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We study a two-dimensional (2D) electron system with a linear spectrum in the presence of
Rashba spin-orbit (RSO) coupling in the hydrodynamic regime. We derive a semiclassical Boltzmann
equation with a collision integral due to Coulomb interactions in the basis of the eigenstates of
the system with RSO coupling. Using the local equilibrium distribution functions, we obtain a
generalized hydrodynamic Navier-Stokes equation for electronic systems with RSO coupling. In
particular, we discuss the influence of the spin-orbit coupling on the viscosity and the enthalpy of
the system and present some of its observable effects in hydrodynamic transport.

I. INTRODUCTION

Hydrodynamic behavior of electrons in metals was first
predicted in 1963 by Gurzhi [1]. It became clear that the
hydrodynamic regime in conductors can be reached when
the electron-electron scattering time τee is the shortest
time scale compared with the electron-impurity (τei) and
electron-phonon (τeph) scattering times. At that time it
was a challenge to fabricate samples clean enough to sat-
isfy this condition, so the first experimental observation
of the hydrodynamic regime was demonstrated only in
1995 by de Jong and Molenkamp [2]. It is well known
that the scattering times τee, τei and τeph strongly de-
pend on temperature [3]. Electron-impurity scattering
processes are most essential at low temperatures, whereas
the electron-phonon mechanism becomes dominant for
high temperatures. In certain materials, a hydrodynamic
regime is thus reached at intermediate temperatures if
they are sufficiently clean.

In the recent past, the technological progress in the
fabrication of 2D materials has reignited the interest in
electron hydrodynamics [4]. In particular, monolayer
graphene with its linear Dirac-like spectrum has become
a fruitful experimental platform to investigate hydrody-
namic transport [5]. It was shown that the hydrodynamic
regime in clean graphene can be realized at tempera-
tures on the order of 100K [6]. Many peculiar transport
properties have been demonstrated in the hydrodynamic
regime [7]. For instance, Johnson thermometry measure-
ments show a significant increase in the thermal conduc-
tivity and the breakdown of the Wiedemann-Franz law
in graphene [8]. This is possible due to a decoupling
of charge and heat currents within the hydrodynamic
regime and can be regarded as a signature of a Dirac
fluid [8]. Viscous electron flow through constrictions in
graphene has revealed superballistic behavior [9], i.e., a
conductance exceeding the maximum conductance pos-
sible for ballistic electrons in the same geometry [10].

Another signature of collective viscous behavior is the
non-local negative resistance in a graphene strip [11]. A
viscous flow of the Dirac fluid in graphene was also con-
firmed using a quantum spin magnetometer [12]. Be-
sides graphene, the electron hydrodynamics regime has
been theoretically investigated and in certain cases also
experimentally confirmed in 2D anomalous Hall materi-
als [13], in anisotropic materials [14], in Coulomb drag
geometries [15–18], in Weyl semimetals [19], in gallium
arsenide [20], and in 2D electron gases with spin-orbit
interaction [21, 22].
Nowadays, it has become possible to fabricate a

plethora of hybrid systems based on graphene [23], for
instance by combining graphene with adatoms [24], two-
dimensional transition metal dichalcogenides [25], or thin
metallic substrates [26–28], which make it possible to ma-
nipulate the spin degree of freedom and are promising for
spintronics [29]. Importantly, even in these hybrid struc-
tures, graphene with globally induced spin-orbit coupling
remains essentially free from defects and impurities. The
intrinsic spin-orbit coupling in graphene is weak, but
in these hybrid structures, proximity-induced spin-orbit
interaction can be large and can change the electronic
band structure substantially. Intrinsic spin-orbit cou-
pling opens a gap at the K point and is related with
the pseudospin inversion asymmetry, whereas Rashba
spin-orbit (RSO) coupling preserves the gapless nature
of graphene [30, 31]. Typically the RSO interaction ap-
pears due to the structural inversion asymmetry brought
about by the substrate or adatoms [29]. It is worth men-
tioning that the induced RSO coupling can reach larger
values in other two-dimensional materials such as silicene,
germanene, stanene, phosphorene, arsenene, antimonene,
and bismuthene [32].
In this work we study the effect of RSO coupling on

hydrodynamic transport in graphene. We allow the spin-
orbit coupling to be on the same order as the hydrody-
namic temperature and assume that the electron-electron
scattering time remains the shortest time scale. The
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intrinsic spin-orbit coupling can be tuned to small val-
ues [25, 29], so we ignore its influence on transport prop-
erties and assume that the system remains gapless. In
order to derive the hydrodynamic equations, we use the
kinetic (Boltzmann) equation in the diagonal basis of the
unperturbed Hamiltonian, which includes the Dirac spec-
trum and the RSO interaction. The collision integral
on the right-hand side of the kinetic equation accounts
for two-particle scattering. The RSO coupling results
in the appearance of so-called Dirac factors in the two-
body electron-electron interaction Hamiltonian. For our
derivation we mainly follow Ref. [33], where the necessary
calculations were performed for pristine graphene.

The rest of this article is organized as follows. In
Sec. II, we introduce the Hamiltonian of the 2D system
under consideration. In Sec. III, we provide the Boltz-
mann equation for the system taking into account the
spin-orbit split conduction bands. In Sec. IV, using the
kinetic equation and thermodynamic relations, we de-
rive the generalized hydrodynamic Navier-Stokes equa-
tion. Finally, we present our conclusions in Sec. V. The
details of the calculations and additional information are
presented in the Appendices. Throughout the paper, we
set e = ℏ = kB = 1.

II. SYSTEM HAMILTONIAN

In this section, we derive the Hamiltonian of the sys-
tem under consideration. Specifically, we consider a sin-
gle layer of graphene on a substrate which enhances the
RSO coupling [25]. The first-quantized one-body Hamil-
tonian of graphene near the K point in the momentum
representation is given by

H0 = v(σxkx + σyky), (1)

where v ≃ 106m/s is the Fermi velocity for spinless elec-
trons, and σx,y are the pseudospin Pauli matrices acting
on the two-dimensional space of sublattices. This Hamil-
tonian describes a linear gapless spectrum near a given
Dirac point. The large separation in momentum space
suppresses (inter-valley) scattering between the K and
K ′ points, so we focus on a single Dirac cone in the fol-
lowing.

A broken structural inversion symmetry results in the
RSO interaction Hamiltonian

HR = λR(σxsy − σysx), (2)

where λR denotes the strength of the RSO coupling and
sx,y are the Pauli matrices corresponding to the elec-
tron spin. It is worth mentioning that the RSO term
in graphene does not depend explicitly on momentum in
contrast to the general case for two-dimensional electron
gases [21, 34]. In order to simplify the calculation, we ne-
glect two additional perturbations which can be present
in graphene, namely a staggered sublattice potential and

the intrinsic spin-orbit coupling. Passing on to a second-
quantized description, the graphene Hamiltonian in the
presence of the RSO term has the form

H = H0 +HR =
∑
nk

εnkc
†
nkcnk. (3)

The eigenstates of the single-particle Hamiltonian (3)
are denoted by |nk⟩, where n denotes the band index
and k = (kx, ky) is the wave vector in 2D momentum
space. The annihilation and creation operators of an
electron with momentum k in band n satisfy the stan-

dard anti-commutation relations, {c†nk, cn′k′} = δnn′δkk′ .
The RSO coupling leaves the spectrum gapless at |k| = 0
and one finds the dispersion relations for the four bands,
namely

εnk =

{
∓λR −

√
v2k2 + λ2R n = v1, v2,

∓λR +
√
v2k2 + λ2R n = c1, c2.

(4)

where the band indices c1,2 and v1,2 refer to the spin-split
conductance and valence bands, respectively.
The dominant scattering mechanism to reach the

hydrodynamic regime is the electron-electron interac-
tion [7, 33]. In second quantization, the electron-electron
interaction in the eigenbasis of the diagonal Hamilto-
nian (3) can be written as

Hee =
1

2S

∑
n1n3
k1k3

∑
n2n4
k2k4

∑
q

VqF
n1n3

k1k3
Fn2n4

k2k4

× δk1+q,k3
δk2−q,k4

c†n3k3
c†n4k4

cn2k2
cn1k1

, (5)

where S is the 2D system volume. The interac-
tion potential Vq is given by the Fourier transform
of the real-space interaction potential, V (r1 − r2) =
(1/S)

∑
q Vqe

iq(r1−r2), and has the symmetry V−q = Vq.
The Dirac factors in the presence of RSO interaction are
represented by the following matrix element (see App. A
for details)

Fnn′

kk′ =
1

2
ξnkξ

n′

k′

[
1 + nn′gnk,1(g

n′

k′,1)
∗

+ gnk,2(g
n′

k′,2)
∗ + nn′gnk,3(g

n′

k′,3)
∗
]
, (6)

where

ξnk =
[
1 + (ζnk )

2
]−1/2

, ζnk = εnk/(v|k|),
gnk,1 = iζnk e

−iθk , gnk,2 = ζnk e
−iθk ,

gnk,3 = ie−2iθk , (7)

and θk denotes the angle of the 2D vector k with respect
to the kx axis. The superscript n denotes the band and
n = +1 (n = −1) corresponds to the v1, c1 (v2, c2) bands.

It is worth mentioning that (Fnn′

kk′ )∗ = Fn′n
k′k , which guar-

antees the hermiticity of the electron-electron interaction
Hamiltonian.
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III. BOLTZMANN EQUATION

The kinetic equation can be obtained by applying the
Keldysh technique to the total Hamiltonian given in pre-
vious section and applying perturbation theory and a
semiclassical approximation. The details of these steps
are standard and explained in many reviews [35–37].
Choosing a chemical potential above the charge neutral-
ity point, we need to consider only the two conduction
bands. We denote the corresponding semiclassical distri-
bution functions as fn1k1

≡ fn1k1
(r, t), where n1 = +1

(n1 = −1) corresponds to the lower (upper) conduction
band c1 (c2). The exact form of the distribution functions
obtained from the Keldysh Green’s functions is provided
in Refs. [35] and [36]. In our effective two-band system,
the Boltzmann equation for the distribution functions
can be written as

∂fn1k1

∂t
+
∂εn1k1

∂k1

∂fn1k1

∂r
− ∂φ

∂r

∂fn1k1

∂k1
= I[fn1k1

], (8)

where φ(r, t) is an external field applied to the sys-
tem and I[fn1k1 ] is the electron-electron collision in-
tegral, which is a functional of the distribution func-
tions. Our main interest is in the hydrodynamic regime
where electron-electron interactions dominate. For sim-
plicity, we therefore omit the scattering integrals related
to electron-hole recombination as well as the scattering
integrals related to impurity and phonon scattering. In
the two-particle scattering approximation the scattering
integral has the form

I[f1] = −2πN
∑
234

W 34
12

[
G34
12 − G12

34

]
, (9)

where we used the shorthand notation 1 ≡ (n1k1) etc.
The outgoing and incoming fluxes are denoted by G34

12 =
f1f2(1−f3)(1−f4) and the valley degeneracy factor N =
2. The two-particle scattering rate is given by Fermi’s
golden rule

W 34
12 = |⟨34|Hee|12⟩c|2δ(Ei − Ef ), (10)

where i = |12⟩ and f = |34⟩ denote, respectively, the ini-
tial and final states of the scattering process. Moreover,
Ei = εn1k1+εn2k2 is the initial state energy, the subscript
c means that only connected diagrams are taking into ac-
count, and the delta function is a consequence of energy
conservation. Applying Wick’s theorem, we obtain the
following expression for the two-particle transition ma-
trix element

⟨34|Hee|12⟩c =
1

S

[
Vk1−k4F

n1n4

k1k4
Fn2n3

k2k3
(11)

− Vk1−k3F
n1n3

k1k3
Fn2n4

k2k4

]
δk1+k2,k3+k4 ,

where the Kronecker-delta ensures momentum conser-
vation in the two-particle collision process. It is worth
mentioning that in Ref. [33] only the first term of
Eq. (11) is kept, thus ignoring the interference effects.
In this case, at zero spin-orbit coupling, our results re-
produce those of Ref. [33], namely |⟨34|Hee|12⟩c|2 =
|Vk1−k3

|2Θn1n3

k1k3
Θn2n4

k2k4
δk1+k2,k3+k4

with Dirac factors for

pristine graphene Θnn′

kk′ = (1 + nn′ek · ek′)/2, where
ek = k/|k| is a unit vector in the direction of the mo-
mentum.

The strong interactions cause the electrons to relax on
a short time scale to local equilibrium distributions

f eqmk(r, t) =

{
1 + exp

[
εmk − µ(r, t)− u(r, t) · k

T (r, t)

]}−1

,

(12)
where µ is the chemical potential and u and T are the lo-
cal drift velocity and the temperature, respectively. This
form of the distribution function is a general consequence
of Boltzmann’s H-theorem, which states that in local
equilibrium the entropy production must vanish. The
latter is defined as

[
∂S

∂t

]
coll.

=
1

4

∑
{n}

∫
dk1

2π

∫
dk2

2π

∫
dk3

2π

∫
dk4

2π
|⟨34|Hee|12⟩c|2δ(ki − kf )δ(Ei − Ef )

[
G12
34 − G34

12

]
log

[
G12
34

G34
12

]
, (13)

where {n} = (n1, n2, n3, n4) and ki,f , and Ei,f denote
the total momentum and energy, respectively, of the ini-
tial and final states. Analogous expressions have been
already derived for different systems, in particular for
Fermi liquids and (non-linear) Luttinger liquids [36, 38].
Using the property (G12

34 − G34
12) log(G12

34/G34
12) > 0, one

obtains indeed [∂S/∂t]coll. ≥ 0 and the local distribu-
tion function (12) can be deduced from the zero entropy
production condition, i.e., [∂S/∂t]coll. = 0. The kinetic

equation (8) and the local distribution function (12) will
be used in the next section to derive the hydrodynamic
equations.

IV. NAVIER-STOKES EQUATION

In principle, hydrodynamic equations can be formu-
lated on the basis of the conservation laws of parti-
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cle number, momentum and energy [39]. Moreover, it
is known that the hydrodynamic equations can be de-
rived explicitly from the kinetic equation, as was done in
Ref. [33] for graphene without spin-orbit coupling. We
proceed along similar lines and start by considering the
continuity equations and conservation laws arising from
the Boltzmann equation (8).

The continuity equation for the particle number can be
obtained by integrating Eq. (8) over momentum. In this
case the right-hand side of the kinetic equation vanishes
and introducing the particle number and current

n(r, t) =
∑
m

∫
dk

(2π)2
fmk(r, t),

j(r, t) =
∑
m

∫
dk

(2π)2
vmkfmk(r, t),

(14)

where vmk = ∂εmk/∂k = v2k/
√
v2k2 + λ2R, one arrives

at the continuity equation for the particle density

∂n

∂t
+∇ · j = 0. (15)

Similarly, introducing the imbalance particle number and
the imbalance current

nI(r, t) =
∑
m

∫
dk

(2π)2
mfmk(r, t),

jI(r, t) =
∑
m

∫
dk

(2π)2
mvmkfmk(r, t),

(16)

one straightforwardly obtains the continuity equation for
imbalance quantities

∂nI
∂t

+∇ · jI = 0. (17)

To obtain the continuity equation for the energy den-
sity nE(r, t) and the energy (heat) current jE(r, t), both
sides of Eq. (8) are multiplied by εnk and integrated over
momentum. As a result, one finds

∂nE
∂t

+∇ · jE = E · j, (18)

where the Joule heat term on the right-hand side contains
the electric field E = −∇φ.

In order to derive the continuity equation for the mo-
mentum density, one needs to multiply the kinetic equa-
tion by the components of k and integrate over momen-
tum. Therefore, the continuity equation in this case has
the form

∂nik
∂t

+
∑
j

∂Πij

∂j
= nEi, i, j ∈ {x, y}, (19)

where the momentum density and momentum flux tensor
are given by

nik(r, t) =
∑
m

∫
dk

(2π)2
kifmk(r, t),

Πij(r, t) =
∑
m

∫
dk

(2π)2
kiv

j
mkfmk(r, t).

(20)

Next we derive the macroscopic expressions which re-
late the currents with the densities and the drift velocity
u(r, t). Using the local distribution functions (12) and
the definitions of the densities and the currents, one can
show the following relations (see App. B for details)

j = nu, jI = nIu, jE =Wu,

nk = v−2(W + λRnI)u, (21)

Πij = Pδij + v−2(W + λRnI)uiuj +Πij
d , (22)

where W is the enthalpy per volume (it has a dimension
of pressure and we will call it enthalpy instead of enthalpy
density below) and P is the pressure. They are related
with each other through the energy density [39], namely

W = nE + P, (23)

and, according to thermodynamics, the pressure in the
local equilibrium state is given by

P =
1

β

∑
n

∫
dk

(2π)2
log[1 + e−β(εnk−µ−u·k)], (24)

where β = 1/T is a local inverse temperature. Finally,

Πij
d in Eq. (21) is a dissipative contribution which is re-

lated to the electron shear viscosity (see App. C),

Πd = −νW̃
v2

[(∂xux − ∂yuy)τz − (∂xuy + ∂yux)τx] , (25)

where τx,z are Pauli matrices, W̃ = W + λRnI , and ν is
the (static) kinematic viscosity

ν =
v2F
4τ−1

ee

, (26)

with τee being the electron-electron scattering time and
vF = ∂kεnk|εnk=µ is the Fermi velocity.
First, we investigate how spin-orbit coupling affects

τ−1
ee . In order to evaluate the scattering integral, we lin-
earize the Boltzmann equation (8) by assuming small u
and a nonequilibrium distribution function which is lo-
calized near the Fermi level. We refer to App. C for the
detailed derivation.
The electron-electron (e-e) interactions conserve parti-

cle number, energy and momentum which, respectively,
correspond to the zeroth and the first-harmonic an-
gular function of the nonequilibrium distribution [see
Eq. (C5)]. Thus, the relaxation originates from second
harmonics or higher. It is known that even harmonics
decay faster than the odd ones [40] and here we assume
that the viscosity only comes from the second harmonic.
We then obtain τ−1

ee =
∑

m γm2 /g
m
F where γm2 is the e-

e scattering rate of the second harmonic nonequilibrium
distribution and gmF is the density of states at the Fermi
energy of the conduction band m. Note that the electron
wave functions inside the Dirac factor of the Coulomb
matrix elements (6) play a crucial role in determining
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the dependence of γm2 on λR. Eventually one finds that
γm2 scales with T 2 as

γm2 =
32

3

e4T 2

v4
γ̃m(λ̃R, d̃), (27)

where

γ̃±(λ̃R, d̃) =

∫ 2

0

dq̃
q̃ − q̃3/4

(q̃ + d̃)2

{√
4− q̃2 (28)

− q̃

[
tan−1

(√
4− q̃2

q̃

)
∓ tan−1

(
λ̃R
q̃

√
4− q̃2

1 + λ̃2R

)]}2

,

is a dimensionless function whose value depends on

λ̃R = λR/(vkF ) and the (dimensionless) inverse screen-

ing length d̃ = d/kF , where kF is the Fermi wavevector.
For this derivation, we have used a screened Coulomb
potential with Vq = 2πe2/(q + d). We note that the ±
sign in Eq. (28) originates from the electron wavefunc-
tion which encodes the different dispersions of two con-
duction bands. Moreover, for determining τ−1

ee , we need
g∓F = (µ± λR)/(πv

2ℏ2) for c1 and c2 respectively. Using
as parameters λR = 0.01 eV, µ = 0.1 eV, v = 106 m/s,
and T = 100 K, we obtain a typical electron-electron
scattering rate of τ−1

ee ≈ 0.3/fs. This leads to a static
viscosity ν0 ≈ 0.7 nm2/fs.
We illustrate the dependence of γm2 on λR and d in

Fig. 1(a). Dash-dotted lines denote the contribution from
the c1 (m = −1) band, the dashed lines are from the c2
(m = +1) band, and the solid lines denote the average de-
fined as γavg2 = 1

2

∑
m γm2 . As λR increases, the scattering

rate can be non-monotonic and this non-trivial behavior
originates from the electron wave functions. We note that

the scaled values λ̃d and d̃ can in principle be different in
the two bands as they will have different Fermi momenta
kF . Here, however, we assume µ ≫ λR so that this dis-
parity is negligible. We also plot the static viscosity as
a function of λR in Fig. 1(b). Based on these results, we
predict that the viscosity can change significantly due to
spin-orbit coupling.

Now, we have all ingredients to derive the Navier-
Stokes equation. We find

∂tnk = v−2
(
W̃∂tu+ u∂tW̃

)
, (29)

∂Πij

∂j
=
∂P

∂i
+

1

v2

{
W̃
[
(u · ∇)ui − ν∇2ui

]
+ ui∇ · (W̃u)

}
.

Then, from Eqs. (23) and (17) one obtains

∂t(W̃ − P ) +∇ · (W̃u) = E · j. (30)

Finally, substituting Eqs. (29) and (30) into Eq. (19), we
arrive at the hydrodynamic Navier-Stokes equation

W (∂t + u · ∇ − ν∇2)u+ v2∇P + u∂tP + (E · j)u
+ λRnI(∂t + u · ∇ − ν∇2)u = v2nE. (31)

(a)

0.01 0.1 1 10
0

1

2

3

4

(b)

0.01 0.1 1 10
0

1

FIG. 1. (a) Electron-electron scattering rate of the c1 band
(dash-dotted lines), the c2 band (dashed lines), and their av-
erage (solid lines). (b) Static viscosity as a function of RSO
strength for several values of the dimensionless inverse screen-

ing length d̃ = d/kF . Here, γ
(0)
2 and ν0 denote the respective

values of the scattering rate and viscosity for λR = 0.

This is the second main result of the paper. Compared to
the case of pristine graphene without RSO coupling [33],
one finds a new term on the left-hand side of the equation.
Since the spin-orbit coupling gives rise to an additional
term in the enthalpy (21), it affects the time derivative
and the convective term.

V. CONCLUSIONS

To summarize, we have derived the hydrodynamic
Navier-Stokes equation for two-dimensional graphene-
like materials in the presence of RSO coupling. Com-
pared to the result without spin-orbit coupling, the RSO
interaction modifies the viscosity and gives rise to an
additional term in the Navier-Stokes equation, which is
similar to the convective term. The reason for this is
the modification of the spectrum of the system due to
the presence of the RSO interaction, which results in the
addition of a term λRnI to the enthalpy. As the mo-
mentum continuity equation is sensitive to the explicit
form of the spectrum, this influences the final form of
the hydrodynamic Navier-Stokes equation. In addition,
we have derived the two-particle scattering rate explicitly
in the presence of RSO coupling. This has allowed us to
derive the corrections to the effective kinematic viscosity
resulting from the RSO coupling.
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Appendix A: Calculation of matrix element ⟨n′k′|eiqr|nk⟩

In this Appendix we calculate the form of the matrix element ⟨n′k′|eiqr|nk⟩ [41]. First we demonstrate the calcu-
lations for pristine graphene and then generalize the results for RSO interactions. The orthonormal eigenvectors of
Hamiltonian (1) have the form

ψn
k(r) =

1√
2

[
Uk,A(r)− n

g∗(k)

|g(k)|
Uk,B(r)

]
, Uk,j(r) =

1√
N

∑
Rj′

eik(Rj′+τj)φz(r−Rj′ − τj), j = A,B, (A1)

where n = +1 (n = −1) corresponds to the conduction (valence) band, the subscripts A and B correspond to the two
atoms in the unit cell, the pre-factor is a complex number g(k) = kx + iky = |k|eiθk , where θk defines the direction of
the 2D vector k and N is a normalization coefficient (number of unit cells). The localized function φz(r) corresponds
to a pz orbital of atoms A and B, Rj′ is a lattice vector, and τj denotes the position of the atom j ∈ {A,B} within
the unit cell. For instance, one can set τA = 0, in which case τB denotes the vector from atom A to B. The pz orbitals
are approximated by hydrogen wave functions with an effective core charge Z ≃ 3.2 and Bohr radius a0 = 5.3Å [42],
namely

φz(r) = φn=2,l=1,m=0(r, θ, φ) =
Z3/2

4
√
2πa

3/2
0

Zr

a0
e−

Zr
a0 cos θ. (A2)

To calculate the matrix element Fnn′

kk′ we insert the projection operator
∫
dr|r⟩⟨r| = 1, so that we have

Fnn′

kk′ =

∫
dr⟨n′k′|r⟩eiqr⟨r|nk⟩ =

∫
drψn′

k′ (r)eiqrψn
k(r) =

1

2

(
1 + nn′ g∗(k)g(k′)

|g∗(k)||g(k′)|

)
I(q;k,k′), (A3)

where it is assumed that the orbitals of the atoms A and B are orthogonal, and the auto-correlation term is given by
the following integral expression

I(q;k,k′) =

∫
drU∗

k′,A(r)e
iqrUk,A(r) =

∫
drU∗

k′,B(r)e
iqrUk,B(r) =

1

N

∑
Rj

ei(k+q−k′)RjI(q), (A4)

where the inner integral is denoted by I(q) =
∫
dr
∑

δ e
ikδφz(r)e

iqrφz(r + δ) with δ = Rj′ − Rj . The main
contribution to this integral comes from δ = 0, so we approximate the integral as follows

I(q) ≃
∫
drφz(r)e

iqrφz(r) =
1

(1 + |Q|2)3
− 6|Q|2

(1 + |Q2)|4
, |Q| = |q|a0/Z. (A5)

At small momentum transfer |Q| ≪ 1, the expression (A5) is of the order of unity, and taking into account the
conservation of momentum in the scattering process, i.e., (1/N)

∑
Rj

exp[i(k+ q− k′)Rj ] = 1, we arrive at the final

result for matrix element in Eq. (A3), namely

Fnn′

kk′ =
1

2

(
1 + nn′ g∗(k)g(k′)

|g∗(k)||g(k′)|

)
. (A6)

In presence of RSO interaction the orthonormal eigenvectors of Eq. (3) are given by

ψn
k(r) =

1√
2
ξnk
[
Uk,A↑(r) + ngnk,1Uk,A↓(r) + gnk,2Uk,B↑(r) + ngnk,3Uk,B↓(r)

]
, (A7)

where ξnk =
√

1 + (ζnk )
2 and ζnk = εnk/(v|k|). Further ignoring the cross correlations and repeating the same steps as

in case of pristine graphene above, we arrive at Eq. (6) of the main text.
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Appendix B: Derivation of the macroscopic Eqs. (21)

In this Appendix we derive the expressions which relate the macroscopic densities and currents using the local
equilibrium distribution function (12) and the definitions of particle, heat, momentum densities and currents. In
our derivations we omit a degeneracy factor N = 2 due to the valley degeneracy. First, we demonstrate that
j(r, t) = n(r, t)u(r, t) by considering the following difference

j− nu =
∑
n

∫
dk

(2π)2
fnk∂k(εnk − u · k− µ) =

1

β

∑
n

∫
dk

(2π)2
∂k

[
log
(
1 + e−j[εnk−u·k−µ]

)]
= 0, (B1)

where we used that εnk = ∓λR+
√
v2k2 + λ2R > u ·k, since the Fermi velocity is larger then the drift velocity, v > |u|.

An analogous calculation leads to jI(r, t) = nI(r, t)u(r, t). Next, we turn to the energy current where we need to
prove that jE = Wu. Since W = nE + P this is equivalent to jE − nEu = Pu. This is shown by straightforward
calculations

jE − nEu =
∑
n

∫
dk

(2π)2
εnkfnk∂k(εnk − u · k− µ) = − 1

β

∑
n

∫
dk

(2π)2
εnk∂k log

[
1 + e−β(εnk−u·k−µ)

]
(B2)

=
1

β

∑
n

∫
dk

(2π)2
log
[
1 + e−β(εnk−uk−µ)

]
∂k(εnk − uk+ uk− µ)

=
u

β

∑
n

∫
dk

(2π)2
log
[
1 + e−β(εnk−uk−µ)

]
︸ ︷︷ ︸

=uP

+
1

β

∑
n

∫
dk

(2π)2
∂k(εnk − uk− µ) log

[
1 + e−β(εnk−uk−µ)

]
︸ ︷︷ ︸

=0

= Pu,

where the definition of pressure in Eq. (24) was used. Thus we obtained the third expression of Eqs. (21) in the main
text. Next, we derive the expression for the momentum density, which can be presented as a product of enthalpy,
imbalance density, and drift velocity. Let us consider the x component of the energy current

jxE =
∑
n

∫
dk

(2π)2
εnk

v2kx
v2k2 + λ2R

fnk =
∑
n

∫
dk

(2π)2

(
1− nλR√

v2k2 + λ2R

)
v2kxfnk

= v2
∑
n

∫
dk

(2π)2
kxfnk︸ ︷︷ ︸

nx
k

−λR
∑
n

n

∫
dk

(2π)2
v2kx√

v2k2 + λ2R
εnkfnk︸ ︷︷ ︸

jxI

= v2nxk − λRj
x
I .

and analogously for the y component. Therefore, we get the fourth relation of Eqs. (21) of main text, i.e.,

nk = v−2jE + v−2λRjI = v−2 (W + λRnI)u. (B3)

Finally, we derive the last relation of Eqs. (21) for the stress tensor. By definition, the diagonal element Πxx
E of the

stress tensor is given by

Πxx
E =

∑
n

∫
dk

(2π)2
kxv

x
nkfnk =

∑
n

∫
dk

(2π)2
kx∂kx(εnk − uxkx − uyky − µ+ uxkx)fnk

= ux
∑
n

∫
dk

(2π)2
kxfnk︸ ︷︷ ︸

nx
k

− 1

β

∑
n

∫
dk

(2π)2
kx∂kx

log
[
1 + e−β(εnk−uxkx−uyky−µ)

]

= uxn
x
k︸ ︷︷ ︸

v−2W̃uxux

+
1

β

∑
n

∫
dk

(2π)2
log
[
1 + e−β(εnk−uxkx−uyky−µ)

]
︸ ︷︷ ︸

P

= P + v−2W̃uxux, (B4)
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where W̃ =W + λRnI . Moreover, the off-diagonal component Πxy
E of the stress tensor is given by

Πxy
E =

∑
n

∫
dk

(2π)2
kxv

y
nkfnk =

∑
n

∫
dk

(2π)2
kx∂ky

(εnk − uyky − uxkx − µ+ uyky)fnk

= uy
∑
n

∫
dk

(2π)2
kxfnk︸ ︷︷ ︸

nx
k

− 1

β

∑
n

∫
dkx
2π

kx

∫
dky
2π

∂ky
log[1 + e−β(εnk−uxkx−uyky−µ)]︸ ︷︷ ︸

=0

= nxkuy = v−2[W + λRnI ]uxuy. (B5)

and similar expressions can be obtained for Πyy
E and Πyx

E . In summary, this leads to the last lines in Eqs. (21) of the
main text.

Appendix C: Effects of spin-orbit coupling on electron-electron scattering rate and viscosity

We consider the Boltzmann equation including only the electron-electron scattering integral,

∂fn1k1

∂t
+
∂εn1k1

∂k1

∂fn1k1

∂r
− ∂φ

∂r

∂fn1k1

∂k1
= I[fn1k1

], (C1)

where the scattering integral is given by

I[f1] = −2πN
∫
234

δ1234W
34
12 [f1f2(1− f3)(1− f4)− (1− f1)(1− f2)f3f4] , (C2)

where N = 2 accounting valley degeneracy. We have shortened the indices for simplicity as {1, 2, 3, 4} =
{n1k1, n2k2, n3(k1 + q), n4(k2 − q)} and δ1234 contains the Dirac delta functions for both energy and momentum
conservation. We simplify the band index degrees of freedom by neglecting interband transitions (n1 = n3) and inter-
band scattering (n1 = n2). The interband transition normally occurs on fast time scales ω ≫ 1/τee relevant, e.g., to
optics which is not amenable for hydrodynamics. Interband scattering between the lower and upper conduction band
will give mutual drags that cancel each other in the Navier-Stokes equation [summing up two c bands contribution
in Eq. (C1)]. To simplify the calculation of scattering integral, we assume a small drift velocity so that the local
equilibrium distribution is given by,

f
(0)
k =

1

1 + exp[β(εk − µ)]
(C3)

We linearize the collision integral (C2) by writing

fk = f
(0)
k + δf = f

(0)
k −

∂f
(0)
k

∂ε
F (r, θk) (C4)

where the nonequilibrium distribution δf is assumed to be valid at low temperatures where −∂εf (0)k can be approxi-
mates as a delta function peaked at µ and the k dependence on F only depends on the azimuthal angle θk between
k and its component kx. We further expand the nonequilibrium part of distribution into angular harmonics:

F (r, θk) =

∞∑
n=−∞

einθkFn(r) (C5)

We see that F0 is related to the density fluctuations

n(r, t) =

∫
d2k

(
f(r,k, t)− f (0)(εk)

)
= gFF0(r, t), (C6)

where gF =
∫
d2kδ(µ− εk) is the local density of states at the Fermi level. Moreover, the functions F±1 are related

to the current density,

j(r, t) =

∫
d2k vk

(
f(r, t)− f (0)(εk, t)

)
,

=
1

2
gF vF

(
F1(r, t) + F−1(r, t)
i [F1(r, t)−F−1(r, t)]

)
≡ n̄u(r, t), (C7)
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where n̄ =
∫
d2kf (0)(εk) = gFµ is the equilibrium density and this equation defines the drift velocity u(r, t). The

functions F±2 are related to the stress tensor,

Πi,j =

∫
d2k kivk,j(f(r, t)− f (0)(εk)),

Πx,x =
gF kF vF

4
(2F0(r, t) + F2(r, t) + F−2(r, t)) ,

Πx,y = Πy,x =
gF kF vF

4i
(F−2(r, t)−F2(r, t)) , (C8)

Πy,y =
gF kF vF

4
(2F0(r, t)−F2(r, t)−F−2(r, t)) ,

We can express this tensor in a compact form as

Π =
gF kF vF

4
[2F0 + (F2 + F−2)τz + i(F2 − F−2)τx] , (C9)

where τx,z are the Pauli matrices.
Next, we multiply Eq. (C1) by e−imθk and integrate over k to obtain

∂tFm(r, t) +
vF
2

[∂x(Fm−1 + Fm+1)− i∂y(Fm−1 −Fm+1)]

−evF
2

[Ex(δm,1 + δm,−1)− iEy(δm,1 − δm,−1)] = −γm
gF

Fm (C10)

It will be obvious later that we can obtain the right hand side from linearization of the scattering integral and only
even harmonics |m| > 1 give nonzero γm. For m = 0, we obtain the continuity equation

∂tn̄+∇j = 0. (C11)

For m = ±1, we obtain the linearized Navier-Stokes equation

∂tu+
1

ρ
∇ ·Π− n̄

ρ
E = 0, (C12)

where ρ = n̄kF /vF is the mass density and in graphene ρ = W̃/v2. We can approximately close the recursion
relation (C10) by setting Fm = 0 for |m| ≥ 3 [7, 43]. For n = 2 and considering components at frequency ω, i.e.,
∂tFn = −iωFn, we obtain

vF
2

[∂xF1 − i∂yF1] = −
(
γ2
gF

− iω

)
F2 (C13)

vF
2

[∂xF−1 + i∂yF−1] = −
(
γ−2

gF
− iω

)
F−2. (C14)

We will see later that γ2 = γ−2. Using the relationship in Eq. (C14), the stress tensor in Eq. (C9) becomes

Π = P − ρν [(∂xux − ∂yuy)τz − (∂xuy + ∂yux)τx] , (C15)

and the Navier-Stokes equation becomes

∂tu+∇P − ν∇2u− n̄

ρ
E = 0, (C16)

where P = µn(r, t) is the pressure gradient, µ = kF v
2
F /2 is the chemical potential and the kinematic viscosity is given

by

ν =
v2F

4
(
τ−1
ee − iω

) , τee =
gF
γ2
. (C17)

The stress tensor in Eq. (C15) does not contain the convective term because we focus on linear term but it captures
the dissipative term induced by relaxation of the second harmonics F±2.
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Next, we discuss the linear collision integral. Linearizing the collision integral means retaining the linear order of
the distribution function products,

f1f2 (1− f3) (1− f4) = (f
(0)
1 + δf1)(f

(0)
2 + δf2)

(
1− (f

(0)
3 + δf3)

)(
1− (f

(0)
4 + δf4)

)
≈ f

(0)
1 f

(0)
2

(
1− f

(0)
3

)(
1− f

(0)
4

)
+ δf1f

(0)
2

(
1− f

(0)
3

)(
1− f

(0)
4

)
+f

(0)
1 δf2

(
1− f

(0)
3

)(
1− f

(0)
4

)
+ f

(0)
1 f

(0)
2 (−δf3)

(
1− f

(0)
4

)
+f

(0)
1 f

(0)
2

(
1− f

(0)
3

)
(−δf (0)4 ). (C18)

Analogously, we obtain

(1− f1)(1− f2)f3f4 ≈ (1− f
(0)
1 )(1− f

(0)
2 )f

(0)
3 f

(0)
4 + (−δf1)(1− f

(0)
2 )f

(0)
3 f

(0)
4

+(1− f
(0)
1 )(−δf2)f (0)3 f

(0)
4 + (1− f

(0)
1 )(1− f

(0)
2 )(δf3)f

(0)
4

+(1− f
(0)
1 )(1− f

(0)
2 )f

(0)
3 (δf

(0)
4 ). (C19)

Therefore,

f1f2 (1− f3) (1− f4)− (1− f1)(1− f2)f3f4 ≈ δf1

[
f
(0)
2

(
1− f

(0)
3

)(
1− f

(0)
4

)
+ (1− f

(0)
2 )f

(0)
3 f

(0)
4

]
+δf2

[
f
(0)
1

(
1− f

(0)
3

)(
1− f

(0)
4

)
+ (1− f

(0)
1 )f

(0)
3 f

(0)
4

]
−δf3

[
f
(0)
1 f

(0)
2

(
1− f

(0)
4

)
+
(
1− f

(0)
1

)(
1− f

(0)
2

)
f
(0)
4

]
−δf4

[
f
(0)
1 f

(0)
2

(
1− f

(0)
3

)
+
(
1− f

(0)
1

)(
1− f

(0)
2

)
f
(0)
3

]
,

≈ f
(0)
1 f

(0)
2

(
1− f

(0)
3

)(
1− f

(0)
4

)
[−h1 − h2 + h3 + h4] , (C20)

where we have used f
(0)
1 f

(0)
2 (1 − f

(0)
3 )(1 − f

(0)
4 ) − (1 − f

(0)
1 )(1 − f

(0)
2 )f

(0)
3 f

(0)
4 = 0 as a consequence of energy and

number conservation, and δf1 = −h1f (0)1 (1− f
(0)
1 ), where h1 = βF (r, θ1). The linearized collision integral reads

I[f1] = 4π

∫
234

δ1234W
34
12 f

(0)
1 f

(0)
2 (1− f

(0)
3 )(1− f

(0)
4 )h3412, (C21)

where h3412 = (h1 + h2) − (h3 + h4). Now we substitute the harmonic expansion into hi, we can write down the nth
eigenmode as

In[f1] = 4πβFn(r)

∫
234

δ1234W
34
12 f

(0)
1 f

(0)
2 (1− f

(0)
3 )(1− f

(0)
4 )(einθ1 + einθ2 − einθ3 − einθ4), (C22)

Thus, this leads to the following definition of the electron-electron scattering rate

γn = 4πβ

∫
1234

δ1234W
34
12 f

(0)
1 f

(0)
2 (1− f

(0)
3 )(1− f

(0)
4 )(1 + ein(θ2−θ1) − ein(θ3−θ1) − ein(θ4−θ1)). (C23)

where the last factor in Eq. (C23) comes from taking the integral
∫
1
e−inθ1I[f1].

We schematically look at the possible electron-electron (e-e) collisions in Fig. 2 [40]. In Fig. 2, we consider a
momentum transfer q along the kx axis. We can do so without loss of generality because we can rotate Fig. 2 around
an angle θq and the resulting e-e collision rate is invariant. The kinematic restrictions due to momentum and energy
conservations leave only a few possibilities for scattering processes. The first type is a head-on collision with k2 = −k1

or θ2 = π + θ1, θ3 = −θ1 and θ4 = π − θ1 as depicted in Figs. 2(a) and (b). The second type is an exchange process
where k1 = k4 and k2 = k3. Using this condition in Eq. (C22), we find that the exchange process gives In[f1] = 0
and thus does not relax the e-e scattering. Focussing on the head-on process, we note that n = 0 and n = 1 also give
In[f1] = 0. This is expected as a result of particle number, energy (n = 0) and momentum (n = 1) conservation.
Further calculations show that all odd n modes give zero In[f1]. For even n, we obtain

e−inθ1h3412(n) = (1 + einπ − ein(−2θ1) − ein(π−2θ1)) + c.c.

= 4(1− cos(2nθ1)), where sin θ1 =
q

2kF
(C24)
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1
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(d)

FIG. 2. Possible states for e-e collision. (a) and (b) are head-on collisions while (c) and (d) are exchange processes.

For n = 2, we obtain

e−inθ1h3412(2) = 32

[(
q

2kF

)2

−
(

q

2kF

)4
]

(C25)

Next, we will consider the actual e-e interaction matrix element W 34
12 = |V 34

12 |2 = |Vq ⟨3|1⟩ ⟨4|2⟩ |2, neglecting the
interference term of Eq. (11). For the 4× 4 Hamitonian of graphene with SOC we use the corresponding eigenstate,

|k⟩ = 1√
2

e−iθk√
1 + (εk/vk)2

(
ie−iθk , −i εk

vk
,

εk
vk
, eiθk

)T
. (C26)

For different bands, the eigenstates differ by energy dispersion. For simplicity, we can suppress the band index unless
we explicitly write the dispersion, i.e. ε±k = ±λR +

√
λ2R + (vk)2, where − for c1 and + for c2.

We obtain

|⟨k1 + q|k1⟩|2 =
v2k1|k1 + q| cos(θk1

− θk1+q) + εk1
εk1+q

v2k1|k1 + q|
√
1 + (εk1/vk1)

2
√

1 + (εk1+q/v|k1 + q|)2

|⟨k2 − q|k2⟩|2 =
v2k2|k2 − q| cos(θk2

− θk2−q) + εk2
εk2−q

v2k2|k2 − q|
√
1 + (εk2

/vk2)2
√

1 + (εk2−q/v|k2 − q|)2
.

We need to express cos(θk1+q − θk1
) in terms of φ = θq − θk1

,

cos(θk1+q − θk1
) = cos θk1+q cos θk1

+ sin θk1+q sin θk1

=
(k1 + q)x
|k1 + q|

cos θk1 +
(k1 + q)y
|k1 + q|

sin θp

=
k cos θk1 + q cos θq

|k1 + q|
cos θk1 +

k1 sin θk1 + q sin θq
|k1 + q|

sin θk1

=
k1 + q(cos θq cos θk1

+ sin θq sin θk1
)

|k1 + q|

=
k1 + q cosφ

|k1 + q|
(C27)

In the same way, we obtain cos(θk2−q − θk2
) = (k2 − q cosφ2)/|k2 − q|, where φ2 = θq − θk2 . As a result, we have

|⟨k1 + q|k1⟩|2 =
v2k1(k1 + q cosφ) + εk1εk1+q

v2k1|k1 + q|
√
1 + (εk1

/vp)2
√

1 + (εk1+q/v|k1 + q|)2

|⟨k2 − q|k2⟩|2 =
v2k2(k2 − q cosφ2) + εk2εk2−q

v2k2|k2 − q|
√
1 + (εk2/vk2)

2
√

1 + (εk2−q/v|k2 − q|)2
.
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The energy conservation in the delta function of Eq. (C23) controls the allowed transitions. We split the delta function
into two,

δ(εk1
+ εk2

− εk1+q − εk2−q) =

∫
dωδ(εk1

− εk1+q − ω)δ(εk2
− εk2−q + ω) (C28)

With the aid of two delta functions, we change the product of Fermi distribution into a difference,

f
(0)
k1

(1− f
(0)
k1+q) =

f
(0)
k1

− f
(0)
k1+q

1− eβω
(C29)

f
(0)
k2

(1− f
(0)
k2−q) =

f
(0)
k2

− f
(0)
k2−q

1− e−βω
(C30)

Now the e-e scattering rate becomes

γ2 = 4πβ

∫
d2k1

(2π)2

∫
d2k2

(2π)2

∫
d2q

(2π)2

∫
dω

(C31)

× δ(εk1
− εk1+q − ω)

v2k1(k1 + q cosφ) + εk1
εk1+q

v2k1|k1 + q|
√

1 + (εk1
/vk1)2

√
1 + (εk1+q/v|k1 + q|)2

× δ(εk2
− εk2−q + ω)

v2k2(k2 − q cosφ2) + εk2εk2−q

v2k2|k2 − q|
√
1 + (εk2

/vk2)2
√
1 + (εk2−q/v|k2 − q|)2

|Vq|2

×
f
(0)
k1

− f
(0)
k1+q

1− eβω
f
(0)
k2

− f
(0)
k2−q

1− e−βω
32

[(
q

2kF

)2

−
(

q

2kF

)4
]
, (C32)

We shift the vector p+ q → −p so that∫
d2k1

(
f
(0)
k1

− f
(0)
k1+q

)
δ(εk1

− εk1+q − ω) (. . .) =

∫
d2k1

[
f
(0)
k1
δ(εk1

− εk1+q − ω)− f
(0)
−k1

δ(ε−k1−q − ε−k1 − ω)
]
(. . .)

=

∫
d2k1f

(0)
k1

[δ(εk1
− εk1+q − ω)− δ(εk1+q − εk1

− ω)] (. . .) . (C33)

and to get the last line, we used the symmetry of εk1
and f

(0)
k1

. Similarly for k2, we get,∫
d2k2

(
f
(0)
k2

− f
(0)
k2−q

)
δ(εk2

− εk2−q + ω) (. . .) =

∫
d2k2f

(0)
k2

[δ(εk2
− εk2−q + ω)− δ(εk2−q − εk2

+ ω)] (. . .) .

(C34)

Now we examine the energy conservation during the scattering process,

εk1+q − εk1
=
√
λ2R + v2(k21 + q2 + 2k1q cosφ)−

√
λ2R + (vk1)2

εk2−q − εk2
=
√
λ2R + v2(k22 + q2 − 2k2q cosφ2)−

√
λ2R + (vk2)2 (C35)

and perform the delta function integrations over angles,∫
dφG(φ)δ

(√
λ2R + v2(k21 + q2 + 2k1q cosφ)−

√
λ2R + (vk1)2 + ω

)
− (ω → −ω)

=
∑
j=1,2

G(φ+
j )

∣∣∣∣∣ |
√
λ2R + (vk1)2 − ω|
v2k1q sinφ

+
j

∣∣∣∣∣− G(φ−
j )

∣∣∣∣∣ |
√
λ2R + (vk1)2 + ω|
v2k1q sinφ

−
j

∣∣∣∣∣ , (C36)

where φ±
j are the solutions that make the arguments in the delta function become zero

φ+
j =± cos−1

(
ω2 − v2q2 − 2ω

√
λ2R + (vk1)2

2v2k1q

)
,

φ−
j =± cos−1

(
ω2 − v2q2 + 2ω

√
λ2R + (vk1)2

2v2k1q

)
. (C37)
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The form of Eq. (C37) makes the integration over ω, q and p rather intricate. To simplify the expression further,
firstly we assume that ω ∝ T is very small compared to the Fermi energy. Then, Eq. (C37) will become

cosφ±
j = − q

2k1
(C38)

This simplifies the expression in Eq. (C32)

k1 ≈ k1 + q

(
−λR +

√
λ2R + v2(k21 + q2 + 2k1q cosφ)

)
=

(
−λR +

√
λ2R + (vk1)2

)2

(C39)

Performing the radial integration over k1 yields,∫
dk1k1f

(0)
k1

{∑
j=1,2

G±(φ+
j )

∣∣∣∣∣ |
√
λ2R + (vk1)2 − ω|
v2k1q sinφ

+
j

∣∣∣∣∣− G±(φ−
j )

∣∣∣∣∣ |
√
λ2R + (vk1)2 + ω|
v2k1q sinφ

−
j

∣∣∣∣∣
}

=

∫ kF

q/2

dk1k1f
(0)
k1

G±(φ)
−4ω

v2k1q

√
1−

(
q

2k1

)2
,

=
−4ωkF
2qv2

{√
4− q̃2 − q̃

[
tan−1

(√
4− q̃2

q̃

)
∓ tan−1

(
λ̃R
q̃

√
4− q̃2

1 + λ̃2R

)]}
(C40)

where

G±(φ) =
v2k1(k1 + q cosφ) + ε±k1

ε±k1+q

v2k1|k1 + q|
√
1 + (ε±k1

/vk1)2
√

1 + (ε±k1+q/v|k1 + q|)2

= 1− v2q2

2

[
v2k21 +

(
∓λR +

√
λ2R + (vk1)2

)2] , (C41)

and q̃ = q/kF , and λ̃R = λR/(vkF ). The lower bound of the integral k1 = q/2 is placed so that sinφ is well defined.

The upper bound of the integral k1 = kF is due to the low-temperature limit f
(0)
p = θ(µ−εk1

). The radial integration
over k2 gives the opposite sign of Eq. (C40). The opposite signs of the k1 and k2 integrals will result in a positive
value of ω integral, ∫ ∞

−∞
dω

−ω2

(1− eβω)(1− e−βω)
=

2π2

3β3
(C42)

After performing the k1, k2 and ω integrals, we are left with a q integral as follows,

γ±2 =
4π

ℏ
2π2

3β2

4(2π)3e4k2F
ℏ4v4(2π)6

∫ 2kF

0

qdq
1

q2

{√
4− q̃2 − q̃

[
tan−1

(√
4− q̃2

q̃

)
∓ tan−1

(
λ̃R
q̃

√
4− q̃2

1 + λ̃2R

)]}2

×32

[(
q

2kF

)2

−
(

q

2kF

)4
]

1

(q + d)2
.

=
32

3

e4(kBT )
2

ℏ5v4
γ̃±(λ̃R, d̃) (C43)

We plot the viscosity as a function of λR in Fig. 1(b).
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