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ABSTRACT
Driven by emerging applications, mmWave radars are in-
creasingly being integrated into indoor scene monitoring
systems due to their ability to provide high accuracy range,
velocity, and angle information of the objects. This paper
addresses the problem of moving target detection in a con-
nected, distributed Multiple-Input Multiple-Output (MIMO)
radar sensor network designed as an indoor scene monitoring
system. We propose a general signal model for distributed
connected MIMO radar sensors that collect unwanted and in-
terference signals in a low-rank subspace based on their angle
and Doppler frequency spread with different subspace coef-
ficients. We use Generalized Likelihood Ratio Test (GLRT)
for moving target detection and find the best detector while
demonstrating that it has a constant false alarm rate. The
performance of the proposed detector is validated by Monte-
Carlo simulation.

Index Terms— Adaptive detection, clutter subspace, dis-
tributed MIMO radar, GLRT, indoor sensing.

1. INTRODUCTION

Recently, there has been a lot of interest in Multiple-Input
Multiple-Output (MIMO) radar having multiple transmit/receive
antennas for both civilian and military purposes. There are
two main categories: distributed MIMO radar, where the an-
tennas are widely separated from each other, and colocated
MIMO radar, where the antennas in the TX and, correspond-
ingly, RX array are closely spaced [1]. The distributed radar
configuration allowing the radar to exploit the spatial and
geometric diversity to enhance target detection performance.
Waveform diversity can be exploited in colocated MIMO
radar to improve spatial resolution [2]. Some benefits of this
kind of radar include large virtual array length, improved
parameter identifiability, improved interference suppression,
and more adaptable beampattern design.

The received signal in any radar system is typically com-
posed of target data, receiver noise, clutter echo, and other
sources of interference. The detection task in a network-based
radar system, like the single sensor, examines the echo data to
determine whether or not a target of interest is present. To that
end, several detectors have been proposed in the literature, to
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Fig. 1: Distributed MIMO radar sensors configuration.

name a few, see [3], [4], [5], [6], [7]. In, [8] moving target
detection with a distributed MIMO radar in spatially nonho-
mogeneous clutter environments is considered, where every
radar station is modeled as a single antenna transceiver and
the interference model is in Doppler frequency domain. Au-
thors in [9] consider the problem of moving target detection in
phased-MIMO radar on an airborne platform. However, none
of the aforementioned studies are considering detector design
for distributed sensors in indoor scene monitoring applica-
tions. In this scenario, usually Frequency Modulated Con-
tinuous Wave (FMCW) Millimeter-Wave (mmWave) radars
are used. In this context in [10], a low complexity detector is
presented for indoor scenario, but the sensor is a single mono-
static radar. Researchers in [11] study a 3D-Constant False
Alarm Rate (CFAR) algorithm to detect drones with a colo-
cated MIMO radar, not a network-based radar system. In [12],
a two-level CFAR detector for mmWave radar is proposed;
however, this does not consider the interference subspace. to
the interference subspace. In [13], a CFAR detector was de-
rived for a single radar with general antenna array configu-
ration consisting of primary channels with high-gain beams
and reference channels with low-gain beams. Thus the per-
formance of a detection scheme in network MIMO radar is
still open.

Unlike the previous studies, we analytically design an op-
timal detector for a network of MIMO radar sensors for in-
door scene monitoring application, to detect moving targets
which are embedded in clutter, interference, and noise, as il-
lustrated graphically in Figure 1. We present a signal model
for the considered case, which contains both signal dependentIC
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and independent interferences with varying coefficient values
based on the geometry and reflectivity of each interference.
Based on the developed signal model, we construct a Gener-
alized Likelihood Ratio Test (GLRT) detector and derive its
statistical properties in closed form for both the null and alter-
native hypotheses. Furthermore, we demonstrate analytically
that the proposed GLRT is a CFAR detector. We show that
the proposed subspace detector outperforms classical detec-
tors when the clutter to noise ratio on the subspace of interest
exceeds the orthogonal subspace matrix loss. In the case of
a distributed target model with fluctuating Radar Cross Sec-
tion (RCS), the proposed detector can take advantage of spa-
tial and geometric diversity to improve target detection per-
formance because radar sensors in a network can probe the
scene from different aspect angles. In this case, even with the
same post processing Signal to Interference and Noise Ratio
(SINR), the distributed radar configuration outperforms a sin-
gle colocated MIMO radar.

The remainder of this paper is organized as follows1. Sec-
tion 2 introduces the signal model and problem formulation
for distributed MIMO radar network. In addition, the sig-
nature matrix of interference for distributed MIMO radar is
derived. In Section 3, the GLRT detector is derived. Sec-
tion 4 contains the simulation results. Finally, conclusions
are drawn in Section 5.

2. SIGNAL MODEL AND PROBLEM
FORMULATION

We consider a distributed radar system with Q colocated
mmWave MIMO radar sensors, each have Mq transmit an-
tenna elements, and Nq receive antenna elements. Assume
that pq = [xq, yq, zq]

T denotes the absolute position of the
qth radar sensor, where xq , yq , and zq represents the absolute
Cartesian coordinates, with q = 1, 2, . . . , Q. In this case, a
target with absolute position ps = [xs, ys, zs]

T and absolute
velocity vs = [vxs, vys, vzs]

T , will have a relative distance
Rq , azimuth θq , and elevation ϕq with the qth radar sensor as
indicated in Figure 1.

The target received signal from Lq chirps (pulses) in one
Coherent Processing Interval (CPI) can be expressed as,

xq = αqsq(θq, ϕq, fd,q) + cq + nq ∈ CLqMqNq (1)

where αq =
√

βq
PtGtGrλ2σq

(4π)3R4
qLsp

indicates the amplitude of the
reflected signal at the qth radar sensors, λ is the wavelength,
Pt is the transmit power, Gt and Gr are the transmit and
receive antenna gains. Further, σq is the RCS at qth radar
sensor, which has diversity due to the different look angles
from every sensor to a target. Finally, Lsp is the summation

1Notations: The matrices and vectors are denoted by uppercase and low-
ercase bold letters, respectively. (.)T and (.)H stand for the transpose and
Hermitian transpose, respectively. Identity matrix, Kronecker product prod-
uct are respectively represented by I, ⊗. Also, ∥.∥ denotes the Euclidean
norm of a vector.

of consolidates the system and propagation losses, and βq

is the receiver input impedance. In (1), cq and nq denote
clutter and noise respectively. We assume, nq ∼ CN (0, σ2I)
is the thermal noise in the receiver and it which has a white
noise Power Spectral Density (PSD) with P (f) = kBT0,
where kB is the Boltzmann constant and T0 is the effective
noise temperature. The receiver acts as a filter with band-
width B to shape the white noise PSD, then the total noise
power at the output of the receiver is kBT0BFn where Fn is
the receiver noise factor. Further, the signal steering vector
is, sq(θq, ϕq, fd,q) = aq(θq, ϕq) ⊗ bq(θq, ϕq) ⊗ dq(fd,q),

where aq(θ, ϕ) = [e−jkT (θ,ϕ)ptx
q,1 , . . . , e

−jkT (θ,ϕ)ptx
q,Mq ]T ,

and bq(θ, ϕ) = [e−jkT (θ,ϕ)prx
q,1 , . . . , e

−jkT (θ,ϕ)prx
q,Nq ]T , are

the spatial transmit and receive steering vectors, respec-
tively, and k(θ, ϕ) = 2π

λ [cos θ cosϕ, sin θ cosϕ, sinϕ]T is
the wavenumber vector with θ and ϕ are azimuth and eleva-
tion angles, respectively. ptx

q,m and prx
q,n are the locations of

the qth radar transmit and receive array elements. Further,
dq(fd,q) = [1, ej2πfd,qTp , ..., ej2πfd,q(Lq−1)Tp)]T , where Tp

is the chirp (pulse) repetition interval and fd,q is the Doppler
frequency of the target relative to qth radar sensor, specified
as, fd,q =

2vT
s (ps−pq)

λ∥ps−pq∥ .
At the fusion center, the received signals can be stacked

by x = [xT
1 ,x

T
2 , ...,x

T
Q]

T , c = [cT1 , c
T
2 , ..., c

T
Q]

T , n =

[nT
1 ,n

T
2 , ...,n

T
Q]

T , and α = [α1, α2, ..., αQ]
T . By defining

steering matrix S ∈ C
∑Q

q=1 MqNqLq×Q as,

S =


s1(θ1, ϕ1, fd,1) 0L1M1N1×1 · · · 0L1M1N1×1

0L2M2N2×1 s2(θ2, ϕ2, fd,2) · · · 0L2M2N2×1

...
...

. . .
...

0LQMQNQ×1 0LQMQNQ×1 · · · sQ(θQ, ϕQ, fd,Q)


The fused received signal then can be obtained by2, x = Sα+
c+n. Let cq = Aqgq , where Aq ∈ CMqNqLq×Hq defines the
interference subspace with Hq as the interference matrix rank.
The interference signals in this case, depend on Doppler spec-
trum spread and also spatial locations of high RCS stationary
scatterers. Assume that the region of interfering scatterers is
θintq,1 < θq < θintq,2 in azimuth, ϕint

q,1 < ϕq < ϕint
q,2 in elevation,

and f int
d,q,1 < fd,q < f int

d,q,2 in Doppler frequency. Then, Aq =
[sq(θq,1, ϕq,1, fd,q,1), . . . , sq(θq,Hq , ϕq,Hq , fd,q,Hq )]. Further,
gq ∈ CHq is an unknown deterministic complex vector coef-
ficients related to each column of Aq matrix. By defining of
g = [gT

1 ,g
T
2 , ...,g

T
Q]

T , and

A =


A1 0L1M1N1×H2

... 0L1M1N1×HQ

0L2M2N2×H1 A2 ... 0L2M2N2×HQ

...
...

. . .
...

0LQMQNQ×H1
0LQMQNQ×H2

... AQ


2Different sources of interference can be present in indoor scene monitor-

ing using multiple sensors. First, because high RCS objects are present in the
scene, a reflected signal from these objects can be regarded as parallel-slope
interference. Second, multiple radars are available in the scene which may
result in a similar-slope or sweeping-slope interference [14].
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A ∈ C
∑Q

q=1 MqNqLq×
∑Q

q=1 Hq . the interference signal can be
expressed as c = Ag. Let H0 represent the null hypothesis
that the target is absent, and H1 represent the alternative hy-
pothesis that the target is present. The detection problem can
be cast as the following binary hypothesis test{

H0 : x = Ag + n

H1 : x = Sα+Ag + n
(2)

In the sequel, we propose an optimum detector based on
GLRT.

3. GLRT-BASED DETECTOR DESIGN

The GLRT detector is obtained by,

tGLRT = ln
max
g,α

p(x|H1)

max
g

p(x|H0)

H1

≷
H0

η (3)

where p(x|H0) and p(x|H1) are the Probability Density
Function (PDF) of x under H0 and H1, respectively. Mathe-
matically, p(x|H0) =

1
(πσ2)Ω exp(− (x−Ag)H(x−Ag)

σ2 ), where

Ω =
∑Q

q=1 LqMqNq and σ2 is the variance of additive white
Gaussian noise and p(x|H1) = p(x− Sα|H0). Under al-
ternative hypothesis, H1, the Maximum Likelihood (ML)
estimations for g and α can be obtained by solving

min
g,α

(x− Sα−Ag)H(x− Sα−Ag). (4)

The maximum likelihood estimation of the interference coef-
ficient vector under H1 is given by

ĝ1 = (AHA)−1AH(x− Sα) (5)

with substituting (5) in (4), the ML estimation of α is ob-
tained by

min
α

(x− Sα)H(I−A(AHA)−1AH)(x− Sα), (6)

then the maximum likelihood estimation of α under H1 is
given by

α̂ = (SHPAS)−1SHP⊥
Ax (7)

where P⊥
A = I−A(AHA)−1AH , is the orthogonal projec-

tion on the subspace spanned by A. By setting α = 0 in (5),
the ML estimation of α under H0 is,

ĝ0 = (AHA)−1AHx (8)

Substituting (5),(7) and (8) in (3) lead to

tGLRT =
1

σ2
xHP⊥

AS(SHP⊥
AS)−1SHP⊥

Ax
H1

≷
H0

η (9)

Since the noise, n, has complex Gaussian distribution with
zero mean and covariance matrix σ2I, i.e., n ∼ CN (0, σ2I),

P⊥
AA = 0, and also because SHP⊥

AS is a full-rank matrix,
then rank(P⊥

AS(SHP⊥
AS)−1SHP⊥

A) = Q, and the statis-
tical distributions of the GLRT test variable (9) under both
the null and alternative hypotheses are tGLRT,H0

∼ χ2
2Q(0)

and tGLRT,H1 ∼ χ2
2Q(

1
σ2α

HSHP⊥
ASα) , where χ2

N (γ) de-
notes a noncentral chi-square distribution with N degrees
of freedom and noncentrality parameter γ. Consequently,
the probability of false alarm of GLRT detector is given by

Pfa = Pr(tGLRT > η|H0) = e−η
Q−1∑
q=0

ηq

q! . Note that the

probability of false alarm is independent of the nuisance pa-
rameters, i.e., g and the noise variance σ2, and hence, the
proposed detector is a constant false alarm rate detector. The
probability of detection of GLRT detector is given by Pd =

Pr(tGLRT > η|H1) = MQ

(√
2
σ2αHSHP⊥

ASα,
√
2η

)
,

where MK(a, b) = exp (−a2+b2

2 )
∞∑

k=1−K

(ab )
kIk(ab), is the

Marcum Q-function and Ik(.) is the modified Bessel func-
tion of the first kind of order k. Defining the post process-
ing signal to interference pulse noise ratio as SINRPost =
1
σ2α

HSHP⊥
ASα results in Pd = MQ(

√
2SINRPost,

√
2η).

The GLRT detector requires noise variance; this can
be estimated from secondary data xi ∼ CN (Ag, σ2I);
i = 1, 2, . . . ,K, where K is the number of secondary
data from adjacent range gates where p(x1,x2, . . . ,xK) =

1
(πσ2)KΩ exp(− 1

σ2

∑Q
q=1(xq − Aqgq)

H(xq − Aqgq)). Us-
ing [9], argmax

A
|A|−L exp (−Tr(A−1B)) = 1

LB, the ML

estimation of σ2 can be obtained as σ̂2 = 1
KT

∑Q
q=1(xq −

Aqgq)
H(xq − Aqgq). By using the ML estimation ĝq =

(AH
q Aq)

−1AH
q xq , then σ̂2 = 1

KΩ

∑Q
q=1 xqP

⊥
Aq

xq ,where
P⊥

Aq
is the orthogonal projection on the subspace spanned by

Aq . Therefore, the adaptive GLRT detector can be obtained
by

tAD =
KΩ∑Q

q=1 xqP⊥
Aq

xq

xHP⊥
AS(SHP⊥

AS)−1SHP⊥
Ax

H1

≷
H0

η

(10)
The estimation of σ̂2 has the chi-square distribution with

2KΩ − 2r degree of freedom, where r = rank(Aq). There-
fore, the adaptive detector of (10) has the F-distribution [15]
with 2Q and 2KΩ − 2r degrees of freedom. Hence, we ob-
tain Pfa−AD = Ĩ ηΩ

ηΩ+KΩ−r
(Q,KΩ− r), where Ĩk(., .) is the

regularized incomplete beta function. As seen, the probabil-
ity of false alarm is independent of the statistical property of
the noise and has a constant false alarm rate property.

4. SIMULATION AND RESULTS
In this section, numerical examples are provided to assess the
performance of the proposed detector. By considering multi-
ple of TI IWR6843ISK sensors [16], in the sequel we analyze
the detection performance and demonstrate the benefits of the
connected MIMO radar sensors for indoor scene monitoring
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Fig. 2: Receiver Operating Characteristic (ROC) curves for proposed detector and Q = 1, 2, 3, 4 distributed sensors a) targets
with identical and non-fluctuating RCS, b) same SINRPost and nonfluctuant RCS, and c) same SINRPost and fluctuant RCS.
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Fig. 3: a) Pd vs. CNR for the proposed GLRT detector, Pfa = 10−6 and SNRPost=17 dB. b) SINRPost vs. CNR, SNRPost=13.2
dB. c) Interference subspace matrix mismatch effect on ROC curves for the proposed GLRT Detector.

applications. In Figure 2, detection performance in terms
of the ROC is evaluated for different number of mmWave
MIMO radars. In Figure 2a, we consider targets with same
RCS for different sensor number, and thus increasing the
number of sensors provides better post processing SINR and,
as a result, better performance. In Figure 2b, we consider
the case where the post-processing SINR is similar for all the
configurations, despite the increased number of sensors. In
this scenario, target RCS is adjusted such that SINR in the
distributed and colocated case be the same. In this case, since
both distributed and colocated systems receive similar SINR
from target, then coherent integration in the colocated obtains
better performance. Figure 2c shows that when we have fluc-
tuant target amplitude, due to RCS diversity gain, increasing
the number of sensors improves detection performance even
with the same post processing SINR.

Figure 3a depicts the detection performance of the pro-
posed subspace-based detector. When the interference signal
is much stronger than the noise, the proposed subspace per-
forms better in terms of detection. For high clutter to noise
values, as shown in Figure 3b, the proposed detector can sup-
press interference and achieve higher post processing SINR,
resulting in better detection performance. Figure 3c shows
the effect of interference subspace matrix mismatch on the
proposed detector. When perfect information of the actual

interference subspace is available, the proposed detector can
suppress the interference component. If the mismatch ma-
trix part is Ã , then the detector output is a noncentral chi-
square distribution with 2Q degrees of freedom and noncen-
trality parameter 1

σ2g
HÃHP⊥

AÃg and 1
σ2 (α

HSHP⊥
ASα +

gHÃHP⊥
AÃg) under H0 and H1 respectively.

5. CONCLUSION

The paper devises a GLRT based detector for distributed radar
exploiting lower dimensional clutter subspace, determines its
performance analytically and offers insights into system op-
eration. When identical post-processing SINR is considered
for each sensor, single colocated MIMO outperforms dis-
tributed counterparts in non fluctuating RCS target detection.
In a more realistic scenario with a constant RCS target, the
distributed radar configuration outperforms the single sensor
case. Distributed radars can see the target from various aspect
angles and exploit RCS diversity in the case of fluctuating
RCS targets. In this case, the distributed radar configuration
outperforms the single colocated MIMO radar even with the
same post-processing SINR. Finally, when the clutter to noise
ratio exceeds the orthogonal subspace matrix loss on the sub-
space of signal of interest, the proposed subspace detector
outperforms the classical detector.
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