MIN 64.61 41.18 46.86 41.04 - 62.20 27.74 -

57_hypothyroid_MIN 0.96 0.98 0.99 0.98 0.74 0.99 0.97 0.98

59_LP_karate_MIN 0.93 0.45 0.83 0.83 0.45 0.45 0.93 -

59_umls_MIN 0.92 0.94 0.94 0.94 0.94 0.70 0.73 -

60_jester_MIN 4.25 - 4.24 4.15 - 4.51 - -

66_chlorineConcentration_MIN 0.82 0.86 0.81 0.52 0.78 0.68 0.23 -

6_70_com_amazon_MIN 0.85 0.85 - 0.85 0.85 - - -

6_86_com_DBLP_MIN 0.72 0.72 - 0.72 0.72 - - -

JIDO_SOHR_Articles_1061 0.98 0.94 0.94 0.81 0.56 0.60 0.64 -

JIDO_SOHR_Tab_Articles_8569 1.00 0.99 1.00 1.00 0.56 1.00 1.00 -

LL0_1100_popularkids_MIN 0.42 0.45 0.38 0.38 0.40 0.44 - 0.47

LL0_186_braziltourism_MIN 0.14 0.35 0.36 0.17 0.24 0.20 0.34 0.16

LL0_207_autoPrice_MIN 4.89 · 106 5.76 · 106 6.04 · 106 3.76 · 107 5.36 · 106 5.43 · 106 1.56 · 108 5.81 · 106
LL0_acled_reduced_MIN 0.83 0.88 0.89 0.84 0.91 0.85 0.74 0.91

LL0_jido_reduced_MIN 0.90 0.89 0.91 0.90 0.90 0.90 - 0.90

LL1_2734_CLIR 0.88 0.50 0.52 0.88 - - 0.50 -

LL1_336_MS_Geolife_transport_MIN 0.60 1.00 0.99 - 0.85 - 0.98 -

LL1_336_MS_Geolife_transport_separate 0.67 1.00 0.99 - 0.86 - 0.99 -

LL1_3476_HMDB_actio_recognition_MIN 0.11 1.00 0.90 0.11 - 0.48 0.08 -

LL1_50words_MIN 0.35 0.55 0.56 0.41 0.51 0.45 0.35 -

LL1_726_TIDY_GPS_carpool 0.54 0.58 0.58 0.46 0.59 - 0.63 -

LL1_736_population_spawn_MIN 1636.12 1806.40 1804.76 1644.26 - 2845.89 - -

LL1_736_population_spawn_simpler_MIN 1346.10 1490.15 3669.54 1347.65 1323.72 1550.40 19887.20 -

LL1_736_stock_market_MIN 7.64 1.49 8.69 1.75 - 30.66 - -

LL1_ACLED_TOR_online_behavior_MIN 0.40 0.05 0.44 0.64 0.43 0.66 0.08 0.40

LL1_Adiac_MIN 0.75 0.70 0.73 0.54 0.67 0.70 0.49 -

LL1_ArrowHead_MIN 0.75 0.82 0.78 0.72 0.65 0.55 0.72 -

LL1_CONFLICT_3457_atrocity 9.53 6.75 11.43 12.84 - 17.21 13.91 -

LL1_Cricket_Y_MIN 0.52 0.54 0.59 0.52 0.62 0.53 0.45 -

LL1_DIC28_net_MIN 0.84 0.80 0.80 0.80 0.80 0.84 - -

LL1_ECG200_MIN 0.90 0.87 0.87 0.86 0.91 0.85 0.86 -

LL1_EDGELIST_net_nomination_MIN 0.99 0.66 0.85 0.94 0.66 0.35 0.84 -

LL1_ElectricDevices_MIN 0.54 0.42 0.46 0.06 0.44 0.27 0.31 -

LL1_FISH_MIN 0.80 0.87 0.89 0.73 0.84 0.86 0.78 -

LL1_FaceFour_MIN 0.84 0.83 0.71 0.55 0.65 0.40 0.66 -
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(Table 4: Continued from the previous page)

Dataset AlphaD3M AutonML Ensemble Aika Distil Autoflow Axolotl Drori

LL1_GS_process_classification_tab_MIN 0.80 0.80 0.80 0.80 0.80 0.73 - 0.81

LL1_GS_process_classification_text_MIN 0.65 0.80 0.65 0.80 0.80 0.76 0.80 -

LL1_GT_actor_group_association_MIN 0.25 0.13 0.17 0.13 - - - -

LL1_HandOutlines_MIN 0.89 0.91 0.90 0.88 0.88 0.88 0.88 -

LL1_Haptics_MIN 0.43 0.42 0.44 0.42 0.41 0.45 0.42 -

LL1_ItalyPowerDemand_MIN 0.93 0.95 0.95 0.95 0.95 0.91 0.90 -

LL1_MIL_MUSK 0.68 0.77 0.83 0.67 0.80 0.80 - 0.72

LL1_MIL_Mutagenesis 0.80 0.73 0.72 0.71 0.70 0.63 - 0.79

LL1_MITLL_synthetic_vora_E_2538 0.29 0.53 0.52 0.50 0.31 0.44 - 0.38

LL1_Meat_MIN 0.95 0.94 0.88 0.92 0.88 0.17 0.95 -

LL1_OSULeaf_MIN 0.53 0.44 0.52 0.77 0.45 0.47 0.32 -

LL1_PHEM_Monthly_Malnutrition_MIN 10.63 9.56 9.39 9.73 - 12.18 - -

LL1_PHEM_weekly_malnutrition_MIN 3.34 4.32 3.45 2.94 - 4.23 4.18 -

LL1_TXT_CLS_3746_newsgroup_MIN 0.60 0.46 0.55 0.48 0.60 0.45 0.23 -

LL1_TXT_CLS_SST_Binary 0.73 0.82 0.82 0.55 - 0.51 0.53 -

LL1_TXT_CLS_airline_opinion_MIN 0.81 0.80 0.81 0.80 0.81 0.72 0.72 -

LL1_TXT_CLS_apple_products_sent_MIN 0.73 0.71 0.72 0.72 0.73 0.66 0.69 -

LL1_VID_UCF11_MIN 0.99 0.99 0.25 0.27 - 0.02 0.08 -

LL1_VTXC_1343_cora_MIN 0.61 0.04 0.22 0.17 0.04 0.13 0.52 -

LL1_VTXC_1369_synthetic_MIN 0.95 0.22 0.33 0.21 0.22 0.19 0.48 -

LL1_ViEWS_CM_S1 0.69 1.20 0.90 0.72 0.75 2.52 - 0.82

LL1_ViEWS_PGM_S1 0.02 0.04 0.02 - 0.02 0.02 0.30 0.02

LL1_bigearth_landuse_detection 0.90 0.96 0.76 0.65 0.21 - - -

LL1_bn_fly_drosophila_medulla_net_MIN 0.24 0.24 - - - 0.19 - -

LL1_h1b_visa_apps_7480 0.44 0.47 0.43 0.44 0.41 0.41 0.47 0.42

LL1_net_nomination_seed_MIN 0.99 0.99 0.96 0.94 0.99 0.34 0.46 -

LL1_penn_fudan_pedestrian_MIN 0.94 0.94 - 0.94 0.94 - - -

LL1_retail_sales_total_MIN 1989.19 1921.54 1941.06 1966.30 1992.17 - 1971.76 2022.41

LL1_terra_canopy_height_s4_100_MIN 113.04 68.44 39.02 52.21 - 79.86 343.27 -

LL1_terra_canopy_height_s4_70_MIN 104.92 547.94 126.06 136.32 - 169.63 136.98 -

LL1_terra_canopy_height_s4_80_MIN 112.95 92.95 32.57 74.59 - 111.49 74.54 -

LL1_terra_canopy_height_s4_90_MIN 117.13 85.73 35.12 60.44 - 104.49 60.45 -

LL1_terra_leaf_angle_mean_s4_MIN 0.04 0.09 0.05 0.04 - - 0.05 -

LL1_tidy_terra_panicle_detection_MIN 0.01 0.03 - - - - - -

SEMI_1040_sylva_prior_MIN 0.93 0.90 0.93 - 0.92 - - -

SEMI_1044_eye_movements_MIN 0.52 0.57 0.61 0.55 0.60 0.53 0.54 -

SEMI_1053_jm1_MIN 0.26 1.00 0.16 - 0.16 0.41 - -

SEMI_1217_click_prediction_small_MIN 0.04 0.03 0.04 - 0.17 - - -

SEMI_1459_artificial_characters_MIN 0.68 0.99 0.83 0.99 0.67 0.61 0.52 -

SEMI_155_pokerhand_MIN 0.58 0.66 0.60 0.05 0.64 0.50 0.51 -

kaggle_music_hackathon_MIN 21.88 17.56 19.64 24.24 21.79 - - 21.85

loan_status_MIN 0.40 0.50 0.51 0.44 0.33 - 0.48 0.46

political_instability_MIN 0.81 0.89 0.89 0.89 0.89 - 0.88 -

uu1_datasmash_MIN 1.00 1.00 1.00 1.00 0.61 1.00 1.00 -

uu2_gp_hyperparameter_estimation_MIN 0.89 0.88 0.57 0.89 - - - 0.89

uu3_world_development_indicators_MIN 2.39 · 1010 5.54 · 1012 4.12 · 1012 - 4.40 · 1012 - - -

uu3_world_development_indicators_raw 7.83 · 1013 1.04 · 1012 5.22 · 1011 - - - - -

uu4_SPECT_MIN 0.00 0.92 0.92 0.90 0.89 0.90 0.78 -

uu5_heartstatlog_MIN 0.70 0.69 0.72 0.62 0.61 0.72 0.67 -

uu6_hepatitis_MIN 0.00 0.47 0.89 0.40 0.27 0.31 0.44 -

uu7_pima_diabetes_MIN 0.59 0.57 0.60 0.57 0.60 0.63 0.57 -

uu_101_object_categories_MIN 0.95 0.89 0.84 0.34 - 0.10 - -
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The average rank values obtained by different AutoML systems for each task type in the D3M

datasets can be seen in Table 5. These datasets contain a total of 17 unique ML tasks.

Table 5: Average rank values by task obtained by different AutoML systems.

Task AlphaD3M AutonML Ensemble Aika Distil Autoflow Axolotl Drori

Image Classification 1.11 2.78 2.78 4.56 4.33 6.22 7.44 8.00

Tabular Classification 3.75 3.30 3.35 3.85 4.85 4.65 5.85 3.55

Tabular Regression 2.27 3.18 3.00 5.73 4.27 5.73 7.54 4.36

Image Regression 4.00 2.00 2.00 1.00 7.00 5.00 5.00 8.00

Text Classification 2.56 3.33 2.22 3.00 3.56 5.78 4.33 8.00

Audio Classification 1.50 1.00 3.50 5.00 5.50 5.00 6.00 8.00

Graph Matching 1.00 3.33 3.00 2.33 4.67 3.33 6.33 8.00

Time series Forecasting 3.38 3.62 2.62 2.23 7.31 5.08 5.08 8.00

Link Prediction 3.33 2.33 2.33 1.67 4.67 6.67 5.00 8.00

Collaborative Filtering 3.00 8.00 2.00 1.00 8.00 4.00 8.00 8.00

Time series Classification 3.26 2.26 2.16 4.68 3.79 5.32 4.53 8.00

Community Detection 1.00 1.00 8.00 3.33 3.33 6.33 8.00 8.00

Video Classification 2.50 1.00 3.00 3.50 8.00 4.50 5.50 8.00

Vertex Classification 1.00 4.00 3.25 4.25 4.00 6.50 3.50 8.00

Object Detection 1.50 1.00 8.00 4.50 4.50 8.00 8.00 8.00

Semisupervised Classification 3.50 2.33 2.33 6.00 2.83 6.00 6.83 8.00

LUPI 5.25 3.00 1.25 4.50 5.00 2.50 4.75 8.00
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Table 6 and Table 7 show the raw and normalized scores (normalized by the best score) obtained

by each system on the 39 datasets of the OpenML AutoML Benchmark (Gijsbers et al., 2019).

This benchmark represents real-world data science problems and covers binary and multiclass

classification tasks. Additionally, Table 6 shows the gain of AlphaD3M regarding the other systems.

Table 6: Raw scores obtained by AlphaD3M and the other AutoML systems.

Dataset AutoGluon AutoWEKA Auto-Sklearn H2O TPOT AlphaD3M Gain

task_10101 0.76 0.76 0.76 0.76 0.76 0.79 0.03

task_12 0.98 0.98 0.98 0.98 - 0.96 -0.01

task_146195 0.88 0.71 0.86 0.88 0.85 0.81 -0.03

task_146212 1.00 1.00 1.00 1.00 1.00 1.00 0.00

task_146606 0.74 0.60 0.73 0.72 - 0.73 0.03

task_146818 0.91 0.86 0.84 0.90 0.87 0.87 -0.01

task_146821 0.99 1.00 1.00 1.00 1.00 0.97 -0.03

task_146822 0.97 0.97 0.97 0.97 0.98 0.97 0.00

task_146825 0.91 - 0.91 0.90 - 0.86 -0.05

task_14965 0.91 0.88 0.91 0.91 0.91 0.91 0.00

task_167119 0.92 0.80 0.94 0.96 0.90 0.83 -0.08

task_167120 0.51 0.51 0.51 0.51 - 0.51 -0.00

task_168329 0.40 0.27 0.38 0.35 0.35 0.37 0.02

task_168330 0.73 0.65 0.73 0.73 0.70 0.72 0.01

task_168331 0.73 0.62 0.73 0.69 0.66 0.66 -0.02

task_168332 0.56 - 0.54 0.51 0.44 0.41 -0.10

task_168335 0.94 - 0.94 - 0.93 0.94 -0.00

task_168337 0.84 - 0.86 0.83 0.77 0.61 -0.21

task_168338 1.00 - 1.00 1.00 0.99 0.97 -0.03

task_168868 0.99 0.99 0.99 1.00 0.99 0.99 0.00

task_168908 0.74 0.73 0.76 0.72 - 0.77 0.03

task_168909 0.99 0.96 0.99 0.98 - 0.99 0.01

task_168910 0.72 0.60 0.72 0.72 0.71 0.65 -0.04

task_168911 0.81 0.82 0.82 0.82 0.81 0.81 -0.01

task_168912 0.93 0.92 0.95 0.95 0.95 0.94 -0.00

task_189354 0.67 - 0.67 0.61 0.67 0.65 -0.01

task_189355 0.94 - 0.00 - - 0.88 0.41

task_189356 0.71 - 0.69 - - - -

task_3 0.99 0.93 0.99 1.00 0.99 0.99 0.01

task_31 0.77 0.66 0.82 - 0.82 0.77 0.00

task_34539 0.95 - 0.95 0.95 0.95 0.95 -0.01

task_3917 0.87 - 0.86 - 0.88 0.86 -0.01

task_3945 0.98 - 0.98 0.98 0.98 0.98 0.00

task_53 0.86 0.67 0.85 0.88 - 0.82 0.01

task_7592 0.87 0.87 0.87 0.86 0.87 0.87 0.00

task_7593 0.97 0.66 0.96 0.80 - 0.95 0.10

task_9952 0.88 0.91 0.90 0.90 0.91 0.91 0.01

task_9977 0.98 0.95 0.97 0.98 0.97 0.96 -0.00

task_9981 0.94 0.86 0.96 0.94 0.96 0.94 0.01
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Table 7: Normalized scores obtained by AlphaD3M and the other AutoML systems.

Dataset AutoGluon AutoWEKA Auto-Sklearn H2O TPOT AlphaD3M

task_10101 0.97 0.97 0.97 0.97 0.97 1.00

task_12 0.99 1.00 0.99 0.99 - 0.98

task_146195 1.00 0.81 0.98 1.00 0.97 0.92

task_146212 1.00 1.00 1.00 1.00 1.00 1.00

task_146606 1.00 0.82 1.00 0.98 - 0.99

task_146818 1.00 0.94 0.92 0.98 0.95 0.95

task_146821 0.99 1.00 1.00 1.00 1.00 0.97

task_146822 1.00 0.99 1.00 1.00 1.00 1.00

task_146825 1.00 - 0.99 0.99 - 0.94

task_14965 1.00 0.96 1.00 1.00 1.00 1.00

task_167119 0.96 0.83 0.98 1.00 0.94 0.86

task_167120 1.00 1.00 1.00 0.99 - 0.99

task_168329 1.00 0.69 0.96 0.88 0.89 0.94

task_168330 1.00 0.89 1.00 1.00 0.97 0.98

task_168331 1.00 0.84 1.00 0.95 0.90 0.91

task_168332 1.00 - 0.98 0.93 0.80 0.75

task_168335 1.00 - 1.00 - 0.99 0.99

task_168337 0.98 - 1.00 0.97 0.89 0.71

task_168338 1.00 - 1.00 1.00 0.99 0.97

task_168868 1.00 0.99 1.00 1.00 1.00 1.00

task_168908 0.97 0.96 0.99 0.94 - 1.00

task_168909 1.00 0.97 1.00 0.99 - 1.00

task_168910 1.00 0.83 1.00 1.00 0.98 0.90

task_168911 0.99 1.00 1.00 1.00 0.99 0.98

task_168912 0.98 0.97 0.99 1.00 1.00 0.98

task_189354 1.00 - 1.00 0.91 1.00 0.96

task_189355 1.00 - 0.00 - - 0.94

task_189356 1.00 - 0.97 - - -

task_3 1.00 0.94 1.00 1.00 1.00 1.00

task_31 0.94 0.80 1.00 - 1.00 0.94

task_34539 1.00 - 1.00 1.00 0.99 0.99

task_3917 0.99 - 0.98 - 1.00 0.98

task_3945 1.00 - 1.00 0.99 1.00 1.00

task_53 0.97 0.76 0.96 1.00 - 0.93

task_7592 1.00 0.99 1.00 0.99 1.00 1.00

task_7593 1.00 0.68 0.99 0.82 - 0.97

task_9952 0.96 0.99 0.98 0.98 1.00 0.99

task_9977 1.00 0.97 1.00 1.00 1.00 0.99

task_9981 0.98 0.89 1.00 0.98 1.00 0.98
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