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Abstract—Planning safe trajectories in Autonomous Driving
Systems (ADS) is a complex problem to solve in real-time.
The main challenge to solve this problem arises from the
various conditions and constraints imposed by road geometry,
semantics and traffic rules, as well as the presence of dy-
namic agents. Recently, Model Predictive Path Integral (MPPI)
has shown to be an effective framework for optimal motion
planning and control in robot navigation in unstructured and
highly uncertain environments. In this paper, we formulate the
motion planning problem in ADS as a nonlinear stochastic
dynamic optimization problem that can be solved using an
MPPI strategy. The main technical contribution of this work
is a method to handle obstacles within the MPPI formulation
safely. In this method, obstacles are approximated by circles
that can be easily integrated into the MPPI cost formulation
while considering safety margins. The proposed MPPI framework
has been efficiently implemented in our autonomous vehicle
and experimentally validated using three different primitive
scenarios. Experimental results show that generated trajectories
are safe, feasible and perfectly achieve the planning objective.
The video results as well as the open-source implementation are
available at https://gitlab.uni.lu/360lab-public/mppi.

Index Terms—Autonomous Driving, Motion Planning, Stochas-
tic Optimization

I. INTRODUCTION

Motion planning is a complex and challenging problem in
robotics and autonomous systems [1]. A motion planner has
to consider system dynamics, constraints, sensor uncertainties,
and real-time constraints to ensure that the system safely and
efficiently navigates a given environment. The ultimate goal
of a motion planner is to generate a feasible, collision-free,
comfortable, and fail-safe trajectory, while strictly satisfying a
set of spatio-temporal constraints. Typically these constraints
allow generated trajectories to (a) avoid collision with obsta-
cles surrounding the vehicle, (b) ensure dynamic and kinematic
feasibility as well as vehicle actuation capabilities (e.g. limits
of steering angles, steering rate, maximum acceleration and
braking torques), and (c) take into account the complex
geometry and topology of the road environment. Violating
any of these constraints may lead to unpredictable and risky
behaviour of the autonomous vehicle.

Fig. 1: Validation of the MPPI-based motion planner on a closed
track using a modified KIA Soul EV equipped for autonomous
driving. The figure depicts the object avoidance scenario whereby
a virtual object was placed on the path.

Motion planning for robots and autonomous systems some-
how amounts to solving a complex optimization problem. The
main challenge to solve a motion planning problem derives
mainly from the non-convexity of the underlying optimiza-
tion problem. Furthermore, the spatio-temporal constraints
of dynamic obstacles hinder most of the motion planning
approaches to reach a feasible trajectory within predefined
real-time constraints [2]. Ensuring these constraints are re-
spected is fundamental in safety-critical situations, where the
autonomous vehicle must be able to anticipate in a timely
manner to prevent a potential collision.

Motion planning is quite an established research topic in the
vast state-of-the-art of autonomous vehicles [1], [3]. Several
approaches have been developed in the literature to solve
the above-described trajectory planning challenge. Recently
there has been an increasing interest in using learning-based
methods, especially reinforcement learning [4], [5]. Never-
theless, solutions based on these methods are unlikely to
meet the safety requirements of autonomous vehicles and it
becomes difficult to verify and interpret, thus putting their
reliability in question, especially for safety-critical situations

https://gitlab.uni.lu/360lab-public/mppi


[6]. Numerical optimization has also been a widely accepted
approach to solve motion planning problems [7], [8]. Although
efficient numerical optimization algorithms exist to converge
to a solution, one limitation of these algorithms is that they
may become stuck in a local minimum due to non-convexity.
Decoupling longitudinal and lateral motions [2] and estimating
the driving corridor [9] is one way around reformulating the
problem as a convex one. This approximation may, however,
result in slightly infeasible trajectories.

Methods from control theory have gained significant interest
in motion planning. These methods formulate the motion
problem as an optimal control problem subject to constraints
on both the states and inputs of the systems [1]. Model
Predictive Control (MPC) is one of the efficient methods to
solve constrained optimal control problems using the receding
horizon concept. MPC iteratively solves an optimal control
sequence along a finite-time horizon while minimising the cost
function of a planning objective [10]. A major limitation of
MPC in motion planning lies in the high computational cost
it needs, especially with high-dimensional nonlinear systems
and the difficulty to consider obstacles in its formulation.
Recently, Model Predictive Path Integral (MPPI) has shown
to be an effective framework for optimal motion planning and
control for robots and autonomous systems [11], [12]. The
key idea of MPPI is to transform the optimal control problem
into an expectation over the integral of all possible trajectories
[13]–[16]. This enables to solve the optimal control problem
using Monte Carlo simulations by forward sampling a large
number of trajectories that can be evaluated efficiently using
parallel processing, e.g. using GPUs. The way most MPPI
frameworks consider avoiding obstacles in their formulation
is still in its infancy with obstacles considered as cost maps
[17]. Furthermore, most of these frameworks are tailored
for robot navigation in unstructured and highly uncertain
environments [11], [18], [19]. In the context of Autonomous
Driving Systems (ADS), only very few results are available
[17], [20]. This paper takes a step forward by developing an
MPPI framework that systematically considers obstacles and
safety in an autonomous driving setting. Obstacles provided
by the perception system are approximated by a finite set
of circles while considering a safety margin. This way of
representing obstacles makes it possible to penalize trajectories
at risk of collision more easily. The proposed MPPI framework
is efficiently implemented in our autonomous vehicle and
experimentally validated in three different primitive scenarios.
The first scenario is to allow the vehicle to merge a lane start-
ing from a lane neighbourhood while the second is to perform
a turning manoeuvre to avoid an obstacle. The third scenario
is to have the autonomous vehicle follows an obstacle in the
same lane. Although these scenarios are individually simple,
they indeed meet the requirements of generated trajectories for
complex scenarios if combined together. Experimental results
show that generated trajectories are safe, feasible and perfectly
achieve the planning objective.

The rest of this paper is organized as follows. Section II
presents some mathematical preliminaries, the modelling of

the vehicle as well as the formulation of the motion planning
as a constrained stochastic nonlinear dynamic optimization
problem. The proposed MPPI motion planning framework is
presented in Section III. The experimental results are presented
in Section IV. Finally, we draw conclusions and discuss future
works in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

The objective of this paper is to plan feasible safe trajec-
tories for autonomous vehicles to navigate their environment.
This section presents a preliminary mathematical background
for vehicle modelling and the foundations of MPPI used to
develop the approach of this work.

A. Problem Formulation

The motion planning problem in autonomous driving sys-
tems can be defined in terms of four main components
P : ⟨ V, S, B, J ⟩, namely a vehicle motion model V , a
scene representation model S, a boundaries model B, and an
objective J . Let us consider the following stochastic nonlinear
discrete-time dynamical system to represent the motion model
of the vehicle

V : xt+1 = F (xt,ut + ϵt) +wt, (1a)
s.t. h (xt,ut) ≤ 0 (1b)

with xt ⊂ X ∈ Rn is the system state, ut ⊂ U ∈ Rm

is the control input, ϵt ∼ N (0,Σ) is an additive zero-
mean Gaussian noise to control inputs with covariance Σ,
wt ∈ Rn represents unknown but bounded state disturbances,
and F : X × U → X is a state transition function. The
function h (xt,ut) encapsulates all constraints imposed by the
system itself, e.g. state and control lower and upper limits
as well as kinematic constraints. The scene representation S
defines a model of obstacles to be avoided by the vehicle
whether these obstacles are static or dynamic. Let Os

i ⊂
X , ∀i ∈ {1, 2 . . . , ns} be a set of static obstacles in vehicle’s
environment and Od

j (t) ⊂ X , ∀j ∈ {1, 2 . . . , nd}. Dynamic
obstacles impose additional constraints on the free space
available for planning the motion of the vehicle as depicted
in Fig. 2. These additional constraints account for collision-
free conditions along a given planning horizon T = tf − t0,
where t0 and tf are the start and end times of the planning
cycle, respectively. The subsets of the state space occupied by
obstacles must be avoided while planning vehicle motion. One
can represent the scene model as

S :xt /∈ ∪ns
i=1O

s
i , (2a)

xt /∈ ∪nd
j=1O

d
j (t) , ∀t ∈ [ t0, tf ] (2b)

Unlike robot motion planning in an unstructured environ-
ment, autonomous vehicles have to respect the constraints
posed by the geometry of a highly structured road envi-
ronment, often represented by a high-definition map [21].



Basically, this condition can be fulfilled if the vehicle state
trajectory is allowed to follow a given reference state xr

t ∈
[ t0, tf ] along the planning horizon. This objective can be
satisfied by adding a function ϕ (xt,x

r
t ) to the cost function

to be minimized

B : ϕ (xt,x
r
t ) ∈ R+ ∀t ∈ [ t0, tf ] (3)

A motion planner seeks to generate a feasible, smooth
and collision-free trajectory. More precisely, the planner must
handle collisions with surrounding obstacles in the vehicle’s
environment, safely as defined by (2). Furthermore, it must
ensure dynamic and kinematic feasibility as well as vehicle
actuation capabilities (e.g. limits of steering angles, steering
rate, maximum acceleration and braking torques) as defined in
(1). Finally, it must take into account the complex geometry
and topology of the road environment defined in (3). The
motion planning problem P can be expressed mathematically
by combining (1), (2), and (3) into the following optimization
problem

min
u

E

π (
xf , x

r
f

)
+

tf−1∑
t=t0

(
ϕ (xt,x

r
t ) +

1

2
u⊤
t Rut

),
s.t. xt+1 = F (xt,ut + ϵt) , ϵt ∼ N (0,Σ),

h(xt,ut) ≤ 0,

xt /∈ ∪ns
i=1O

s
i , xt /∈ ∪nd

j=1O
d
j (t) ,

xt, x
r
t ∈ X , ut ∈ U , (4)

B. Vehicle Motion Model

For simplicity and to reduce computational complexity, this
work adopts a bicycle model to represent the motion model of
the vehicle as shown in Fig. 3. Let x and y be the coordinates
of a vehicle position with respect to a given reference map
coordinate system Rm : {O, X, Y }, θ be the orientation of
the vehicle with respect to Rm and δ is steering angle. Let r
be the radius of the circle centred at the instantaneous centre
of rotation (ICR), and the linear velocity of the vehicle v is
related to angular velocity about ICR as v = θ̇r. From the
triangle formed by the vehicle and the ICR, we have tan (δ) =
l/r, where l is the wheelbase of the vehicle. Thus, one can
express the motion model of the vehicle as

d

dt


x
y
θ
v
δ

 =


v cos(θ)
v sin(θ)

v tan(δ)/l
a
ω

 (5)

where a is the vehicle linear acceleration and ω is the
steering rate. One can easily rewrite the vehicle motion
model given by (5) in the form of (1a) with the state vector
x = (x, y, θ, v, δ)

T and control input u = (a, ω)
T .

III. MPPI MOTION PLANNING FRAMEWORK

The complex optimization problem in (4) is challenging to
solve mainly because of the non-convexity of the search space.

X ⊂ Rn

Od
j (t0) Od

j (t1)Od
j (t2)

Os
i

x0

xf

xr
0

xr
f

Fig. 2: Definition of the motion planning problem. Given an initial
state of the vehicle x0, a reference state xf

t , a set of static and Os
i

and Od
j (t). The objective is to generate a collision-free sequence of

state xt ∈ [t0, tf ] while maintaining state feasibility

x

y

θ

δδ

ICR

r

l

X

Y

Fig. 3: Schematic of vehicle motion model

Furthermore, the spatio-temporal constraints of dynamic obsta-
cles hinder most of the motion planning approaches to reach
a feasible trajectory to meet real-time constraints. Ensuring
these constraints are respected is fundamental in safety-critical
situations, where the autonomous vehicle must be able to
anticipate in a timely manner to prevent a potential collision.
MPPI offers an efficient way to solve (4). MPPI can be used
to solve optimization problems subject to nonlinear dynamics
and non-convex constraints. The main idea of MPPI is to
randomly sample a huge number of M trajectories generated
by Monte Carlo simulations of the vehicle state model (1a)
in real-time. These trajectories are evaluated in parallel by
computing the cost-to-go from t0 to tf along each trajectory.
For a given sample period ∆t, the horizon t ∈ [t0, tf ] is
discretized into T samples. Let S(τi) denotes the cost of
trajectory τi, ∀i = 1, 2, . . . , M .

S(τi) = π (xT , x
r
T ) +

T−1∑
t=0

q̃ (xt, x
r
t , ut, ϵt) , (6)

where π (xT , x
r
T ) is referred to the terminal cost with the

objective to force the final trajectory state xT to be as close
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Fig. 4: A perception obstacle Oi approximated by circles Ck =
{xk, yk, rk } ,∀k = 1, 2, 3.

as to a selected target point xr
T . The term q̃ (xt, x

r
t , ut, ϵt)

is referred to as the running cost with the goal to satisfy the
constraints of the planning problem as defined in (4). For the
sake of simplicity, one can decouple the running cost into two
components

q̃ (xt, x
r
t , ut, ϵt) = q̃x (xt, x

r
t ) + q̃u (ut, ϵt) (7)

where q̃x (xt, x
r
t ) considers all costs that depend on the system

state xt and reference state xr
t trajectories, and q̃u (ut, ϵt) is

typically quadratic cost to optimize the input sequence

q̃u (ut, ϵt) = α ϵ⊤t Rut + u⊤
t Rϵt +

1

2
u⊤
t Rut (8)

with R ∈ Rm×m is a symmetric positive semi-definite input
weight matrix and α is a parameter that is used to prioritize
noise against optimizing inputs, thus controlling the way the
state space is explored. It is typically defined as

α =
γ − 1

2γ
, γ ∈ R+ (9)

with γ being a positive hyperparameter which is given as an
input to the MPPI algorithm. On the other hand, the state-
dependent cost q̃x (xt, x

r
t ) encapsulate all costs needed to

force the MPPI to respect the constraints of obstacles and
follow the reference trajectory as stated in (2) and (3). For
the generated trajectory xt to be as close as possible to the
reference state trajectory xr

t , a weighted quadratic cost of the
error between xt and xr

t is considered. We may then express
q̃x as

q̃x =
1

2
(xt − xr

t )
T
H (xt − xr

t ) + q̃o (10)

where H ∈ Rn×n is a symmetric positive definite weight ma-
trix and q̃o is the cost to avoid obstacles. Our methodology to
consider obstacles in MPPI is to approximate the occupied area
by each obstacle Oi by a finite set of circles Ck = {xk, yk, rk }
as illustrated in Fig. 4, where xk, yk are the coordinates of
centre and rk is the radius. The cost q̃o is considered such
that distance between (xk, yk) and (xi, yi) is greater than the
sum the radius rk of a safety margin dk. This safety margin
is used to anticipate the velocity of the vehicle. More details
are given in Section IV.

A. Algorithm

Algorithm 1 sketches a pseudocode of the MPPI motion
planner. The algorithm starts by reading the vehicle state and
the list of perception objects from the localization and per-
ception modules of the ADS, respectively. Perception objects
are then approximated by circles. Our MPPI implementation
checks the generated noise to guarantee that a set of constraints
are never exceeded, namely : ωmax, amax, amin, and the target
speed vG. The constraints provide safety and feasibility to
the trajectory. Given the cost-to-go S(τi) and an initial input
sequence U = [u0,u1, . . . ,uT−1]

⊤, one can update the input
sequence iteratively using [13], [18] taking into account all
individual costs contributing to the cost-to-go the cost-to-go
S(τi)

ut ← ut +

∑M−1
m=0 exp

(−1
λ

[
S̃ (τt,m)− S̃min

])
ϵt,m∑M−1

m=0 exp
(−1

λ

[
S̃ (τt,m)− S̃min

]) (11)

where S̃min is mainly used to guarantee the numerical stability
of the algorithm while keeping the optimality conditions of the
algorithm. Practically the term S̃min is considered as the cost
of the trajectory with the minimum cost-to-go value among the
set of sampled trajectories [11], [12]. A final step in the MPPI
algorithm is to smooth the resulting input sequence using a
Savitzky–Golay filter [22] with coefficients Z in a similar way
as [11], [12]. Unlike methods that use MPPI to control the
dynamic of a system directly by applying the first input in
the optimal sequence to the system, for trajectory planning,
we concatenate the optimal input sequence together with
their corresponding optimal state to constitute the generated
trajectory {x⋆

t ,u
⋆
t }, which subsequently is fed to the control

module of the ADS.

IV. EXPERIMENTAL RESULTS

The MPPI-based motion planner has been implemented and
tested on an existing autonomous driving platform [23]. Three
driving scenarios were tested on a real track using virtual
objects, namely a lane merge, an object avoidance and a
vehicle following. Those scenarios were selected as they form
primitive functions to a more elaborate motion planner.

A. Implementation Details

The implementation has been done in C++ and integrated
into an existing in-house autonomous driving stack. The MPPI
being a method relying heavily on parallel computing, the
implementation uses OpenCL, which provides the flexibility
of using any compatible GPU. In the context of this paper, the
MPPI was run on an Intel integrated GPU hinting an efficient
resource usage by relieving the main GPU for other tasks that
could be involved in autonomous driving.

B. Driving Scenarios

Three driving scenarios were assessed. Those scenarios
were deemed relevant as they represent building blocks of
what could be a higher-level motion planner.



Algorithm 1 Real-Time MPPI Trajectory Generation
Given:

M : Size of trajectory rollouts
N : Horizon timesteps
U: Initial input sequence
F : Vehicle dynamic model
xr
t : Reference state

π, ϕ: Cost functions
λ, γ,Σ, R: hyper-parameters
D: safety distance parameters
Z: Savitzky–Golay filter parameters

1: while not done do
2: x0 ← GetInitialState( ), x0 ∈ Rn

3: Os
i ,Od

j ← GetObstacles( ), Os
i ,Od

i ⊂ X , ∀i, j
4: Ck ← ApproximateObstacles(Os

i ,Od
i ), Ck ∈ C, ∀k,

5: ϵ← GenerateRandomNoise(Σ), ϵ ∈ RM×T

6: S̃ (τm)← GetInitialTrajectoryCost(), S̃ (τm) ∈ RM

7: for m← 0 to M − 1 in parallel do
8: x← x0

9: for t← 0 to T − 1 do
10: xt+1 ← F (xt,ut + ϵt)
11: q̃ ← q̃ (xt, x

r
t , ut, ϵt, Ck, D, R, γ)

12: S̃ (τt+1,m)← S̃ (τt,m) + q̃
13: end for
14: S̃ (τm)← S̃ (τt+1,m) + ϕ (xT )
15: end for
16: S̃min ← minm[S̃ (τm)]
17: for t← 0 to T − 1 do
18: ut ← ut +

∑M−1
m=0 exp

(
−1
λ [S̃(τt,m)−S̃min]

)
ϵt,M∑M−1

m=0 exp
(

−1
λ [S̃(τt,m)−S̃min]

)
19: end for
20: u⋆ ← SavitzkyGolayFilter(Z, u)
21: for t← 0 to T do
22: x⋆

t+1 ← F (x⋆
t ,u

⋆
t )

23: end for
24: for t← 0 to N − 2 do
25: ut = u⋆

t+1

26: end for
27: if completed return optimal trajectory {x⋆

t ,u
⋆
t }

28: end while

1) Lane Merge: This scenario assesses the ability of the
vehicle to switch lanes smoothly, a recurrent situation in
everyday driving. The vehicle starts from a lane that is parallel
to the target lane and has to properly merge into it.

2) Object Avoidance: The goal of this scenario is to assess
the ability of the motion planner to generate a trajectory that
avoids an object or an obstacle obstructing the current lane. A
typical real-world occurrence would be a construction site or
a stopped vehicle.

3) Vehicle Following: This scenario is similar to object
avoidance with the added constraint that the vehicle cannot
leave the current lane thus forcing it to adjust its speed to keep
a safe distance or even stop if the obstacle is not moving.

C. Cost Formulation

The cost function is broken down into five parts each of
them pertaining to a component of the autonomous driving
task. Let Pt = (xt, yt) be the position of the vehicle and θt and
vt be respectively the yaw and speed of the vehicle at timestep
t. Let Wt = (xWt

, yWt
) be the closest waypoint and θrt and vrt

be the reference yaw and speed. The cdist cost measures the
distance between the vehicle and Wt thus penalising diverging
trajectories.

cdist = ||(Pt −Wt)||2 (12)

Let TP be the target point, the ctarget cost penalises
trajectories that do not get closer to the target point, thus
preventing the vehicle from going backwards.

ctarget =

{
1 if ||(Pt − TP )|| > ||(Pt−1 − TP )||
0 otherwise

(13)

In order to ensure a smooth lane merge, the vehicle needs
to stay sufficiently parallel to the target lane while closing in.
The cyaw cost measures the difference between the current
yaw and the reference yaw, both wrapped in [−π, π].

cyaw = |θt − θrt |2 (14)

This cost also proved to be helpful in following a curved
path. The cspeed cost measures the difference between the
current speed and the reference speed.

cspeed = |vt − vrt |2 (15)

MPPI objects are represented by circles of centers Ok
t and

radius rkt . Let dobj be the minimal object distance and dsafe
the desired safe distance:{

dobj = min
∀k

(||Pt −Ok
t || − rkt )

dsafe = dsafecvt + dsafe0
(16)

where dsafec is the safe distance coefficient and dsafe0 is the
minimal safe distance. The csafe dist cost is formulated as
follow:

csafe dist = max(dsafe − dobj , 0)
2 (17)

In the case of the object avoidance scenario, the cost is
only considered if there is a collision i.e dobj ≤ 0, otherwise
csafe dist is set to 0. The total step cost is a weighted sum of
all sub costs.

ctotal = 15.0cmin dist + 7.0ctarget + 120.0cyaw

+ 5.0cspeed + 25.0csafe dist

(18)

D. Experimental Setup

A total of M = 2560 trajectories were generated in parallel.
The trajectory horizon is set to 4 seconds divided into N = 16
steps of ∆t = 0.25 seconds. λ was set to 150 while the
noise variance was Σ = Diag(σω, σa) = Diag(0.05, 0.85).
Theses parameters were obtained throught experiments. The
maximum steering rate was ωmax = 0.11rad/s while the
maximum and minimum accelerations were amax = 1.1m/s2

and amin = −2.5m/s2. The constraints on ω and a help to



Parameter Value Unit
λ 150
M 2560
N 16
∆t 0.25 s
σω 0.05 rad/s
σa 0.85 m/s2

ωmax 0.11 rad/s
amax 1.1 m/s2

amin -2.5 m/s2

dsafec 1.36
dsafe0 11 m
vG 30 km/h

TABLE I: MPPI parameters

ensure a safe and feasible trajectory. A target speed vG =
30km/h was set along the path. The safe distance coefficient
was set to dsafec = 1.36 and the minimum safe distance
to dsafe0 = 11. This corresponds approximately to a safe
distance of 18 meters at 30km/h accounting for the length of
the vehicle. The parameters are summarized on Table I. A
Savitzky-Golay filter was also applied on the generated input
ut and is shown in (19) where u∗

t is the filtered input.

u∗
t =

1

35
(−3ut−2 + 12ut−1 + 17ut + 12ut+1 − 3ut+2)

(19)
The MPPI was run at 20Hz on an Intel i7-8700T and

its integrated UHD Graphics 630. The tests were conducted
on a real track using a modified KIA Soul EV equipped
for autonomous driving as shown on Figure 1. The objects
required by the scenarios were obtained by the simulator
module of the ADS running the MPPI. This module provides
programmable virtual objects that can be tailored for specific
use cases. The use of virtual objects was motivated by the
need of a safe and reliable mean to assess the motion planner.
The objects dimensions were set to the ones of an average car
for both the object avoidance and object following scenarios.
In the case of the object avoidance, a relatively tight margin of
0.7m was prescribed between the vehicle and the object while
overtaking.

E. Results

For each scenario, the generated trajectory and the vehicle
state were recorded along the path. Snapshots of the results
are depicted on Figures 5, 6 and 7. The path is represented
by the dotted line, the ego vehicle and the virtual object are
represented by a red and blue box respectively. The green
line represents the generated MPPI trajectory at the given
vehicle position. In addition, the realised steering, speed and
acceleration are provided for each scenario as to better portray
the actual behaviour of the vehicle over the course of the
tests. The produced trajectories are smooth and they respect
the prescribed acceleration and speed as this was guaranteed
by this MPPI implementation. As it can be seen on the
realised speed of Figures 5, 6 and 7, the vehicle converged
toward the target speed of 30km/h and never exceeded it. The
realised steering also shows a smooth operation for all three
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Fig. 5: Lane merge scenario.
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scenarios and never exceeded 10 degrees. The trajectories are
proven safe as they not only avoid objects but also maintain
a safe distance, and no collision occurred during the tests.
It is important to note, however, that while the constraints
on acceleration and steering rate ensure that the generated
trajectory remains fairly easy to follow, and thus feasible, this
cannot be guaranteed as the bicycle model used constitutes
an estimation of the vehicle dynamics. The scope of this
paper was to use the MPPI as a motion planner and therefore
another module was in charge of the control of the vehicle.
This module also has imperfections which could translate
into a realised trajectory deviating from the target one. This
happened during the tests and by looking at the realised
acceleration on Figures 5 and 7, it can be seen that the initial
acceleration from a standstill exceeded the maximum value of
amax by reaching almost 2. The minimum acceleration amin,
however, was never exceeded.

V. CONCLUSION AND FUTURE WORKS

This paper introduces a real-time and safe MPPI-based
motion planner for autonomous driving. The method can
handle obstacles and guarantees bounds for speed, acceleration
and steering rate. Three primitive driving scenarios were
proposed and tested on a real track at a maximum of speed
of 30km/h. The results show that the method can perfectly
handle those base scenarios and it achieved a smooth and
accurate ride overall but also avoided collisions and kept a
safe distance from obstacles. A slight deviation between the
MPPI trajectories and the actual trajectories, especially for the
acceleration, was observed and the underlying control module
could be at fault. Future works should focus on more complex
and realistic scenarios involving a more dynamic environment
such as a lane change between moving vehicle. More work
should also be done to better model the dynamics of the
vehicle in the MPPI motion model.
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[3] D. González, J. Pérez, V. Milanés, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on intelligent transportation systems, vol. 17, no. 4, pp. 1135–1145,
2015.

[4] L. Zhang, R. Zhang, T. Wu, R. Weng, M. Han, and Y. Zhao, “Safe
reinforcement learning with stability guarantee for motion planning
of autonomous vehicles,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 32, no. 12, pp. 5435–5444, 2021.

[5] K. Rezaee, P. Yadmellat, and S. Chamorro, “Motion planning for
autonomous vehicles in the presence of uncertainty using reinforcement
learning,” in 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 3506–3511, IEEE, 2021.

[6] M. Xu, Z. Liu, P. Huang, W. Ding, Z. Cen, B. Li, and D. Zhao, “Trust-
worthy reinforcement learning against intrinsic vulnerabilities: Robust-
ness, safety, and generalizability,” arXiv preprint arXiv:2209.08025,
2022.

[7] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Transactions on Control Systems Technology, vol. 29,
no. 3, pp. 972–983, 2020.

[8] J. Ziegler, P. Bender, T. Dang, and C. Stiller, “Trajectory planning for
bertha—a local, continuous method,” in 2014 IEEE intelligent vehicles
symposium proceedings, pp. 450–457, IEEE, 2014.

[9] W. Ding, L. Zhang, J. Chen, and S. Shen, “Safe trajectory generation for
complex urban environments using spatio-temporal semantic corridor,”
IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2997–3004,
2019.

[10] Y. Yoon, J. Shin, H. J. Kim, Y. Park, and S. Sastry, “Model-predictive
active steering and obstacle avoidance for autonomous ground vehicles,”
Control Engineering Practice, vol. 17, no. 7, pp. 741–750, 2009.

[11] I. S. Mohamed, J. Xu, G. Sukhatme, and L. Liu, “Towards efficient
MPPI trajectory generation with unscented guidance: U-MPPI control
strategy,” arXiv preprint arXiv:2306.12369, 2023.

[12] I. S. Mohamed, K. Yin, and L. Liu, “Autonomous navigation of AGVs
in unknown cluttered environments: log-MPPI control strategy,” IEEE
Robot. and Automat. Lett., vol. 7, no. 4, pp. 10240–10247, 2022.

[13] G. Williams, A. Aldrich, and E. A. Theodorou, “Model predictive
path integral control: From theory to parallel computation,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 2, pp. 344–357, 2017.

[14] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1603–1622, 2018.

[15] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Aggressive driving with model predictive path integral control,” in IEEE
Int. Conf. on Robot. and Automat. (ICRA), pp. 1433–1440, 2016.

[16] G. Williams, B. Goldfain, P. Drews, K. Saigol, J. M. Rehg, and
E. A. Theodorou, “Robust sampling based model predictive control
with sparse objective information,” in Robotics: Science and Systems,
(Pittsburgh, Pennsylvania, USA), pp. 42—-51, 2018.

[17] A. Buyval, A. Gabdullin, K. Sozykin, and A. Klimchik, “Model pre-
dictive path integral control for car driving with autogenerated cost
map based on prior map and camera image,” in 2019 IEEE Intelligent
Transportation Systems Conference (ITSC), pp. 2109–2114, IEEE, 2019.

[18] I. S. Mohamed, G. Allibert, and P. Martinet, “Model predictive path inte-
gral control framework for partially observable navigation: A quadrotor
case study,” in 16th Int. Conf. on Control, Automation, Robotics and
Vision (ICARCV), (Shenzhen, China), pp. 196–203, Dec. 2020.

[19] I. S. Mohamed, G. Allibert, and P. Martinet, “Sampling-based MPC for
constrained vision based control,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems (IROS), pp. 3753–3758, 2021.

[20] L. A. S. Guardini, A. Spalanzani, P. Martinet, C. Laugier, T. Genevois,
and A.-L. Do, “Minimal injury risk motion planning using active
mitigation and sampling model predictive control,” in 2022 IEEE 25th
International Conference on Intelligent Transportation Systems (ITSC),
pp. 1262–1267, IEEE, 2022.

[21] G. Elghazaly, R. Frank, S. Harvey, and S. Safko, “High-definition maps:
Comprehensive survey, challenges and future perspectives,” IEEE Open
Journal of Intelligent Transportation Systems, vol. 4, pp. 527–550, 2023.

[22] A. Savitzky and M. J. Golay, “Smoothing and differentiation of data
by simplified least squares procedures.,” Analytical chemistry, vol. 36,
no. 8, pp. 1627–1639, 1964.

[23] G. Varisteas and R. Frank, “Poster: Junior, a research platform for
connected and automated driving,” in 2019 IEEE Vehicular Networking
Conference (VNC), pp. 1–2, 2019.


	Introduction
	Preliminaries and Problem Statement
	Problem Formulation
	Vehicle Motion Model

	MPPI Motion Planning Framework
	Algorithm

	Experimental Results
	Implementation Details
	Driving Scenarios
	Lane Merge
	Object Avoidance
	Vehicle Following

	Cost Formulation
	Experimental Setup
	Results

	Conclusion and Future Works
	References

